[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Volume 18, Issue 2 (2-2025) ::
JSS 2025, 18(2): 0-0 Back to browse issues page
Prediction for Coherent System Lifetime Based on Type-II Censored Data from Half Logistic Distribution
Roshanak Zaman *
Abstract:   (720 Views)
In this paper, the prediction of the lifetime of k-component coherent systems is studied using classical and Bayesian approaches with type-II censored system lifetime data. The system structure and signature are assumed to be known, and the component lifetime distribution follows a half-logistic model. Various point predictors, including the maximum likelihood predictor, the best-unbiased predictor, the conditional median predictor, and the Bayesian point predictor under a squared error loss function, are calculated for the coherent system lifetime. Since the integrals required for Bayes prediction do not have closed forms, the Metropolis-Hastings algorithm and importance sampling methods are applied to approximate these integrals. For type-II censored lifetime data, prediction interval based on the pivotal quantity, prediction interval HCD, and Bayesian prediction interval are considered. A Monte Carlo simulation study and a numerical example are conducted to evaluate and compare the performances of the different prediction methods.
Keywords: ‎Coherent system‎, ‎Half logistic distribution‎, ‎Point predictors‎, ‎Prediction ‎intervals, Metropolis-Hastings algorithm
Full-Text [PDF 463 kb]   (379 Downloads)    
Type of Study: Research | Subject: Statistical Inference
Received: 2024/04/22 | Accepted: 2024/05/30 | Published: 2024/12/2
References
1. اصغرزاده، ا.، عزیزپور، م. و ولی اللهی، ر. (1394)، استنباط برای توزیع نیمه‌لوژیستیک بر اساس نمونه‌های سانسور هیبرید فزآینده نوع دو، مجله علوم آماری، 9(1)، 41-15.
2. رستمی، ع.، خنجری صادق، م. و خراشادی زاده، م. (1402)، برآورد قابلیت اعتماد تنش-مقاومت در سیستم های منسجم بر اساس توزیع نمایی، مجله علوم آماری، 1، 80-61.
3. Asgharzadeh A, Azizpour M, Valiollahi R. (2015), Inference for the Half-Logistic Distribution under Progressively Type II Hybrid Censored Samples. Journal of Statistical Sciences, 9 (1) :15-41.
4. Asgharzadeh A, Fallah, A. (1399), Estimation and Prediction in Coherent Systems with Known Signature. Thesis for degree of Ph.D. in Statistics, University of Mazandaran.
5. ‎Arnold, B. C‎. ‎Balakrishnan‎, ‎N‎. ‎Nagaraja‎, ‎H‎. ‎N‎. ‎(2008)‎, ‎A First Course in Order‎ Statistics‎, ‎Classic edn‎, ‎SIAM‎, ‎Philadelphia‎. [DOI:10.1137/1.9780898719062]
6. ‎Balakrishnan‎, ‎N‎. ‎and Asgharzadeh‎, ‎A‎. ‎(2005)‎, ‎Inference for the Scaled Half-Logistic‎ Distribution based on Progressively Type II Censored Samples‎, Communication in Statistics-Theory and Methods‎, 34‎, ‎73-87‎. [DOI:10.1081/STA-200045814]
7. ‎Balakrishnan‎, ‎N‎. ‎Ng‎, ‎H‎. ‎K‎. ‎T‎. ‎and Navarro‎, ‎J‎. ‎(2011a)‎, ‎Linear Inference for Type-II Censored Lifetime Data of Reliability Systems with Known Signatures‎, IEEE Transactions on Reliability‎, 60‎, ‎426-440‎. [DOI:10.1109/TR.2011.2134371]
8. ‎Balakrishnan‎, ‎N‎. ‎Ng‎, ‎H‎. ‎K‎. ‎T‎. ‎and Navarro‎, ‎J‎. ‎(2011b)‎, ‎Exact Nonparametric Inference for Component Lifetime Distribution based on Lifetime Data from Systems with Known Signatures‎, Journal of Nonparametric Statistics‎, ‎23‎, ‎741-752‎. [DOI:10.1080/10485252.2011.559547]
9. ‎Balakrishnan‎. ‎N and Saleh‎, ‎H‎. ‎M‎. ‎(2011)‎, ‎Relations for Moments of Progressively‎ Type-II Censored Order Statistics from Half-Logistic Distribution with Applications to‎ ‎Inference‎, Computational Statistics and Data Analysis‎, 55‎, ‎2775-2792‎. [DOI:10.1016/j.csda.2011.04.004]
10. ‎Berger‎, ‎J. O‎. ‎(1985)‎, Statistical decision theory and Bayesian analysis‎, ‎2nd edn‎. ‎Springer‎, ‎New York‎ [DOI:10.1007/978-1-4757-4286-2_4]
11. ‎Bhattacharya‎, ‎D‎. ‎and Samaniego‎, ‎F‎. ‎J‎. ‎(2010)‎, ‎Estimating Component Characteristics from System Failure Time Data‎, Naval Research Logistics‎, 57‎, ‎380-389‎. [DOI:10.1002/nav.20407]
12. ‎Cameron‎, ‎A‎. ‎C‎. ‎and Trivedi‎, ‎P‎. ‎K‎. ‎(2005)‎, ‎Microeconometrics Methods and‎ Applications‎, ‎Cambridge University Press‎, ‎Cambridge‎.
13. ‎Casella‎. ‎G‎, ‎and Berger‎, ‎R‎. ‎L (2002)‎, ‎Statistical Inference‎, ‎2nd edn‎. ‎Duxbury‎, ‎California‎.
14. ‎Chivers‎, ‎C‎. ‎(2012)‎. ‎MHadaptive‎: ‎General Markov Chain Monte Carlo for Bayesian Inference using‎ ‎adaptive Metropolis-Hastings sampling‎, ‎R package‎.
15. ‎Fallah‎, ‎A‎. ‎(2021)‎, ‎Prediction for the Future System Failures based on Type-II‎ Censored Coherent systems Data under a Proportional Hazard‎ Model‎, Journal of Statistical Modelling‎: ‎Theory and Applications‎, 3(02)‎, ‎119-143‎.
16. ‎Fallah‎, ‎A‎. ‎Asgharzadeh‎, ‎A‎. ‎and Ng‎, ‎H‎. ‎K‎. ‎T‎. ‎(2021)‎, ‎Statistical Inference for Component Lifetime Distribution from Coherent System Lifetimes under a Proportional Reversed Hazard Model‎, Communications in Statistics-Theory and Methods‎, 50(16), ‎3809-3833‎. [DOI:10.1080/03610926.2020.1824275]
17. ‎Fallah‎, ‎A‎. ‎Asgharzadeh‎, ‎A‎. ‎and Ng‎, ‎H‎. ‎K‎. ‎T‎. ‎(2021)‎, ‎Prediction based on Type-II‎ Censored Coherent System Lifetime Data under a Proportional Reversed‎Hazard Rate Model‎, Journal of the Statistical Society‎, 20(02)‎, ‎153-181‎. [DOI:10.52547/jirss.20.1.153]
18. ‎Hasselman‎, ‎B‎. ‎(2018)‎, ‎nleqslv‎: ‎Solve Systems of Nonlinear Equations‎, ‎R‎ ‎package version 3.3.2‎, ‎"https://CRAN.R-project.org/package=nleqslv"‎.
19. ‎Hermanns‎, ‎M‎. ‎and Cramer‎, ‎E‎. ‎(2017)‎, ‎Likelihood Inference for the Component Lifetime Distribution based‎ ‎on Progressively Censored Parallel Systems Data‎. Journal of Statistical Computation and Simulation‎, 87‎, ‎607-630‎. [DOI:10.1080/00949655.2016.1222392]
20. ‎Jin‎, ‎Y‎. ‎Hall‎, ‎P‎. ‎G‎. ‎Jiang‎, ‎J‎. ‎and Samaniego‎, ‎F‎. ‎J‎. ‎(2017)‎, ‎Estimating Component Reliability based on Failure Time Data from a System of Unknown Design‎. Statistica Sinica‎, 27‎, ‎479-499‎.
21. ‎Kaminsky, K‎. ‎S. and Nelson‎, ‎P‎. ‎I (1998)‎, ‎Prediction of Order Statistics‎. ‎In‎: ‎Balakrishnan N‎, ‎Rao CR (eds)‎ ‎Handbook of Statistics‎, ‎Order Statistics‎: ‎Applications‎, ‎vol 17‎. ‎North Holland‎. ‎Amsterdam‎, ‎The Netherlands‎, ‎43-50‎.
22. ‎Kaminsky‎, ‎K‎. ‎S‎. ‎and Rhodin‎, ‎L‎. ‎S‎. ‎(1985)‎, ‎Maximum Likelihood Prediction‎, Annals of‎ ‎the Institute of Statistical Mathematics‎, 37‎, ‎507-517‎. [DOI:10.1007/BF02481119]
23. ‎Kochar‎, ‎S‎. ‎Mukerjee‎, ‎H‎. ‎and Samaniego‎, ‎F‎. ‎J‎. ‎(1999)‎, ‎The Signature of a Coherent System and its‎ ‎Application to Comparisons Among Systems‎, Naval Research Logistics‎, 46‎, ‎507-523‎. https://doi.org/10.1002/(SICI)1520-6750(199908)46:5<507::AID-NAV4>3.0.CO;2-D [DOI:10.1002/(SICI)1520-6750(199908)46:53.0.CO;2-D]
24. ‎Kulkarni‎, ‎M‎. ‎G‎. ‎and Rajarshi‎, ‎M‎. ‎B‎. ‎(2020)‎, ‎Estimation of Parameters Component Lifetime Distribution in a Coheren System‎, Statistical Papers, 61‎, ‎403-421‎. [DOI:10.1007/s00362-017-0945-1]
25. ‎Navarro‎, ‎J‎. ‎(2021)‎, ‎Coherent System Lifetime‎, Introduction to System Reliability Theory‎, ‎23-70‎. [DOI:10.1007/978-3-030-86953-3_2] []
26. ‎Navarro‎, ‎J‎. ‎and Rubio‎, ‎R‎. ‎(2010)‎, ‎Computations of Coherent Systems with five Components‎, Communications in Statistics‎ - ‎Simulation and Computation‎, 39‎, ‎68-84‎. [DOI:10.1080/03610910903312185]
27. ‎Navarro‎, ‎J‎. ‎Ruiz‎, ‎J‎. ‎M‎. ‎and Sandoval‎, ‎C‎. ‎J‎. ‎(2007)‎, ‎Properties of Coherent Systems with Dependent Components‎, Communications in Statistics‎ - ‎Theory and Methods‎, 36‎, ‎175-191‎. [DOI:10.1080/03610920600966316]
28. ‎Navarro‎, ‎J‎. ‎and Rychlik‎, ‎T‎. ‎(2007)‎, ‎Reliability and Expectation Bounds for Coherent Systems with Exchangeable‎ ‎Components‎, Journal of Multivariate Analysis‎, 98‎, ‎102-113‎ [DOI:10.1016/j.jmva.2005.09.003]
29. ‎Navarro‎, ‎J‎. ‎Samaniego‎, ‎F‎. ‎J‎. ‎Balakrishnan‎, ‎N‎. ‎and Bhattacharya‎, ‎D‎. ‎(2008)‎, ‎On the Application and Extension of System Signatures in Engineering Reliability‎, Naval Research Logistics‎, 55‎, ‎313-327‎. [DOI:10.1002/nav.20285]
30. ‎Ng‎, ‎H‎. ‎K‎. ‎T‎. ‎Navarro‎, ‎J‎. ‎and Balakrishnan‎, ‎N‎. ‎(2012)‎, ‎Parametric Inference from System Lifetime Data under a Proportional Hazard Rate Model, Metrika‎, ‎75‎, ‎367-388‎. [DOI:10.1007/s00184-010-0331-7]
31. ‎Raqab‎, ‎M‎. ‎Z‎. ‎and Nagaraja‎, ‎H‎. ‎N‎. ‎(1995)‎, ‎On Some Predictors of Future Order Statistics, Metron‎, 53, 185-204‎.
32. ‎Robert‎, ‎C‎. ‎and Casella‎, ‎G‎. ‎(2004)‎, ‎Monte Carlo Statistical Methods‎. ‎2nd ed‎. ‎New York‎: ‎Springer‎.
33. Rostami A, Khanjari Sadegh M, Kadizadeh M. (2023), Reliability Estimation of the Stress-Strength Model in Coherent Systems Based on Exponential Distribution. Journal of Statistical Sciences; 17 (1), 61-80
34. ‎Samaniego‎, ‎F‎. ‎J‎. ‎(1985)‎, ‎On Closure of the IFR Class under Formation of Coherent Systems‎, IEEE Transactions on Reliability Theory‎, 34‎, ‎69-72‎. [DOI:10.1109/TR.1985.5221935]
35. ‎Samaniego‎, ‎F‎. ‎J‎. ‎(2007)‎, ‎System Signatures and their Applications in Engineering Reliability‎, ‎International Series in Operations Research and Management Science 110‎, ‎Springer‎, ‎New York‎.
36. ‎Tavangar‎, ‎M‎. ‎and Asadi‎, ‎M‎. ‎(2020)‎, ‎Component Reliability Estimation based on System‎ Failure-Time Data‎. Journal of Statistical Computation and Simulation‎, 17(90)‎, ‎3232-3249‎. [DOI:10.1080/00949655.2020.1800704]
37. ‎Yang‎, ‎Y‎. ‎Ng‎, ‎H‎. ‎K‎. ‎T‎. ‎and Balakrishnan‎, ‎N‎. ‎(2019)‎, ‎Expectation Maximization Algorithm for System based Lifetime Data with Unknown System Structure‎, AStA Advanced Statistical Analysis‎, 103‎, ‎69-98‎. [DOI:10.1007/s10182-018-0323-x]
38. ‎Zhang‎, ‎J‎. ‎Ng‎, ‎H‎. ‎K‎. ‎T‎. ‎and Balakrishnan‎, ‎N‎. ‎(2015)‎, ‎Statistical Inference of Component Lifetimes with Location-Scale Distributions from Censored System Failure Data with Known Signature‎, IEEE Transactions on Reliability‎, 64‎, ‎613-626‎. [DOI:10.1109/TR.2015.2417373]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

zaman R. Prediction for Coherent System Lifetime Based on Type-II Censored Data from Half Logistic Distribution. JSS 2025; 18 (2)
URL: http://jss.irstat.ir/article-1-894-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 18, Issue 2 (2-2025) Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.14 seconds with 43 queries by YEKTAWEB 4704