Systemic risk, as one of the challenges of the financial system, has attracted special attention from policymakers, investors, and researchers. Identifying and assessing systemic risk is crucial for enhancing the financial stability of the banking system. In this regard, this article uses the Conditional Value at Risk method to evaluate the systemic risk of simulated data and Iran's banking system. In this method, the conditional mean and conditional variance are modeled using Autoregressive Moving Average and Generalized Autoregressive Conditional Heteroskedasticity models, respectively. The data studied includes the daily stock prices of 17 Iranian banks from April 8, 2019, to May 1, 2023, which contains missing values in some periods. The Kalman filter approach has been used for interpolating the missing values. Additionally, Vine copulas with a hierarchical tree structure have been employed to describe the nonlinear dependencies and hierarchical risk structure of the returns of the studied banks. The results of these calculations indicate that Bank Tejarat has the highest systemic risk, and the increase in systemic risk, in addition to causing financial crises, has adverse effects on macroeconomic performance. These results can significantly help in predicting and mitigating the effects of financial crises and managing them effectively.
Type of Study: Applied |
Subject: Applied Statistics Received: 2024/02/13 | Accepted: 2024/08/31 | Published: 2025/05/18
References
1. Aas, K., Czado, C., Frigessi, A., and Bakken, H. (2009), Pair-copula Constructions of Multiple Dependence, Insurance: Mathematics and economics, 44(2), 182-198. [DOI:10.1016/j.insmatheco.2007.02.001]
2. Acharya, Viral and Brownlees, Christian and Engle, Robert and Farazmand, Farhang and Richardson, Matthew and others, (2013), Measuring Systemic Risk, [DOI:10.1017/CBO9781139151184.012]
3. Aghamohammadi, A, Sojoudi, M. (2017), Estimating Value-at-Risk and Average Value-at-Risk Measures Using Composite Quantile Regression, Journal of Statistical Sciences, 10(2), 185-202. [DOI:10.18869/acadpub.jss.10.2.185]
4. Managing and Measuring Risk: Emerging Global Standards and Regulation after the Financial Crisis, 65-98.
5. Adrian, T., and Brunnermeier, M. K., (2011), CoVaR, National Bureau of Economic Research, (No.w17454). [DOI:10.3386/w17454]
6. Benston and George G. Kaufman (1986), Risks and Failures in Banking: Overview, History, and Evaluation, Federal Reserve Bank of Chicago.
7. Bluhm, C., Overbeck, L., and Wagner, C., (2016) Introduction to Credit Risk Modeling, Chapman and Hall/CRC. [DOI:10.1201/9781584889939]
8. Bollerslev, T., (1990), Modelling the Coherence in Short-run Nominal Exchange Rates: a Multivariate Generalized ARCH Model, The review of economics and statistics, 498-505 . [DOI:10.2307/2109358]
9. Engle, R., (1982), Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingrom Inflation, Econometrica, 50, 391-407. [DOI:10.2307/1912773]
10. Engle, R. F., and Bollerslev, T., (1986), Modelling the Persistence of Conditional Variances, Econometric Reviews, 5(1), 1-50 [DOI:10.1080/07474938608800095]
11. Engle, R., (2002), Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models, Journal of Business and Economic Statistics, 20(3), 339-350. [DOI:10.1198/073500102288618487]
12. Girardi, G., and Ergün, A. T., (2013), Systemic Risk Measurement: Multivariate GARCH Estimation of CoVaR, Journal of Banking and Finance, 37(8), 3169-3180. [DOI:10.1016/j.jbankfin.2013.02.027]
13. Grziska, M., (2014), Multivariate GARCH and Dynamic Copula Models for Financial Time Series, Doctoral Dissertation, LMU.
14. Hansen, B. E., (1994), Autoregressive Conditional Density Estimation, International Economic Review, 705-730. [DOI:10.2307/2527081]
15. Huang, X., Zhou, H., and Zhu, H., (2009), A Framework for Assessing the Systemic Risk of Major Financial Institutions, Journal of Banking and Finance, 33(11), 2036-2049. [DOI:10.1016/j.jbankfin.2009.05.017]
16. Keilbar, G., and Wang, W., (2022), Modelling Systemic Risk Using Neural Network Quantile Regression, Empirical Economics, 62 (1), 93-118. [DOI:10.1007/s00181-021-02035-1]
17. Mosammam, A. M., (2015), Kalman Filter: A Simple Derivation, Mathematics and Statistics, 3, 41-45. [DOI:10.13189/ms.2015.030203]
18. Nelsen, R. B., (2006), An Introduction to Copulas, Springer, USA.
19. Patton, A. J., (2009), Copula-Based Models for Financial Time Series, Handbook of Financial Time Series, Berlin, Heidelberg: Springer Berlin Heidelberg. [DOI:10.1007/978-3-540-71297-8_34]
20. Poon, S. H., and Taylor, S. J., (1992), Stock Returns and Volatility: An Empirical Study of the UK Stock Market, Journal of Banking and Finance, 16(1), 37-59. [DOI:10.1016/0378-4266(92)90077-D]
21. Reboredo, J. C., and Ugolini, A., (2016), Systemic Risk of Spanish Listed Banks: A Vine Copula CoVaR Approach, Spanish Journal of Finance and Accounting/Revista Española de Financiación y Contabilidad, 45(1), 1-31 . [DOI:10.1080/02102412.2015.1092231]
22. Saputra, M. D., Hadi, A. F., Riski, A., and Anggraeni, D., (2021), Handling Missing Values and Unusual Observations in Statistical Downscaling Using Kalman [DOI:10.1088/1742-6596/1863/1/012035]
23. Filter, International Journal of Quantitative Research and Modeling 2(3), 139-146.
24. Segoviano Basurto, M., and Goodhart, C., (2009), Banking stability measures, Financial Markets Group, The London School of Economics and Political Science.
25. Shumway, R. H., Stoffer, D. S., and Stoffer, D. S., (2000), Time series analysis and its applications, 3, New York: springer. [DOI:10.1007/978-1-4757-3261-0]
Mohebbi ُ, M. Mosammam A. Evaluating Systemic Risk with Conditional Value at Risk and Vine Copulas in the Iranian Banking Network. JSS 2025; 19 (1) :183-204 URL: http://jss.irstat.ir/article-1-886-en.html