|
1. امیری دوباری، پ.، نادری، م، جمالیزاده، ا. (1397)، توزیع چوله-لاپلاس موزون دو پارامتری، مجله علوم آماری، 12(2)، 351-364. 2. Aitkin, M. and Wilson, G. T. (1980), Mixture Models, Outliers and EM Algorithm, Technometrics, 22, 325-331. [ DOI:10.1080/00401706.1980.10486163] 3. Akaike, H. (1973), Information theory and an extension of the maximum likelihood principle. 4. Amiri Domari P, Naderi M, Jamalizadeh A. The Two-parameter Weighted Skew Laplace Distribution. Journal of Statistical Sciences, 12(2), 351-364 [ DOI:10.29252/jss.12.2.351] 5. Arslan, O. (2009), An Alternative Multivariate Skew Laplace Distribution: Properties and Estimation, Statistical Papers, 49(1), 1-23. 6. Bai, Z.D., Krishnaiah, P.R. and Zhao, L.C. (2005), On Rates of Convergence of Efficient Detection Criteria in Signal Processing with White Noise, IEEE Trans Inform Theor, 35, 380-388. [ DOI:10.1109/18.32132] 7. Bohning, D., Dietz, E., Schaub, R., Schlattmann, P. and Lindsay, B. (1994), The Distribution of the Likelihood Ratio for Mixtures of Densities from the One Parameter Exponential Family, Annals of the Institute of Statistical Mathematics, 46, 373-388. [ DOI:10.1007/BF01720593] 8. Cancho, V. G., Dey, K. D., Lachos, V. H. and Andrade, M. (2010), Bayesian Nonlinear Regression Models with Scale Mixtures of Skew Normal Distributions: Estimation and Case Influence Diagnostics, Computational Statistics and Data Analysis, 55, 588-602. [ DOI:10.1016/j.csda.2010.05.032] 9. Dogru, F.Z. and Arslan, O. (2017), Robust Mixture Regression based on the Skew t Distribution, [ DOI:10.15446/rce.v40n1.53580] 10. Revista Colombiana de Estadística, 40(1), 45-64. 11. Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977), Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of Royal Statistical Society, 39, 1-38. [ DOI:10.1111/j.2517-6161.1977.tb01600.x] 12. DeSarbo, W. S. and Corn, W. L. (1988), A Maximum Likelihood Methodology for Clusterwise linear regression, Journal of Classification, 5, 249-282. [ DOI:10.1007/BF01897167] 13. Diebolt, J. and Robert, C.P. (1990), Bayesian Estimation of Finite Mixture Distributions: Part II, Sampling Implementation, Technical Report III. Paris: Laboratoire de Statistique Thorique et Applique, Universit Paris VI. 14. Gelman, A., Jakulin, A., Grazia Pittau, M. and Su, Y. (2008), A Weakly Informative Default Prior Distribution for Logistic and other Regression Models, The Annals of Applied Statistics, 4, 1360-1383. [ DOI:10.1214/08-AOAS191] 15. Hawkins, D. S., Allen, D. M. and Stomber, A. J. (2001), Determining the Number of Components in Mixtures of Linear Models, Computational Statistics & Data Analysis, 38, 15-48. [ DOI:10.1016/S0167-9473(01)00017-2] 16. Holla, M.S. and Bhattacharya, S.K. (1986), On a Compound Gaussian Distribution, Annals of the Institute of Statistical Mathematics, 20, 331-336. [ DOI:10.1007/BF02911647] 17. Jones, P. N. and McLachlan, G. J. (1992), Fitting Finite Mixture Models in a Regression Context, [ DOI:10.1111/j.1467-842X.1992.tb01356.x] 18. Austrian Journal of Statistics, 34, 233-240. 19. Julia, O. and Vives-Rego, J. (2005), Skew-Laplace Distribution in Gramnegative Bacterial Axenic Cultures: New Insights into Intrinsic Cellular Heterogeneity, Microbiology, 151, 749-755. [ DOI:10.1099/mic.0.27460-0] [ PMID] 20. Kotz, S., Kozubowski, T.J. and Podgorski, K. (2001), The Laplace Distribution and Generalizations, Birkhauser, Boston. [ DOI:10.1007/978-1-4612-0173-1] 21. Lachos, V., Ghosh, P. and Arellano-Valle, R. (2010), Likelihood Based Inference for Skew Normal/Independent Linear Mixed Model, Statistica Sinica, 20, 303-322. 22. Laplace, P.S. (1774), Memoire sur la probability des causes par les evenements, Memoires de mathematic et de physique, 6, 621-656. 23. Lavine, M. and West, M. (1992), A Bayesian Method of Classification and Discrimination, Canadian Journal of Statistics, 20, 451-461. [ DOI:10.2307/3315614] 24. Lindsay, B. G. (1995), Mixture Models: Theory Geometry and Applications, Hayward, California: Institute of Mathematical Statistics. [ DOI:10.1214/cbms/1462106013] 25. Maclachlan, G. and Peel, D. (2000), Finite Mixture Models, Wiley, New York. [ DOI:10.1002/0471721182] 26. Marin, J. M., Mengersen, K. and Robert, C. (2005), Bayesian Modelling and Inference on Mixtures of Distributions, Handbook of Statistics, 25, Springer-Verlag, New York. [ DOI:10.1016/S0169-7161(05)25016-2] 27. Pearson, K. (1894), Contributions to the Theory of Mathematical Evolution, Philosiphical Transitions of the Royal Society of London, 185, 71-110. [ DOI:10.1098/rsta.1894.0003] 28. Purdom, E. and Holmes, S.P. (2005), Error Distribution for Gene Expression data, [ DOI:10.2202/1544-6115.1070] [ PMID] 29. Statistical Applications in Genetics and Molecular Biology, 4(1), 1-35. 30. Quandt, R.E. (1972), A New Approach to Estimating Switching Regressions, Journal of the American Statistical Association, 67, 306-310. [ DOI:10.1080/01621459.1972.10482378] 31. Quandt, R. E. and Ramsey, J. B. (1978), Estimating Mixtures of Normal Distributions and Switching Regressions, Journal of the American Statistical Association, 73, 730-738. [ DOI:10.1080/01621459.1978.10480085] 32. Richardson, S. and Green, P.G. (1997), On Bayesian analysis of mixtures with an unknown number of components (with discussion), Journal of the Royal Statistical Society, 59, 731-792. [ DOI:10.1111/1467-9868.00095] 33. Roeder, K. and Wasserman, L. (1997), Practical Bayesian Density Estimation using mixture of Normal, [ DOI:10.2307/2965553] 34. Journal of the American Statistical Association, 92, 894-902. [ DOI:10.1001/jama.1929.02700370050018] 35. Song, W., Yao, W. and Xing, Y. (2014), Robust Mixture Regression Model Fitting by Laplace Distribution, [ DOI:10.1016/j.csda.2013.06.022] 36. Computational Statistics and Data Analysis, 71, 128-137. 37. Tarami, B., Sanjari Farsipour, N. and Khosravi, H. (2024), Bayesian Mixture Regression Approach based on Laplace Distribution, Journal of Mathematical Research. 38. Turner, T. R. (2000), Estimating the Propagation Rate of a Viral Infection of Potato Plants Via Mixtures of Regressions, Journal of Applied Statistics, 49(3), 371-384. [ DOI:10.1111/1467-9876.00198] 39. Wolfe, J. H. (1965), A Computer Program for the Computation of Maximum Likelihood Analysis of Types, Research Memo. SRM 65-12. San Diego: U.S. Naval Personal Research Activity. [ DOI:10.21236/AD0620026] 40. Yao, W., Wei, Y. and Yu, C. (2014), Robust Mixture Regression using the distribution, Computational Statistics and Data Analysis, 71, 116-127. [ DOI:10.1016/j.csda.2013.07.019] 41. Yu, K. and Zhang, J. (2005), A Three-Parameter Asymmetric Laplace Distribution and its Extension, Communications in Statistics-Theory and Methods, 34, 1867- 1879. [ DOI:10.1080/03610920500199018]
|