[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Volume 17, Issue 2 (2-2024) ::
JSS 2024, 17(2): 0-0 Back to browse issues page
Double Penalized Mixed Effects Quantile Regression Modeling Using the Maximum Likelihood Approach
Forouzan Jafari , Mousa Golalizadeh *
Abstract:   (1256 Views)

The mixed effects model is one of the powerful statistical approaches used to model the relationship between the response variable and some predictors in analyzing data with a hierarchical structure. The estimation of parameters in these models is often done following either the least squares error or maximum likelihood approaches. The estimated parameters obtained either through the least squares error or the maximum likelihood approaches are inefficient, while the error distributions are non-normal.   In such cases, the mixed effects quantile regression can be used. Moreover, when the number of variables studied increases, the penalized mixed effects quantile regression is one of the best methods to gain prediction accuracy and the model's interpretability. In this paper, under the assumption of an asymmetric Laplace distribution for random effects, we proposed a double penalized model in which both the random and fixed effects are independently penalized. Then, the performance of this new method is evaluated in the simulation studies, and a discussion of the results is presented along with a comparison with some competing models. In addition, its application is demonstrated by analyzing a real example.
Keywords: Mixed Effects Quantile Regression, Laplace Distribution, Penalty Function, Shrinkage Approach, High Dimensional
Full-Text [PDF 295 kb]   (751 Downloads)    
Type of Study: Applied | Subject: Applied Statistics
Received: 2022/10/31 | Accepted: 2024/02/29 | Published: 2024/02/22
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafari F, Golalizadeh M. Double Penalized Mixed Effects Quantile Regression Modeling Using the Maximum Likelihood Approach. JSS 2024; 17 (2)
URL: http://jss.irstat.ir/article-1-823-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 17, Issue 2 (2-2024) Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.13 seconds with 43 queries by YEKTAWEB 4704