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Preface 

Following the series of workshops on “Reliability Theory and its 
Applications” in Ferdowsi  University of Mashhad and three 
seminars in University of Isfahan (2015), University of Tehran 
(2016) and Ferdowsi University of Mashhad (2017) we are pleased 
to organize the 5th Seminar on “Reliability Theory and its 
Applications” during 17-18 April, 2019 at the Department of 
Statistics, Yazd University. On behalf of the organizing and scientic 
committees, we would like to extend a very warm welcome to all 
participants, hoping that their stay in Yazd will be happy and fruitful. 
Hope that this seminar provides an environment of useful 
discussions and would also exchange scientic ideas through 
opinions. We wish to express our gratitude to the numerous 
individuals that have contributed to the success of this seminar, in 
which around 70 colleagues, researchers, and postgraduate students 
from universities and organizations have participated. 

Finally, we would like to extend our sincere gratitude to the Research 
Council of Yazd University, the administration of College of 
Sciences, the Ordered and Spatial Data Center of Excellence, the 
Islamic World Science Citation Center, the Fars Science and 
Technology Park, the Iranian Statistical Society, the Scientic 
Committee, the Organizing Committee, the referees, and the 
students and staff of the Department of Statistics at Yazd University 
for their kind cooperation. 

Eisa Mahmoudi (Chair) 
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Estimation of P (Y < X) for Two-Parameter Lindley
Logarithmic Distribution

Somayeh Abolhosseini1, Mahna Imani and Mohammad Khorashadizadeh

Department of Statistics, University of Birjand, Birjand, Iran

Abstract: In this paper we study the stress-strength parameter R = P (X < Y ), when X and

Y are independent and both have two-parameter Lindley Logarithmic (LL) distributions. We

consider the computation of R in closed form, as well as its maximum likelihood estimator.

Furthermore via simulation study the root mean square error (RMSE), the percentage relative

bias (RB) of the estimator and also two confidence intervals has presented.

Keywords Lindley Logarithmic Distribution, Stress-Strength model, Maximum Likelihood Es-

timator.

Mathematics Subject Classification (2010) : 47A55, 39B52, 34K20, 39B82.

1 Introduction

Reliability is defined as the ability of a system or component to perform its required functions

under stated conditions for a specified period of time. The stress-strength interference model is

one that is used to compute reliability. It is found to be useful in situations where the reliability

of a component or system is defined by the probability that a random variable X (representing

strength) is greater than another random variable Y (representing stress). Once the distribution

and parameters of X and Y are determined, the reliability can be calculated by computing the

R = P (Y < X).

It may be mentioned that R is of greater interest than just reliability since it provides a

general measure of the difference between two populations and has applications in many area.

For example, if X is the response for a control group, and Y refers to a treatment group, R is a

measure of the effect of the treatment. In addition, it may be mentioned that R equals the area

under the receiver operating characteristic (ROC) curve for diagnostic test or biomarkers with

continuous outcome (Bamber, (4)). The ROC curve is widely used, in biological, medical and

health service research, to evaluate the ability of diagnostic tests or biomarkers to distinguish

1Somayeh Abolhosseini: Abolhosseinis@birjand.ac.ir



between two groups of subjects, usually non-diseased and diseased subjects. For more details,

one can be advised to Kotz et. al. (10).

Many authors have studied the stress-strength parameter R. Gogoi and Borah (9) deals

with the stress vs. strength problem incorporating multi-component for systems viz. standby

redundancy in the case of Exponential, Gamma and Lindley distributions. Singh et. al.(13)

have developed a re-modeling of stress-strength system reliability where they have defined the

probability that the system is capable to withstand the maximum operated stress at its minimum

strength when both stress and strength variables are Weibull distributed. Barbiero (5) studied

statistical inference for the reliability of stress-strength models when stress and strength are

independent Poisson random variables, whereas, Ali et. al. (1) have investigated the estimation

of Pr(X < Y ), when X and Y belong to different distribution families. One can refer to recently

works by Kzlaslan (11), Chaudhary and Tomer (7), Bai et al. (2; 3), Eryilmaz (8), Wang et al.

(14), Yadav and Singh (15) and Cetinkaya and Gen (6).

Mahmoudi and Abolhosseini (12) introduced a new distribution with increasing and bathtub

shaped failure rate, called as the Lindley logarithmic (LL) distribution. The main reasons for

introducing the LL distribution are:

1. This distribution is generalized of Lindley distribution. It is more flexible than the Lindley

distribution because of hazard rate function.

2. It can be used in several areas such as public health, actuarial science, biomedical studies,

demography and industrial reliability.

Suppose X1, · · · , XN be independent and identify distributed random variables from Lindley

distribution and N has the Logarithmic distribution. Let Y = X1:n = min
1≤i≤N

Xi, then cdf of

Y |N = n is given by

FY |N=n(y; γ) = 1−
[
(1 +

γy

γ + 1
)e−γy

]n
.

The cdf and pdf of Lindley Logarithmic (LL) distribution are given, respectively, by

F (y; θ, γ) = 1−
log(1− θ(1 + γy

γ+1 )e
−γy)

log(1− θ)
, (1.1)

f(y; θ, γ) =
θ γ2

γ+1e
−γy(1 + y)

(θ(1 + γy
γ+1 )e

−γy − 1) log(1− θ)
, (1.2)

where 0 < θ < 1, γ > 0. The survival and hazard rate functions of LL distribution are given,

respectively, by

S(y; θ, γ) =
log(1− θ(1 + γy

γ+1 )e
−γy)

log(1− θ)
, (1.3)
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and

h(y; θ, γ) =
θ γ2

γ+1e
−γy(1 + y)

(θ(1 + γy
γ+1 )e

−γy − 1) log(1− θ(1 + γy
γ+1 )e

−γy)
. (1.4)

Figures 1 and 2, respectively, represent the graphs of the distribution functions, density, and

survival for different values of the parameter.
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Figure 1: Plots of pdf and cdf of LL distribution
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Figure 2: Plot of of the survival function of LL ditribution

The ξth quantile of the LL distribution, which is used for data generation from the LL

distribution, is given by

(1− ξ) log(1− θ) =
∞∑
j=1

(−θ(1 + γxξ

γ+1 )e
−γxξ)j

j
.

For a random variable Y with LL distribution the moment generating function and kth or-

der moment are given, respectively, by The random variable Y has mean and variance given,

respectively, by
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E[Y ] =
∞∑
n=1

n−1∑
i=0

(
n− 1

i

)
−θnγi+2

(γ + 1)i+1 log(1− θ)

[
Γ(i+ 3)

(nγ)i+3
+

Γ(i+ 2)

(nγ)i+2

]
,

and

V ar[Y ]=
∞∑
n=1

n−1∑
i=0

(
n− 1

i

)
−θnγi+2

(γ + 1)i+1 log(1− θ)

[
Γ(i+ 4)

(nγ)i+4
+

Γ(i+ 3)

(nγ)i+3

]
− E2(Y ).

The paper is organized as follows. In section 2, an approximation of the stress-strength

parameter R = P (X < Y ) of Lindley Logarithmic (LL) distribution is obtained. Maximum

likelihood estimator of R has studied in Section 3. Furthermore a simulation study has presented

in Section 4.

2 Stress-Strength Parameter

For constructing the stress strength parameter consider two cases:

Case I. Suppose X (stress) and Y (strength) are two independent random variables, follow-

ing LL(θ1, γ) and LL(θ2, γ) respectively. After some algebric calculations, the reliability of the

stress-strength model is given by,

R = P (X < Y ) =
∞∑
j=0

j∑
i=0

∞∑
k=1

k∑
m=0

(
j

i

)(
k

m

)
(−1)2k

log(1− θ1) log(1− θ2)
(2.1)

× (θ1)
j+1(θ2)

k(γ)m+i+2

(1 + γ)m+i+1

[
Γ(m+ i+ 1)

(γ(j + k + 1))m+i+1
+

Γ(m+ i+ 2)

(γ(j + k + 1))m+i+2

]
.

= lim
z→∞

z∑
j=0

j∑
i=0

z∑
k=1

k∑
m=0

(
j

i

)(
k

m

)
(−1)2k

log(1− θ1) log(1− θ2)

× (θ1)
j+1(θ2)

k(γ)m+i+2

(1 + γ)m+i+1

[
Γ(m+ i+ 1)

(γ(j + k + 1))m+i+1
+

Γ(m+ i+ 2)

(γ(j + k + 1))m+i+2

]
.

Case II. By supposing X ∼ LL(θ, γ1) and Y ∼ LL(θ, γ2), we have

R = P (X < Y ) =
∞∑
j=1

j∑
i=0

∞∑
k=0

k∑
l=0

(
j

i

)(
k

l

)
(−1)2j+1

(log(1− θ))2
× (θ)k+j+1

j
(2.2)

× (γ1)
l+2

(γ1 + 1)l+2
(

γ2
γ2 + 1

)i
[

Γ(l + i+ 1)

(γ1(1 + k) + γ2j)l+i+1
+

Γ(l + i+ 2)

(γ1(1 + k) + γ2j)l+i+2

]
.

= lim
z→∞

z∑
j=1

j∑
i=0

z∑
k=0

k∑
l=0

(
j

i

)(
k

l

)
(−1)2j+1

(log(1− θ))2
× (θ)k+j+1

j

× (γ1)
l+2

(γ1 + 1)l+2
(

γ2
γ2 + 1

)i
[

Γ(l + i+ 1)

(γ1(1 + k) + γ2j)l+i+1
+

Γ(l + i+ 2)

(γ1(1 + k) + γ2j)l+i+2

]
.
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It should be noted that the series of (2.1) and (2.2) are rapidly converge and the reliability can

be actually computed taking into account only its first terms. As an example, we compute the

reliability R for γ = 1 and different values of θ1 and θ2. The partial sums are reported in Table

1. As it is seen the values of R are already stable at the 4th decimal digit when z = 20.

Table 1: Partial sums for the computation of R for a Lindley Logarithmic stress strength model

(γ = 1).
z = 50 z = 20 z = 10 z = 5 z = 4 z = 3 z = 2 z = 1 (θ1, θ2)

0.6446 0.6446 0.6272 0.5589 0.5237 0.4710 0.3887 0.2516 (0.1,0.8)

0.5180 0.5180 0.5180 0.5180 0.5180 0.5178 0.5151 0.4804 (0.1,0.1)

0.5694 0.5694 0.5693 0.5634 0.5556 0.5369 0.4902 0.365 (0.5,0.1)

0.7234 0.7234 0.7234 0.6349 0.5869 0.5161 0.4072 0.2390 (0.8,0.5)

0.4838 0.4838 0.4838 0.4838 0.4838 0.3739 0.2522 0.1222 (0.9,0.9)

3 Maximum Likelihood Estimator of R

Let X1, · · · , XN and Y1, · · · , YM are independent random samples from LL(θ1, γ) and LL(θ2, γ),

respectively. Then the log-likelihood function is

ln ≡ ln(x, y; θ1, θ2, γ) = n log θ1 +m log θ2 + (m+ n) log(
γ2

γ + 1
)− γ(

n∑
i=1

xi +
m∑
j=1

yj)

+

n∑
i=1

log(1 + xi) +

m∑
j=1

log(1 + yj)

−
n∑
i=1

log(θ1(1 +
γxi
γ + 1

)e−γxi − 1)− n log(log(1− θ1))

−
m∑
j=1

log(θ2(1 +
γyi
γ + 1

)e−γyi − 1)−m log(log(1− θ2)).

The components of score function are as follows

∂ln
∂θ1

= n
θ1

−
∑n
i=1

(1+
γxi
γ+1 )e

−γxi

(θ1(1+
γyi
γ+1 )e

−γyi−1)
+ n

(1−θ1)(log(1−θ1)) ,

∂l
∂θ2

= m
θ2

−
∑m
j=1

(1+
γyj
γ+1 )e

−γyj

(θ2(1+
γyj
γ+1 )e

−γyj−1)
+ m

(1−θ2)(log(1−θ2)) ,

∂l
∂γ = (m+ n) (γ+2)

γ(γ+1) − (
∑n
i=1 xi +

∑m
j=1 yj)−

∑n
i=1

γθ1xi(γ+γxi+xi+2)
(γ+1)(θ1+γθ1(xi+1)+(γ+1)(−eγxi ))

−
∑m
j=1

γθ2yj(γ+γyj+yj+2)
(γ+1)(θ2+γθ2(yj+1)+(γ+1)(−eγyj ))

.

The MLEs of parameters θ1, θ2 and γ can be obtained through solving system of nonlinear

equations via EM algorithm. This system of nonlinear equations does not have closed form. The

5



MLE of R is obtained by replacement estimation of parameters beacuse of invariance property

of MLEs.

4 Simulation Study

In this section based on Bootstrap method, different samples with various pamateres and sample

sizes are drawn from LL(θ1, 1) and LL(θ2, 1) independently. Different and unequal sample

sizes are here considered. The MLE estimators of R are computed on each sample and their

approximate variances are calculated. In more detail, the root mean square error (RMSE) and

the percentage relative bias (RB) of the estimators are provided by,

RMSE(R̃) =

√√√√ 1

B

B∑
s=1

(R̃(s)−R)2,

RB(R̃) =

(
(1/B)

∑B
s=1 R̃(s)−R

)
R

· 100,

where R̃(s) denotes the value of R̃ for the sth sample and B is the replication of Bootstrap

which is equal to 1000 in this study. Table 4 shows the approxiamtion of R, RMSE(R̃) and

RB(R̃) for different values of parameters and sample sizes. It is seen that, as the sample sizes

are increased the RMSE is decreased.

5 Confidence Intervals For R

In this section based on bootstarp method we present two confidence intervals for R as follow,

Normal Interval.

(R̃− Zα/2ŝ.eboot, R̃+ Zα/2ŝ.eboot)

where ŝ.eboot is the bootstrap estimate of the standard error.

Percentile Intervals.

(R∗
α
2
, R∗

1−α
2
),

where R∗
α
2
and R∗

1−α
2
are the α

2 and 1− α
2 quantiles of the bootstrap sample respectively.

According to the Table 2.5, it seems that the accuracy of the two confidence intervals methods

are almost the same.
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Table 2: Approximation, root mean square error (RMSE) and relative bias (RB) of the param-

eter R via bootstrap with 1000 replication

(n1, n2) = (20, 10)

(θ1, θ2) = (0.3, 0.5) (θ1, θ2) = (0.7, 0.6)

R̃ 0.62065 0.67535

RMSE(R̃) 0.09879 0.10926

RB(R̃) -7.58e-15 -5.09e-15

(n1, n2) = (20, 20)

(θ1, θ2) = (0.3, 0.5) (θ1, θ2) = (0.7, 0.6)

R̃ 0.60887 0.69114

RMSE(R̃) 0.08398 0.10814

RB(R̃) 9.37e-15 3.88e-15

(n1, n2) = (50, 50)

(θ1, θ2) = (0.3, 0.5) (θ1, θ2) = (0.7, 0.6)

R̃ 0.60049 0.70830

RMSE(R̃) 0.07497 0.10024

RB(R̃) -5.01e-15 -7.96e-15

Table 3: Two bootstrap 95% confidence intervals for R with 1000 replication

(θ1, θ2) (n1, n2) Normal Int. Percentile Int.

(10,20) (0.20, 0.81) (0.10, 0.80)

(0.3,0.5) (20,20) (0.27, 0.69) (0.30, 0.65)

(50,50) (0.32, 0.60) (0.32, 0.58)

(10,20) (0.14, 0.71) (0.10, 0.70)

(0.7,0.9) (20, 20) (0.20, 0.63) (0.20, 0.60)

(50,50) (0.32, 0.60) (0.28, 0.57)
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Abstract: In this article, a new flexible extension of the Weibull distribution is proposed which

is capable of modeling lifetime data with bathtub-shaped hazard rate function. The new model

is introduced by considering a system of two logarithms of cumulative hazard rate functions.

The proposed distribution will be named as a new flexible extended Weibull distribution. Some

mathematical properties and characterizations along with the estimation of the model param-

eters through maximum likelihood method are discussed. Finally, to illustrate the importance

of the proposed distribution, two real life applications with bathtub-shaped hazard functions

are analyzed demonstrating that the new model provides adequate fits in comparison with the

other modified forms of the Weibull model including the exponentiated Weibull, Marshall-Olkin

Weibull, Additive Weibull, new modified Weibull and additive Perks-Weibull distributions.

Keywords Bathtub-shaped hazard rate function, Modeling reliability data, Characterizations,

Maximum likelihood estimates, Weibull distribution.
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1 Introduction

The hazard rate function (also known as a failure rate function) is one of the most important

reliability characteristics that describes the failure mechanism of the system during its lifetime

period. It deals with an immediate risk of failure of the system at the time, say t, given that the

system has not failed up to that time. Among the hazard rate functions, the bathtub hazard

rate curve is a well-known concept in reliability engineering. It represents the failure behavior

of various engineering systems having initially a decreasing failure rate during the very first

phase, a constant failure rate in the middle part of the life (usually called useful life period)

1Zubair Ahmad: z.ferry21@gmail.com



and finally an increasing failure rate in the last phase. In the context of reliability theory, these

three phases are, respectively, known as burning, random and wear-out failure regions.

In the last two decades, many new life distributions capable of modeling data with the

bathtub hazard rate function have been introduced in the literature. Most of them are the mod-

ifications and extensions of the two-parameter Weibull distribution, including a four-parameter

Additive Weibull (AW) with bathtub hazard rate function consisting of two Weibull hazard

functions proposed by Xie and Lee [7], a five-parameter new modified Weibull (NMW) of Al-

malki and Yuan [2], which has a bathtub-shaped hazard function consisting of modified Weibull

and Weibull hazards, an Additive PerksWeibull (APW) of Singh [6] by combining the sum of

the hazard rates of the Perks and Weibull distributions has the bathtub shaped failure rate

function, among others.

The key goal of the modification and extension forms of the Weibull model is to describe and

fit the data sets with non-monotonic hazard rate, such as the bathtub, unimodal and modified

unimodal hazard rate. Many extensions of the Weibull distribution have achieved the above

purpose. However, the number of parameters has increased up to 5 or more, the forms of the

survival and hazard functions have been complicated and estimation problems have risen. On

the other hand, unfortunately, some of the modifications do not have a closed form for their

cumulative distribution functions (CDFs). Furthermore, as we have seen, the bathtub and the

modified unimodal shapes have three phases: initially decreasing phase, relatively constant phase

and then an increasing phase for the bathtub shape and the phases of the modified unimodal

shape are initially increasing, then decreasing, then increasing again. The main weakness of

some modified Weibull distributions is that they are unable to fit the last phase of the bathtub

shapes, which is an essential part, as well as the first and middle phases. In terms of cumulative

hazard rate function (CHRF), the CDF can be expressed as

G (x) = 1− e−H(x), (1.1)

where, the CHRF denoted by H(x) satisfies the following properties

i. H(x) is differentiable non-negative and increasing function of x,

ii. limx→0 H(x) = 0 and limx→∞H(x) = ∞

It may be a very useful approach to combine two or cumulative hazard functions and generate

a new function as

H(x) = βH1 (x) + σH2 (x) . (1.2)
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The expression (1.2) is bounded. However, in this article, a new function log H(x) instead of

H(x) is used to relax the boundary conditions. Hence, one can write (1.2) as

logH(x) = β logH1(x) + σ logH2(x). (1.3)

Here, a mixture of the two logarithm of cumulative hazard functions, taken as xα and
{
−
(
1
/
xλ
)}

is used to introduce a new flexible lifetime distribution. So, the expression (1.3) can be written

as

H(x) = eβx
α− σ

xλ . (1.4)

Using (1.4) in (1.1), one may easily arrive at the CDF of the new flexible extended Weibull

(NFEW) distribution. The rest of the paper is designed as follows: Section 2 provides the defi-

nition and visual sketching of the proposed distribution. Two real-life applications are provided

in Section 3. Finally, some concluding remarks are provided Section 4.

2 New flexible extended Weibull distribution

The CDF of the NFEW distribution is given by

G (x) = 1− exp
{
−eβx

α− σ

xλ

}
, x ≥ 0, α, β, σ, λ > 0. (2.1)

The probability density function (PDF) corresponding to (2.1) is given by

g (x) =

(
αβxα−1 +

λσ

xλ+1

)
e( βx

α− σ

xλ ) exp
{
−eβx

α− σ

xλ

}
, x ≥ 0. (2.2)

The survival function (SF) and hazard rate function (HRF) of the proposed model are given,

respectively, by

S (x) = exp
{
−eβx

α− σ

xλ

}
, x ≥ 0, (2.3)

and

h (x) =

(
αβxα−1 +

λσ

xλ+1

)
e( βx

α− σ

xλ ), x ≥ 0. (2.4)

Some possible shapes for the hazard rate function (HRF) of the proposed model are sketched

in Figure 1 .

Motivations

The key motivations for using the proposed model in practice are as follow:

1. The distribution function as well as the survival function of the proposed model have the

closed form.
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Figure 1: Plots of HRF of the NFEW distribution for selected values of parameters.

2. The proposed model is capable of modeling data with monotonic and non-monotonic

failure rates.

3. The proposed model is capable of modeling the last phase of the modified unimodal shaped

failure rate function closely (see Figure 1).

4. The proposed model has a long constant failure rate period (as shown in Figure 1) which

is capable to model the second phase of the bathtub shaped failure rate function.

5. The proposed model is capable of modeling the last phase of the bathtub shaped failure

rate function closely (as described in Figure 1).

6. The proposed model provide a best fit to the reliability data having a bathtub shaped

failure rate function than the other well-known bathtub shaped extensions of the Weibull

distribution having the same and higher number of parameters.

3 Applications

For the practical illustration, the fitting results of the NFEW distribution to two well-known

data sets having bathtub shaped failure rates are compared to the goodness-of-fit with the

other modified forms of the Weibull distribution. The analytical measures for model compar-

ison such as Akaike information criterion (AIC), Kolmogorov-Smirnov (KS) statistic and the

corresponding p-value are considered. Using these statistical measures, it is showed that the
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NFEW distribution provides a better fit than the new modified Weibull of Almalki and Yuan

[2], Marshall-Olkin Weibull (MOW) of Marshall and Olkin [3], exponentiated Weibull (EW) of

Mudholkar and Srivastava [5], additive Perks-Weibull of Singh [6] and Additive Weibull of Xie

and Lai [7].

3.1 Arset data

The first data set having the bathtub shaped representing the lifetimes of 50 devices taken from

Arset [1]. This data set is known to have a bathtub-shaped hazard function. Table 1 provides

goodness of fit measures and maximum likelihood estimates (MLEs) of parameters of the NFEW

and other competing distributions along with standard errors in brackets. From Figure 2, it

is clear that the cdf of NFEW fits the data well and its survival function follows the cdf and

Kaplan–Meier estimate closely.

Table 1: MLEs with their standard errors in brackets for Arset data.

Dist. β̂ α̂ γ̂ θ̂ λ̂ σ̂ AIC KS P-value

NFEW 2.0110-5 2.1310-9 0.186 0.005 430.70 0.084 0.806

EW 1.373 0.002 0.495 485.97 0.201 0.036

MOW 0.707 0.131 3.620 488.88 0.178 0.076

NMW 7.0110-8 0.071 0.016 0.595 0.197 435.86 0.088 0.803

AW 0.086 1.1310-8 0.102 4.214 451.09 0.127 0.365

APW 7.1510-17 0.443 0.053 0.688 433.75 0.091 0.804

Figure 2: The estimated CDF and Kaplan-Meier survival function of the NFEW distribution for Arset data.
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3.2 Meeker and Escobar data

The second data representing the failure times of a sample of 30 devices taken from Meeker and

Escobar [4]. This data set is also known to have a bathtub-shaped hazard function. Table 2

provides goodness of fit measures and maximum likelihood estimates (MLEs) of parameters of

the NFEW and other competing distributions along with standard errors in brackets. Again,

the proposed distribution provides a better fit than the other competing distributions, as can

be seen from Table 2. From Figure 3, it can easily be detected that the cdf and Kaplan–Meier

of NFEW fits the data well.

Table 2: MLEs with their standard errors in brackets for second data.

Dist. β̂ α̂ γ̂ θ̂ λ̂ σ̂ AIC KS P-value

NFEW 0.019 3.940 0.372 0.973 341.09 0.131 0.876

EW 1.086 0.003 1.076 375.49 0.224 0.104

MOW 1.013 0.009 3.458 371.93 0.223 0.098

NMW 5.9910-8 0.024 0.012 0.629 0.056 344.49 0.148 0.482

AW 0.019 1.3210-7 0.604 2.830 364.28 0.191 0.197

APW 5.410-12 0.088 0.011 0.807 343.82 0.134 0.655

Figure 3: The estimated cdf and survival function of the NFEW distribution for Meeker and Escobar data.
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4 Concluding Remarks

In this study, a new flexible extended Weibull distribution with non-monotone hazard rate

function is proposed and investigated by taking into account a system of two logarithms of

cumulative hazard functions. The resulting hazard rate function of the proposed model is cable

of accommodating different shapes including bathtub-shape to describe the failure behaviour of

a variety of real life data. Finally, two real data sets having bathtub shape hazard rate functions,

have been analyzed for illustrative purposes. For these data sets, some accuracy measures along

with the p-values are calculated to compare the goodness of fit of the proposed model to the other

competing distributions. These measures reveal that the proposed distribution provides best

fit to these bathtub shaped data than that for the other distributions considered. To support

these accuracy measures, empirical cdf and Kaplan–Meier plots are also sketched which show

that the cdf of NFEW model fits the data well and its survival function follows the Kaplan–

Meier estimate very closely. We hope that the proposed model will attract wider applications

in reliability engineering and other related fields.
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1 Introduction

Process capability indices (PCIs) have been proposed for the manufacturing industry to provide

numerical measures on how well a process is capable of reproducing items within the preset

specification limits in the factory. Numerous PCIs, including Cp, Cpk, Cpm, Cpmk, and Spk for

target(nominal)-the-better type quality characteristics and Cpl (Cpu) for larger(smaller)-the-

better quality characteristics, have been used to evaluate process performance for cases with

single quality characteristics, (see Wu et al. (10)). The mentioned indices are only appropriate

for normal or near-normal processes. Since the lifetime of products is a larger-the-better type

quality characteristic which often follows a right-skew distribution, the unilateral index CL as

an extension of the index Cpl is suggested by Montgomery (5) to assess the performance of

lifetime with one-parameter exponential distribution. Tong et al. (9) constructed the uniformly

minimum variance unbiased estimator (UMVUE) of CL and built a hypothesis testing proce-

dure under the assumption of exponential distribution for the complete sample. The CL has

become the most popular capability (performance) index and is widely used in the industry to

assess the capability of processes whose underlying characteristic follows a lifetime (right-skew)

distribution. However, to date, the existing literature associating the performance of a process

is still limited to the discussion of a single quality characteristic (see Ahmadi et al. (1)), no

1Adel Ahmadi Nadi: adel.ahmadinadi@mail.um.ac.ir



research work has been done on the performance index CL for a processes with multiple char-

acteristics. The main objective of this paper is to develop a new tool for processes involving

multiple characteristics by proposing a new overall lifetime performance index CTL , which is a

generalization of the most widely used index CL.

2 The overall lifetime performance index

The lifetime of products is a larger-the-better type quality characteristic since products with

longer lifetime tend to be more competitive in the nowaday’s markets. Suppose that the lifetime

variable X has a lower specification limit L and follows an exponential distribution with param-

eter λ with the following probability density function fX(x), cumulative distribution function

FX(x), and failure rate function hX(x):

fX(x) =
1

λ
e−

x
λ , FX(x) = 1− e−

x
λ , hX(x) =

fX(x)

1− FX(x)
=

1

λ
, λ > 0 (2.1)

Montgomery (5) developed the lifetime performance index CL to measure the larger-the-better

type quality characteristics with a known lower specification limit L as follows:

CL =
µ− L

σ
, −∞ < CL ≤ 1, (2.2)

where µ and σ represent the mean and standard deviation of quality variable, respectively. For

lifetime of products following the distribution defined in (1.2), the lifetime performance index

CL can be reduced as:

CL = 1− L

λ
(2.3)

Observe that when λ > L, we have the index CL > 0, when λ < L, we have the index CL < 0.

It is also observed that the smaller the failure rate 1
λ the larger the lifetime performance index

CL. Therefore, the index CL can accurately assess the performance of lifetime of products.

To determine whether the lifetime of products X are consistently achieved by manufacturers

and delivered within their required specification L preset by customers, we define the lifetime-

conforming rate (which is also known as process yield in literature) p and lifetime-nonconforming

rate r as:

p = Pr(X > L) = e−
L
λ = eCL−1, (2.4)

r = Pr(X ≤ L) = 1− e−
L
λ = 1− eCL−1. (2.5)
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A strictly increasing (decreasing) relation holds between p (r) and CL. Because of this one-to-

one mathematical correspondence, we can use the index CL to assess p or r. For example, CL ≥

0.99 means that the p would be at least 0.99 or that the lifetime-nonconforming rate is < 0.01

(parts per millions (ppm) of non-conformities is less that 10000). Hence, the CL values provide

useful lifetime-performance information when practitioners test the product lifetimes under an

exponential distribution. Process performance analysis for non-exponential distributions has

been considered in the literature, too. However, most the cases result by a transformation of

the data.

Processes in factories are commonly described in multiple characteristics. Performance mea-

sures for processes with a single characteristic has been investigated extensively. However,

performance measures for processes with multiple characteristics are comparatively neglected.

There are several approaches to define multivariate PCIs (MPCIs) to evaluate the whole capabil-

ity/performance of a process with more than one interested characteristics which are classified in

a broad sense in de-Felipe and Benedito (4). A simple way to introduce MPCIs, is based on the

exact (or approximate) relation of exist univariate PCIs with the process yield that are studied

for example in Chen et al. (3), Pearn et al. (7), and Pearn et al. (8) to extend the univariate in-

dices Spk, Cpl and Cpu, and Cpk, respectively. For processes with multiple characteristics, Bothe

(2) considered a simple measure by taking the minimum measure of each single characteristic.

For example, consider a m-characteristic process with m yield measures (lifetime-conforming

rates in our study) p1, p2, ..., and pm. The overall process yield (overall lifetime-conforming rate)

would be measured as P = min{p1, p2, ..., pm}. We note that this approach does not reflect the

real situation accurately. Suppose the process has five characteristics (m = 5), with equal char-

acteristic yield measures p1 = p2 = p3 = p4 = p5 = 0.9973. Using the approach considered by

Bothe (2), the overall process yield is calculated as P = min{p1, p2, p3, p4, p5} = 99.73 (or 2700

ppm of non-conformities). Assuming that the five characteristics are mutually independent,

then the actual overall process yield should be calculated as:

P = p1 × p2 × p3 × p4 × p5 = 0.9866 (2.6)

(or 134.273 ppm of non-conformities), which is significantly less than that calculated by Bothe

(2). Based on the the considered approach in Chen et al. (3) and the relations (2.4) and (2.6)

for a process with m multiple characteristics that are mutually independent and exponentially

distributed, we propose the following overall lifetime performance index, referred to as CTL :

CTL =
m∑
j=1

CLj − (m− 1), −∞ < CTL ≤ 1, (2.7)
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Table 1: The overall lifetime performance index CTL and its P and NCPPM

CT
L P ncppm CT

L P ncppm CT
L P ncppm

−∞ 0.0000 1000000 -1.4 0.0907 909282 0.2 0.4493 550671

-3 0.0183 981684.4 -1.2 0.1108 889196.8 0.3 0.4966 503414.7

-2.8 0.0224 977629.2 -1 0.1353 864664.7 0.4 0.5488 451188.4

-2.6 0.0273 972676.3 -0.8 0.1653 834701.1 0.5 0.6065 393469.3

-2.4 0.0334 966626.7 -0.6 0.2019 798103.5 0.6 0.6703 329680

-2.2 0.0408 959237.8 -0.4 0.2466 753403 0.7 0.7408 259181.8

-2 0.0498 950212.9 -0.2 0.3012 698805.8 0.8 0.8187 181269.2

-1.8 0.0608 939189.9 0 0.3679 632120.6 0.9 0.9048 95162.58

-1.6 0.0743 925726.4 0.1 0.4066 593430.3 1 1.0000 0.0000

where CLj denotes the CL value of the j-th characteristic for j = 1, 2, ...,m. The new index, CTL ,

may be viewed as a generalization of the single characteristic lifetime performance index, CL,

considered by Montgomery (5). More specifically, we can establish the relationship between the

index CTL and the overall lifetime-conforming rate P by P = eC
T
L−1. Thus, the new index CTL also

provides an exact measure of the overall process conforming rate, similar to the one-characteristic

case. Viewing from the aspect of non-conformities, the exact measure of non-conformities in

ppm (ncppm) for a well-controlled exponentially distributed process with mutually independent

characteristics can then be calculated as ncppm = (1 − eC
T
L−1) × 106. TABLE 1 displays the

values of ncppm and P for some common values of CTL .

For a process with m characteristics, if the requirement for the overall process capability is

CTL ≥ c0, a sufficient condition (which is minimal) for the requirement to each single character-

istic can be obtained by the following. Let c
′
be the minimum CL value required for each single

characteristic, if:

CTL =

m∑
j=1

CLj − (m− 1) ≥ c0, (2.8)

then we have:

c
′
≥ c0 + (m− 1)

m
. (2.9)

Thus, the overall lifetime performance requirement CTL ≥ c0 would be satisfied, if the capa-

bility of j-th characteristic satisfies CLj ≥ cl for all j = 1, 2, ...,m, where the lower bound cl on
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Table 2: Lower bound of various lifetime performance levels

m c0

0.7 0.8 0.9 0.95 0.98

1 0.7000 0.8000 0.9000 0.9500 0.9800

2 0.8500 0.9000 0.9500 0.9750 0.9900

3 0.900 0.9334 0.9667 0.9833 0.9933

4 0.9250 0.9500 0.9750 0.9875 0.9950

5 0.9400 0.9600 0.9800 0.9900 0.9960

6 0.9500 0.9667 0.9833 0.9917 0.9967

7 0.9571 0.9714 0.9857 0.9929 0.9971

8 0.9625 0.9750 0.9875 0.9938 0.9975

9 0.9667 0.9778 0.9888 0.9944 0.9978

10 0.9700 0.9800 0.9900 0.9950 0.9980

each CLj can be calculated, as:

cl =
c0 + (m− 1)

m
. (2.10)

TABLE 1 displays the lower bound cl of CLj , if the requirement of the overall process

capability CTL are 0.7, 0.8, 0.9, 0.95 and 0.98 for m = 1(1)10 characteristics. For example, if

c0 is set to be 0.95 with m = 5, i.e., the overall lifetime-conforming rate is set to be no less

than 0.9512. The overall lifetime performance CTL ≥ 0.95 would be satisfied, if each single

characteristic conforming rate is no less than (0.9512)1/5 = 0.9900 (equivalent to 10000 ncppm),

and the lifetime performance for all the five characteristics be at least:

CLj =
0.95 + (5− 1)

5
= 0.9900. (2.11)

As it is mentioned earlier, due to the exist exact one-to-one relations between the expo-

nential distribution and the other widely-used life distributions, the proposed index could be

implemented for the mentioned distributions with the transformation technique.

3 Estimation of CT
L

In practice, sample data must be collected in order to calculate the individual indices in (2.3)

since the process means λj for j = 1, 2, ...,m are usually unknown. Tong et al. (9) derived the
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UMVUE of CL based on the complete sample X1, X2, ..., Xn as:

ĈL = 1− (n− 1)L∑n
i=1Xi

. (3.1)

Consider the complete samples X1j , X2j , ..., Xnj for the j-th characteristics which follows an

exponential distribution with mean λj . Also, suppose that Lj is the lower specification limit

for the j-th characteristic. The UMVUE of the overall lifetime performance index CTL can be

written as:

ĈTL =
m∑
j=1

ĈLj − (m− 1), (3.2)

where ĈLj is the UMVUE of CLj based on j-th sample by (3.1). The variance of ĈTL can be

obtained as (Tong et al. (9)):

V ar(ĈTL ) =
1

n− 2

m∑
j=1

(Lj
λj

)2
, nj > 2. (3.3)

4 An application

In this section, an example is presented to demonstrate the applicability of CTL in manufacturing

industries. The numerical example is concerned to two-components systems in Murthy et al.

(6). The systems consists of two components which their lifetimes X1 and X2 are statistically

independent and follow a two-parameter Weibull distribution. Suppose each system has a lower

specification limit as LX1 = 9.7456 and LX2 = 12.5848. The failure times of components 1

and 2 for nine system failures and the maximum likelihood estimates of parameters are given

in TABLE 3. It is known that the transformed variables T1 = X
(1.33)
1 and T2 = X

(1.35)
2 follow

the exponential distributions with pdf and cdf in (1.2) with parameters λ1 = 112.05 and λ2 =

110.38, respectively. In addition the transformed lower specification limits are calculated as

LT1 = (9.7456)1.33 = 20.6593 and LT2 = (12.5848)1.35 = 30.5346, respectively. Hence, the

individual and overall indices are estimated as:

ĈL1 = 1− 20.6593

112.05
= 0.8156, ĈL2 = 1− 30.5346

110.38
= 0.7234 (4.1)

ĈTL = 0.8156 + 0.7234− (2− 1) = 0.5390. (4.2)

The results show that for the mentioned products, the overall lifetime-conforming rate P̂ =

0.6305 or equivalently 369500 ppm of nonconformities are expected.
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Table 3: Failure times of components for two-component systems

x1 x2 x3 x4 x5 x6 x7 x8 x9 shape scale

System 1 77.2 74.3 9.6 251.6 134.9 115.7 195.7 42.2 27.8 1.33 112.05

System 2 156.6 108.0 12.4 108.0 84.1 51.2 289.8 59.1 35.5 1.35 110.38

Conclusions

In this paper, an overall lifetime performance index denoted by CTL was introduced to assess the

performance of a process with multiple lifetime characteristics that are distributed exponentially.

The proposed index provides and exact measure of overall process performance and overall

lifetime-conforming rate. The UMVUE of the index CTL are derived based on complete samples.

Finally, an example based on a real data set is presented.
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1 Introduction

Let X = (X1, . . . , Xn) be a vector of non-negative dependent and identically distributed (d.i.d)

random variables with absolute continuance distribution F , survival function F = 1 − F and

density function f . The joint survival (or reliability) function of X has the following form,

FX(x) = P (X1 > x1, . . . , Xn > xn) = Ĉ(F (x1), . . . , F (xn)), wherex=(x1, . . . , xn) and Ĉ is

the survival copula, which is the multivariate distribution copula on [0, 1]n with uniformly

distributed margins on [0, 1]. In the literature, Ĉ is called a reliability copula (see, Nelsen

(2006)). Let Ki(F (x)) = Ĉ(F (x)1i,1n−i) denote i-dimensional margins of the multivariate

distribution copula, Ĉ, where the entries of both 1i and 1n−i are all ones, with K1(F (x)) = F (x)

and Kn(F (x)) = Ĉ(F (x), . . . , F (x)). We are defined a survival function of generalize finite

mixture models (the mixing proportions may be negative) from i-dimensional margins of Ĉ

as follows HX,an(F (x)) =
∑n
i=1 an(i)Ki(F (x)), wherean = (an(1), . . . , an(n)) are some real

numbers (weights) such that
∑n
i=1 an(i) = 1. If all the weights are positive then the classical

model (1) reduce to the ordinary positive finite mixture models. If some of the weights are

negative then, we have a negative mixture. In (1), if we put u = F (x) for all u ∈ [0, 1], then

we have Han(u) =
∑n
i=1 an(i)Ki(u), whereHan(u) is a proper survival function from [0, 1]n to

[0, 1] and Han(0) = 1 and Han(1) = 0. The distribution function corresponding to generalize

1Ebrahim Amini-Seresht: e.amini64@yahoo.com



mixture model given as in (1) is HX,an(F (x)) =
∑n
i=1 an(i)Ki(F (x)), whereHX,an(F (x)) =

1−HX,an(F (x)) and Ki(u) = 1−Ki(1− u).

Several researchers have been vastly studied, stochastic comparisons of two mixture models

(see Amini-Seresht and Khaledi, 2015; Khaledi and Shaked, 2010; Belzunce et al., 2009; Gupta

et al., 2011; Gupta and Gupta, 2009; Li and Da, 2010; Li and Zhao, 2011; Misra et al., 2009;

Amini-Seresht and Zhang, 2017). In the present paper, firstly, we consider two statistical models

HX,an and HY,an having the different components and the same weights and obtain the ordering

results between them in the sense of the hazard rate, reversed hazard rate and likelihood orders.

Next, we consider HX,an and HX,bn having the same components and different weights. Several

results that compare HX,an and HX,bn with respect to various stochastic orders, are established.

There are many statistical models in the literature which are the special cases of the model

as given in (1), for example the lifetime distribution of the k-out-of-n systems and coherent

systems with dependent components are the special case of such statistical model. The purpose

of this paper is to compare two statistical models having distributions of the above form, in the

sense of various stochastic orders like, the hazard rate, reversed hazard rate and likelihood ratio

orders. For more comprehensive discussions details of the above stochastic orderings, one may

refer to Shaked and Shanthikumar (2007) and Müller and Stoyan (2002).

2 Main results

Here, we obtain some general results to compare the statistical models in (1) with the following

two cases: two mixture models formed from two sets of random vectors of components, X and

Y with the same weights and two mixture models formed from of a set of random vector of

components, X with different weights. These results may also be of independent interest.

Let HX,an and HY,an be two generalize finite mixture models with d.i.d components X and

Y, respectively. If

(i)
uH

′
an

(u)

Han (u)
is decreasing in u for all u ∈ (0, 1), and

(ii) X1 ≤hr Y1,

Then, it holds thatHX,an ≤hr HY,an . In the next theorem, we consider the reversed hazard rate

order to compare the lifetimes of coherent systems with the different homogeneous dependent

component lifetimes. Let HX,an and HY,an be two generalize finite mixture models with d.i.d

components X and Y, respectively. If
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(i)
(1−u)H′

an
(u)

1−Han (u)
is increasing in u for all u ∈ (0, 1), and

(ii) X1 ≤rh Y1,

Then, it holds that Han,X ≤rh Han,Y. Next, some sufficient conditions under which two

classical models with the same components are compared stochastically with respect to the

hazard rate ordering and the reversed hazard rate ordering are provided. Let HX,an and

HX,bn be two generalize finite mixture models with d.i.d components X and the vector of

weights an and bn, respectively. If

(i)
uK′

j(u)

Kj(u)
is increasing in j for all 1 ≤ j ≤ n, and

(ii) an(i)bn(j) ≤ an(j)bn(i) for all 1 ≤ i ≤ j ≤ n.

Then, it holds that HX,an ≤hr HX,bn .

Let HX,an and HX,bn be two generalize finite mixture models with d.i.d components X and

the vector of weights an and bn, respectively. If

(i)
(1−u)K′

j(u)

1−Kj(u)
is decreasing in j for all 1 ≤ j ≤ n, and

(ii) an(i)bn(j) ≤ an(j)bn(i) for all 1 ≤ i ≤ j ≤ n.

Then, it holds that HX,an ≤rh HX,bn .
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1 Introduction

The new Pareto- type distribution was recently proposed by Bourguignon et al. (3) to model

reliability and income data. It is a generalization of the well-known Pareto distribution. The two-

parameter new Pareto- type distribution (denoted by NP (α, β)) has the cumulative distribution

function (cdf)

F (x;α, β) = 1− 2βα

xα + βα
, x ≥ β, (1.1)

and the probability density function (pdf)

f(x;α, β) =
2α (β/x)α

x[1 + (β/x)α]2
, x ≥ β, (1.2)

where α and β are shape and scale parameters, respectively.

For the NP(α, β) distribution, the maximum likelihood method does not provide an explicit

estimator for the shape parameter based on complete and censored data. For the maximum

likelihood estimation (MLE), the corresponding likelihood equation needs to be solved numer-

ically. In this article, we use a simple graphical solution for the determination of the MLE of
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the shape parameter. This graphical approach also shows the existence and uniqueness of the

MLEs. Some related work on graphical approach are Dodson (4) and Balakrishnan and Kateri

(2) who discussed this method for estimating the parameters of a Weibull distribution.

The paper is organized as follows. In Section 2, the graphical estimation method is described

in detail for the case of a complete sample from the NP distribution. In Section 3, the method is

extended to censored data (simple and progressive Type II). Finally, in Section 4, we illustrate

the method with an example.

2 MLEs for the complete sample case

If x1, · · · , xn is a random sample from NP (α, β), then the likelihood function is

L(α, β) =

n∏
i=1

f(xi, α, β) = (
2α

β
)n

n∏
i=1

(β/xi)
α+1

(1 + (β/xi)α)2
. (2.1)

The log-likelihood function is

l(α, β) = lnL(α, β) =n log(2α)− n log(β) + (α+ 1)
n∑
i=1

log(
β

xi
)

− 2
n∑
i=1

log

[
1 + (

β

xi
)α
] (2.2)

The MLEs of the unknown parameters are obtained by maximizing the log-likelihood function

in (2.2) with respect to α and β. It can be seen that l(α, β) is monotonically increasing with β.

Since x ≥ β, we conclude that the MLE of β is β̂ = x(1). Substituting β̂ in (2.2), we obtain the

profile log-likelihood function of α without the additive constant as

l(α, x(1)) = n log(2α)− n log(x(1)) + (α+ 1)

n∑
i=1

log(
x(1)

xi
)

− 2
n∑
i=1

log

[
1 + (

x(1)

xi
)α
]
.

(2.3)

Therefore, the MLE of α, say α̂, can be obtained by maximizing (2.3) with respect to α.

Consequently, the MLE α̂ of α is obtained as the solution to the following equation

h(α) =
∂l(α, x(1))

∂α
= −2

n∑
i=1

(
x(1)

xi
)α log

(
x(1)

xi

)
1 + (

x(1)

xi
)α

+
n∑
i=1

log

(
x(1)

xi

)
+
n

α
= 0. (2.4)

This equation has to be solved by using some numerical methods such as Newton-Raphson

iterative method to compute α̂.
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We now use an alternative approach based on a very simple and easy-to-apply graphical

method to compute the MLE α̂. We can rewrite (2.4) as

1

α
=

2

n

n∑
i=1

(
x(1)

xi
)α log

(
x(1)

xi

)
1 + (

x(1)

xi
)α

− 1

n

n∑
i=1

log

(
x(1)

xi

)
. (2.5)

We denote the RHS of (2.5) byH(α;x) and show that for a given sample x = (x1, ..., xn),H(α;x)

is a monotone increasing function of α with a finite and positive limit as α→ ∞. We have

∂H(α;x)

∂α
=

2

n

n∑
i=1

(
x(1)

xi
)α log2

(
x(1)

xi

)
(
1 + (

x(1)

xi
)α
)2 ≥ 0 (2.6)

which establishes the required property that H(α, x) is indeed a monotone increasing function

of α. Further, it can be shown that

lim
α→∞

H(α, x) = − 1

n

n∑
i=1

log

(
x(1)

xi

)
> 0,

lim
α→0

H(α, x) = 0,

and

lim
α→0

H(α, x) < lim
α→∞

H(α, x).

Therefore, a plot of the LHS and the RHS of (2.5) gives a simple graphical method of determining

the MLE of the shape parameter α. The above three equations, combined with the fact that

1/α is monotone decreasing (to 0) and H(α, x) is monotone increasing, ensures the existence

and uniqueness of the MLE of α.

3 MLEs for the censored sample case

Let X1:n < X2:n < · · · < Xm:n be a Type- II right censored sample from the NP distribution,

where m (1 < m < n) is the number of observed failures. Then, the log-likelihood becomes

l = lnL(x, α, β) = const+m logα−m log β + (n−m) log

[
2βα

xαm:n + βα

]
+ (α+ 1)

m∑
i=1

log(
β

xi:n
)− 2

m∑
i=1

log(1 + (
β

xi:n
)α)

(3.1)
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It can be shown that l(α, β) is monotonically increasing with β, thus the MLE of β, is β̂ = x1:n.

The MLE α̂ of α is obtained as the solution to the following equation

∂l

∂α
=
m

α
+

m∑
i=1

log(
x1:n
xi:n

) + (n−m)
log( x1:n

xm:n
)

1 + ( x1

xm:n
)α

− 2

m∑
i=1

(x1:n

xi:n
)α log(x1:n

xi:n
)

1 + (x1:n

xi:n
)α

= 0.

(3.2)

There is no closed- form expression for the MLE of α and its computation has to be performed

numerically. Again, we can use the graphical method to compute the MLE α̂. In this case, we

have

1

α
=

2

m

m∑
i=1

(x1:n

xi:n
)α log(x1:n

xi:n
)

1 + (x1:n

xi:n
)α

− 1

m

m∑
i=1

log(
x1:n
xi:n

)− (n−m)

m

log( x1:n

xm:n
)

1 + ( x1:n

xm:n
)α

(3.3)

Therefore, in this case,

H(α;x) =
2

m

m∑
i=1

(x1:n

xi:n
)α log(x1:n

xi:n
)

1 + (x1:n

xi:n
)α

− 1

m

m∑
i=1

log(
x1:n
xi:n

)− (n−m)

m

log( x1:n

xm:n
)

1 + ( x1:n

xm:n
)α
. (3.4)

The function H(α;x) is a monotone increasing function of α for a given sample x, since

∂H(α, x)

∂α
=

2

m

m∑
i=1

(x1:n

xi:n
)α log2(x1:n

xi:n
)(

1 + (x1:n

xi:n
)α
)2 +

(n−m)

m

( x1:n

xm:n
)α log2( x1:n

xm:n
)(

1 + ( x1:n

xm:n
)α
)2 ≥ 0. (3.5)

Moreover, we have

lim
α→∞

H(α;x) = − 1

m

m∑
i=1

log(
x1:n
xi:n

)− (n−m)

m
log(

x1:n
xm:n

) > 0,

lim
α→0

H(α;x) = − (n−m)

2m
log(

x1:n
xm:n

) > 0,

and

lim
α→0

H(α;x) < lim
α→∞

H(α;x).

Thus, again a plot of the LHS and the RHS of (3.3) gives a simple graphical method to

determine the MLE α̂. This plot also shows the existence and uniqueness of the MLE α̂.

In case of progressive Type- II censoring, let X1:m:n, X2:m:n, . . . , Xm:m:n, (1 ≤ m ≤ n) be a

progressive Type-II censored sample observed from a life test involving n units taken from the

NP distribution and (R1, . . . , Rm), where each Ri ≥ 0 and
∑m
i=1Ri = n −m, is the censoring

scheme. For notation simplicity, we denote the observed progressively Type-II censored sample
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as x1:n, x2:n, . . . , xm:n. The log- likelihood function in case of NP distribution is

l = const+m logα−m log β + (α+ 1)
m∑
i=1

log(
β

xi:n
)

− 2
m∑
i=1

log(1 + (
β

xi:n
)α) +

m∑
i=1

Ri log

(
2( β
xi:n

)α

1 + ( β
xi:n

)α

)
,

(3.6)

which gives β̂ = x1:n and

H(α,x) =
2

m

m∑
i=1

(x1:n

xi:n
)α log(x1:n

xi:n
)

1 + (x1:n

xi:n
)α

− 1

m

m∑
i=1

log(
x1:n
xi:n

)

− 1

m

m∑
i=1

Ri
log(x1:n

xi:n
)

1 + (x1:n

xi:n
)α
.

(3.7)

In this case, again we have

∂H(α, x)

∂α
=

2

m

m∑
i=1

(x1:n

xi:n
)α log2(x1:n

xi:n
)(

1 + (x1:n

xi:n
)α
)2 +

1

m

m∑
i=1

Ri
(x1:n

xi:n
)α log2(x1:n

xi:n
)(

1 + (x1:n

xi:n
)α
)2 ≥ 0, (3.8)

lim
α→∞

H(α, x) = − 1

m

m∑
i=1

log(
x1:n
xi:n

)− 1

m

m∑
i=1

Ri log(
x1:n
xi:n

) > 0,

lim
α→0

H(α, x) = − 1

2m

m∑
i=1

Ri log(
x1:n
xi:n

) > 0,

and limα→0H(α, x) < limα→∞H(α, x). Therefore, the plot of the LHS and the RHS of the

equation 1/α = H(α, x) gives a simple graphical method of determining the MLE α̂. Moreover,

by arguments as before, the existence and uniqueness of the MLE of α is ensured.

4 Example

In this section, we illustrate the graphical estimation method discussed in this paper with an

example. The following data set (see Table 1) from Murthy et al. (5) represents the failure

times of 20 mechanical components. This data set has been analyzed recently by Bourguignon

et al. (3). They showed that the use of the NP distribution for fitting this data set is reasonable.

They computed the MLEs of α and β as α̂ = 2.871 and β̂ = 0.067. The MLEs determined by

the R software (using ”uniroot” method) are as α̂ = 2.97 and β̂ = 0.067.

The graphical estimation method described in Section 2 leads to a graphical solution of

α̂ = 2.99 (shown in Figure 1) and β̂ = 0.067.

Let us know consider the case of censored data. For the case of Type-II censoring, it is

supposed that the life test ended when the 8-th observation is observed. Therefore, we observe
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Table 1: The Failure Times Data

DATA SET 0.067 0.068 0.076 0.081 0.084 0.085 0.085 0.086 0.089 0.098

0.098 0.114 0.114 0.115 0.121 0.125 0.131 0.149 0.160 0.485
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Figure 1: Plot of the 1/α and H(α, x) functions for the complete data.

a Type II censored sample with n = 20 and m = 8. For the case of progressive Type-II

censoring, we consider m = 8 and R = (2, 0, 3, 0, 0, 2, 0, 5). We then generated a progressive

Type-II censored sample using the algorithm presented in Balakrishnan and Cramer (1). Table

2 shows the generated progressive Type-II censored sample.

The graphical estimation procedure described in Section 3 leads to a graphical solution of

α̂ = 3.15 for Type-II censored data and α̂ = 3.11 for progressive Type-II censored data (shown

in Figures 2 and 3).

Table 2: Progressive Type-II censored data

i 1 2 3 4 5 6 7 8

xi:n 0.067 0.068 0.076 0.081 0.084 0.085 0.089 0.098

Ri 2 0 3 0 0 2 0 5
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Figure 2: Plot of the 1/α and H(α, x) functions for the Type II censored data.
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Figure 3: Plot of the 1/α and H(α, x) functions for the progressive censored data.
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Abstract: In this paper, we consider a binary system that is subject to Marshall-Olkin type

shocks. We study an age-based preventive maintenance model for this system. The optimal

preventive maintenance time that minimizes the mean cost per unit of time is investigated. The

efficiency of the proposed model is computed. some examples are illustrated as the applications

of the proposed model.
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1 Introduction

In real-world, there are many situations in which a technical system which operates in an

environment may be subject to shocks that cause a reduction in the performance of the system.

For example, earthquakes may affect the road networks or changes in power voltage may affect

the electrical systems. Motivated by this, many researchers in recent years studied different

scenarios that the failure of the systems occurs based on shocks models. A well-known type of

shock models that are considered by authors in the literature is the Marshall-Olkin (MO) shock

models. In the classical MO shock model, a system consisting of two components is assumed

to be subject to shocks that arrive from three different sources. A shock from the first source

affects the first component, the shock from the second source affects the second component and

a shock from the third source affects both components. Marshall and Olkin (5) assumed that

the times of occurring the shocks in each source are independent of the exponential distribution

and derived the joint reliability function of the components of the system. After their work, the

extensions of MO shock models are considered in numerous papers. Recently, Bayramoglu and

Ozkut (2) investigated the systems that are subject to MO type of shocks. They considered

systems composed of n components which are subject to shocks that arrive from different sources

at random times. A shock coming at random time Ti, i = 1, . . . , n destroys the ith component;

1Somayeh Ashrafi: s.ashrafi@sci.ui.ac.ir



and the shock coming at time T1...n destroys all components. They computed the reliability

function of the system under different assumptions on the random times of occurring shocks.

They also, extended the MO model for a system subjected to shocks coming at random times and

destroying one, two, three, or more components. Bayramoglu and Ozkut (3) studied the mean

residual life and the mean inactivity time functions of coherent systems subject to MO shock

models. Matus et. al (6) proposed an optimization approach to define the shocks parameters

in the MO shock model in order to obtain the correlations between the failure times of the

components of the system. Ozkut and Eryilmaz (8) studied a shock model which combines MO

and run shock models.

The preventive maintenance (PM) is one of the noteworthy areas in the reliability engineer-

ing. The PM policy is used to care and preserve the systems and avoid the sudden or gradual

failure of the system that imposes some costs. The aim of PM policy is to provide a systematic

model for inspecting the system at predetermined times to fix and correct the primitive failures.

The optimal PM models first introduced by Barlow and Hunter (1). After this work, many

papers and books devoted to PM problems; see, for examples, (4), (7) and (9).

In this paper, we consider a binary (n − k + 1)-out-of-n system. We assume that the com-

ponents of this system are subject to shocks that come from (n+ 1) different sources. A shock

coms from ith source affects only on the ith component, i = 1, . . . , n and destroys it. The shock

that arrives from (n+1)th source affects on all components and distroys them. The aim of this

paper is to present an optimal PM policy for such a system. We consider three types of costs

that the system may impose, the cost of replacing a failed component with new one, the cost of

applying emergency repair (ER), the cost for employing PM action. The mean cost per unit of

time is obtained and the optimal PM time that minimizes it is investigated. We also compute

the efficiency of applying PM. Some illustration examples are also provided.

2 Preventive maintenance model

Consider an (n − k + 1)-out-of-n system. Assume that the components of system are subject

to shocks that come from independent sources at random times T1, . . . , Tn, T1,...,n. The shock

that occurs at time Ti destroys ith component, i = 1, . . . , n and the shock that occurs at

T1,...,n destroys all the components. In such a situation, the lifetime of the ith component is

Xi = min{Ti, T1,...,n} and the lifetime of the system is T = Xk:n = min{Tk:n, T1,...,n} where Tk:n

is the kth order statistics among T1, . . . , Tn. Let T1, . . . , Tn be exchangeable random variables
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with reliability function F̄T1(t) and T1,...,n have reliability function F̄T1...n(t). Suppose that

T1,...,n is independent of T1, . . . , Tn and P (T1,...,n = Ti) = 0, i = 1, . . . , n. In this following, we

investigate a preventive maintenance policy for this system.

Assume that the PM is performed at tPM or emergency repair (ER) is performed at failure

time of the system, whichever comes first. Suppose that at tPM or at the failure time of the

system, that is a renewal cycle, the failed components are replaced with new ones and the

system becomes as good as new one. Suppose that c0 denotes the cost of replacing a failed

component with new one, cER and cPM are the costs of applying ER and PM, respectively. In

what follows, we obtain the mean cost and the mean length of one renewal cycle. Then, we

compute the optimal PM time t∗PM that minimizes the mean cost per unit of time. In computing

the mean cost per cycle one of the following cases may happen.

(I) Assume the system has not failed until tPM . In such a situation, it is clear that the shock

that destroys all components comes after tPM ,(T1,...,n > tPM ) and Ti:n ≤ tPM < Ti+1:n,

i = 0, 1, . . . , n. Thus, at time tPM , i components have failed. The expected cost can be

obtained as

C1(tPM ) =

n∑
i=1

P (Ti:n ≤ tPM < Ti+1:n, T > tPM )(ic0 + cPM )

=

k−1∑
i=1

P (Ti:n ≤ tPM < Ti+1:n, Tk:n > tPM , T1...n > tPM )(ic0 + cPM )

=
k−1∑
i=1

P (Ti:n ≤ tPM < Ti+1:n)P (T1...n > tPM )(ic0 + cPM )

= F̄T1...n(tPM )
k−1∑
i=1

(
n

i

)
F iT1

(tPM )F̄n−iT1
(tPM )(ic0 + cPM ).

in which the third equality follows from the fact that T1,...,n is independent of T1, . . . , Tn .

(II) Assume that the system has failed before tPM . In such a situation if T = T1...n then the

number of failed components is n. Therefore, the mean cost can be obtained as

C2(tPM ) = P (T ≤ tPM , T = T1...n)(nc0 + cER)

= P (T1...n ≤ tPM , T1,...,n < Tk:n)(nc0 + cER)

= (nc0 + cER)

∫ ∞

0

FT1...n(min{t, tPM})fTk:n
(t)dt

40



If T = Tk:n then one can get the mean cost as

C3(tPM ) = P (T ≤ tPM , T = Tk:n)(kc0 + cER)

= P (Tk:n ≤ tPM , Tk:n < T1...n)(kc0 + cER)

= (kc0 + cER)

∫ ∞

0

FTk:n
(min{t, tPM})fT1...n(t)dt.

Therefore, mean cost per cycle is written as

C(tPM ) = C1(tPM ) + C2(tPM ) + C3(tPM )

= F̄T1...n(tPM )
k−1∑
i=1

(
n

i

)
F iT1

(tPM )F̄n−iT1
(tPM )(ic0 + cPM )

+ (nc0 + cER)

∫ ∞

0

FT1...n(min{t, tPM})fTk:n
(t)dt

+ (kc0 + cER)

∫ ∞

0

FTk:n
(min{t, tPM})fT1...n(t)dt,

where for exchangeable random variables T1, . . . , Tn, using Theorem 1 of Bayramoglu and Ozkut

(2),

F̄Tk:n
(t) =

n∑
j=n−k+1

(
n

j

) n−j∑
r=0

(−1)r
(
n− j

r

)
P (T1 > t, . . . , Tj+r > t).

If T1, . . . , Tn are i.i.d. it can be easily seen that P (T1 > t, . . . , Tj+r > t) = F̄ j+rT1
(t). The length

of one cycle can be derived as

L(tPM ) =

∫ tPM

0

P (T > t)dt

=

∫ tPM

0

F̄T1...n(t)F̄Tk:n
(t)dt.

Therefore, the mean cost per unit of time in each renewal cycle can be achieved as

µ(tPM ) =
C(tPM )

L(tPM )
.

The aim is to obtain t∗PM that minimizes µ(tPM ).

Without PM, the mean cost is obtained as

C = (nc0 + cER)

∫ ∞

0

FT1...n(t)fTk:n
(t)dt+ (kc0 + cER)

∫ ∞

0

FTk:n
(t)fT1...n(t)dt.

Then, without PM, the mean cost per unit of time is written as

µ(∞) =
C∫∞

0
F̄T1...n(t)F̄Tk:n

(t)dt
.

The efficiency of the proposed PM model is obtained as

η =
µ(∞)

µ(t∗PM )
.
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3 Illustrative examples

In this section, we illustrate the proposed PM model using some examples. In following, we

assume an (n − k + 1)-out-of-n system when n = 10 and suppose that T1, . . . , T10 are i.i.d.

from Weibull distribution with survival function F̄T1(t) = e−0.1ta1
and T1,...,10 have Weibull

distribution with survival function F̄T1,...,10(t) = e−0.5ta2
. Two cases are discussed. In the first

case, we assume that a1 and a2 are fixed and k, cPM and cER have different values. In the second

case, it is assumed that a1 and a2 get different values while k, cPM and cER are considered fix.

The table 1, presents the optimal times to apply PM policy and its efficiencies when a1 =

a2 = 2 and c0 = 1 for different values of k, cPM and cER. It can be seen from the table that

when cPM increases, while cER and k are fixed, t∗PM increases and the efficiency decreases. This

is so because by increasing cPM the system needs PM later. Also, it can be seen that when

cER increases, while cPM and k are fixed, t∗PM decreases and the efficiency increases; i.e. by

increasing cER, the system needs PM earlier. By increasing k, when k is small enough, for fixed

values of cPM and cER, t
∗
PM increases. When k is not small, by increasing the value of k, t∗PM

does not change significantly.

In this example, the common distribution of T1, . . . , T10 and also the distribution of T1,...,10

are IFR. Thus the distribution of lifetime of the system is also IFR because P (T > t) =

P (T1,...,10 > t)P (Tk:n > t). As expected, it can be seen from table 1 that the efficiencies of

applying PM are significant. Therefore, we should apply the PM policy, for different values of

costs.

Figure 1: The plots of mean cost per unit of time when c0 = 1, cPM = 2.5 and cER = 30
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Table 1: Optimal PM times for (n− k + 1)-out-of-n system when n = 10, and c0 = 1.

k cPM cER E(T ) t∗PM C(t∗PM ) η(t∗PM )

1 2.5 15 0.7236 0.3219 15.9335 1.64794

30 0.2315 21.8819 2.1473

4 15 0.4312 19.4056 1.3531

30 0.3015 27.1346 1.7316

3 2.5 15 1.1070 0.4541 11.1606 1.8740

30 0.3565 14.1319 2.4388

4 15 0.5911 13.7799 1.5178

30 0.4583 17.6161 1.9564

5 2.5 15 1.21599 0.4592 11.1355 1.8153

30 0.3587 14.1146 2.3061

4 15 0.6072 13.7035 1.4751

30 0.4653 17.5614 1.8535

7 2.5 15 1.2463 0.4592 11.1354 1.7973

30 0.3587 14.1145 2.2706

4 15 0.6073 13.7033 1.4605

30 0.4653 17.5613 1.8250

Figure 1 depicts the plots of mean cost per unit of time when c0 = 1, cPM = 2.5 and

cER = 30 for different values of k.

Consider a 4-out-of-10 system. Table 2 presents the optimal times for applying PM when

c0 = 1, cPM = 4 and cER = 40 for different values of a1 and a2. The first row is related

to the case that Ti‘s are DFR (a1 = 0.5). In this case when T1,...,10 is DFR (a2 = 0.5) or has

exponential distribution (a2 = 1), the system does not need the PM. If T1,...,10 is IFR (a2 = 1.5),

the system needs PM. From the second row, when T1,...,10 is DFR (a2 = 0.5 or a2 = 1), the

efficiency of applying PM is not significant. The third row shows that the system needs PM

when T1 is IFR.

Figure 2 depicts the plots of mean cost per unit of time when c0 = 1, cPM = 4, cER = 40

and a1 = 1.5 for different values of a2.
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Table 2: Optimal PM times for 4-out-of-10 system when c0 = 1, cPM = 4 and cER = 40.

a1 a2 E(T ) t∗PM η(t∗PM )

0.5 0.5 7.4030 ∞ 1

1 1.9994 ∞ 1

1.5 1.4330 0.5464 1.3558

1 0.5 3.8110 14.7808 1.0012

1 1.9627 7.5658 1.0006

1.5 1.43197 0.5143 1.3733

1.5 0.5 2.3802 3.8046 1.0933

1 1.7866 2.8777 1.047

1.5 1.4202 0.4976 1.3969

Figure 2: The plots of mean cost per unit of time when c0 = 1, cPM = 4 and cER = 40
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Abstract: This paper studies the usual stochastic, star, convex transform orders of both series

and parallel systems comprised of heterogeneous (and dependent) Log-logistic components. Suf-

ficient conditions are established for the star ordering between the lifetimes of series and parallel

systems consisting of dependent components having multiple-outlier Log-logistic model. Under

certain conditions on Archimedean copula and the parameter, we also discuss convex transform

order between the series and parallel systems. These results generalize some corresponding ones

in the literature to the case of dependent scenarios.
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1 Introduction

The Log-logistic distribution is a flexible family of distributions which has been considered

extensively in reliability and survival analysis. A random variable X is said to have the Log-

logistic distribution distribution with scale parameter α > 0 and shape parameter β > 0 (denoted

by X ∼ L − Log(α, β)) if its cumulative distribution and sensity function are F(x; α, β) =

xβ

αβ+xβ x > 0,to

f(x; α, β) =
β
α ( x

α )β−1

(1+( x
α )β)2

x > 0.Log-logistic distribution plays a

important role in survival analysis dealing with data sets. The data may be the survival times

of cancer patients in which the hazard rate increases at the beginning and decreases later. In

this direction we refer to Bennett (1983). In economics, it is usually known as Fisk distribution

(see Fisk (1961)) and is applied as an alter- native to the log-normal distribution. We refer

to Ahmad et al. (1988), Robson and Reed (1999) and Geskus (2001) for further details of the

importance and applications of log-logistic distribution.
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One of the most commonly used systems in reliability is an r-out-of-n system. This system

comprising of n components, works iff at least r components work, and it includes parallel,

fail-safe and series systems all as special cases corresponding to r = 1, r = n − 1 and r = n,

respectively. Let X1, · · · , Xn denote the lifetimes of components of a system and X1:n ≤ · · · ≤

Xn:n represent the corresponding order statistics. Then, Xn−r+1:n corresponds to the lifetime

of a r-out-of-n system. Due to this direct connection, the theory of order statistics becomes

quite important in studying (n− r + 1)-out-of-n systems and in characterizing their important

properties.

The comparison of important characteristics associated with lifetimes of technical systems

is an interesting topic in reliability theory, since it usually enables us to approximate complex

systems with simpler systems and subsequently obtaining various bounds for important ageing

characteristics of the complex system. A convenient tool for this purpose is the theory of

stochastic orderings. Stochastic comparisons of series and parallel systems with heterogeneous

components have been discussed extensively for the various lifetimes. We refer the readers to

Kochar and Xu (2014), Li and Li (2015), Li and Fang (2015), Fang et al. (2016), Amini-Seresht

et al. (2016), Barmalzan et al. (2017), Ding et al. (2017), Zhang et al. (2018) for detailed

discussions on this topic.

The rest of this paper is organized as follows. Section 2 reviews some basic concepts that

will be used in the sequel. In Section 3, we discuss the usual stochastic order of series or

parallel systems with heterogeneous and dependent Log-logistic components. Finally, the convex

transform and star orders of series or parallel systems are discussed in Section 4.

2 Preliminaries

2.1 Stochastic orders

Suppose X and Y are two non-negative random variables with distribution functions FX and

FY , survival functions F̄X = 1 − FX and F̄Y = 1 − FY , right continuous inverses (quantile

functions) F−1
X and F−1

Y , hazard rates rX = fX/F̄X and rY = fY /F̄Y , respectively. Suppose

X and Y are two non-negative continuous random variables. X is said to be smaller than Y in

the usual stochastic order (denoted by X ≤st Y ) if F̄X(x) ≤ F̄Y (x) for all x ∈ R+. This result

is equivalent to saying that E(ϕ(X)) ≤ E(ϕ(Y )) for all increasing functions ϕ : R → R when the

involved expectations exist.
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(i) X is said to be smaller than Y in the convex transform order (denoted by X ≤c Y ) if

F−1
Y FX(x) is convex in x ≥ 0. Equivalently, X ≤c Y if and only if F−1

X FY (x) is concave

in x ≥ 0;

(ii) X is said to be smaller than Y in the star order (denoted by X ≤∗ Y ) if F−1
Y FX(x)/x is

increasing in x ≥ 0.

X is said to be smaller than Y in the dispersive order (denoted by X ≤disp Y ) if F−1
X (β)−

F−1
X (α) ≤ F−1

Y (β) − F−1
Y (α) for 0 ≤ α < β ≤ 1, orequivalently,X≤disp Y if and only if

fY (F
−1
Y (FX(x))) ≤ fX(x) for all x > 0. Interested readers may refer to Müller and Stoyan

(2002) and Shaked and Shanthikumar (2007) for comprehensive discussions on various stochastic

orderings and relations between them.

2.2 Majorization order

Consider two vectors a = (a1, · · · , an) and b = (b1, · · · , bn) with the increasing arrangements

a(1) ≤ · · · ≤ a(1) and b(1) ≤ · · · ≤ b(1), respectively. Then:

(i) A vector a is said to be majorized by the vector b (denoted by a
m
≼ b) if

∑i
j=1 a(j) ≥∑i

j=1 b(j) for i = 1, · · · , n− 1, and
∑n
j=1 a(j) =

∑n
j=1 b(j);

(ii) A vector a is said to be weakly supermajorized by the vector b (denoted by a
w
≼ b) if∑i

j=1 a(j) ≥
∑i
j=1 b(j) for i = 1, · · · , n.

A real-valued function ϕ, defined on a set A ⊆ Rn, is said to be Schur-convex (Schur-concave)

on A if a
m
≼ b implies ϕ(a) ≤ (≥)ϕ(b) for any a,b ∈ A. For an elaborate discussion on the

theory of majorization and Schur functions, one may refer to the book by Marshall et al. (2011).

Necessary and sufficient conditions for the characterization of Schur-convex and Schur-concave

functions are as given in the following lemma.

(Marshall et al. (2011), p. 84) Suppose J ⊂ R is an open interval and ϕ : Jn → R is

continuously differentiable. Necessary and sufficient conditions for ϕ to be Schur-convex (Schur-

concave) on In are

(i) ϕ is symmetric on Jn;

(ii) for all i ̸= j and all z ∈ Jn, (zi − zj)
(
∂ϕ(z)
∂zi

− ∂ϕ(z)
∂zj

)
≥ 0 (≤ 0), where∂ϕ(z)/∂zi denotes

the partial derivative of ϕ with respect to its i-th argument.
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The following result provides some conditions for the characterization of vector functions

that preserve weak supermajorization order. (Marshall et al. (2011), p. 87) Consider the real-

valued function φ, defined on a set A ⊆ Rn. Then, u
w
≽ v implies φ(u) ≥ φ(v) if and only if φ

is decreasing and Schur-convex on A.

Archimedean copulas have been widely used in reliability theory, actuarial science and many

other areas due to its mathematical tractability and the capability of capturing wide ranges of

dependence. By definition, for a decreasing and continuous function ψ : [0,∞) −→ [0, 1] such

that ψ(0) = 1 and ψ(+∞) = 0, let ψ = ϕ−1 be the pseudo-inverse,

Cψ(u1, · · · , un) = ψ(ϕ(u1) + · · ·+ ϕ(un)) for all ui ∈ [0, 1], i = 1, · · · , n

is called an Archimedean copula with the generator ψ if (−1)kψ[k](x) ≥ 0 for k = 0, · · · , n − 2

and (−1)n−2ψ[n−2](x) is decreasing and convex.

Recall that a function f is said to be superadditive if f(x + y) ≥ f(x) + f(y) for all x and

y in the domain of f . For more discussions on copulas and their properties, one may refer to

Nelsen (2006) and McNeil and Něslehová (2009).

3 Usual Stochastic Order

Suppose Xi ∼ L−Log(αi, β) (i = 1, · · · , n) and associated Archimedean copula with generator

ψ1. Also, suppose Yi ∼ L− Log(µi, β) (i = 1, · · · , n) and associated Archimedean copula with

generator ψ2. Assume that ϕ2◦ψ1 is superadditive. If ψ1 or ψ2 is log-concave, then for 0 < β ≤ 1

(µ1, · · · , µn)
w
≼ (α1, · · · , αn) =⇒ Xn:n ≤st Yn:n.

Proof. The distribution functions of Xn:n and Yn:n are given by

FXn:n(x) = ψ1(
n∑
k=1

ϕ1(
xβ

αβk + xβ
)) x > 0,

FYn:n(x) = ψ2(

n∑
k=1

ϕ2(
xβ

µβk + xβ
)) x > 0,

respectively. The superadditivity of ϕ2 ◦ ψ1 implies that

ψ1(
n∑
k=1

ϕ1(
xβ

µβk + xβ
)) ≤ ψ2(

n∑
k=1

ϕ2(
xβ

µβk + xβ
)).

Then, to prove the desired results, it is sufficient to show that

ψ1(
n∑
k=1

ϕ1(
xβ

αβk + xβ
)) ≥ ψ1(

n∑
k=1

ϕ1(
xβ

µβk + xβ
)).
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Let us define Ψ(α1, · · · , αn) = ψ1(
∑n
k=1 ϕ1(

xβ

αβ
k+x

β
)). According to Lemma 2.2, we need only

to show that Ψ(α1, · · · , αn) is decreasing and Schur-convex in (α1, · · · , αn) for any fix x > 0.

Taking the derivative of Ψ(α1, · · · , αn) with respect to αi, we have

∂Ψ(α1, · · · , αn)
∂αi

= −βxβ αβ−1
i

(αβi + xβ)2
1

ψ′
1(ϕ1(

xβ

αβ
i +x

β
))
ψ′
1(

n∑
k=1

ϕ1(
xβ

αβk + xβ
))

= −βη(x, αi, β) I(x, αi, β)ψ′
1(

n∑
k=1

ϕ1(
xβ

αβk + xβ
)),

where η(x, αi, β) =
αβ−1

i

αβ
i +x

β
and I(x, αi, β) =

xβ/(αβ
i +x

β)

ψ′
1(ϕ1(

xβ

α
β
i
+xβ

))
. Since ψ1 is n-monotone, it holds

that ψ′
1 ≤ 0 and then Ψ(α1, · · · , αn) is decreasing with respect to αi for any x > 0. Note that

for i = 1, · · · , n

[ψ′(ϕ1(
xβ

αβi + xβ
))]2

∂I(x, αi, β)

∂αi
=

βαβ−1
i xβ

(αβi + xβ)2
[ψ′

1(ϕ1(
xβ

αβi + xβ
))]−1

×

{
xβ

(αβi + xβ)
ψ′′
1 (ϕ1(

xβ

αβi + xβ
))− [ψ′

1(ϕ1(
xβ

αβi + xβ
))]2

}
.

Since ψ1 is log-concave, it holds that

∂2 lnψ1(x)

∂x2
=
ψ′′
1 (x)ψ1(x)− [ψ′

1(x)]
2

ψ2
1(x)

≤ 0. (3.1)

As a result, we have

[ψ′
1(ϕ1(

xβ

αβi + xβ
)]2 − xβ

αβi + xβ
ψ′′
1 (ϕ1(

xβ

αβi + xβ
))

= [ψ′
1(ϕ1(

xβ

αβi + xβ
)]2 − ψ1(ϕ1(

xβ

αβi + xβ
))ψ′′

1 (ϕ1(
xβ

αβi + xβ
)), (3.2)

which implies ∂I(x,αi,β)
∂αi

≥ 0. That is, I(x, αi, β) is increasing in αi, for i = 1, · · · , n. On the

other hand, it is easy to show that η(x, αi, β) is a decreasing in αi for 0 < β ≤ 1. Therefore,

η(x, αi, β) I(x, αi, β) is is increasing in αi for 0 < β ≤ 1. Therefore for any i ̸= j, we have

A = (αi − αj)

(
∂Ψ(α1, · · · , αn)

∂αi
− ∂Ψ(α1, · · · , αn)

∂αj

)
= −β ψ′

1(

n∑
k=1

ϕ1(
xβ

αβk + xβ
)) (αi − αj) (η(x, αi, β) I(x, αi, β)− η(x, αj , β) I(x, αj , β)) .

Since η(x, αi, β) I(x, αi, β) is increasing in αi for 0 < β ≤ 1, the right side of A is non-negative.

Then, the desired result follows immediately from the Lemma 2.2. �

3.1. It is worthwhile to note that the condition “ϕ2 ◦ ψ1 is superadditive, and ψ1 or ψ2 is

log-concave” in Theorem 3 is quite general and easy to be constructed for many well-known
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Archimedean copulas. For example, consider the Gumbel-Hougaard copula with the generator

ψ(t) = e1−(1+t)θ for θ ∈ [1,∞). It is easy to show that logψ(t) = 1 − (1 + t)θ is concave

in t ∈ [0, 1]. Let us set ψ1(t) = e1−(1+t)α and ψ2(t) = e1−(1+t)β . It can be observed that

ϕ2 ◦ ψ1(t) = (1 + t)α/β−1. Taking the derivative of ϕ2 ◦ ψ1(t) with respect to t twice, it can

be seen that [ϕ2 ◦ ψ1(t)]
′′ = (αβ )(

α
β − 1)(1 + t)α/β−1 ≥ 0 for α > β > 1, which implies the

superadditivity of ϕ2 ◦ ψ1(t). �

Suppose Xi ∼ L−Log(αi, β) (i = 1, · · · , n) and associated Archimedean copula with gener-

ator ψ1. Also, suppose Yi ∼ L − Log(µi, β) (i = 1, · · · , n) and associated Archimedean copula

with generator ψ2. Assume that ϕ2 ◦ ψ1 is superadditive. If ψ1 or ψ2 is log-convex, then for

β > 0

(µ1, · · · , µn)
m
≼ (α1, · · · , αn) =⇒ X1:n ≤st Y1:n.

Proof. The proof is similar to Theorem 1 and is therefore omitted here for the sake of brevity

�

4 Convex Transform and Star Orders

Suppose Xi ∼ L − Log(αi, β) (i = 1, · · · , n) and Yi ∼ L − Log(α, β) (i = 1, · · · , n) share a

common Archimedean copula with generator ψ. If ψ(x) is log-concave and 0 < β ≤ 1, then we

have Xn:n ≤c Yn:n. Proof. We note that

F−1
Yn:n

(FXn:n(x)) = α

 ψ( 1n
∑n
i=1 ϕ(

xβ

αβ
i +x

β
))

1− ψ( 1n
∑n
i=1 ϕ(

xβ

αβ
i +x

β
))

1/β

.

To prove the desired results, it is sufficient to show that F−1
Yn:n

(FXn:n(x)) is convex with respect

to x > 0. The partial derivatives of F−1
Yn:n

(FXn:n(x)) with respect to x, respectively, are

∂

∂x

{
F−1
Yn:n

(FXn:n(x))
} sgn

=
1

β
× ψ′(x)

(1− ψ(x))2

(
ψ(x)

1− ψ(x)

) 1
β−1

,
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and

∂2

∂x2
{
F−1
Yn:n

(FXn:n(x))
} sgn

=
1

β
×
(

ψ′(x)

(1− ψ(x))2

)′(
ψ(x)

1− ψ(x)

) 1
β−1

+
1

β
×
(
1

β
− 1

)
×
(

ψ′(x)

(1− ψ(x))2

)2(
ψ(x)

1− ψ(x)

) 1
β−2

=
1

β
×
(
ψ′′(x)− ψ′′(x)ψ(x) + 2ψ′2(x)

(1− ψ(x))3

)(
ψ(x)

1− ψ(x)

) 1
β−1

+
1

β
×
(
1

β
− 1

)
×
(

ψ′(x)

(1− ψ(x))2

)2(
ψ(x)

1− ψ(x)

) 1
β−2

.

The assumption 0 < β ≤ 1 implies

1

β
×
(
1

β
− 1

)
×
(

ψ′(x)

(1− ψ(x))2

)2(
ψ(x)

1− ψ(x)

) 1
β−2

> 0.

Thus F−1
Yn:n

(FXn:n(x)) is convex if ψ′′(x) − ψ′′(x)ψ(x) + 2ψ′2(x) > 0. In this regards, if ψ is

log-concave then ψ′′(x)ψ(x) − ψ′(x)2 < 0 and consequently ψ′′(x) − ψ′′(x)ψ(x) + 2ψ′2(x) > 0.

�

Suppose Xi ∼ L − Log(αi, β) (i = 1, · · · , n) and Yi ∼ L − Log(α, β) (i = 1, · · · , n) share a

common Archimedean copula with generator ψ. If ψ(x) is log-concave and 0 < β ≤ 1, then we

have X1:n ≤c Y1:n. Proof. The proof is similar to Theorem 3 and is therefore omitted here

for the sake of brevity �

The following useful lemma presents a characterization of the star order in a parametric

family.

(Saunders and Moran, 1978). Suppose {Fθ|θ ∈ R} is a class of distribution functions such

that Fθ is supported on some interval (t0, t1) ⊆ R+ and has a density fθ which does not vanish on

any sub-interval of (t0, t1). Then, Fθ
∗
≤ Fθ∗ , for θ, θ∗ ∈ R, θ ≤ θ∗, ifandonlyifF’θ(t)/t fθ(t)

is decreasing in t, where F ′
θ is the derivative of Fθ with respect to θ.

Suppose Xi ∼ L − Log(α1, β) (i = 1, · · · , p) and Xj ∼ L − Log(α2, β) (i = p + 1, · · · , n)

and Yi ∼ L− Log(µ1, β) (i = 1, · · · , p) and Yj ∼ L− Log(µ2, β) (i = 1, · · · , p) share a common

Archimedean copula with generator ψ. If

(1− t)

(
2 +

tϕ′′(t)

ϕ′(t)

)
is decreasing with respect to t ∈ [0, 1], then we have

(α1, · · · , α1︸ ︷︷ ︸
p

, α2, · · · , α2︸ ︷︷ ︸
q

)
m
≼ (µ1, · · · , µ1︸ ︷︷ ︸

p

, µ2, · · · , µ2︸ ︷︷ ︸
q

) =⇒ Yn:n ≤∗ Xn:n,
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where p+ q = n. Proof. Without loss of generality, let us assume that α1 ≤ α2 and µ1 ≤ µ2.

Then, we observe that

(α1, · · · , α1︸ ︷︷ ︸
p

, α2, · · · , α2︸ ︷︷ ︸
q

)
m
≼ (µ1, · · · , µ1︸ ︷︷ ︸

p

, µ2, · · · , µ2︸ ︷︷ ︸
q

) ⇐⇒ µ1 ≤ α1 ≤ α2 ≤ µ2 and pα1 + qα2 = pµ1 + qµ2 = k.

Set α = α2, µ2 = µ, α1 =
(
k−qα

)
/p and µ1 =

(
k−qµ

)
/p. Under this setting, the distribution

functions of Xn:n and Yn:n are

Fα(x) = ψ

[
pϕ

(
xβ

(k−qαp )β + xβ

)
+ qϕ

(
xβ

αβ + xβ

)]
; x ∈ R+,

Fµ(x) = ψ

[
pϕ

(
xβ

(k−qµp )β + xβ

)
+ qϕ

(
xβ

µβ + xβ

)]
; x ∈ R+,

respectively. Now, to obtain the required result, it is sufficient to show that
F ′

α(x)
xfα(x) decreasing

in x ∈ R+ for α ∈ (k/n, k/q]. The derivative of Fα with respect to α is

F ′
α(x) = ψ′

[
pϕ

(
xβ

(k−qαp )β + xβ

)
+ qϕ

(
xβ

αβ + xβ

)]

×

[
q
βxβ(k−qαp )β−1

((k−qαp )β + xβ)2
ϕ′

(
xβ

(k−qαp )β + xβ

)
− q

βxβαβ−1

(αβ + xβ)2
ϕ′
(

xβ

αβ + xβ

)]
.

On the other hand, the density function corresponding to Fα has the form

fα(x) = ψ′

[
pϕ

(
xβ

(k−qαp )β + xβ

)
+ qϕ

(
xβ

αβ + xβ

)]

×βxβ−1

[
p

(k−qαp )β

((k−qαp )β + xβ)2
ϕ′

(
xβ

(k−qαp )β + xβ

)
+ q

αβ

(αβ + xβ)2
ψ′
(

xβ

αβ + xβ

)]
.
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Therefore, we have

F ′
α(x)

xfα(x)
=

q
βxβ( k−qα

p )β−1

(( k−qα
p )β+xβ)2

ϕ′
(

xβ

( k−qα
p )β+xβ

)
− q βx

βαβ−1

(αβ+xβ)2
ϕ′
(

xβ

αβ+xβ

)
βxβ

[
p

( k−qα
p )β

(( k−qα
p )β+xβ)2

ϕ′
(

xβ

( k−qα
p )β+xβ

)
+ q αβ

(αβ+xβ)2
ψ′
(

xβ

αβ+xβ

)]

=

−α+

k
( k−qα

p )β−1

(( k−qα
p )β+xβ)2

ϕ′
(

xβ

( k−qα
p )β+xβ

)
q

( k−qα
p )β−1

(( k−qα
p )β+xβ)2

ϕ′
(

xβ

( k−qα
p )β+xβ

)
− q αβ−1

(αβ+xβ)2
ϕ′
(

xβ

αβ+xβ

)


−1

=

−α+
k

q

1−
αβ−1

(αβ+xβ)2
ϕ′
(

xβ

αβ+xβ

)
( k−qα

p )β−1

(( k−qα
p )β+xβ)2

ϕ′
(

xβ

( k−qα
p )β+xβ

)


−1
−1

=

−α+

−

(
α

k−qα
p

)β−1

×

(
xβ

αβ+xβ

)2
ϕ′
(

xβ

αβ+xβ

)
(

xβ

( k−qα
p )β+xβ

)2

ϕ′
(

xβ

( k−qα
p )β+xβ

) + 1


−1

−1

.

Thus, it suffices to show that, for α ∈ [k/n, k/q),

∆(x) =

(
xβ

αβ+xβ

)2
ϕ′
(

xβ

αβ+xβ

)
(

xβ

( k−qα
p )β+xβ

)2

ϕ′
(

xβ

( k−qα
p )β+xβ

)
is increasing in x ∈ R+. Set t1 = xβ

αβ+xβ , t2 = xβ

( k−qα
p )β+xβ

. From the fact α ∈ (k/n, k/q], we

have t1 6 t2 for all x ∈ R+. So,

∆(x) =
t21ϕ

′(t1)

t22ϕ
′(t2)

.

The derivative of ∆(x) with respect to x is

∆′(x)
sgn
=

[
2t′1t1ϕ

′(t1) + t21t
′
1ϕ

′′(t1)
]
× t22ϕ

′(t2)

−
[
2t′2t2ϕ

′(t2) + t22t
′
2ϕ

′′(t2)
]
× t21ϕ

′(t1)

sgn
= 2

t′1
t1

+
t′1ϕ

′′(t1)

ϕ′(t1)
− 2

t′2
t2

+
t′2ϕ

′′(t2)

ϕ′(t2)
.

It is easy to show that the derivative of t1 and t2 with respect to x are

t′1 =
βxβ−1αβ

(αβ + xβ)2

=
β

x
(1− t1)t1,

t′2 =
βxβ−1(k−qαp )β

((k−qαp )β + xβ)2

=
β

x
(1− t2)t2,
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respectively. Thus we have

∆′(x)
sgn
=

2β

x
(1− t1) +

β

x
(1− t1)

t1ϕ
′′(t1)

ϕ′(t1)

−2β

x
(1− t2)−

β

x
(1− t2)

t2ϕ
′′(t2)

ϕ′(t2)

sgn
= 2(1− t1) + (1− t1)

t1ϕ
′′(t1)

ϕ′(t1)

−2(1− t2)− (1− t2)
t2ϕ

′′(t2)

ϕ′(t2)
.

Since t1 ≤ t2, thus ∆
′(x) ≥ 0 if (1− t)

(
2 + tϕ′′(t)

ϕ′(t)

)
be decreasing in t ∈ [0, 1]. �

Suppose Xi ∼ LL(α1, β) (i = 1, · · · , p) and Xj ∼ LL(α2, β) (j = p + 1, · · · , n) and Yi ∼

LL(µ1, β) (i = 1, · · · , p) and Yj ∼ LL(µ2, β) (j = 1, · · · , p) are with a common Archimedean

survival copula having generator ψ. If

(1− t)

(
2 +

tϕ′′(t)

ϕ′(t)

)
is decreasing with respect to t ∈ [0, 1], then we have

(α1 − α2)(µ1 − µ2) ≥ 0 and (α1, · · · , α1︸ ︷︷ ︸
p

, α2, · · · , α2︸ ︷︷ ︸
q

)
m
≼ (µ1, · · · , µ1︸ ︷︷ ︸

p

, µ2, · · · , µ2︸ ︷︷ ︸
q

) =⇒ Y1:n ≤∗ X1:n,

where p+ q = n. Proof. The proof is similar to Theorem 5 and is therefore omitted here for

the sake of brevity �
The following example provides an illustration of the result in Theorems 4 and 4.

(i) For the independent case, the generator becomes ψ(u) = e−u, u ≥ 0. Then, we have

ϕ(t) = − ln(t), t ∈ [0, 1]. It can be calculated that

ϕ′(t) =
−1

t
, ϕ′′(t) =

1

t2
.

Therefore,

(1− t)

(
2 +

tϕ′′(t)

ϕ′(t)

)
= (1− t)

(
2 +

1/t

−1/t

)
= 1− t,

which means that (1− t)
(
2 + tϕ′′(t)

ϕ′(t)

)
is a decreasing function in t ∈ [0, 1].

(ii) Consider the Clayton copula with generator ψ(t) = (θt + 1)−1/θ, where θ ∈ (0, 1]. Then,

we have ϕ(t) = θ−1(t−θ − 1). Therefore

ϕ′(t) = −t−θ−1 , ϕ′′(t) = (θ + 1)t−θ−2,
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and then

(1− t)

(
2 +

tϕ′′(t)

ϕ′(t)

)
= (1− t)(1− θ)

which means that (1− t)
(
2 + tϕ′′(t)

ϕ′(t)

)
is decreasing in t ∈ [0, 1] for θ ∈ (0, 1]. �
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Abstract: Quantile functions are equivalent alternatives to distribution functions in analysis

and modelling of statistical data. Curves that measure inequality in incomes have been a topic

of immense interest for more than a century ever since the work of Lorenz in 1905. A measure

of income inequality is designed to provide an index that can abridge the variations prevailing

in income among the individuals in a group. In the present paper, we study more aspects on

the income inequality measures using quantile function approach. Aging concepts such as IFR,

IFRA, NBU, HNBUE, ... have an important role in reliability. The inequality curves and in-

dices and some links with reliability aging using quantile function approach are concentrated in

this talk. We will focus on income inequality, quantile function and aging consepts and their

links. We look into possible functional relationships between the income inequality measures

and quantile function. We examine the possible relationships of the inequality measures as

well as reliability concepts like mean residual life function and reversed mean residual life func-

tion. Then functional relationships enable us to establish characterization results for probability

distributions.
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1 Introduction

Recently, several inequality curves have been made or investigated as the descriptors of in-

come inequality. The Bonferroni curve and the Zenga-2007 curve are main the functions of the

Lorenz curve. The Lorenz curve is inspected as a very advantageous tool of economic suitable

to its important role in the evaluation of the inequality of income distributions and wealth. An
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approach for modelling statistical data is to use quantile function. In many cases, quantile func-

tions are more convenient as they are less influenced by extreme observations and thus provide

a straightforward analysis with a limited amount of information. However, quantile functions

have several properties that are not shared by distributions, which makes it more convenient

for analysis. There are explicit general distribution forms for the quantile function of order

statistics. There are many simple quantile functions which are very good in empiricalmodel

building where distribution functions are not effective. In such situations, conventional methods

of analysis using distribution functions are not appropriate. For various properties and appli-

cations of quantile functions, we refer to Parzen (15), Gilchrist (5), Sarabia (17), and Sarabia

et al. (18). In reliability, a single long term survivor can have a marked effect on mean life,

especially in the case of heavy tailed models which are very common. In such cases, quantile

based estimates are generally found to be more precise and robust against outliers. For more

properties and applications of quantile functions in reliability analysis, one could refer to Nair

et al. (12), Nair and Vineshkumar (13), Nair and Vineshkumar (14), Midhu et al. (8), Midhu

et al. (9), Prendergast and Staudte(16) and Nair et al. (11). The rest of the paper is organized

as follows. After the present introductory section, in Section 2 we give a brief review of the

background materials needed for the paper. In addition to a discussion on the definition and

properties of quantile functions, we also provide discussions on basic reliability concepts such as

hazard rate, mean residual life, reversed hazard rate and reversed mean residual life. We also

provide a brief review of the widely used income inequality measures, their interrelationships

and their properties. In Section 3, we provide some relations between quantile function and

inequality indices and reliability based on quantile. Finally, conclusions are noted in Section 4.

2 Definitions and notations

Throughout this article we assume that, X and Y are two non-negative continuous random

variables with positive and finite means. We propound F and G for the distribution functions

and apply the symbolisms f and g to score respective probability (density) distributions. The

survival function of F is signified by F = 1 − F , and use similar notation for all other func-

tion. We say that rF (x) =
f(x)

F (x)
(r̃F (x) =

f(x)

F (x)
) is the hazard rate (reversed hazard rate)

function of F , and the mean residual life function (reversed mean residual lifetime) is given

by mF (x) =
∫∞
x
F (t)dt/F (x), x ≥ 0 (

∫ x
0
F (t)dt

F (x)
). All other functions are notated by similar

notations.
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Let’s provide some definitions which will be utilized in this article.

As pointed out in the introduction, representation of a probability distribution in terms of quan-

tile functions has the advantage that it can be used in situations where conventional distribution

function approach fails. In several instances, further analysis using this approach is mathemat-

ically more tractable. A study based on quantile functions thus provides simpler and clearer

perspective for solving problems in statistical modelling. Let X be a non-negative continuous

random variable defined over −∞ < x <∞ with distribution function F (x) and density function

f(x). The quantile function, denoted by Q(u) is defined as

Q(u) = inf{x : F (x) ≥ u, u ∈ (0, 1)}. (2.1)

It may be noted that Q(u) is same as F−1(u). The lower and upper bounds of the support

of F (SF ) are Q(0) and Q(1) respectively. Also by the strict monotonicity of F (x), we have

x = Q(u). The quantile density function associated with a probability distribution is defined

as q(u) = Q′(u). The quantile density function is non-negative and can be interpreted as the

slope of quantile function. Setting x = Q(u) in the probability density function, the density

quantile function turns out to be f(Q(u)). It may be noticed that the quantile density function

and the density quantile function are connected through the relationship f(Q(u))q(u) = 1. The

generalized failure rate (GFR) and the generalized reversed failure rate (GRFR) were introduced

as the variant extension of the failure rate (FR) and the reversed failure rate (RFR) functions.

The concept of GFR can be useful in stochastic models of service systems and also in supplying

chain models. The GFR and RGFR are introduced by the following definitions: The random

variable X with pdf f and cdf F , the generalized failure rate (GFR) of X is the function

h(x) = xr(x) =
xf(x)

1− F (x)
,

and the generalized reversed failure rate (GRFR) of X is

h̃(x) = xr̃(x) =
xf(x)

F (x)
.

Lorenz curve presents a graphical tool to investigate income inequality. The Gini coefficient

has been found helpful to analysis the inequality of incomes. The value of the Gini coefficient

shows the extent of income inequality. The Lorenz curve was first defined by Lorenz (1905)

((7)). The Lorenz curve of X, a non-negative random variable with positive and finite mean, is

given by

L(p) =
1

E(X)

∫ Q(p)

0

uf(u)du, 0 ≤ p ≤ 1. (2.2)

60



Lorenz curve is a distribution function, twice differentiable, convex, increasing. L(0) = 0 and

L(1) = 1 on [0; 1]. limp→1L
′(p)(1− p) = 0, LX(p) ≤ p.

The Gini coefficient is the most famous criterion for income inequality. This is corresponding

to twice the region between the equality line and the Lorenz curve, which is exactly a relative

measure of income inequality G = 1− 2
∫ 1

0
L(y)dy. A relatively minor adjustment of the Lorenz

curve is the Bonferroni curve BX(p). It was written as, BX(p) =
L(p)

p
, 0 < p < 1. The Bon-

ferroni curve is could be concave in some parts and convex in the others and strictly increasing

((6)).

The Zenga index is the ratio of the mean income of the poorest 100p in the distribution to

that of the rest of the distribution, namely the 100(1− p) richest is the Zenga curve Z(p). The

Zenga curve can be written as, ZX(p) = 1 − L(p)

p
· 1− p

1− L(p)
p ∈ (0, 1). The Zenga index, is

defined by, Z =
∫ 1

0
Z(p)dp. X is smaller than Y in the Lorenz order (X ≤L Y ), Bonferroni order

(X ≤B Y ) or Zenga order (X ≤Z Y ) iff LY (p) ≤ LX(p), BY (p) ≤ BX(p) or ZX(p) ≤ ZY (p)

respectively. These orders are invariant with respect to scale transformation ((1)). From defini-

tions of the Zenga and Bonferroni curves and definitions of the Zenga, Bonferroni and Lorenz

orders immediately conclude that X ≤L Y ⇐⇒ X ≤B Y ⇐⇒ X ≤Z Y.

3 Main results

Nair and Sankaran (10) introduced the basic concepts in reliability theory in terms of quantile

functions. We refolmulate the concepts of generalized failure rate and generalized reversed failure

rate using the quantile function approach which are produced below. The generalized failure

rate quantile and generalized reversed failure rate quantile function can be written as

• H(p) = h(Q(p)) =
Q(p)

(1− p)q(p)
.

• H̃(p) = h̃(Q(p)) = Q(p)
pq(p) .

H(p) and H̃(p) uniquely determine the distribution through the relationships

• Q(p) = exp{
∫ p
0

(1− t)

H(t)
dt}.

• Q(p) = exp{
∫ p
0

(t)

H̃(t)
dt}.

According to the role and importance of the quantile function, we rewrite the relations and

concepts of economic inequality using the quantile function. Let X be a non-negative random
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variable with finite mean. The Lorenz curve, Gini index, Bonferroni curve, Zenga curve, Canbra

curve, Pietra coefition and Right spread function can be written as bellow:

L(p) =
1∫ 1

0
Q(t)dt

∫ p

0

Q(t)dt =
pE(X|X ≤ Q(p))

E(X)
,

G = 1− 2

µ

∫ 1

0

∫ p

0

Q(t)dtdp,

B(p) =

∫ p
0
Q(t)dt

µp
=
E(X|X ≤ Q(p))

µ
,

Z(p) = 1−
(1− p)

∫ p
0
Q(t)dt

p
∫ 1

p
Q(t)dt

C(u) =
E(X)− E(X|X ≤ Q(u)

E(X) + E(X|X ≤ Q(u)

B = 1 +

∫ 1

0
log t.Q(t)du

µ
,

P =
1

µ

∫ F (µ)

0

(µ−Q(t))dt,

EW = E[max{X −Q(p), 0}].

It is clear that can be determined the distribution with the introduction of any of the functions.

for example

Q(p) = µ(B(p) + pB′(p)),

Q(p) = µ
d

dp

[
p(1− C(p)

C(p)− 1

]
,

Q(p) =
d

dp

µp(1− Z(p))

1− pZ(p)
.

The distribution function can be determined easily using these equations, along with having

information about inequality indices and especially by estimating a functional form for each of

these indices. Following, we look into the problem of characterizing probability distributions

using possible relationships between L(p) and certain reliability concepts. For a non-negative

continuous random variable X, the relationship

L(u) =
A− uB − (1− u)M(u)

A−B
, (3.1)

holds if and only if X follows the distribution specified by the quantile function (M(u) =

m(Q(u)) is thr mean residual quantile function).

Q(u) =
µB

B −A
+ C(1− u)

B −A

µ , (3.2)

62



provided C(A−B) > 0. . Using the definitions of L(u) and M(u) and replacing in equation

(3.1) we have

1

µ

∫ u

0

Q(t)dt =
A− uB

A−B
+

1− u

A−B

(
1

1− u

∫ 1

u

Q(t)dt−Q(t)

)
.

Differentiating the above expression with respect to u and rearranging the terms, we get

q(u) =
A−B

(1− u)µ
Q(u)− B

1− u
= 0,

The solution of the above differential equation is,

Q(u) =
µB

B −A
+ C(1− u)

B −A

µ .

For Q(u) is an increasing function, C(A−B) > 0. The proof of the converse is straight forward

and hence omitted �
Setting B = 0 in equations (3.1) and (3.2) we get

L(u) =
A− (1− u)M(u)

A
,

and Q(u) = C(1 − u)
−A
µ . Put C = k and A = µ

α in the above expression, we get Pareto

distribution of first kind with quantile function, Q(u) = k(1−u)−1
α For a non-negative random

variable X with reversed mean residual quantile function M̃(p), the relationship

L(u) = βuM̃(p) (3.3)

holds if and only if X follows power distribution specified by the quantile function

Q(u) = σu
1
ϕ ; σ, ϕ > 0. (3.4)

. For the quantile function given in (3.4), direct calculations give M̃(p) =
σ

ϕ+ 1
u

1
ϕ and

L(u) = ϕ+1
σ uM̃(p) where β = ϕ+1

σ .

Conversely, suppose that L(u) = βuM̃(p) holds, we have

1

µ

∫ u

0

Q(t)dt = βu

(
Q(u)− 1

u

∫ u

0

Q(t)dt

)
. (3.5)

Differentiating the above equation with respect to u, we get

q(u)

Q(u)
=

1

uµβ
,

The solution to the above differential equation is

Q(u) = Cu
1

βµ . (3.6)

Put C = σ and β = ϕ
µ , we get the quantile function given in (3.4) and the theorem follows. �
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3.1 Aging concepts based on quantile function and income inequality

measures

Concept of ageing is an important notion not only in the field of Reliability theory but also

in Economics. Bhattacharjee (4) has observed that the distribution of land holdings obey

anti ageing properties like DFR, DFRA, IMRL, NWUE etc. In this section we explain the

problem from another point of view. The ageing properties are examined using quantile func-

tion and Lorenz curve. To facilitate a quantile based analysis, Nair and Vineshkumar (14)

expressed the basic ageing concepts in terms of quantile functions. Various ageing concepts

like increasing (decreasing) hazard rate-IHR(DHR), increasing(decreasing) average hazard rate-

IHRA(DHRA), new better than used in hazard rate(NBUHR), new better than used in hazard

rate average(NBUHRA), increasing( decreasing) mean residual life-IMRL(DMRL),increasing

(decreasing) variance residual life IVRL(DVRL), new better (worse) than used-NBU(NWU) etc

are presented in the paper. Mainly the ageing concepts are studied under three broad heads,

those based on hazard functions, residual quantile functions and survival functions. We list the

ageing concepts based on these broad heads in the distribution function setup as well as quantile

setup. [(10)] In the quantile framework, a random variable X is said to have

• Increasing hazard quantile function IHR (decreasing hazard quantile function DHR) if

and only if for all 0 < u1 < u2 < 1

R(u2) ≥ (≤)R(u1).

• IMRL (DMRL) if and only if (with E(X) < ∞ ) for all 0 < u1 < u2 < 1 M(u1) ≥ (≤

)M(u2) or equivalently
∫ 1

0
[Q(u+ (1− u)t)−Q(u)]dt is a increasing (decreasing) in u.

• HNBUE (HNWUE) if and only
∫ 1

u
(1− t)q(t)dt ≤ (≥)µe

−Q(u)

µ .

LetX be a random variable with absolutely continuous distribution. ThenX is said IMRL (DMRL)

if

L(u) ≥ (≤)Q(u)(1− u) + (1− u)q(u).

. (10) showed that X be IMRL (DMRL) then M(u) ≥ (≤) 1
H(u) . It is clear that

M(x) = µ
L(x)

1− x
−Q(x), (3.7)

we have

µ

[
1− L(u)

1− u
− d

du
L(u)

]
≥ (≤)

1

H(u)
.
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On the other hand, we can write the relation between the mean resdiual quantile function and

Lorenz curve by the following equation:

L(u)−Q(u)(1− u) =M(u).

So

L(u) ≥ (≤)Q(u)(1− u) +
1

H(u)
.

Finally, we put H(u) = 1
(1−u)q(u) and the theorem follows. �

Let X be non-negative and continuous random variable with distribution function F and Lorenz

curve L. If X is IFR (DFR) then L(p) ≥ (≤)Q(p)(p− 1)− pQ(p)

ln(1− p)
. . (2) showed that if

F is IFR (DFR) then F (t) ≥ (≤)e−at ; t ≤ Q(p),

F (t) ≤ (≥)e−at ; t ≥ Q(p),

where a = − ln(1− p)

Q(p)
. Considering the definition of the Lorenz curve we have

L(p) =

∫ Q(p)

0

tf(t)dt =Q(p)(p− 1) +

∫ Q(p)

0

F (t)dt,

≥ (≤)Q(p)(p− 1) +

∫ Q(p)

0

e−atdt,

=Q(p)(p− 1) +
Q(p)(exp(ln(1− p)− 1))

ln(1− p)
,

=Q(p)(p− 1)− pQ(p)

ln(1− p)
,

and the proof is complete. �

4 Conclusions

In the present work, the definitions of income inequality measures are reformulated using quan-

tiles. In addition to examining the connection between the measure and other existing inequality

measures, the relationship of the concept with certain reliability concepts are exploited to ob-

tain characterization results for probability distributions. Further some results on some aging

concepts using Lorenz curve are also established.
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Abstract: We consider a repairable system with n independent and identically distributed

components which begins to operate at time 0. If the system fails, then it undergoes minimal

repair and begins to operate again. We find a general representation of the failure rate of the

system based on its components failure rate. The reliability, aging and stochastic properties of

the system lifetime are also investigated.

Keywords Aging properties, Minimal repair, Repairable system, Stochastic ordering.
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1 Introduction

The most common models for repairable systems are perfect repair and minimal repair. After

a perfect repair the system is restored to an as-good-as-new state; i.e. the reliability is restored

to its original state. After a minimal repair, the system is only restored to the state prior to

failure, i.e. to a same-as-old state. There are some situations that the effectiveness of repair

may be different from perfect and minimal repairs. The imperfect repair models treat the repair

more generally than the perfect and minimal, see (6), (11) and (13). In this paper, we focus

on the repairable systems that after each failure undergoes minimal repair. We find a general

representation for the survival and failure rate functions of the system after the (n−1)th minimal

repair. These representations are useful in studying the aging properties of the system lifetime

when we have some information about the system component lifetimes. These results may be

extended to the imperfect repair case.

Consider a system with lifetime T , survival function F̄T (t) and failure rate rT (t). Through-

out the paper, we will denote by IFR (DFR), IFRA (DFRA), NBU (NWU), IMRL (DMRL),

NBUFR and NBUFRA the increasing (decreasing) failure rate, increasing (decreasing) failure

rate average, new better (worse) than used, increasing (decreasing) mean residual life, new bet-

ter than used in failure rate (rT (0) ≤ rT (t), for all t ≥ 0) and new better than used in failure

1Majid Chahkandi: mchahkandi@birjand.ac.ir



rate average (rT (0) ≤ 1
t

t∫
0

rT (x)dx), respectively. For more details and applications of these

concepts, we refer the reader to (4) and (8).

The next lemma is useful in our derivations. The proof is given by (12) and (1). For x > 0,

ϕn(x) =

n−1∑
j=0

xj+1/j!

n∑
j=0

xj/j!
and gn(x) =

xn−1/(n−1)!

n−1∑
j=0

xj/j!

are nondecreasing in x.

2 Main results

Let T (n) denote the lifetime of a coherent system after the (n− 1)th minimal repair. Then by

using the connection between the minimal repair process and record values ((9), (3) and (1)),

the survival function and density function of T (n) are given by

F̄T (n)(t) = F̄T (t)
n−1∑
k=0

[− log F̄T (t)]
k

k!
, (2.1)

and

fT (n)(t) = fT (t)
[− log F̄T (t)]

n−1

(n− 1)!
, (2.2)

respectively. Consequently, the hazard function of T (n) can be obtained as

rT (n)(t) = gn(− log F̄T (t))rT (t). (2.3)

The following properties are satisfied for a coherent system with lifetime T that undergoes

minimal repair at each failure.

i) If T is IFR, IFRA, NBU or DMRL then T (n) has the corresponding property.

ii) If T (n) is DFR, DFRA, NWU, or IMRL, then T has the corresponding property.

iii) If T is NBUFR or NBUFRA, then T (n) has the same property.

. The proofs of i) and ii) can be easily found from Eq. (2.3) and Theorem 3.1 of (1).

iii) From Eq. (2.3) and definition of NBUFR, we have

rT (n)(0) = gn(− log F̄T (0))rT (0)

≤ gn(− log F̄T (t))rT (t)

= rT (n)(t).
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To show NBUFRA property of T (n), note that

rT (n)(0) = gn(− log F̄T (0))rT (0)

≤ gn(− log F̄T (0))
1

t

∫ t

0

rT (x)dx

≤ 1

t

∫ t

0

gn(− log F̄T (x))rT (x)dx

=
1

t

∫ t

0

rT (n)(t)dt,

where the second inequality is obtained from nondecreasing property of gn(.). �
If a coherent system after the (n − 1)th minimal repair is IFR, IFRA or NBU, then it has

the same property after the nth minimal repair. . After some manipulations, we have
rT (n+1)(t)

rT (n)(t)
= ϕn(− log(F̄T (t))). The proof is now completed by Lemma 1 and the results of (5).

�
Consider a coherent system with lifetime T and independent and identically distributed (i.i.d.)

component lifetimesX1, . . . , Xn from a common cumulative distribution function (cdf) F . Then,

the reliability function of T may be represented as

F̄T (t) =

n∑
i=1

siF̄i:n(t), (2.4)

where si = Pr(T = Xi:n), known as Samaniego’s signature (14), and F̄i:n(t) is the reliability

function of the ith order statistics of the component lifetimes.

In the next lemma, we find a new representation for the survival and failure rate functions

of T (n). These representations are useful to study the aging and stochastic properties of the

lifetime of a repairable system based on the corresponding properties of its component lifetimes.

Consider a repairable coherent system with signature s = (s1, . . . , sn), and assume that the

system component lifetimes X1, . . . , Xn are i.i.d. with distribution F . The survival and the

failure rate functions of the system after the (n− 1)th minimal repair can be expressed as

i) F̄T (n)(t) = qn(F̄ (t)),

and

ii) rT (n)(t) = αn(F̄ (t))r(t),

respectively, where qn(u) = e−Λ(u)
n−1∑
k=0

(Λ(u))k

k! ,

e−Λ(u) =
n∑
j=0

S̄j+1

(
n
j

)
un−j(1− u)

j
, S̄j+1 =

n∑
i=j+1

si and αn(u) = uΛ′(u)gn(Λ(u)).
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Under the assumptions of Theorem 2, if uΛ′(u) is decreasing in u and the component lifetimes

are according to IFR, IFRA or NBU distribution F , then the distribution of the system lifetime

after the (n − 1)th minimal repair has the same property. . Since Λ(u) is a decreasing

function of u, the proof is straightforward from Theorem 2 part ii) and the results of (5). �

It is not difficult to verify that uΛ′(u) is decreasing if and only if k(x) =

n−1∑
i=0

(n−i)si+1(ni)x
i

n−1∑
i=0

S̄j+1(ni)xi

is

increasing in x > 0, where is equivalent to Eq. (4.11) in (15). For a k-out-of-n system with

signature vector s = (0, . . . , 0, 1, 0, . . . , 0), with a “1” as its kth element, k(x) can be simplified

as k0(x) =
(n−k+1)( n

k−1)x
k−1

k−1∑
i=0

(ni)xi

, where is increasing in x. Therefore, if the component lifetimes of a

repairable k-out-of-n system with minimal repairs have an IFR, IFRA or a NBU property, then

the system lifetime after the (n − 1)th minimal repair also have the same property. Consider

a bridge system in 5 components with s = (0, 1/5, 3/5, 1/5, 0). After some manipulations, we

obtain k(x) = 4x3+18x2+4x
2x3+8x2+5x+1 , where is an increasing function of x. Thus, the lifetime of the bridge

structure after the (n − 1)th minimal repair will be IFR, IFRA or NBU when its components

have i.i.d. IFR, IFRA or NBU lifetimes. In the next theorem, we compare two repairable

coherent systems with the same structures and different component lifetimes. Consider two

repairable coherent systems with the same structures and i.i.d. component lifetimes X1, . . . , Xn

and Y1, . . . , Yn with distributions F and G, respectively.

i) If X ≤st Y , then TX(n) ≤st TY (n).

ii) If X ≤hr Y and k(x) =

n−1∑
i=0

(n−i)si+1(ni)x
i

n−1∑
i=0

S̄j+1(ni)xi

is increasing in x > 0, then TX(n) ≤hr TY (n).

.

i) From X ≤st Y , we obtain ΛX(u) ≥ ΛY (u). On the other hand qn(u) = PΛ(u)(n−1), where

PΛ(u)(n − 1) denotes the distribution function of a Poisson random variable with mean

value function Λ(u). From the stochastic ordering between two Poisson random variables,

the result is obvious.

ii) Theorem 2 part ii) concludes rTX(n)(t) = αn(F̄X(t))rX(t). From the assumptionX ≤hr Y ,

we have rX(t) ≥ rY (t) and F̄X(t) ≤ F̄Y (t). The proof is now immediate from the fact that

αn(u) is a decreasing function of u.

�
Now, consider two coherent systems with different structures and the same component lifetimes.

The following results are straightforward from (1) and (14).
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• If s1 ≤st s2, then T1(n) ≤st T2(n).

• If s1 ≤hr s2, then T1(n) ≤hr T2(n),

where Ti(n); i = 1, 2 denotes the lifetime of a repairable coherent system with signature

si; i = 1, 2, after the (n− 1)th minimal repair.

The residual lifetime and inactivity time of coherent systems are important measures in re-

laibility theory. Several authors have studied various types of these measures. Suppose that

(T (n) − t|T (j) > t); 1 ≤ j < n denotes the residual lifetime of a repairable system after the

(n−1)th minimal repair, under the condition that the system is repaired at most k−1; 1 ≤ k ≤ j,

times before t > 0. From the results of (2) and (10), we have

P (T (n)− t > x|T (j) > t) =

j−1∑
ℓ=0

pFT
(ℓ)P (Yn−ℓ ≥ − log F̄T (x|t)),

where pFT
(ℓ) = P (W = ℓ|W ≤ j − 1), W is a Poisson random variable with parameter

− log F̄T (x|t) = − log F̄T (x+t)
F̄T (t)

, and Yn−ℓ is a gamma random variable with shape and scale

parameters n− ℓ and 1, respectively.

In the next theorem, we show that the hr-ordering between the signature vectors of two

repairable coherent systems concludes the st-ordering between their residual lifetimes. Let

si; i = 1, 2 be the signature vector of a repairable coherent system with lifetime Ti(n); i = 1, 2. If

s1 ≤hr s2, then (T1(n)− t|T1(j) > t) ≤st (T2(n)− t|T2(j) > t). . Samaniego (14) showed that

for two systems with the same components and different structures, if s1 ≤hr s2, then T1 ≤hr T2.

It is also known that hr-ordering between two random variables concludes st-ordering between

their residual lifetimes, i.e. F̄T1(x|t) ≤ F̄T2(x|t). After some manipulations and following the

same approach in Theorem 6 of (7), we find that (T1(n)−t|T1(j) > t) ≤st (T2(n)−t|T2(j) > t). �

3 Conclusion

We studied some reliability properties of repairable coherent systems with minimal repairs by

using the connection of record values and minimal repairs. Then, we obtained a relation be-

tween the failure rate of the repairable system and its components failure rate by using the

signature notion. These results can be extended to the different types of the residual lifetimes

and inactivity times. One may also extend the results for a repairable system with dependent

or heterogeneous component lifetimes under different types of repair.

72



References

[1] Ahmadi, J. and Arghami, N.R. (2001), Some univariate stochastic orders on record values,

Communications in Statistics-Theory and Methods, 30, 69-74.

[2] Asadi, M. and Raqab, M.Z. (2010), The Mean Residual of Record Values at the Level of

Previous Records, Metrika, 72, 51-64.

[3] Balakrishnan, N., Kamps, U. and Kateri, M. (2009), Minimal repair under a step-stress test,

Statistics & Probability Letters, 79, 1548–1558.

[4] Barlow, R.E. and Proschan, F. (1975), Statistical Theory of Reliability and Life Testing:

Probability Models, To Begin With, Silver Spring.

[5] Block, H.W., Borges, W.S. and Savits, T.H. (1985), Age-dependent minimal repair, Journal

of Applied Probability, 22, 370-385.

[6] Brown, M. and Proschan, F. (1983), Imperfect repair, Journal of Applied probability, 20(4),

851-859.

[7] Chahkandi, M. (2018), Some properties of repairable k-out-of-n systems, Journal of Statisti-

cal Sciences. Available from: http://jss.irstat.ir/article-1-504-fa.html. Accessed January 26,

2019.

[8] Deshpande, J.V., Kochar, S.C. and Singh, H. (1986), Aspects of positive ageing, Journal of

Applied Probability, 23, 748-758.

[9] Gupta, R.C. and Kirmani, S.N.U.A. (1988), Closure and monotonicity properties of nonho-

mogeneous Poisson processes and record values, Probability in the Engineering and Infor-

mational Sciences, 2, 475-484.

[10] Khaledi, B., Shojaei, R. (2007), On Stochastic Orderings Between Residual Record Values,

Statistics and Pobability Letters, 77, 1467-1472.

[11] Kijima, M. (1989), Some results for repairable systems with general repair, Journal of

Applied probability, 26(1), 89-102.

[12] Kochar, S.C. (1990), Some partial ordering results on record values, Communication in

Statistics-Theory and Methods, 19, 299-306.

73



[13] Last, G. and Szekli, R. (1998), Stochastic comparison of repairable systems by coupling,

Journal of Applied probability, 35(2), 348-370.

[14] Samaniego, F.J. (1985), On closure of the IFR class under formation of coherent systems.

IEEE Transactions on Reliability, 34, 69-72.

[15] Samaniego, F.J. (2007), System Signatures and their Applications in Engineering Reliabil-

ity, Springer, New York.

74



Measures of Inaccuracy for Concomitants of Generalized
Order Statistics

Safieh Daneshi1, Ahmad Nezakati1, Saeid Tahmasebi2

1 Faculty of Mathematics, Shahrood University of Technology,Iran

2 Department of Statistics, Persian Gulf University, Bushehr, Iran

Abstract: In this paper, we obtain a measure of inaccuracy between rth concomitant of gen-

eralized order statistic and the parent random variable in Morgenstern family. Applications of

this result are given for concomitants of order statistics and record values. We also study some

results of cumulative past inaccuracy between the distribution function of rth concomitant of

order statistic (record value) and the distribution function of parent random variable.
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1 Introduction

The concept of generalized order statistics (GOS) was introduced by Kamps (1995) as a unified

approach to a variety of models of ordered random variables such as ordinary order statistics,

sequential order statistics, progressive type-II censoring, record values and Pfeifers records. The

random variables X(1, n,m, k), X(2, n,m, k),

· · · , X(n, n,m, k) are called generalized order statistics based on the absolutely continuous dis-

tribution function F with density function f , if their joint density function is given by

fX(1,n,m,k),...,X(n,n,m,k)(x1, ..., xn) = k

n−1∏
j=1

γj

(n−1∏
i=1

(1− F (xi))
mf(xi)

)
×(1− F (xn))

k−1f(xn),

F−1(0) ≤ x1 ≤ x2 ≤ ... ≤ xn ≤ F−1(1),

with parameters n ∈ N, k > 0,m ∈ R, such that γr = k + (n− r)(m+ 1) > 0, for all 1 ≤ r ≤ n.

1Safieh Daneshi: sdaneshi445@gmail.com



Let X and Y be two non-negative random variables with distribution functions F (x) and

G(x), respectively. If f(x) is the actual probability density function (pdf) corresponding to the

observations and g(x) is the density assigned by the experimenter, then the inaccuracy measure

of X and Y is defined by Kerridge (1961) as follows:

I(f, g) = −
∫ +∞

0

f(x) log g(x)dx.

Analogous to this measure of inaccuracy, Thapliyal and Taneja (2015a) proposed a cumula-

tive inaccuracy measure as

I(F,G) = −
∫ +∞

0

F (x) logG(x)dx.

Morgenstern (1956) defined a class of bivariate distributions with the probability density function

(pdf) given by

fX,Y (x, y) = fX(x)fY (y) [1 + α(2FX(x)− 1)(2FY (y)− 1)] , |α| ≤ 1, (1.1)

where α is the association parameter. For the Morgenstern family with pdf given by (1.1), the

density function and distribution function of the concomitant of r-th GOS’s Y[r,n,m,k], 1 ≤ r ≤ n,

are given by Beg and Ahsanullah (2008), as follows:

g[r,n,m,k](y) = fY (y) [1 + αC∗(r, n,m, k)(1− 2FY (y))] , (1.2)

G[r,n,m,k](y) = FY (y) [1 + αC∗(r, n,m, k)(1− FY (y))] , (1.3)

where C∗(r, n,m, k) =
2
∏r

j=1 γj∏r
i=1(γi+1) − 1.

Let (Xi, Yi), i = 1, 2, · · · , n be independent and identically distributed random variables

from Morgenstern distribution. If X(r:n) denotes the rth order statistic, then the Y ’s associated

with X(r:n) denoted by Y[r:n] is called the concomitant of rth order statistic. The pdf and cdf

of Y[r:n] are given by

fY[r:n]
(y) = fY (y)

[
1 + α

(
n− 2r + 1

n+ 1

)
(1− 2FY (y))

]
,

and

FY[r:n]
(y) = FY (y)

[
1 + α

(
n− 2r + 1

n+ 1

)
(1− FY (y))

]
,

respectively. We refer the reader to Arnold (1992) for more details.
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Let (X1, Y1), (X2, Y2), · · · be a sequence of bivariate random variables from a continuous

distribution. If {Rn, n ≥ 1} is the sequence of upper record values in the sequence of X’s,

then the Y which corresponds with the nth-record will be called the concomitant of the nth-

record, denoted by R[n]. The concomitants of record values arise in a wide variety of practical

experiments such as industrial stress testing, life time experiments, meteorological analysis,

sporting matches and some other experimental fields. For other important applications of record

values and their concomitants see Arnold (1992). The pdf and cdf for R[n] has obtained as

follows:

fR[n]
(y) = fY (y)[1 + αn(1− 2FY (y))], n ≥ 1, (1.4)

FR[n]
(y) = FY (y)[1 + αn(1− FY (y))], (1.5)

where αn = α(21−n − 1) .

Several authors have worked on measures of inaccuracy for ordered random variables. Thap-

liyal and Taneja(2013) proposed the measure of inaccuracy between the ith order statistic and

the parent random variable. Thapliyal and Taneja (2015a) developed measures of dynamic cu-

mulative residual and past inaccuracy. They studied characterization results of these dynamic

measures under proportional hazard model and proportional reversed hazard model. Recently

Thapliyal and Taneja (2015b) have introduced the measure of residual inaccuracy of order statis-

tics and prove a characterization result for it. Motivated by some of the articles mentioned above,

in this paper we aim to present some results on inaccuracy for concomitants of generalized order

statistics in Morgenstern family.

2 Main Results

If Y[r,n,m,k] is the concomitant of rth-generalized order statistics from (1.2), then the inaccuracy

measure between g[r,n,m,k](y) and fY (y) for 1 ≤ r ≤ n, α ̸= 0 is given by

I(g[r,n,m,k], fY ) = [1 + αC∗(r, n,m, k)]H(Y ) + 2αC∗(r, n,m, k)ϕf (u), (2.1)

where ϕf (u) =
∫ 1

0
u log f(F−1(u))du and

H(Y ) = −
∫ ∞

0

fY (y) log fY (y)dy

is the Shannon entropy of the random variable Y .

As an application of the representation (2.1), we consider the following special cases.

Case 1: If we put m = 0 and k = 1, then an inaccuracy measure between fY[r:n]
(density
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function of rth concomitant of order statistic) and fY in Morgenstern family is obtained as

follows:

I(fY[r:n]
, fY ) = H(Y ) +

3(n− 2r + 1)

2(n+ 1)

[
I(fY[1:2]

, fY )− I(fY[2:2]
, fY )

]
. (2.2)

In the following, we present some examples and properties of I(fY[r:n]
, fY ). Let (Xi, Yi),

i = 1, 2, ..., n be a random sample from Gumbels bivariate exponential distribution (GBED)

with cdf

F (x, y) =

(
1− exp

(
−x
θ1

))(
1− exp

(
−y
θ2

))[
1 + α exp

(
−x
θ1

− y

θ2

)]
. (2.3)

From (2.2), we find

I(fY[r:n]
, fY ) = [1 + log θ2]−

α

2

(
n− 2r + 1

n+ 1

)
. (2.4)

By using (B.1), we get

Aα(n) = I(fY[n:n]
, fY )− I(fY[1:n]

, fY ) = α

(
n− 1

n+ 1

)
,

which is positive, negative or zero whenever (0 < α ≤ 1, n > 1), (−1 ≤ α < 0, n > 1) or

(n = 1 or α = 0), respectively. Also, the difference between I(fY[r:n]
, fY ) and H(Y ) is

Bα,n(r) = I(fY[r:n]
, fY )−H(Y ) = −α

2

(
n− 2r + 1

n+ 1

)
.

Bα,n(r) is positive for −1 ≤ α < 0 , 1 ≤ r < n+1
2 (or 0 < α ≤ 1, n+1

2 < r ≤ n). Also, it is

negative for −1 ≤ α < 0 , n+1
2 < r ≤ n( or 0 < α ≤ 1 ,1 ≤ r < n+1

2 ).

Now, if n is odd, then numerical computations indicate that I(fY[r:n]
, fY ) is increasing (de-

creasing) in r for 1 ≤ r < n+1
2 , 0 < α ≤ 1 (n+1

2 < r ≤ n, −1 ≤ α < 0). Let (Xi, Yi),

i = 1, 2, · · · , n be a random sample from Morgenstern type bivariate Logistic distribution with

cdf

F (x, y) = (1 + exp(−x))−1
(1 + exp(−y))−1

(
1 +

αe−x−y

(1 + e−x)(1 + e−y)

)
.

Computation shows that

I(fY[r:n]
, fY ) = 1− 0.6α

(
n− 2r + 1

n+ 1

)
. (2.5)

By using (2.5), we get

Dα(n) = I(fY[n:n]
, fY )− I(fY[1:n]

, fY ) = 1.2α

(
n− 1

n+ 1

)
,
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which is positive, negative or zero whenever (0 < α ≤ 1, n > 1), (−1 ≤ α < 0, n > 1) or

(n = 1 or α = 0), respectively. Let (Xi, Yi), i = 1, 2, · · · , n be a random sample of size n with

pdf (1.1). Then, we have

H(Y ) =
I(fY[n:n]

, fY ) + I(fY[1:n]
, fY )

2
.

We consider the concomitants of order statistics whenever (X1, Y1), (X2, Y2), . . . , (Xn, Yn)

are independent but otherwise arbitrarily distributed. Let us consider the Morgenstern family

with cdf

FXi,Yi(x, y) = FXi(x)FYi(y) [1 + αi(1− FXi(x))(1− FYi(y))] . (2.6)

Now, suppose that FXi(x) = FX(x) , FYi(y) = FY (y) and |αi| ≤ 1. Then in this particular case,

the pdfs of Y[1:n] and Y[n:n] are given by Eryilmaz (2005) as follows:

f[1:n](y) = fY (y)

1 + n− 1

(n+ 1)n

n∑
j=1

αj(1− 2FY (y))

 , (2.7)

f[n:n](y) = fY (y)

1− n− 1

(n+ 1)n

n∑
j=1

αj(1− 2FY (y))

 . (2.8)

Now, in the following theorem, the measures of inaccuracy for concomitants of extremes of

order statistics is represented. Let (Xi, Yi), i = 1, 2, . . . , n be independent random vectors from

(2.6). If Y[1:n] and Y[n:n] are concomitants of extremes of order statistics, then

I(f[1:n], fY ) =

1 +
n− 1

(n+ 1)n

n∑
j=1

αj

H(Y ) + 2
n− 1

(n+ 1)n

n∑
j=1

αjϕf (u), (2.9)

I(f[n:n], fY ) =

1− n− 1

(n+ 1)n

n∑
j=1

αj

H(Y )− 2
n− 1

(n+ 1)n

n∑
j=1

αjϕf (u). (2.10)

By using (2.9) and (2.10) we have

An = I(f[n:n], fY )− I(f[1:n], fY ) = − 2(n− 1)

n(n+ 1)
∆

where we have set ∆ = H(Y ) + 2
∑n
j=1 αjϕf (u). if ∆ > 0 (∆ < 0) then An < 0 (An > 0). Also

we get

I(f[n:n], fY ) + I(f[1:n], fY ) = 2H(Y ).
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Case 2: If we put m = −1 and k = 1, then an inaccuracy measure between fR[r]
(density

function of the concomitant of rth-record value) and fY in Morgenstern family is obtained as

follows:

I(fR[r]
, fY ) =

(
1 + α(21−r − 1)

)
H(Y ) + 2α(21−r − 1)ϕf (u). (2.11)

Let (Xi, Yi), i = 1, 2, ..., n be a random sample from Gumbels bivariate exponential distri-

bution (GBED) with cdf

F (x, y) =

(
1− exp

(
−x
θ1

))(
1− exp

(
−y
θ2

))[
1 + α exp

(
−x
θ1

− y

θ2

)]
. (2.12)

From (2.11), we find

I(fR[r]
, fY ) = [1 + log θ2] +

α

2

(
21−r − 1

)
. (2.13)

By using (2.13), we get

Aα(r) = I(fR[r]
, fY )− I(fR[r−1]

, fY ) = −α2−r,

which is positive, negative or zero whenever (−1 ≤ α < 0, r > 1), (0 < α ≤ 1, r > 1) or

(α = 0), respectively. Also, the difference between I(fR[r]
, fY ) and H(Y ) is

Bα,n(r) = I(fR[r]
, fY )−H(Y ) =

α

2

(
21−r − 1

)
.

Bα,n(r) is positive, negative or zero whenever (−1 ≤ α < 0, r > 1), (0 < α ≤ 1, r > 1) or

(r = 1 or α = 0), respectively.

In analogy with (2.1), a measure of inaccuracy associated with fY (y) and g[r,n,m,k](y) is

given by

I(fY , g[r,n,m,k]) = H(Y )− E [log (1 + αC∗(r, n,m, k) (1− 2U))] .

Quantile functions are efficient alternatives to the distribution function in modelling and

analysis of statistical data. The quantile function is defined by,

Q(u) = F−1(u) = inf{y : F (y) ≥ u}, 0 < u < 1.

Noting that F (Q(u)) = u and differentiating it with respect to u yields

q(u)f(Q(u)) = 1. Let Y be a nonnegative random variable with pdf f(·) and quantile function

80



Q(·), then f(Q(u)) is called the density quantile function and q(u) = Q′(u) is known as the quan-

tile density function of Y . Now using (2.1), the corresponding quantile based I(g[r,n,m,k], fY ) is

defined as

I(g[r,n,m,k], fY ) = E(log q(U)) + αC∗(r, n,m, k)E [(1− 2U) log q(U)] . (2.14)

2.1 Cumulative past inaccuracy measure for concomitants

If Y[r,n,m,k] is the concomitant of rth-generalized order statistics from (1.3), then the cumulative

past inaccuracy measure between G[r,n,m,k](y) and FY (y) for 1 ≤ r ≤ n, α ̸= 0 is given by

I(GY[r,n,m,k]
, FY ) = [1 + αC∗(r, n,m, k)] CE(Y )− α

2
C∗(r, n,m, k)CE(Y(2:2)), (2.15)

In analogy with (2.15), a measure of inaccuracy associated with FY and G[r,n,m,k] is given

by

I(FY , G[r,n,m,k]) = CE(Y )− E

[
U log (1 + αC∗(r, n,m, k) (1− U))

f(F−1(U))

]
.

Case 1: If we put m = 0 and k = 1, then a measure of inaccuracy between FY[r:n]
(distri-

bution function of rth concomitant of order statistic) and FY is presented as

I(FY[r:n]
, FY ) =

[
1 + α

(
n− 2r + 1

n+ 1

)]
CE(Y )− α

(
n− 2r + 1

2(n+ 1)

)
]CE(Y(2:2)), (2.16)

where CE(Y ) = −
∫∞
0
FY (y) logFY (y)dy is the cumulative entropy of the random variable Y

(see Di Crescenzo and Longobardi (2009)). Let (Xi, Yi), i = 1, 2, · · · , n be a random sample

from Morgenstern type bivariate uniform distribution with cdf

F (x, y) =
xy

θ1θ2
[1 + α(1− x

θ1
)(1− y

θ2
)], 0 < x < θ1, 0 < y < θ2.

Computation shows that

I(FY[r:n]
, FY ) =

θ2
4

+ α

(
n− 2r + 1

n+ 1

)
(
5θ2
36

). (2.17)

Using (B.6), we have

Dα,θ2(n) = I(FY[n:n]
, FY )− I(FY[1:n]

, FY ) =
5αθ2(−n+ 1)

18(n+ 1)
.
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which is positive, negative or zero whenever (−1 ≤ α < 0), (0 < α ≤ 1) or (α = 0), respectively.

Let (Xi, Yi), i = 1, 2, · · · , n be a random sample from GBED . Then, computation shows that

I(FY[r:n]
, FY ) = [

π2

6
− 1]θ2 +

αθ2
4

(
n− 2r + 1

n+ 1

)
. (2.18)

Using (B.8), we have

Qα,θ2(n) = I(FY[n:n]
, FY )− I(FY[1:n]

, FY ) =
αθ2(−n+ 1)

2(n+ 1)
,

which is positive, negative or zero whenever (−1 ≤ α < 0), (0 < α ≤ 1) or (α = 0), respectively.

Let (Xi, Yi), i = 1, 2, · · · , n be a random sample from Morgenstern family. Then for 1 ≤ r ≤
n+1
2 , we have

I(FY[r:n]
, FY ) ≤ (≥)CE(Y ), −1 ≤ α < 0 (0 < α ≤ 1). (2.19)

Proof. The proof follows by recalling Proposition 4.8 of Di Crescenzoand Longobardi

(2009).

Case 2: If we put m = −1 and k = 1, then a measure of inaccuracy between FR[r]
(distri-

bution function of nth concomitant of upper record value) and FY is presented as

I(FR[r]
, FY ) = [1 + α(21−r − 1)]CE(Y ) + α(21−r − 1)

∫ ∞

0

F 2
Y (y) logFY (y)dy.

where CE(Y ) = −
∫∞
0
FY (y) logFY (y)dy is the cumulative entropy of the random variable Y .

Let (Xi, Yi), i = 1, 2, · · · , n be a random sample from Morgenstern family. Then, we have

I(FR[r]
, FY ) ≤ (≥)CE(Y ), 0 < α ≤ 1(−1 ≤ α < 0). (2.20)

Proof. The proof follows by recalling Proposition 4.8 of Di Crescenzo and Longobardi

(2009).
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1 Introduction

Following Sklar (7) the joint distribution function H of a vector (X1, ..., Xn) of continuous

random variables with the marginal distribution functions Fi, i = 1, ..., n, can then be ex-

pressed as H(x1, ..., xn) = C{F1(x1), ..., Fn(xn)}, in terms of a unique multivariate copula

C : [0, 1]n → [0, 1], which is itself the joint distribution function of the vector (U1, ..., Un) =

(F1(X1), ..., Fn(Xn)) of uniform (0,1) random variables. Let Πn(u1, ..., un) =
n∏
i=1

ui denote the

copula of independent continuous random variables. Any copula C satisfies thatWn(u1, ..., un) ≤

C(u1, ..., un) ≤Mn(u1, ..., un) for each (u1, ..., un) ∈ [0, 1]n, whereWn(u1, ..., un) = max(
n∑
i=1

ui−

n + 1, 0) and Mn(u) = min(u1, · · · , un). For every n ≥ 2, Mn is an copula; however Wn is

a copula if and only if n = 2. For a complete discussion of copulas, see (7). The class of

copulas will be denoted by C. Given two copulas C1 and C2, let C1 ≤ C2 denote the inequality

C1(u1, ..., un) ≤ C2(u1, ..., un) for all (u1, ..., un) ∈ [0, 1]n. Recently, investigations on various

notions of concavity (convexity) for copulas such as the componentwise concavity (convexity),

Schur concavity (convexity), Quasi concavity (convexity) have been considered, especially be-

cause of their application in the construction of asymmetric stochastic models, for example we

can mention (1; 3; 4; 5). In this talk we review recent results on different aspects of convex-

ity/concavity of copulas and the relationships among them.
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2 Different notions of concavity (convexity) of multivari-

ate copulas

An n-dimensional copula C is called concave (convex) if for all u = (u1, ..., un) and v =

(v1, ..., vn) ∈ [0, 1]n and λ ∈ [0, 1], C(λu + (1 − λ)v) ≥ (≤)λC(u) + (1 − λ)C(v), where

λu + (1 − λ)v = (λu1 + (1− λ)v1, ..., λun + (1− λ)vn) (3). For the case n = 2 the concav-

ity of a copula means that

C(λu1 + (1− λ)v1, λu2 + (1− λ)v2) ≥ λC(u1, u2) + (1− λ)C(v1, v2),

for all u1, u2, v1, v2 and λ ∈ [0, 1]. As mentioned in (7), the only convex bivariate copula is W 2

and the only concave bivariate copula is M2. Since Wn is not an a copula for n > 2, then

the convex n-dimensional copula may not exist. The convexity and concavity are conditions

too strong to be of much interest for copulas. Weaker versions of these properties are the

componentwise concavity and componentwise convexity.

An n-dimensional copula C is called componentwise concave (convex) if it is concave (convex)

in each coordinate when the other coordinates are held fixed. The case n = 2 is already studied

in (5). It is easy to see that the copula Mn is componentwise concave and the copula Πn is

both componentwise concave and convex.

If C is the copula of the vector (V1, ..., Vn) of uniform [0,1] random variables then for i =

1, ..., n, it follows (see (7)) ∂C(v1,...,vn)
∂vi

= P (Vj ≤ vj , j = 1, ..., n, j ̸= i|Vi = vi). For a twice

differentiable copula C, the componentwise concavity (convexity) means that for each i = 1, ..., n,

the mapping t→ P (Vj ≤ vj , j = 1, ..., n, j ̸= i|Vi = t), is decreasing (increasing) in t. The copula

C is positive lower orthant dependent (PLOD) if C ≥ Πn. The corresponding negative lower

orthant dependence (NLOD) is defined by reversing the sense of the inequality. The vector

V is said to be positive dependent through the stochastic ordering (PDS) if P (Vj ≤ vj , j =

1, ..., n, j ̸= i|Vi = t) is decreasing in t. Since PDS implies PLOD, then a componentwise

concave copula is PLOD.

For any n-dimensional copula C, the conditions (i) C is componentwise concave; (ii) C is

PDS are equivalent.

The FGM family of copulas (7) defined by Cθ(u1, ..., un) =
∏n
i=1 ui + θ

∏n
i=1 ui(1− ui), θ ∈

[−1, 1] is componentwise convex for θ ∈ [−1, 0] and it is componentwise concave for θ ∈ [0, 1]. A

copula C is Archimedean if it is of the form C(u1, ..., un) = ϕ−1{
∑n
i=1 ϕ(ui)}, where ϕ−1(0) = 1

and ϕ−1(x) → 0, as x→ ∞ and ϕ−1 is d-monotone, i.e., (−1)k d
kϕ−1(t)
dtk

≥ 0, for all k, (7).
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An Archimedean copula with the strict generator ϕ is componentwise concave if, and only

if 1
ϕ′ is concave, where ϕ′ is the derivative of ϕ.

For the Clayton family of copulas (7) which is Archimedean with the generator ϕ(t) =

(t−α − 1)/α, since
(

1
ϕ′(t)

)′′
= −α(α + 1)tα−1 < 0 for all α > 0, it is a componentwise concave

copula.

For the Frank family of copulas (7) which is Archimedean with the generator ϕ(t) = ln( 1−α
1−αt ),

since
(

1
ϕ′(t)

)′′
= α−t lnα < 0 for α ∈ (0, 1), it is a componentwise concave copula for α ∈ (0, 1).

Let x,y ∈ Rn and let x[1], ..., x[n] and y[1], ..., y[n] the components of x and y rearranged in

decreasing order. The point x is said to be majorized by y (written x ≺m y) if
∑n
j=1 x[j] =∑n

j=1 y[j] and
∑k
j=1 x[j] ≤

∑k
j=1 x[j], for k = 1, ..., n−1. A real valued function g : A ⊂ Rn → R,

is Schur-concave (Schur-convex) on A if for all x,y ∈ A, x ≺m y implies g(x) ≥ (≤)g(y); see,

Marshall and Olkin (6). Let A be an open interval in Rn. A function g : A → R is said to be

symmetric if for each point (x1, ..., xn) ∈ A, g(x1, ..., xn) = g(xi1 , ..., xin), for every permutation

(i1, ..., in) of (1, ..., n).

Let A be an open interval in R and let g : A → R be a continuously differentiable function.

Then g is Schur-concave on A if, and only if, (i) g is symmetric; (ii) for all x = (x1, ..., xn) ∈ A

and i ̸= j, (xi− xj)(
∂g(x)
∂xi

− ∂g(x)
∂xj

) ≤ 0. We note that since g is symmetric, the Schur-concavity

condition in above proposition, can be reduced to (x1 − x2)(
∂g(x)
∂x1

− ∂g(x)
∂x2

) ≤ 0.

For the FGM family of copulas, since (u1−u2)
(
∂C(u)
∂u1

− ∂C(u)
∂u2

)
= −(u1−u2)2Πnj=3{1+θ(1−

u1 − u2 +2u1u2)Π
n
j=3(1− uj)} ≤ 0, holds when |1− u1 − u2 +2u1u2| ≤ 1, it is a Schur-concave

copula.

The next result characterizes the Schur-concave copulas.

An n-dimensional copula C is Schur-concave if, and only if, for all u1, ..., un and λij ∈ [0, 1]

with
∑n
j=1 λij = 1, for all i = 1, ..., n and

∑n
i=1 λij = 1, for all j = 1, ..., n, C(u1, ..., un) ≤

C
(∑n

j=1 λ1juj , ...,
∑n
j=1 λnjuj

)
.

The copula Mn Schur-concave.. For u1, ..., un ∈ [0, 1], suppose that min(u1, ..., un) = un.

Using the fact that
∑n
j=1 λij = 1, for i = 1, ..., n, it is follows that

∑n−1
j=1 λijun ≤

∑n−1
j=1 λijuj , i =

1, ..., n, or equivalently, un ≤
∑n
j=1 λijuj , i = 1, ..., n and then un ≤ min{

∑n
j=1 λ1juj , ...,

∑n
j=1 λnjuj}.

By changing un to arbitrary ui, one get min(u1, ..., un) ≤ min{
∑n
j=1 λ1juj , ...,

∑n
j=1 λnjuj}.

That is, Mn is a Schur-concave n-copula.

The following result provides the Schur-concavity of the Archimedean n-dimensional copulas.

Every Archimedean n-dimensional copula is Schur-concave.

As a consequence of this result, since the copula Πn is Archimedean with generator ϕ(t) =
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−log(t), it is Schur-concave.

When n = 2, as shown in (4) the copula W 2 is the only Schur-convex copula (and since W 2

is Archimedean, it is also a Schur-concave copula). Since Wn is not an n-dimensional copula

for n > 2, then the Schur-convex n-dimensional copula may not exist.

For any u = (u1, ..., un) ∈ [0, 1]n, the k-dimensional marginal Ck, k = 2, ..., n − 1, of a

symmetric n-dimensional copula C is defined by Ck(u1, ..., uk) = C(u1, .., uk, 1, ..., 1). If C

is Schur-concave (Schur-convex), then Ck, k = 2, ..., n − 1, is Schur-concave (Schur-convex) as

well.

A bivariate copula C is said to be quasi-concave (7) if for all (u, v), (u′, v′) ∈ [0, 1]2 and all

λ ∈ [0, 1], C(λu+ (1− λ)u′, λv + (1− λ)v′) ≥ min{C(u, v), C(u′, v′)}.

The n-dimensional (n ≥ 2) extension of quasi-concavity is as follows:

An n-dimensional copula C is called quasi-concave if for all u = (u1, ..., un) and v =

(v1, ..., vn) in [0, 1]n and λ ∈ [0, 1], C(λu + (1 − λ)v) ≥ min{C(u), C(v)}. This condition

is equivalent to requiring that upper-level sets of C, i.e., Uq = {u ∈ In : C(u) ≥ q}, are convex

for all q.

As for all q, the set Uq = {u ∈ In : u1 ≥ q, ..., un ≥ q} is convex, then the n-dimensional

copula Mn turns out to be a quasi-concave.

Note that the only quasi-convex copula isW 2 (see, (1)). SinceW 2 is an Archimedean copula,

it is also Quasi-concave. Since Wn is not a copula for n > 2, the n-dimensional copulas with

the quasi-convexity property does not exist.

Every Archimedean n-dimensional copula is quasi-concave.

3 Concluding remarks and questions

We provided some results on different types of concavity and convexity properties in the class of

multivariate copulas. Many questions suggest themselves for further study. We present a few:

(i) Geometrical interpretations for different types of convexity/concavity concepts for bivariate

copulas can be found in the literature, see, e.g, Section 3.4.3 in (7). Is it possible to provide

geometric interpretations for some of these concepts in multivariate setting?

(ii) For the case n = 2, the relations among the considered convexity/concavity notions could

be found in (1; 5). For example: Quasi-concavity and symmetry imply Schur-concavity and

componentwise concavity implies quasi-concavity. Does it occur in higher dimensions?

(iii) In bivariate case, the preservation of componentwise concavity, and Schur-concavity with
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respect to the ordinal sum is studied in (4; 5). Does any of the introduced convexity/concavity

notion preserve under multivariate ordinal sum?
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1 Introduction

Length-biased and right-censored (LBRC) data is frequently encountered in various situations,

and may arise in a prevalent cohort sampling. Statistical methods for the analysis of prevalent

cohort data are considered when the onset or diagnosis time of the disease is known. In the

cohort study, two conditions are considered. Assumption (1) the rate of disease occurrence

remains constant over time, and (2) the density function of the time from enrollment to death

is independent of the time from onset disease until the recruitment time. Conditions (1) and

(2) together are referred to as the equilibrium conditions. Although, it is not always possible to

follow individuals who have experienced the initiating event until the final event occurs. Hence,

people may be subject to censorship. Let (A, V,C) be random variables, where A is the current-

age, V represents residual lifetime, and C denotes residual censoring times. In a prevalent cohort

study, A can be thought of as the time between the disease occurrence and study enrollment,

V be the time from recruitment to death or censoring by the termination of study or lost

follow-up during the study period and C be the censoring time from the enrollment to censoring
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occurrence. An individual would be qualified to be included in the sampling population at the

recruitment time only if the survival time of i-th subject (Ti) be greater than Ai. In this model

it is assumed that C is independent of (A, V ). Here, the censoring is never non-informative

because the censoring variable A+ C and survival time T = A+ V share the same A.

Nonparametric estimator of the survival function in LBRC model that has recently received

much attention has been studied by (? ), (? ), (? ) and (? ) among others. (? ) proposed

a new nonparametric estimator of the survival function of the lifetime, which do not lose much

efficiency compared to the nonparametric maximum likelihood estimator and is simpler than

Huang and Qin’s estimator.

Let f(·) and F (·) denote the marginal density function and distribution function of T and

S(t) = 1 − F (t) be its survival function and for any random variable W , we denote fW , FW ,

and SW as density function, distribution function, and survival function for W , respectively.

Suppose also that the survival distribution function of C is denoted as G(·). Given a random

sample {(Ai, Yi,∆i), i = 1, . . . , n}, where Yi = min(Ti, Ai+Ci) = min(Ai+Vi, Ai+Ci) = Ai+Ṽi

and ∆i = I(Vi ≤ Ci), the product limit estimator of survival function F defined in (? ) is as

follows

Ŝn(t) =
∏

u∈[0,t]

{
1− dHn(u)

Rn(u)

}
, (1.1)

where

Hn(t) = n−1
n∑
i=1

∆iI(Yi ≤ t),

Rn(t) = (2n)−1
n∑
i=1

{
I(Ai ≤ t ≤ Yi) + ∆iI(Ṽi ≤ t ≤ Yi)

}
.

One of the most important properties of the Ŝn(t), employed in our proofs, is the strong

representation of this estimator as a sum of iid random variables plus a remainder term. (? )

obtained a remainder term of order o(1) that we will improve it. This convergence rate allows

us to establish the strong consistency of kernel density estimator with a rate.

The outline of this paper is as follows. In Section 2, we obtain an almost sure representation

of PL estimator Ŝn with a remainder term of order O
(
n−1 log log n

)
, when observations are

subject to LBRC. Section 3 deals with the kernel estimator for density function and some

asymptotic results. The proof of some preliminary lemmas are relegated to the Appendix. In

Section 4 we summarize some simulation results for the quality of the kernel density estimation

for various forms of the underlying density based on the mean integrated squared error (MISE).
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2 Strong representation for the PL estimator

The goal of this section is to establish a strong representation of Ŝn in (1.1) for LBRC data and

to obtain the order of the remainder term. Before stating the main results of this section, we

introduce some notations. Define the functions

R(t) =
1

2
E[I(A ≤ t ≤ Y ) + ∆I(Ṽ ≤ t ≤ Y )],

H(t) = E[∆I(Y ≤ t)],

w(t) =

∫ t

0

G(u)du,

which R andH can be consistently estimated by Rn andHn. Note thatH(·) is a sub-distribution

function corresponding to F (·), which is the proportion of failure uncensored events before time

t in the presence of length-biased. We therefore have

R(t) = µ−1S(t)w(t), dH(t) = µ−1f(t)w(t)dt. (2.1)

Thus, in view of (C.1), the cumulative hazard function of T can be derived as

Λ(t) =

∫ t

0

f(u)

S(u)
du =

∫ t

0

µ−1f(u)w(u)

µ−1S(u)w(u)
du =

∫ t

0

dH(u)

R(u)
.

Hence, a natural estimator of Λ, based on n observations {(Ai, Yi,∆i), i = 1, . . . , n} is given by

Λ̂n(t) =

∫ t

0

dHn(u)

Rn(u)
=

1

n

∑
i: Yi≤t

∆i

Rn(Yi)
. (2.2)

The following theorems provide the i.i.d representations of Λ̂n to obtain the strong representa-

tions for the estimator F̂n(t) = 1− Ŝn(t).

If b < τ , then we have uniformly in 0 ≤ t ≤ b,

Λ̂n(t)− Λ(t) = n−1
n∑
i=1

ϕi(t) + Ln(t),

where sup0≤t≤b |Ln(t)| = O
(
n−3/4(log n)3/4

)
a.s. and

ϕi(t) =
∆iI(Yi ≤ t)

R(Yi)
− 1

2

∫ t

0

R−2(u){I(Ai ≤ u ≤ Yi)

+ ∆iI(Ṽi ≤ u ≤ Yi)}dH(u). (2.3)

. See the Appendix. �
Theorem 2 below gives a rate for the strong consistency of the cumulative hazard function

estimator. For b < τ , we have

sup
0<t<b

|Λ̂n(t)− Λ(t)| = O
(
n−1/2(log log n)1/2

)
, a.s.
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. See the Appendix. �
The following theorem is crucial to obtain convergence rate of the kernel density estimator of

f , the density associated to F , in Section 3. Let τ = inf{x; F (x) = 1}. We have uniformly in

0 ≤ t ≤ b < τ ,

F̂n(t)− F (t) = (1− F (t))(Λ̂n(t)− Λ(t)) + Ln(t)

= n−1
n∑
i=1

(1− F (t))ϕi(t) + Ln(t)

with sup0≤t≤b |Ln(t)| = O
(
n−1 log log n

)
a.s. . In view of 1 − F (t) = exp{−Λ(t)} and

using Lemma A, Lemma A in the Appendix and Taylor’s expansion, we have

F̂n(t)− F (t) =F̄n(t)− F (t) +O
(
n−1

)
=exp{−Λ(t)} − exp{−Λ̂n(t)}+O

(
n−1

)
=exp{−Λ(t)}(Λ̂n(t)− Λ(t))

− exp{−Λ∗
n(t)}

2
(Λ̂n(t)− Λ(t))2 +O

(
n−1

)
, a.s.

where Λ∗
n(t) is some random point between min{Λ̂n(t),Λ(t)} and max{Λ̂n(t),Λ(t)}. Corol-

lary 2 imply that Λ∗
n(t) → Λ(t) a.s., as n → ∞. From the continuity of exp{−x}, we have

exp{−Λ∗
n(t)} → exp{−Λ(t)} a.s. Thus, the proof of the theorem will be completed using Corol-

lary 2 again. �

3 Application: density estimation

Estimation of the density function of a random variable is a fundamental problem in probability

and statistics. Estimation for the density function via various methods have been discussed by

some authors. For instance, (? ), (? ) and (? ). Among the various methods of density estima-

tion, kernel smoothing is particularly appealing for both its simplicity and its interpretability.

The pioneer of the kernel density estimation was (? ) and (? ). The problem of estimating the

density function in LBRC model using kernel method so far not available, although (? ) deal

with this problem in the presence of bias and right censoring using projection method.

Let {hn, n ≥ 1} be a sequence of positive bandwidths tending to zero and K(·) be a smooth

kernel function. In this section, considering the well-known kernel estimator

f̂n(t) = h−1
n

∫
K

(
t− x

hn

)
dF̂n(x), (3.1)
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for LBRC data, we obtain consistency and asymptotic normality of this estimator as an appli-

cation of the strong representation given in Theorem 2. Assume that the kernel function K(·)

is symmetric, of bounded variation on (−1, 1) and satisfies the following conditions∫ 1

−1

K(u)du = 1,

∫ 1

−1

uK(u)du = 0,

∫ 1

−1

u2K(u)du > 0. (3.2)

According to the second equality in (C.1), h̃(t) = µ−1f(t)w(t) is the density of H(t) and a

kernel-type estimate of h̃n(t) is h̃n(t) = h−1
n

∫
K( t−xhn

)dHn(x). It is the aim of this section to

give a representation of f̂n − f̄n in terms of a sum of random variables which data are assumed

to be LBRC, plus a negligible remainder, where

f̄n(t) = h−1
n

∫
K

(
t− x

hn

)
dF (x).

Let {hn} be a sequence of positive bandwidths satisfying

nh2n
log log n

→ ∞.

Under the assumptions of Theorem 2 and f be bounded on [0, b], we have

sup
0≤t≤b

√
nhn|f̂n(t)− f̄n(t)−

µ

w(t)
{h̃n(t)− E[h̃n(t)]}| = Cn,

where Cn = O
(
( log logn

nh2
n

)1/2 ∨ (hn log log n)
1/2
)

a.s. . See (? ). �
As a result of the above theorem, we can derive the strong uniform consistency and asymptotic

normality of kernel density estimator and also the almost sure convergence with a rate of the

kernel mode estimator.

4 Monte Carlo simulations

In this section, some numerical simulations are carried out to evaluate the performance of the

kernel density estimator in LBRC scheme. The survival function Ŝn is computed under different

levels of censoring and truncation in this simulation study.

We consider the survival variable T follows Weibull distribution with cumulative distribution

function S(t) = exp(−t2/4). The recruitment time was set to be 100 and onset variable was

simulated from a U(0, 100) distribution. Let C ∼ U(1, 2) and C ∼ U(0, 2) corresponding with

approximately 30% and 50% censoring. Two sample size were used, n = 200 and n = 500.

Figure 1 represents the survival estimator of (? ) for Weibull(2,2) under LBRC sample. The

left panel shows the estimator 1.1 for 30% censoring. The right panel shows the estimator for

heavy censoring with about 50% observations being censored.
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[t]0.5 [t]0.5

Figure 1: Ŝn(t) for Wiebull(2,2) with 30%(left) and 50%(right) censoring and n = 200

A

This section presents some preliminary lemmas that are used in the proofs of the main results.

As for Theorem 2, we need a slight modification of product-limit estimator F̂n. Our modification

of F̂n is analogous to that of (? ) for the random censorship model. This is only to safeguard

against log 0, when taking logarithms of 1− F̂n(t). In the folglowing lemma, we show that the

estimator F̄n behaves in the same way as F̂n, where

F̄n(t) = 1−
∏
i:Yi≤t

{
1− ∆i

nRn(Yi) + 1

}
. (A.1)

Uniformly in 0 < t < b < τ , we have

F̄n(t)− F̂n(t) = O
(
n−1

)
, a.s.

. According to (1.1), one has

F̄n(t)− F̂n(t) =
∏
i:Yi≤t

{
1− ∆i

nRn(Yi)

}
−
∏
i:Yi≤t

{
1− ∆i

nRn(Yi) + 1

}
.

Then applying |
∏n
i=1 ci −

∏n
i=1 di| ≤

∑n
i=1 |ci − di|, |ci|, |di| ≤ 1, we have

F̄n(t)− F̂n(t) ≤
∑
i:Yi≤t

n−2 ∆i

R2
n(Yi)

≤ n−1

∫ b

0

1

R2
n(u)

dHn(u)

≤ sup
0<u<b

∣∣∣∣R2(u)

R2
n(u)

∣∣∣∣n−1

∫ b

0

1

R2(u)
dHn(u).
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From the SLLN, as n→ ∞, ∫ b

0

1

R2(u)
dHn(u) →

∫ b

0

1

R2(u)
dH(u)

Thus, the desired conclusion follows. �
Uniformly in 0 < t < b < τ , we have

1− F̄n(t) = exp{−Λ̂n(t)}+O
(
n−1

)
a.s.

. Using |e−x − e−y| ≤ |x− y|, x, y ≥ 0 and expanding log expression, we have

|1− F̄n(t)− exp{−Λ̂n(t)}| ≤ | log(1− F̄n(t)) + Λ̂n(t)|

=

∣∣∣∣∣∣
∑
i:Yi≤t

log

(
1− ∆i

nRn(Yi) + 1

)
+
∑

i: Yi≤t

∆i

nRn(Yi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i:Yi≤t

∆i

nRn(Yi)(nRn(Yi) + 1)
−
∑
i:Yi≤t

∞∑
m=2

∆i

m(nRn(Yi) + 1)m

∣∣∣∣∣∣ ,
(A.2)

which

(A.2) ≤
∑
i:Yi≤t

∆i

n2R2
n(Yi)

.

Thus

|1− F̄n(t)− exp{−Λ̂n(t)}| ≤ n−1

∫ b

0

dHn(u)

R2
n(u)

= O
(
n−1

)
a.s.

This completes the proof of the Lemma. �

sup
0<t<b

∣∣∣∣∫ t

0

(
1

Rn(u)
− 1

R(u)

)
d[Hn(u)−H(u)]

∣∣∣∣ = O
(
n−3/4(log n)3/4

)
a.s.

Proof of Theorem 2. It is easy to check that

Λ̂n(t)− Λ(t) =

∫ t

0

dHn(u)

R(u)
−
∫ t

0

Rn(u)

R2(u)
dH(u) + Ln(t)

=
1

n

n∑
i=1

ϕi(t) + Ln(t),
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where ϕi is defined in (2.3) and

Ln(u) =

∫ t

0

(
1

Rn(u)
− 1

R(u)

)
d[Hn(u)−H(u)] +

∫ t

0

(Rn(u)−R(u))2

Rn(u)R2(u)
dH(u)

=: Ln1(t) + Ln2(t).

We first deal with the remainder term Ln1. From Lemma C, it implies that

Ln1(t) ≤ sup
0<t<b

∣∣∣∣∫ t

0

(
1

Rn(u)
− 1

R(u)

)
d[Hn(u)−H(u)]

∣∣∣∣
= O

(
n−3/4(log n)3/4

)
a.s. (A.3)

The LIL for empirical distribution functions provides

sup
0<t<b

|Rn(t)−R(t)| = O
(
n−1/2

√
log log n

)
a.s.

Then

Ln2(t) ≤ sup
0<u<t

(Rn(u)−R(u))2
∫ t

0

dN(u)

Rn(u)R2(u)

= O
(
n−1 log log n

)
a.s.,

which together with (A.3) yields the result. �

Proof of Theorem 2. Applying integration by parts, one can easily get the following

|Λ̂n(t)− Λ(t)| ≤
∫ t

0

∣∣∣d[Hn(u)−H(u)]

R(u)

∣∣∣+ ∫ t

0

∣∣∣ 1

R(u)
− 1

Rn(u)

∣∣∣dHn(u)

≤ |Hn(t)−H(t)|
R(t)

+

∫ t

0

|Hn(u)−H(u)|d 1

R(u)

+

∫ t

0

|Rn(u)−R(u)|
R(u)Rn(u)

dHn(u)

Thus we obtain the desired result by the LIL for the empirical processes.
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A Introduction

The generalized half-normal (GHN) distribution (Cooray, and Ananda 2008) has a wide range

of applications, including lifetime testing experiments, measurement errors, applied statistics,

and clinical studies. The GHN distribution with parameters α > 0 and β > 0 has probability

density function (pdf) and cumulative distribution function (cdf) given by

π (y;α, β) =

√
2

π
αβyα−1e−

1
2β

2x2α

,

and

Π (y;α, β) = 2Φ (βyα)− 1,

1Mehdi Goldoust: mehdigoldust@yahoo.com



respectively. On the other hand, for the GHN distribution with cdf Π(x;α, β) (Π(x) for short),

Cordeiro et al. (2008) proposed the cdf G(x;α, β, γ) of the odd generalized half-normal distri-

bution with an additional shape parameter γ > 0 given by

G(x;α, β, γ) =
Π(x)

γ

Π(x)
γ
+Π(x)

γ (A.1)

for x > 0, where Π(x) = 1 − Π(x) is the survival function of GHN distribution. This model

commonly has been used in reliability studies and fatigue lifetime data. The purpose of this

paper is to introduce a new lifetime distribution by compounding an OGHN distribution and the

power series distribution, which refers to OGHNPS distribution. The compounding procedure

follows key ideas of Marshall and Olkin (1997).

The rest of the paper is organized as follows. In Section 2, the odd generalized half-normal

power series and its two well-known particular cases are introduced. Some of the mathematical

properties are derived in Section 3. Estimation of the parameters of the new distribution by

maximum likelihood method and a simulation study are investigated in Section 4. An illustrative

example of real data set given in Section 5. The paper is concluded in Section F.

B The model definition

A discrete random variable, N is a member of power series distributions (truncated at zero) if

its probability mass function is given by

P (n;λ) =
anλ

n

A(λ)
, n = 1, 2, . . . , (B.1)

where an depends only on n and not on λ, A (λ) =
∑∞
n=1 anλ

n and λ > 0 is such that A(λ) is

finite. In (B.1) λ is the power parameter of the distribution and A(.) is the series function. This

family of discrete random variables includes many of the most common distributions, including

the geometric, Poisson, binomial, and logarithmic distributions.

Let N be a random variable denoting the number of failure causes which it is a member of

power series distributions (truncated at zero). For given N , let X1, X2, ..., XN be independent

identically distributed random variables from OGHN distribution and X = max {Xi}Ni=1. It
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could be shown that the cdf of X is

F (x;θθθ) =
∞∑
n=1

F (x|N ;α, β, γ)P (n;λ)

= {A(λ)}−1
∞∑
n=1

an{λG (x;α, β, γ)}n

= {A(λ)}−1
A (λG (x;α, β, γ))

= {A(λ)}−1
A

(
λΠ(x)

γ

Π(x)
γ
+Π(x)

γ

)
= {A(λ)}−1

A

(
λ

[
1 +

{
2Φ (−βxα)
2Φ (βxα)− 1

}γ]−1
)

(B.2)

for x > 0, where θθθ = (α, β, γ, λ) is the parameter vector of OGHNPS distribution.

The half-normal power series and the generalized half-normal power series (Tahmasebi, 2017)

distributions are particular cases for α = γ = 1 and γ = 1, respectively.

The exponentiated odd generalized half-normal family of distributions with the shape pa-

rameter c is a limiting special case of the OGH-NPS family of distributions when λ→ 0+, where

c = min {n ∈ N : an > 0}.

The pdf function of the OGHNPS class of distributions is given by

f (x;θθθ) =

√
2
παβγλx

α−1[{2Φ (βxα)− 1} {2Φ (−βxα)}]γ−1

A(λ)e
1
2β

2x2α
[{2Φ (βxα)− 1}γ + {2Φ (−βxα)}γ ]2

A′

(
λ

[
1 +

{
2Φ (−βxα)
2Φ (βxα)− 1

}γ]−1
)
. (B.3)

Two well-known particular cases of the OGHNPS distribution are as follows:

1. The pdf of odd generalized half-normal geometric (OGHNG) distribution is given by

f (x;θθθ) =

√
2
παβγ(1− λ)xα−1e−

1
2β

2x2α

[{2Φ (βxα)− 1} {2Φ (−βxα)}]γ−1

[{2Φ (−βxα)}γ + (1− λ){2Φ (βxα)− 1}γ ]2
. (B.4)

2. The pdf of generalized half-normalPoisson(OGHNP) distribution is given by

f (x;θθθ) =

√
2
παβγλx

α−1e−
1
2β

2x2α

[{2Φ (βxα)− 1} {2Φ (−βxα)}]γ−1

(eλ − 1) [{2Φ (βxα)− 1}γ + {2Φ (−βxα)}γ ]2

exp

{
λ

[
1 +

{
2Φ (−βxα)
2Φ (βxα)− 1

}γ]−1
}
. (B.5)

We shall see the pdf can be decreasing and unimodal shaped for different values of parameters.

Figure 1 displays the pdf of the OGHNG distribution for some selected parameter values.
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Figure 1: Graphs of the OGHNG pdf for some parameter values.

C Mathematical properties

Some basic statistical and mathematical properties of the OGHNPS distribution are provided

in this section. Let X be an OGHNPS random variable with parameter vector θθθ = (α, β, γ, λ).

The survival and hazard rate functions of the BEW family are given by (for x > 0)

S(x;θθθ) = 1− {A(λ)}−1
A

(
λΠ(x)

γ

Π(x)
γ
+ Π̄(x)

γ

)
and

h(x;θθθ) =
λγπ(x)Π(x)

γ
Π̄(x)

γ{
Π(x)

γ
+ Π̄(x)

γ}2
 A′

(
λΠ(x)γ

Π(x)γ+Π̄(x)γ

)
{A(λ)} −A

(
λΠ(x)γ

Π(x)γ+Π̄(x)γ

)
 .

For arbitrary cdf Π(x), Cordeiro et al. (2015) derived the following expansion

(
Π(x)

γ

Π(x)
γ
+ Π̄(x)

γ

)n
=

∞∑
r=0

crΠ(x)
r
,

where

cr = cr(γ, n) =
1

ρ0

(
ρr −

1

ρ0

r∑
i=1

ρicr−i

)

and ρr is defined by Cordeiro et al. (2015).

Using the Lemma C and the concept of power series, we derived two linear representations

for the cdf and pdf of OGHNPS distribution.
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F (x;θθθ) = {A(λ)}−1
∞∑
n=1

∞∑
r=0

cr,nλ
n[2Φ (βxα)− 1]

r

and

f (x;θθθ) = {A(λ)}−1

√
2

π
αβxα−1e−

1
2β

2x2α
∞∑

n,r=1

dr,nλ
n[2Φ (βxα)− 1]

r−1
, (C.1)

where cr,n = ancr and dr,n = rancr.

Some mathematical properties of the proposed family, such as moments and moment gener-

ating function can be obtained by using this expansion.

The formula for the kth moment of X is obtained from (C.1) as

E
[
Xk;θθθ

]
=

∫ ∞

0

xkf(x, θ)dx

= {A(λ)}−1

√
2

π
β− k

α

∞∑
n,r=1

dr,nλ
nI

(
k

α
, r − 1

)
,

where

I

(
k

m
, r

)
=

∫ ∞

0

u
k
m exp

(
−u

2

2

)[
erf(x)

(
u√
2

)]r
du

and

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

The moment generating function of OGHNPS distribution can be expressed as

M(t) = E
[
etX ;θθθ

]
=

∞∑
k=0

tk

k!
E
[
Xk; θ

]
= {A(λ)}−1

∞∑
k=0

∞∑
n,r=1

dr,nλ
n tk

β
k
α k!

I

(
k

α
, r − 1

)
.

Let x = Q(u) be the OGH-NPS quantile function (qf), derived by inverting (B.2). and

QN (u) = Φ−1(u) denotes the standard normal qf. Consider X ∼ OGHNPS(α, β, γ, λ). Then

the qf function of OGHNPS distribution can be obtained as

Q (u;θθθ) =

 1

β
QN

[1 +{λ−A−1 (uA(λ))

A−1 (uA(λ))

} 1
γ

]−1


1
α

,

where A−1(.) is the inverse function of A(.). Clearly, the OGH-NPS distribution is easily

simulated by X = Q(U), where U be a uniform random variable in the unit interval (0, 1).
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D Estimation and simulation study

Suppose X1, X2, . . . , Xn is a random sample with observed values x1, x2, . . . , xn from the OGH-

NPS family of distributions with unknown parameters θθθ = (α, β, γ, λ). The log-likelihood func-

tion of θθθ is

ℓ (θθθ|xxx) =
n

2
log

[
2

π

]
+ n log [α] + n log [β] + n log [γ] + n log [λ] + (α− 1)

n∑
i=1

log [xi]

−n log [A(λ)]− 2
n∑

i=1

log [{2Φ (βxαi )− 1}γ + {2Φ (−βxαi )}γ ]

−1

2
β2

n∑
i=1

x2αi + (γ − 1)

n∑
i=1

log [2Φ (βxα
i )− 1] + (γ − 1)

n∑
i=1

log [2Φ (−βxαi )]

+

n∑
i=1

log

[
A′

(
λ

[
1 +

{
2Φ (−βxαi )
2Φ (βxαi )− 1

}γ]−1
)]

. (D.1)

The maximum likelihood estimate (MLE) of θθθ called θ̂θθ should satisfy the following equation

Un (θθθ) = (∂ℓ/∂α, ∂ℓ/∂β, ∂ℓ/∂γ, ∂ℓ/∂λ) = 0. The solution of this nonlinear system of equations

has no closed form. To solve this equation, it is usually more convenient to use nonlinear

optimization algorithms such as the quasi-Newton algorithm to numerically maximize the log-

likelihood function. In the application section, the MLEs were obtained by directly maximizing

(D.1) with respect to the parameters. The optim routine in R was used for maximization.

We evaluate the performance of the maximum likelihood estimates of the OGHNG distribu-

tion as the special case of OGHNPS distribution with respect to sample size n. We repeated

simulation study k = 5000 times with sample size n = 20, 50, 100, 200 and parameter values

I : α = 1.5, β = 2, γ = 0.6, θ = 0.5 and II : α = 0.8, β = 0.7, γ = 1.5,θ = 0.7 then the

parameters are estimated by ML method. The bias and mean squared error (MSE) of the MLE

estimators are presented in Table 1.

The results indicate that the maximum likelihood estimators carry out well for estimating

the parameters of the OGHNG model. According to Table 1, it can be concluded that as the

sample size n increases, the MSEs decay toward zero. Furthermore, the bias of the estimated

values of the parameters is greatly reduced as the sample size n is increased.

E Application

In this section, we provide illustrations to a real data set to show the importance of the OGHNPS

distribution. We consider the two particular cases OGHNG and OGHNP. The MLEs of the
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Table 1: The mean, bias, and MSE of the MLE estimators from 5000 samples.

I II

n ξξξ Average Bias MSE ξξξ Average Bias MSE

20 α 2.4836 0.9836 2.2811 α 1.7111 0.9111 2.5221

β 1.7537 -0.2463 1.7865 β 0.3497 -0.3503 0.2923

γ 0.4797 -0.1203 0.1534 γ 0.9861 -0.50139 0.4565

λ 0.5956 0.0956 0.1214 λ 0.6225 -0.0775 0.1272

50 α 1.8469 0.3469 0.5326 α 1.0341 0.20341 0.7534

β 1.8564 -0.1436 0.6804 β 0.5503 -0.0.1497 0.0890

γ 0.5235 -0.0765 0.0299 γ 1.3456 -0.1544 0.2183

λ 0.5256 0.256 0.0486 λ 0.6709 0.0291 0.0807

100 α 1.6325 0.1325 0.1578 α 0.8974 0.0974 0.1208

β 1.9235 0.0765 0.2035 β 0.6839 -0.0161 0.0689

γ 0.5736 -0.0264 0.0103 γ 1.4569 -0.0431 0.1030

λ 0.4823 -0.0177 0.0204 λ 0.7023 0.0023 0.0088

200 α 1.5356 0.0356 0.0401 α 0.8018 0.0018 0.0109

β 2.0042 0.0042 0.0597 β 0.6981 -0.0019 0.0058

γ 0.5950 -0.0050 0.0042 γ 1.4938 -0.0062 0.0659

λ 0.4907 -0.0093 0.0114 λ 0.7007 0.0007 0.0034

parameters and the goodness-of-fit statistics were computed and compared with those of the

popular odd Weibull (OW) (Cooray, 2006), odd generalized half-normal (OGHN) (Cordeiro et

al., 2016), beta generalized exponential (BGE) (Barreto-Souza et al., 2010), beta Weibull (BW)

(Famoye et al., 2005), and destructive Poisson odd generalized half-normal (DPOGHN) (Pescim

et al., 2018) distributions specified by the pdfs

fOW (x;ξξξ1) =
αβγxαeβx

α (
eβx

α − 1
){

1 + (eβxα − 1)
γ}−2

γ−1

,

fOGHN (x;ξξξ2) =

√
2
παβγx

α−1e−
1
2β

2x2α

[{2Φ (βxα)− 1} {2Φ (−βxα)}]γ−1

[{2Φ (−βxα)}γ + {2Φ (βxα)− 1}γ ]2
.
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fBW (x;ξξξ3) =
αβxα−1

B (a, b)
e−bβx

α
[
1− e−βx

α
]a−1

,

fBGE (x;ξξξ4) =
αβe−βx

B(a, b)

(
1− e−βx

)aα−1
[
1−

(
1− e−βx

)α]b−1

,

and

fDPOGHN (x;ξξξ5) =

√
2
παβγλpx

α−1e−
1
2β

2x2α

[{2Φ (βxα)− 1} {2Φ (−βxα)}]γ−1

(1− e−λp) [{2Φ (βxα)− 1}γ + {2Φ (−βxα)}γ ]2

exp

{
− λp{2Φ (βxα)− 1}γ

{2Φ (βxα)− 1}γ + {2Φ (−βxα)}γ
}
,

for x > 0, where α, β, γ, λ, a, b > 0 and p ∈ (0, 1).

The data set consists of the strength of 1.5 cm glass fibers, measured at the National physical

laboratory, England (see Smith and Naylor (1987)). The MLEs, log-likelihood value, the cor-

responding standard errors, the Kolmogorov-Smirnov statistic, its p-value, Akaike information

criterion (AIC), the corrected Akaike information criterion (AICc) and the Bayesian information

criterion (BIC) are shown in Table 2, where

AICc = −2 log
[
ℓ(θ̂θθ)

]
+

2nk

n− k − 1

and k is the number of the estimated parameters.

Table 2: Estimates and goodness-of-fit measures for the strength of 1.5 cm glass fibers dataset.

Model θ̂θθ −ℓ(θ̂θθ) K-S p-value AIC AICc BIC

OW α = 6.0258, β = 0.0539, γ = 0.9438 15.187 0.096 0.642 36.374 36.781 42.803

SE
(
ξ̂ξξ1

)
(1.3333, 0.0331, 0.2667)

OGHN α = 3.7606, β = 0.1334, γ = 1.2906 14.164 0.089 0.740 34.328 34.735 40.757

SE
(
ξ̂ξξ2

)
(0.7744, 0.0492, 0.3283)

BW α = 7.0138, β = 0.5533, a = 0.4498, b = 0.0499 13.044 0.088 0.752 34.088 34.758 42.661

SE
(
ξ̂ξξ3

)
(0.8896, 0.6459, 0.1810, 0.0464)

BGE α = 22.6124, β = 0.9227, a = 0.4125, b = 93.4655 15.599 0.103 0.552 39.198 39.868 47.771

SE
(
ξ̂ξξ4

)
(22.8153, 0.5135, 0.3152, 16.6665)

DPOGHN α = 3.762, β = 0.133, γ = 1.291, λ = 3.334, p = 0.002 13.161 0.088 0.752 36.322 37.375 47.037

SE
(
ξ̂ξξ5

)
(0.5074, 0.5146, 0.2330, 1.9136)

OGHNG α = 1.9156, β = 0.9211, γ = 0.9116, λ = 0.9573 11.951 0.076 0.881 31.902 32.572 40.474

SE
(
θ̂θθ1

)
(0.6876, 0.6474, 0.4402, 0.0571)

OGHNP α = 2.3641, β = 0.8976, γ = 0.4413, λ = 5.9101 12.425 0.081 0.828 32.850 33.520 41.422

SE
(
θ̂θθ2

)
(0.5074, 0.5146, 0.2330, 1.9136)

We can see that the largest log-likelihood value, the largest p-value, the smallest AIC value,

the smallest AICc value, and the smallest BIC value are obtained for the OGHNG distribution.
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F Conclusion

We have proposed a four-parameter of distribution referred to as the OGHNPS distribution

by compounding odd generalized half-normal and power series distributions. The OGHNPS

distribution contains the generalized half-normal, odd generalized half-normal and generalized

half-normal power series as special cases. The mathematical properties of the OGHNPS distri-

bution derived include quantiles, moments and moment generating function. Applications to

the real data set show that the proposed distribution provides better fits than popular lifetime

distributions.
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Abstract: In this paper, we define first a new measure of distance between two distributions

based on their cumulative distribution function that is similar to Tsallis divergence. Then based

on a progressively type II right censored sample, we construct goodness-of-fit tests for testing

Rayleighity. Monte Carlo simulations for the power of the proposed tests are carried out under

different alternatives. Finally, an illustrative example for use of the proposed tests is presented.

Keywords Goodness of fit test, Rayleigh distribution, Progressively type II right censored

sample.

A Introduction

The Rayleigh distribution is a special case of the Weibull distribution with a scale parameter of 2 and

a suitable model in various areas including reliability, life testing, and survival analysis. The square

of a Rayleigh random variable with a shape parameter 1 is equal to a chi square random variable

with 2 degrees of freedom. Also, the square root of an exponential random variable has the Rayleigh

distribution. Also, the Rayleigh distribution is widely used in the physical sciences to model wind speed,

wave heights and sound/light radiation and has been used in medical imaging science, to model noise

variance in magnetic resonance imaging. For more information about the applications and properties

of the Rayleigh distribution, we refer the interested readers to Siddiqui [13] and Johnson et al. [10]. A

random variable X follows the Rayleigh distribution if and only if it has probability density function

f0(x; θ) =
x

θ2
exp

{
− x2

2θ2

}
, x ≥ 0, θ > 0. (1.1)

There are several goodness of fit tests in the literature based on a complete sample for the Rayleigh

distribution. Meintanis and Iliopoulos [11] proposed a class of goodness of fit tests for the Rayleigh

distribution. Recently, Zamanzade and Mahdizadeh [15] based on Phi-divergence and Jahanshahi et al.

[9] based on Hellinger distances suggested tests for Rayleigh distribution. Safavinejad et al. [12] by the

empirical likelihood ratio method and Alizadeh et al. [1] by using the KL divergence,

1Arezoo HabibiRad: ahabibi@um.ac.ir



2 HABIBIRAD, A. AND AHRARI, V.

proposed goodness of fit tests for checking Rayleighity. Also, Baratpour and Kho-
dadadi [8], based on cumulative Kullback–Leibler (KL), defined a test for Rayleigh
distribution.
Type-I and Type-II censoring schemes are the most popular ones among the dif-
ferent censoring schemes. One of the disadvantages of these censoring schemes is
the imposibility to withdraw units during the experiment. So a generalization of
the classical Type-II censoring scheme, known as the progressive Type-II censoring
scheme, was proposed by researchers to withdraw units during the experiment.
Progressive censoring scheme has recently received considerable attention in the
statistical literature. (see Balakrishnan and Aggrawalla [3]; Balakrishnan [2]).
The progressive censoring scheme can be described as follows. Under this gen-
eral censoring scheme, n units are placed on a life testing experiment and only
m(< n) are completely observed until failure. The censoring occurs progressively
in m stages. At the time of the first failure (the first stage)X1:m:n, R1 of the re-
maining n− 1 surviving units are randomly removed from the experiment. At the
second failure (the second stage) X2:m:n, R2 units are randomly removed from the
remaining n − 2 − R1 units, and so on. The procedure is continued until all the
remaining surviving Rm = n −m − R1 − . . . − Rm−1 units are removed from the
experiment at the time of the m − th failure (the m − th stage) Xm:m:n. We will
denote the m order observed failure times by X1:m:n < X2:m:n < . . . < Xm:m:n and
the progressive censoring schemes with the vector R = (R1, . . . , Rm), which is fixed
previously. If R = (0, . . . , 0), then no censoring is performed at any of the m stages
and corresponds to the complete sample. If R = (0, . . . , 0, n − m), we obtain the
Type-II right censoring.

The present paper aims to construct a test using proposed divergence based on
the progressively type II censored sample for exponentiality test. The organization
of the paper is as follows. In Section 2, we construct the statistics based on extension
of Tsallis divergences for testing Rayleighity. Competitor tests are expressed in
Section 3. Finally, in Section 4, we use Monte Carlo simulations to evaluate the
power of proposed test and competing tests for several alternatives under different
sample sizes and progressive Type-II censoring schemes.

2. Test Statistic

Consider two nonnegative and absolutely continuous random variables X and Y
with probability density functions (pdf) f and g, cumulative distribution functions
(cdf) F and G, respectively. Then, the Tsallis divergence between f and g is defined
as (see Tsallis [14])

DT (f, g) =
1

α− 1

[
∫

∞

0

fα(x)g1−α(x)dx− 1

]

, α( 6= 1) > 0. (2.1)

We define new measures of distance between two distributions that are similar
Tsallis divergences in the following.

Definition 2.1. Let X and Y be two non negative and absolutely continuous ran-
dom variables with cdfs F and G and pdfs f and g, respectively. Then cumulative
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residual Tsallis (CRT) between these distributions is as follows

CRT (F : G) =
1

α− 1

[
∫

∞

0

F̄α(x)Ḡ1−α(x)dx− αE(X)− (1− α)E(Y )

]

, 0 < α < 1.

(2.2)

Lemma 2.2. CRT(F:G)≥ 0 and equality holds if and only if F = G.

Proof. By applying the Hölder inequality, we obtain

∫

∞

0

F̄α(x)Ḡ1−α(x)dx ≤

(
∫

∞

0

F̄ (x)dx

)α(∫ ∞

0

Ḡ(x)dx

)1−α

, 0 < α < 1, (2.3)

and by using the Young inequality, we get

(
∫

∞

0

F̄ (x)dx

)α(∫ ∞

0

Ḡ(x)dx

)1−α

≤ α

∫

∞

0

F̄ (x)dx+ (1− α)

∫

∞

0

Ḡ(x)dx. (2.4)

Therefore, by (2.3) and (2.4) and dividing by α−1, the desired inequality follows. In
the Hölder inequality, equality holds if and only if F̄ = cḠ (c is a positive constant)
and in the Young inequality, equality holds if and only if

∫

∞

0
F̄ (x)dx =

∫

∞

0
Ḡ(x)dx.

Thus, c = 1 and CRT (F : G) = 0 if and only if F = G. �

Mentioned properties in lemma 2.2 motivates us to use new divergence for con-
structing test statistic.
Suppose that x1:m:n < x2:m:n < . . . < xm:m:n is progressively Type-II right cen-
sored data with the progressive censoring scheme R = (R1, R2, . . . , Rm) from a
continuous distribution function F (x). The testing of interest is

H0 : F (x) = F0(x) vs H1 : F (x) 6= F0(x),

where F0(x) = 1− exp
(

− x2

2θ2

)

, x ≥ 0, θ > 0, and θ is the unknown parameter.

Based on progressively Type-II right censored data, the cumulative distribution
function estimator can be written as

Fm,n(x) =







0 if x < x1:m:n

αi:m:n if xi:m:n ≤ x < xi+1:m:n, i = 1, 2, . . . ,m− 1
αm:m:n if x ≥ xm:m:n

(2.5)

where αi:m:n = E(Ui:m:n) is the expected value of the th Type-II progressively
censored order statistic from the Uniform(0,1) distribution, given by Balakrishnan
and Sandhu [?] is as

αi:m:n = 1−
m
∏

j=m−i+1

{

j − 1 +Rm−j+1 + . . .+Rm

j +Rm−j+1 + . . .+Rm

}

.

2.1. Testing procedures based on the new divergences. In this section, by
utilizing (2.5) and estimating new divergence, we construct test statistic for testing
testing Rayleighity with the progressively Type-II censored data and then consider
some competing tests to compare with the proposed tests. Accordingly, by letting
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F (x) = Fmn(x) and G(x) = F0(x) in (2.2), we have

CRTmn =
1

α− 1

[
∫ xm:m:n

0

(1− Fmn(x))
αe−

x
2

2θ2
(1−α)dx

− α

∫ xm:m:n

0

(1− Fmn(x))dx− (1− α)

∫ xm:m:n

0

e−
x
2

2θ2 dx

]

=
1

(α− 1)

[m−1
∑

i=0

(1− αi:m:n)
α

∫ xi+1:m:n

xi:m:n

e−
x
2

2θ2
(1−α)dx

]

−
α

α− 1

[m−1
∑

i=0

(1− αi:m:n)(xi+1:m:n − xi:m:n)

]

+

∫ xm:m:n

0

e−
x
2

2θ2 dx, (2.6)

where α0:m:n = x0:m:n = 0. Dividing (2.6) by
∫ xm:m:n

0
(1−Fmn(x))dx, the proposed

test (that is scale-invariant) is as follows

CRTmn =
1

α− 1

[

∑m−1
i=0 (1− αi:m:n)

α
∫ xi+1:m:n

xi:m:n
e
−

x
2

2θ̂2
(1−α)

dx
∑m−1

i=0 (1− αi:m:n)(xi+1:m:n − xi:m:n)

]

+

∫ xm:m:n

0
e
−

x
2

2θ̂2 dx
∑m−1

i=0 (1− αi:m:n)(xi+1:m:n − xi:m:n)
−

α

α− 1
, (2.7)

where θ̂2 = 1
2m

∑m

i=1(Ri + 1)x2
i:m:n is the maximum likelihood estimate (MLE)

of based on the progressively Type-II censored sample.

3. Competitor tests

We compare the performance of the proposed test with some tests for progres-
sively Type II censored data in the literature. These tests are provided in the
following.

• The test statistic proposed by Balakrishnan et al. [5] is as follows

T (w, n,m) = −H(w, n,m)−
1

n

[

m
∑

i=1

log f0(xi; θ̂) +

m
∑

i=1

Ri log(1− F0(xi; θ̂))

]

,

where H(w, n,m) = 1
n

∑m

i=1 log

(

xi+w:m:n−xi−w:m:n

E(Ui+w:m:n)−E(Ui−w:m:n)

)

− (1 − m
n
) log(1 − m

n
)

and θ̂ is an estimator of θ. If we estimate the unknown parameter by the MLE,
then the test statistic for Rayleigh distribution is

T (w, n,m) = −H(w, n,m)

+
m

n

[

log

(

1

2m

m
∑

i=1

(1 +Ri)x
2
i

)

−
1

m

m
∑

i=1

log xi + 1

]

. (3.1)

• The test statistics proposed by Baratpour and Habibirad [7] are given by

T1 =

∫ xm:m:n

0
(1− Fmn(x)) log

1−Fmn(x)
1−F0(x)

dx
∫ xm:m:n

0
(1− Fmn(x))dx

+

∫ xm:m:n

0
(1− F0(x))dx

∫ xm:m:n

0
(1− Fmn(x))dx

− 1,
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and

T2 =

∫ xm:m:n

0
Fmn(x) log

Fmn(x)
F0(x)

dx
∫ xm:m:n

0
(1− Fmn(x))dx

−

∫ xm:m:n

0
F0(x)dx

∫ xm:m:n

0
(1− Fmn(x))dx

+ 1,

that for Rayleigh distribution are as follows

T1 =

∑m−1
i=1 (1− αi:m:n) log(1− αi:m:n)(xi+1:m:n − xi:m:n)

∑m−1
i=0 (1− αi:m:n)(xi+1:m:n − xi:m:n)

+

∑m−1
i=0 (1− αi:m:n)(x

3
i+1:m:n − x3

i:m:n)

6θ̂2
∑m−1

i=0 (1− αi:m:n)(xi+1:m:n − xi:m:n)

+

∫ xm:m:n

0
e
−

x
2

2θ̂2 dx
∑m−1

i=0 (1− αi:m:n)(xi+1:m:n − xi:m:n)
− 1, (3.2)

and

T2 =

∑m−1
i=1 αi:m:n log(αi:m:n)(xi+1:m:n − xi:m:n)
∑m−1

i=0 (1− αi:m:n)(xi+1:m:n − xi:m:n)

−

∑m−1
i=1 αi:m:n

∫ xi+1:m:n

xi:m:n
log
(

1− e
−

x
2

2θ̂2 )
)

dx
∑m−1

i=0 (1− αi:m:n)(xi+1:m:n − xi:m:n)

−
xm:m:n −

∫ xm:m:n

0
e
−

x
2

2θ̂2 dx
∑m−1

i=0 (1− αi:m:n)(xi+1:m:n − xi:m:n)
+ 1. (3.3)

4. Simulation Study

In order to evaluate the performance of the proposed tests and then the compar-
ison with the competing tests, we compare the power values of the proposed tests
with the corresponding values of competing tests. We generated 50,000 random
samples for different censoring schemes for the determination of the power. For
this purposes, we used the 27 censoring schemes of Balakrishnan et al. [6] that are
listed in Table 1.
For CRTmn test, the null hypothesis will be rejected, when the test statistic is more
than the corresponding critical value at a designed significance level.
The power values of the proposed tests depend on α values and type of failure rate
function of alternatives. Thus, the alternatives are selected according to three types
of failure rate function, increasing failure rate (IFR), decreasing failure rate (DFR)
and non-monotone failure rate (NFR).
We considered the α value that maximizes power, this value is suggested to be 0.01
for all three types of failure rate function.
Tables 2 and 3 present power values of the proposed test and the competing tests
tests at a %10 significance level based on the type of failure rate function. Results
indicate that, almost in most cases, the CRTmn statistic has higher power compared
to other tests (for alternatives with IFR and DFR functions). Also, for alternatives
with IFR and DFR functions, the scheme R = (0, 0, . . . , n−m) generally indicates
better power than the other schemes.
Table 3 shows that the powers depend on the kind of alternatives distribution. So,
a general conclusion can not be suggested.
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Table 1. progressive censoring schemes used in the Monte Carlo simulations

Scheme No. n m (R1, . . . , Rm)

[1]

20

8
R1 = 12, Ri = 0 for i 6= 1

[2] R8 = 12, Ri = 0 for i 6= 8
[3] R1 = R8 = 6, Ri = 0 for i 6= 1, 8

[4]

12
R1 = 8, Ri = 0 for i 6= 1

[5] R12 = 8, Ri = 0 for i 6= 12
[6] R3 = R5 = R7 = R9 = 2, Ri = 0 for i 6= 3, 5, 7, 9
[7]

16

R1 = 4, Ri = 0 for i 6= 1

[8] R16 = 4, Ri = 0 for i 6= 16

[9] R5 = 4, Ri = 0 for i 6= 5

[10]

40

10

R1 = 30, Ri = 0 for i 6= 1

[11] R10 = 30, Ri = 0 for i 6= 10
[12] R1 = R5 = R10 = 10, Ri = 0 for i 6= 1, 5, 10

[13]

20
R1 = 20, Ri = 0 for i 6= 1

[14] R20 = 20, Ri = 0 for i 6= 20

[15] Ri = 1 for i = 1, 2, . . . , 20

[16]
30

R1 = 10, Ri = 0 for i 6= 1
[17] R30 = 10, Ri = 0 for i 6= 30

[18] R1 = R30 = 5, Ri = 0 for i 6= 1, 30

[19]

60

20

R1 = 40, Ri = 0 for i 6= 1

[20] R20 = 40, Ri = 0 for i 6= 20
[21] R1 = R20 = 10, R10 = 20, Ri = 0 for i 6= 1, 10, 20

[22]

40

R1 = 20, Ri = 0 for i 6= 1

[23] R40 = 20, Ri = 0 for i 6= 40
[24] R2i−1 = 1, R2i = 0 for i = 1, 2, . . . , 20

[25]

50

R1 = 10, Ri = 0 for i 6= 1

[26] R50 = 10, Ri = 0 for i 6= 50
[27] R1 = R50 = 5, Ri = 0 for i 6= 1, 50
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Table 2. Power of the proposed and competing tests for the alter-
natives with the IFR and DFR functions at 10% significance level
for several schemes.

Scheme No.

IFR DFR

W(1.4) G(2) W(0.5)

CRTmm T1 T2 T CRTmm T1 T2 T CRTmm T1 T

[1] 0.429 0.436 0.013 0.173 0.385 0.390 0.024 0.115 0.979 0.976 0.994
[2] 0.363 0.162 0.407 0.118 0.220 0.098 0.223 0.083 0.962 0.891 0.909

[3] 0.390 0.222 0.178 0.135 0.267 0.143 0.104 0.090 0.973 0.934 0.959

[4] 0.514 0.487 0.013 0.246 0.484 0.462 0.017 0.174 0.997 0.995 0.999
[5] 0.457 0.276 0.388 0.188 0.323 0.165 0.201 0.111 0.995 0.987 0.988

[6] 0.487 0.479 0.019 0.230 0.436 0.439 0.025 0.153 0.991 0.986 0.998

[7] 0.602 0.538 0.014 0.305 0.559 0.522 0.015 0.221 1.000 0.999 1.000
[8] 0.543 0.466 0.037 0.281 0.437 0.348 0.024 0.161 0.999 0.999 0.999

[9] 0.585 0.551 0.010 0.306 0.551 0.526 0.012 0.218 0.999 0.999 1.000

[10] 0.470 0.479 0.011 0.257 0.424 0.435 0.017 0.155 0.992 0.990 1.000
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[26] 0.877 0.832 0.005 0.713 0.768 0.685 0.003 0.462 1.000 1.000 1.000
[27] 0.887 0.876 0.001 0.746 0.812 0.784 0.002 0.529 1.000 1.000 1.000
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Table 3. Power of the proposed and competing tests for the al-
ternatives with the DFR and NFR functions at 10% significance
level for several schemes.

Scheme No.

IFR NFR
G(0.5) L(0,0.5) L(0,1)

CRTmm T1 T CRTmm T1 T CRTmm T1 T

[1] 0.940 0.930 0.971 0.142 0.116 0.322 0.736 0.732 0.439

[2] 0.937 0.842 0.862 0.004 0.318 0.404 0.316 0.115 0.096
[3] 0.942 0.877 0.916 0.009 0.102 0.385 0.431 0.238 0.140

[4] 0.984 0.972 0.992 0.187 0.184 0.284 0.870 0.851 0.650

[5] 0.984 0.963 0.969 0.013 0.236 0.362 0.583 0.364 0.242
[6] 0.971 0.960 0.988 0.146 0.149 0.276 0.789 0.790 0.556

[7] 0.996 0.990 0.997 0.209 0.234 0.270 0.938 0.918 0.777

[8] 0.995 0.994 0.995 0.048 0.121 0.346 0.818 0.748 0.530
[9] 0.997 0.994 0.999 0.202 0.222 0.279 0.929 0.918 0.776

[10] 0.965 0.959 0.996 0.165 0.110 0.454 0.805 0.800 0.564

[11] 0.974 0.920 0.935 0.000 0.508 0.562 0.216 0.087 0.096
[12] 0.978 0.965 0.977 0.003 0.043 0.578 0.396 0.283 0.141

[13] 0.999 0.997 1.000 0.261 0.239 0.457 0.966 0.954 0.871
[14] 0.999 0.998 0.999 0.003 0.465 0.602 0.619 0.393 0.306

[15] 0.992 0.995 1.000 0.092 0.092 0.486 0.781 0.801 0.591

[16] 1.000 1.000 1.000 0.303 0.337 0.444 0.995 0.989 0.968

[17] 1.000 1.000 1.000 0.022 0.244 0.545 0.940 0.885 0.765

[18] 1.000 1.000 1.000 0.067 0.135 0.520 0.975 0.964 0.879

[19] 0.999 0.998 1.000 0.293 0.222 0.552 0.964 0.953 0.877

[20] 0.999 0.998 0.999 0.000 0.681 0.731 0.401 0.197 0.177

[21] 0.999 0.999 1.000 0.004 0.046 0.691 0.724 0.630 0.410

[22] 1.000 1.000 1.000 0.356 0.389 0.564 0.999 0.998 0.991

[23] 1.000 1.000 1.000 0.007 0.457 0.728 0.950 0.889 0.793

[24] 1.000 1.000 1.000 0.218 0.248 0.505 0.976 0.960 0.945
[25] 1.000 1.000 1.000 0.379 0.467 0.594 1.000 1.000 0.998

[26] 1.000 1.000 1.000 0.051 0.263 0.689 0.996 0.994 0.974

[27] 1.000 1.000 1.000 0.121 0.216 0.673 0.998 0.998 0.990
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Abstract: To collect the information about the lifetime distribution of a product, a standard

life testing method at normal working conditions is impractical when the product has a long

lifetime. Accelerated life testing quickly yields information on product life. Test units are run

at high stress and fail sooner than at design stress. The lifetime at design stress is estimated by

extrapolation using a regression model. Due to constrained resources in practice, test time must

be determined carefully at the design stage in order to run an accelerated life test efficiently.

Test time directly affect the experimental cost as well as the estimate precision of the parameters

of interest. This article investigates optimal test time based on two optimality criteria under the

constraint that the total experimental cost does not exceed a pre-specified budget. The purpose

is to quantify the advantage of using step-stress testing in comparison to constant-stress testing.

Keywords Accelerated life testing, Constant-stress testing, Maximum likelihood estimation,

Optimal allocation, Step-stress testing.
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A Introduction

Technological advances in engineering has resulted in products having high mean time to failure

(MTTF). However, prolonged time to failure makes the study of lifetime characteristics difficult.

To overcome this, the technique of accelerated life test (ALT) is used rather than usual life

test. ALT is a technique to fasten the failure of products in order to obtain quick information

about life characteristics. In ALT, products are exposed to higher levels of stress factors like

temperature, pressure, humidity, voltage etc. to get quick failures and the data thus obtained

is properly analyzed to infer the life characteristics under normal use. Based on stress loading

1Nooshin Hakamipour: nooshin.hakami@aut.ac.ir



there are three types of ALTs namely, constant stress ALT (CSALT), step-stress ALT (SSALT)

and progressive stress ALT(PSALT) (4).

In CSALT, only one level of higher stress is used. Sometimes it may be difficult to run at

a higher stress for too long and CSALT may not produce enough quick failures. In PSALT, a

test unit is subjected continuously to increasing stress. One major drawback of PSALT is that

the progressive stress cannot be controlled accurately enough for long time in order to produce

enough number of failures. In SSALT, a test unit is subjected to a specified level of stress for

a prefixed period of time. If it does not fail during that period of time, then the stress level

is increased for further prefixed period of time. This process is continued till all test units fail

or some termination criteria is met. CSALT and SSALT with two levels of stress is known as

simple CSALT and simple SSALT. SSALT yields quick failures when compared to CSALT and

PSALT. Also it provides reliable estimates for life characteristics. Han and Ng have described

the advantage of using SSALT over CSALT. For more details about ALT one may refer to (5).

In this paper, the optimal simple CSALT and simple SSALT are compared for the Weibull

failure data under Type-I censoring.

The optimal ALT design has attracted great attention in the reliability literature. Under

complete sampling, Hu et al. (2) studied the statistical equivalency of a simple step-stress

ALT to other stress loading designs. The optimal CSALT and SSALT are compared for the

exponential failure data under Type-I censoring by Han and Ng (1).

The main focus of this article is to investigate the advantage of using SSALT relative to

CSALT. Assuming a log-linear relationship between the mode lifetime parameter and stress

level, with the Khamis-Higgins (KH) model for the effect of changing stress in step-stress ALT.

The KH model is based on a time transformation of the cumulative exposure model. Khamis

and Higins (3) have proposed this model. The optimal design point is determined under two

optimality criteria. In particular, the cases of Type-I censoring is considered under Weibull

lifetime distribution for units subjected to stress.

In addition, the operation cost could substantially increase with the physical constraints and

limitations of the testing instruments when the stress level increases. In this paper, under the

practical constraint that the total experimental cost does not exceed a pre-specified budget, we

investigate the optimal ALT plans.

The rest of the article is organized as follows. The Section B presents the model assumptions

and formulation. Sections C and D derive the MLEs of the model parameters and the associated

Fisher information for simple CSALT and SSALT. Section E then defines the two optimality
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criteria based on the Fisher information matrix. Section F discusses the total experimental cost

of these tests. Section G provides the results of a numerical study. Finally, Section H is devoted

to some conclusions.

B Model and Assumptions

Let s1 and s2 be two stress levels, with s0 being the stress under normal use. The standardized

stress loading is then defined as

xi =
si − s0
s2 − s0

, i = 0, 1, 2, (B.1)

so that the range of x is [0, 1].

For any stress level xi, i = 0, 1, 2, lifetime of a test unit follows Weibull distribution with

cumulative distribution function (c.d.f)

Fi(t) = 1− e
−( t

λi
)k
, t ≥ 0, (B.2)

and with corresponding probability density function (p.d.f)

fi(t) =
k

λki
tk−1e

−( t
λi

)k
, t ≥ 0, (B.3)

where k is a shape parameter and λ is a scale parameter.

Also, it is assumed that the shape parameter k is constant for all stress levels. The scale

parameter λi at stress xi is given by

log λi = β0 + β1xi (B.4)

for i = 0, 1, 2, where β0 and β1 are unknown parameters depending on the nature of the product

and the method of test.

C Constant-Stress Test

In this section the simple constant-stress test is considered under Type-I censoring for the

Weibull distribution. There are N units placed on test. There N1 units assigned to stress x1,

and the remaining units N2 = N −N1 to stress x2. Under stress x1, units will be tested until

either failure occurs or until the time of test reaches a specified time w1. In this stress level

n1 failure times observed. Under stress x2, units will be tested until the time of test reaches a

specified time w2 and n2 failure times observed.
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Let ni denote the number of units failed at stress level xi in time interval (wi−1, wi], w0 = 0,

and tij denote the j-th ordered failure time of ni units at xi, (j = 1, 2, . . . , ni and i = 1, 2),

while ri = Ni − ni denotes the number of units censored at time wi.

The log-likelihood function of tij under simple CSALT with Type I censoring at can be

written as

ℓ(λi, k; tij) ∝ log k

2∑
i=1

ni − k

2∑
i=1

ni log λi + (k − 1)

2∑
i=1

ni∑
j=1

log tij −
2∑
i=1

Ai
λki
.

where

Ai =

ni∑
j=1

tkij + riw
k
i (C.1)

Now, using log-linear link given in (B.4), the log-likelihood function of (β0, β1) can be ob-

tained as

ℓ(β0, β1) ∝ log k

2∑
i=1

ni − k

2∑
i=1

ni(β0 + β1xi) + (k − 1)

2∑
i=1

ni∑
j=1

log tij

−
2∑
i=1

e−k(β0+β1xi)Ai. (C.2)

Upon differentiating (C.2) with respect to β0 and β1, the MLEs β̂0 and β̂1 are obtained as

simultaneous solutions to the following two equations:

[ 2∑
i=1

ni

][ 2∑
i=1

xie
−kβ̂1xiAi

]
=

[ 2∑
i=1

xini

][ k∑
i=1

e−kβ̂1xiAi

]
, (C.3)

β̂0 =
1

k
log
(∑2

i=1 e
−kβ̂1xiAi∑2
i=1 ni

)
. (C.4)

As shown above, β̂0 and β̂1 are nonlinear functions of random quantities and thus, statis-

tical inference with these MLEs can be based on the asymptotic distributional result that the

vector (β̂0, β̂1) is approximately distributed as a bivariate normal with mean vector (β0, β1) and

variance-covariance matrix I−1
n (β0, β1), where In(β0, β1) is the Fisher information matrix. The

Fisher information matrix is obtained through taking expectation on the negative of the second

partial derivatives of (C.2) with respect to β0 and β1.
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The second partial derivatives of the maximum likelihood function are given as the following:

∂2ℓ(β0, β1)

∂β2
0

= −k2
2∑
i=1

e−k(β0−2β1xi)Ai, (C.5)

∂2ℓ(β0, β1)

∂β2
1

= −k2
2∑
i=1

x2i e
−k(β0−2β1xi)Ai, (C.6)

∂2ℓ(β0, β1)

∂β1∂β0
= −k2

2∑
i=1

xie
−k(β0−2β1xi)Ai. (C.7)

D Step-Stress Tests

Consider N identical units that are subjected to simple SSALT with initial stress level x1. At

prefixed time period w1, stress level is changed to x2 and the test is continued until the censoring

time w2. When all units fail before w2, it would result in complete data. Total ni failures are

observed at time tij , j = 1, 2, . . . , ni, while testing at stress level xi, i = 1, 2 and N − n1 − n2

products remain unfailed and censored at time w2. With step stress loading, an assumption

is required to represent the effect of increased stress levels on the lifetime distribution of a

test unit. The Khamis-Higgins (KH) model is appropriate. The KH model is based on a time

transformation of the cumulative exposure model. Khamis and Higins (3) have proposed this

model for multiple step-stress testing. Their c.d.f. under step-stress testing can be written as

G(t) =


1− exp

{
−
(
tk

λk1

)}
, 0 ≤ t < w1,

1− exp

{(
−w

k
1

λk1
− tk − wk1

λk2

)}
, w1 ≤ t < w2.

(D.1)

The corresponding p.d.f. is

g(t) =


k

λk1
tk−1 exp

{
−
(
tk

λk1

)}
, 0 ≤ t < w1,

k

λk2
tk−1 exp

{(
−w

k
1

λk1
− tk − wk1

λk2

)}
, w1 ≤ t < w2.

(D.2)

Then, using (D.1), (D.2) and the log-linear link in (B.4), the likelihood function of tij under

simple SSALT with Type I censoring is obtained as in (C.2) where

Ai =

ni∑
j=1

(tkij − wki−1) +
(
N −

i∑
l=1

nl
)(
wki − wki−1

)
. (D.3)

As a result, we obtain the MLEs β̂0 and β̂1 as simultaneous solutions to (C.3) and (C.4)

with Ai given in (D.3).
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Just like in the case of constant-stress testing, β̂0 and β̂1 are nonlinear functions of random

quantities and hence, inference using these MLEs are based on the asymptotic distributional

result that the vector (β̂0, β̂1) is approximately distributed as a bivariate normal with mean

(β0, β1) and variance-covariance matrix I−1
n (β0, β1).

The second partial derivatives of the maximum likelihood function are as in (C.5)-(C.7)

where Ai given in (D.3).

E Optimality Criteria

In this section, we define different optimality criteria for determining the optimal design points,

which then can be used to compare between the simple constant-stress test and step-stress test.

For the simple constant-stress testing, the focus is to determine the w1 and w2. We assumed

that the duration of each steps are all equal for simplicity of discussion; i.e. , w1 = w2 = ∆. The

equi-length assumption is also convenient for practitioners. For the simple step-stress testing,

the duration of each steps are ∆i = wi − wi−1 for i = 1, 2. With the equi-length assumption

∆1 = ∆2 = ∆. These objective functions are purely based on the Fisher information matrix.

In this paper, two optimality criteria are considered.

E.1 D-optimality

Another optimality criterion often used in planning ALT is based on the determinant of the

Fisher information matrix, which equals to the reciprocal of the determinant of the asymptotic

variance-covariance matrix. Note that the overall volume of the Wald-type joint confidence

region of (β0, β1) is proportional to |I−1
n (β0, β1)|1/2 at a fixed level of confidence. Consequently,

a smaller asymptotic joint confidence ellipsoid of (β0, β1) would correspond to a higher joint

precision of the estimators of β0 and β1. For this purpose, the D-optimal design points are

obtained by minimizing |I−1
n (β0, β1)| for the maximal joint precision of (β̂0, β̂1).

E.2 T-optimality

Another optimality criterion considered in this study is based on the trace of the first-order

approximation of the variance-covariance matrix of the MLEs. It is identical to the sum of the

diagonal elements of I−1
n (β0, β1). The T-optimality criterion provides an overall measure of the

average variance of the parameter estimates and gives the sum of the eigenvalues of the inverse of

the Fisher information matrix. The T-optimal design points minimize the trace of I−1
n (β0, β1).
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F Constrained Optimization and Cost Function

In order to conduct an ALT experiment efficiently with constrained resources in practice, stress

durations should be determined carefully at the design stage. It is because these decision

variables affect the experimental cost as well as the precision of the parameter estimates of

interest. Under the constraint that the total experimental cost does not exceed a pre-specified

budget, a typical decision problem of interest can be formulated as to optimize an objective

function of choice subject to CT ≤ CB, where CB is the total pre-specified budget and CT is the

total cost for running an ALT. In general, the total cost of test can be expressed in a simplified

form as

• The cost of setting up a life experiment, which includes the costs of facility and testing

chambers, say Cs.

• The cost of test units is N × Cu , where Cu denotes the cost of each test unit, including

the costs of manufacturing, purchasing, and/or installation.

• The cost of operating an experiment is 2∆ × Co, where Co is the operation cost in the

each step for per unit.

Therefore, the total cost of experiment is CT = Cs +NCu + 2∆Co.

Since the objective functions nonlinear functions of ∆, Matlab software can be used to find

the optimal solution. ∆⋆ is the optimal step duration.

G Numerical Results

The numerical study was conducted in order to determine the optimal design points under the

cost and time constraints.

Tables 1 and 2 present the values of the optimal step durations along with the corresponding

optimal objective functions described in the section E and total experimental cost without

and with the cost constraint, respectively. In this study proposed a simple SSALT plan with

N = 150 , x = (0.4, 0.7), β0 = 0.3 and β1 = 0.5. It is also assumed that at an appropriate

cost measurement unit Cs = 10$, Cu = 0.1$, Co = 3$. The cost constraint there is that the

maximum total experimental cost does not exceed the pre-specified budget CB = 30$.

In Table 1, it is observed that ∆∗
T < ∆∗

D in the unconstrained. This order, however, was

found to be a consequence of the specific setting chosen here and did not necessarily hold for
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another study. For this case study, the D-optimality criterion not only take more time to

complete the test, but also more expensive than the T-optimality. The T-optimality is the most

optimal design in terms of cost and duration of the test. On the other hand, both of the criteria,

have cost more than 30$; for this reason, the cost constraint 30$ used. The results are presented

in Table 2. In this table, it is observed that the cost constraint, for the both of the criteria

achieves considerable decrease the step duration. In addition, it is observed that ∆∗
T < ∆∗

D.

This is the same result with the unconstrained mode. The T-optimality is still the optimal

criterion, because it has the lowest cost and the minimum duration of the test.

Tables 3 and 4 present the values of the optimal durations, along with the corresponding

optima of each objective function and the total cost for the both of the criteria without and with

the cost constraint, for the simple SSALT. In Tables 4 and 4, it is observed that T-optimality

is an optimal plan, because it has the lowest cost and test time. Also, D-optimality lead to

the more cost and time of the test. Similar to the simple CSALT, we have ∆∗
T < ∆∗

D. In the

simple SSALT compared to the simple CSALT, the cost and duration of the test are reduced.

In addition, under the cost constraint, time and cost of the tests are reduced.

Overall, the CSALT is empirically shown to be more expensive compared to the correspond-

ing SSALT one under the unconstrained and constrained optimal situations.

H Conclusions

In this article, the optimal simple CSALT and simple SSALT were compared for the weibull

failure data under Type-I censoring. One of the objectives of this article was to quantify the

advantage of using the SSALT relative to the CSALT. A log-linear relationship was assumed

between the scale parameter and stress level, and the KH model was assumed for the effect of

changing stress levels in the SSALT. The MLEs of the regression parameters and the associated

Fisher information were derived. After obtaining the explicit cost functions, the optimal design

points were determined according to the D-optimality and T-optimality criteria based on the

information matrix under a pre-specified budget constraint. Regardless of the stress loadings,

the D-optimal design was generally found to cost the most for test completion, while the T-

optimal design was found optimal criterion. The results of the numerical study also quantified

the advantage of using SSALT compared to CSALT. It was demonstrated that the SSALT is

overall more affordable than the corresponding CSALT under the unconstrained/constrained

situations.
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Table 1: Optimal step durations and total experimental cost without the cost constraint for

simple CSALT.
Unconstrained (CB = ∞)

T-Optimality D-Optimality

Step Duration (∆∗) 1.1313 2.4223

Total Experimental Cost (CT ) 31.7878 39.5338

Table 2: Optimal step durations and total experimental cost with the cost constraint for simple

CSALT.
Constrained (CB = 30$)

T-Optimality D-Optimality

Step Duration (∆∗) 0.7823 0.8253

Total Experimental Cost (CT ) 29.6938 29.9518
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Table 3: Optimal step durations and total experimental cost without the cost constraint for

simple SSALT.
[h] c c c height

Unconstrained (CB = ∞)

T-Optimality

D-Optimality

Step Duration (∆∗)

0.9832

1.3321

Total Experimental Cost (CT )

30.8992

32.9926

Table 4: Optimal step durations and total experimental cost with the cost constraint for simple

SSALT.
Constrained (CB = 30$)

T-Optimality D-Optimality

Step Duration (∆∗) 0.3628 0.5372

Total Experimental Cost (CT ) 27.1768 28.2232
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A Introduction

Nowadays, coherent systems are appearing in different aspects of human life such as industrial

manufacturing lines, telecommunication systems etc. for various goals. In the literature of

reliability engineering, a system consisting of n components is known as a coherent system if

the structure function is nondecreasing in every component and it has no irrelevant component

(see, Barlow and Proschan, 1975).

In recent years a large number of research works have been reported in the literature to assess

the reliability and stochastic properties of coherent systems using the concept of signature. Let

X1, . . . , Xn denote the lifetimes of an n-component coherent system and let T be the system

lifetime. Under the assumption that the component lifetimes are independent and identically

distributed (i.i.d.), Samaniego (1985) defined the concept of signature to express the reliability

function of the system lifetime as a mixture of the reliability functions of the ordered lifetimes

of its components. Let X1:n, . . . , Xn:n denote the corresponding order statistics of Xi’s. Then
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the reliability function of the system lifetime can be represented as

P (T > t) =

n∑
i=1

siP (Xi:n > t), (A.1)

where si = P (T = Xi:n), i = 1, . . . , n. The probability vector s = (s1, s2, ..., sn) is called the

signature vector of the system.

In the study of the reliability and stochastic characteristics of the systems, a problem of

interest, for engineers and system designers, is to maintain the system in good working conditions

and to determine the number of spares that should be available in the depot for this purpose. The

justification for the importance of this problem arises from the fact that the failure of the system

and its unavailability may cause high costs for the users. In many complex coherent systems,

the design of the structure of the system is such that the system operates, even though a number

of components have already failed. Hence, the computation of the probability of the number

of failed components in the system, under different conditions, is important for the system

operators. These probabilities provide crucial information for preventing and maintaining the

system in optimal operating conditions. The aim of maintenance schedules is mainly to diminish

the occurrence of system failure or to change the status of a failed system to the working state.

Maintenance actions can generally be divided into two types: corrective maintenance (CM)

and preventive maintenance (PM). For a deteriorating repairable system, the CM action is

conducted upon failure to recover the system from a failure, whereas the PM action is performed

at the planned time to improve the system reliability performance.

The aim of the present research is to give some maintenance policies for a coherent system

under some partial information on the number of failures in the operating system. The system

starts to work at time t = 0 and each component may fail over the time. We consider two

conditional probabilities for an operating coherent system at time t. First we assume that the

system is working at time t and at least k components have been failed before t. Under these

assumptions, in Section 2, we compute the probability of the number of failed components in

the system. Let Nt denote the number of failed components until time t. Then, we define the

conditional probabilities

P (Nt = i | Xk:n ≤ t < T ), i = k, ..., n− 1.

In the second conditional probability, we consider the condition that exactly k components fail

at the time t1, and at time t2 (t2 > t1) the system is still operating. Under this condition the
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probability of the number of failed components, Nt2 , is as follows:

P (Nt2 = i | Xk:n ≤ t1 < Xk+1:n, T > t2), i = k, ..., n− 1.

As applications of two conditional probabilities mentioned above, two optimal maintenance

polices for coherent systems are presented in Section 3.

B The number of failed components in the system

Consider a coherent system with lifetime T , as described in Introduction Section. The system

starts to work at time t = 0 and each component may fail over the time. Suppose the system

has been inspected at time t and we observed that at least k components have been failed before

t, but the system is still working. Under this situation, the number of failed components on

[0, t], denoted by Nt, may be of interest. That is (Nt | Xk:n ≤ t < T ), k = 0, 1, ..., n− 1. Here,

by the convention, X0:n ≡ 0. Asadi and Berred (2012) have studied several properties of the

above conditional random variable in the case that k = 0.

The probability mass function of (Nt | Xk:n ≤ t < T ) can be computed as (see, Hashemi

and Asadi, 2019)

P (Nt = i | Xk:n ≤ t < T ) =
S̄i
(
n
i

)
ϕi(t)∑n−1

j=k S̄j
(
n
j

)
ϕj(t)

, i = k, ..., n− 1, (B.1)

where S̄i =
∑n
j=i+1 sj and ϕ(t) = F (t)/F̄ (t). Another interesting quantity is the expected

number of spares that are needed at time t to replace all failed components of the system:

E(Nt | Xk:n ≤ t < T ) =
n
∑n−1
i=k S̄i

(
n−1
i−1

)
ϕi(t)∑n−1

j=k S̄j
(
n
j

)
ϕj(t)

, 0 ≤ k ≤ n− 1. (B.2)

Now, it is assumed that the system is monitored in two time instances t1 and t2, (t1 < t2)

by the operator. Suppose that the total number of component failures at time t1 is k, and at

time t2 the system is still alive. Under these circumstances, we are interested in the study of the

number of failed components in the system at time t2; that is we are interested in conditional

random variable

(Nt2 | Xk:n ≤ t1 < Xk+1:n, T > t2), k = 0, 1, ..., n− 1.

The probability mass function of this conditional random variable, can be computed, for i =

k, ..., n− 1, as

P (Nt2 = i | Xk:n ≤ t1 < Xk+1:n, T > t2) =
S̄i
(
n
i

)(
i
k

)
( F̄ (t1)
F̄ (t2)

− 1)i−k∑n−1
j=k S̄j

(
n
j

)(
j
k

)
( F̄ (t1)
F̄ (t2)

− 1)j−k
.
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Hence, the mean number of failed components up to time t2 can be expressed as

E(Nt2 | Xk:n ≤ t1 < Xk+1:n, T > t2) =
n
∑n−1
i=k S̄i

(
n−1
i−1

)(
i
k

)
( F̄ (t1)
F̄ (t2)

− 1)i∑n−1
j=k S̄j

(
n
j

)(
j
k

)
( F̄ (t1)
F̄ (t2)

− 1)j
. (B.3)

C Optimal corrective and preventive maintenance models

In this section, we develop two maintenance strategies for n-component coherent systems based

on the conditional probabilities introduced in the previous section.

Strategy I

Assume that a coherent system begins to operate at time 0. A minimal repair has been performed

on each component of the system that fails in the interval (0, τ) at a cost cmin. Thus, we can

suppose that the system, consisting of n unfailed components with age τ , is alive at τ . Here, τ

is a predetermined constant. The system has been inspected at t (t > τ). The operator decides

to perform CM on the whole system at a cost ccms once the system fails in the interval (τ, t),

or to perform CM at t on the failed components of the system together with PM of all unfailed

but deteriorating ones at a cost ccm for CM and a cost cpm for PM, whichever occurs first.

The justification of this policy in the interval (0, τ) is that each component is young and

there is no need for major repair. Thus, before τ , only minimal repairs, which may not take

much time and money, are carried out.

The expected cost of minimal repairs for the whole system in a renewal cycle is

c∗min = ncminH(τ),

where H(τ) =
∫ τ
0
r(t)dt. For a more general cost structure, see, for example, Pham and

Wang (2000).

The average system maintenance cost per unit time is then defined as

ηI(t) =
ncminH(τ) + Fτ (t− τ)ccms

τ + E(min(t− τ, Tτ ))

+
F̄τ (t− τ) [E(Nt,τ | Tτ > t)(ccm − cpm) + ncpm]

τ + E(min(t− τ, Tτ ))
,

where Fτ (·) denotes the distribution function of the lifetime of a system consisting of n compo-

nents of age τ and E(Nt,τ | Tτ > t) is the expected number of failed components of alive system

at t when all components are functioning at τ , (τ < t). It can be easily shown that

F̄τ (t− τ) =
n−1∑
j=0

S̄j

(
n

j

)(
1− F̄ (t)

F̄ (τ)

)j (
F̄ (t)

F̄ (τ)

)n−j
,
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and

E(min(t− τ, Tτ )) =

∫ t−τ

0

[1− Fτ (x)]dx.

Also, we can obtain

E(Nt | T > t) =
n
∑n
i=2 S̄i−1

(
n−1
i−2

)
ϕi(t)∑n

j=1 S̄j−1

(
n
j−1

)
ϕj(t)

.

By substituting ϕ(t) with
(
F̄ (τ)
F̄ (t)

− 1
)
, we may obtain the corresponding formula for E(Nt,τ |

Tτ > t).

Now, let us assume that minimal repair takes negligible time, CM combined with PM takes

w1 time units and CM on the whole system at time t takes w2 time units. The stationary

availability for Strategy I is given by

AI(t) =
τ + E(min(t− τ, Tτ ))

τ + E(min(t− τ, Tτ )) + w1F̄τ (t− τ) + w2Fτ (t− τ)
.

Consider the bridge system whose components lifetimes are i.i.d. having Weibull distribution

with reliability function F̄ (t) = exp{−t2}, t ≥ 0. It is known that the system signature is

(0, 0.2, 0.6, 0.2, 0). In Table 1, the optimal times t∗ that minimize the expected cost per unit of

time and ηI(t
∗) are presented for several time instants τ . We observed that the optimal value

for the pair (τ, t∗) is (1.596, 1.60735), which results in the minimum maintenance cost 8.80022.

Figure 1 shows the two-dimensional plot of the cost function in terms of (τ, t) for cmin = 0.5,

ccms = 25, ccm = 2 and cpm = 1. Also, in Figure 2(a), the graph of ηI(t) is presented for

different values of τ , and the above mentioned costs. Figure 2(b) depicts the plots of AI(t) for

w1 = 0.08 and w2 = 0.2 and for different values of τ . As the plots show, the system availability

first increases to achieve its maximum and then decreases.

Figure 1: The average system maintenance cost per unit time in Example C.

Strategy II

Assume that a new coherent system starts to work at time 0. Suppose that the system has been

inspected at two time instants t1 and t2, t1 < t2. If the system has failed before t1, then the

129



Table 1: Optimal maintenance time for cmin = 0.5, ccms = 3, ccm = 2 and cpm = 1.

τ t∗ ηI(t
∗)

0.100 0.46754 15.98490

0.500 0.60056 12.07660

1.000 1.02629 9.38755

1.500 1.51255 8.81008

1.595 1.60636 8.80021

1.596 1.60735 8.80022

1.598 1.60932 8.80023

1.700 1.71026 8.81158

2.000 2.00795 8.94730

Figure 2: (a) The average system maintenance cost per unit time in Example C: τ = 0.1, 0.3, 0.5

from up to down, (b) The stationary availability in Example C: τ = 0.1, 0.3, 0.5 from up to

down.

operator decides to perform a CM on the whole system at a cost ccms as soon as the system

fails. He/she performs the same action if the system has failed during the time interval (t1, t2).

On the other hand, if the system is functioning at t2, the operator decides to perform three

different actions: (a) If the number of failed components Nt1 at t1 is at most (k1 − 1), the

operator performs a PM on the whole system at a cost cpms; (b) If k1 ≤ Nt1 ≤ k2, then he/she

decides to perform CM on the failed components of the system together with PM of all unfailed

but deteriorating ones at a cost ccm for CM and a cost cpm for PM, respetively; (c) If Nt1 is at

least (k2 + 1), then the operator decides to perform a more rigid PM on the system (than Case

(a)) at a cost c∗pms. In this strategy, we assume that t2 is the decision variable, while t1, k1 and

k2 are some fixed constants.
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The average system maintenance cost per unit of time is

η(t2) =
D(t2)

E(min(t2, T ))
,

where

D(t2) = ccmsP (T ≤ t2) + cpmsP (T > t2, Nt1 ≤ k1 − 1)

+ [(ccm − cpm)E(Nt2 | k1 ≤ Nt1 ≤ k2, T > t2) + ncpm]

× P (T > t2, k1 ≤ Nt1 ≤ k2) + c∗pmsP (T > t2, Nt1 ≥ k2 + 1).

In a special case where k1 = k2 = k, D(t2) may be reduced to

D(t2) = ccmsP (T ≤ t2) + cpmsP (T > t2, Nt1 ≤ k − 1)

+ [(ccm − cpm)φ(t1, t2) + ncpm]P (T > t2, Nt1 = k)

+ c∗pmsP (T > t2, Nt1 ≥ k + 1),

where, from (B.1),

φ(t1, t2) = E(Nt2 | Xk:n ≤ t1 < Xk+1:n, T > t2)

=
n
∑n−1
i=k S̄i

(
n−1
i−1

)(
i
k

) ( F̄ (t1)
F̄ (t2)

− 1
)i

∑n−1
j=k S̄j

(
n
j

)(
j
k

) ( F̄ (t1)
F̄ (t2)

− 1
)j .

Also

P (T > t2, Nt1 < k − 1) =
k∑
i=1

si

i−1∑
j=0

(
n

j

)
F j(t2)F̄

n−j(t2)

+
n∑

i=k+1

si

n∑
m=n−i+1

n∑
l=max(m,n−k+1)

(
n

l

)(
l

m

)
Fn−l(t1)

×(F̄ (t1)− F̄ (t2))
l−mF̄m(t2)

and

P (T > t2, Nt1 ≥ k + 1) =
n∑

i=k+2

si

i−1∑
j=k+1

n−k−1∑
m=n−i+1

(
n

m

)(
n−m

j

)
F j(t1)

× (F̄ (t1)− F̄ (t2))
n−j−mF̄m(t2).

On the other hand,

P (T > t2, Nt1 = k) =

n∑
i=k+1

si

i−1∑
j=k

(
n

j

)(
n

k

)
F k(t1)F̄

n−j(t2)(F̄ (t1)− F̄ (t2))
j−k.

131



Also, we may obtain

P (T < t2) = 1−
n−1∑
j=0

S̄j

(
n

j

)
F j(t2)F̄

n−j(t2).

Consider again the bridge system, where the component lifetimes are i.i.d. having Weibull

distribution with reliability function F̄ (t) = exp{−t2}, t ≥ 0. Figure 3 shows the plot of η(t2) for

t1 = 0.5, c∗pms = 20, ccms = 20, cpms = 5, ccm = 2 and cpm = 1 and different values k = 1, 2, 3.

In Table 2, the optimal times t∗2 and η(t∗2) are presented for different values of ccms and cpm.

As expected, when ccms increases (cpm decreases) then t∗2 decreases.

Figure 3: The average maintenance cost per unit time in Example C.

Table 2: Optimal maintenance time for Strategy II with t1 = 0.5, k = 1.

ccm = 2, cpms = 5, c∗pms = 20

cpm = 1 ccms = 20

ccms t∗2 ηIII(t
∗
2) cpm t∗2 ηIII(t

∗
2)

10 1.3000 11.6949 0.6 0.6465 17.8146

15 0.8010 15.8536 1.0 0.6774 18.5673

20 0.6774 18.5673 1.5 0.7159 19.3944

25 0.6101 20.6165 2.0 0.7545 20.1078
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Condition-based Maintenance Strategy Based on the
Inverse Gaussian Degradation Process
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Iran

Abstract: In this study a condition based maintenance (CBM) considering for a single unit

system with two competing causes, degradation-based failure and shock-based failure. Inverse

Gaussian process (IG) utilized to describe the degradation behavior of this system and External

shocks arriving at random times according Non-homogeneous poisson processes (NHPP). To

increasing the life time of the system, an imperfect maintenance performed. The main objective

of this study is to minimize the expected cost per unit time by consider a relationship between

the degradation level after imperfect maintenance and the cost of this action. This relationship

can be linear and non-linear. Finally a numerical example introduced to describe the proposed

maintenance policy.

Keywords Inverse Gaussian process, External shocks, Condition-based maintenance, Imperfect

maintenance.

Mathematics Subject Classification (2010) : 90B25.

A Introduction

All industrial systems suffer from inevitable failures over the time. This failures can be very

costly for a company. So, Nowadays maintenance has played an important role in industry

because an effective maintenance programme could minimize the maintenance cost. Generally

maintenance divided into two tasks, Preventive maintenance and Corrective maintenance. Sys-

tem can failed by two competing causes degradation and random shocks. In these systems,

a failure occur when the degradation levels exceed a critical threshold. Wiener (7), Gamma

(4)and Inverse Gaussian process ((9),(5),(1)) are most popular process to describe the degrada-

tion behavior of a system. In addition systems suffer from fatal shocks. These shocks arriving

at random times according non-homogeneous poisson process (NHPP) and lead system to fail
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immediately. Degradation-Threshold-Shock (DTS) models have widely use for systems with two

causes for failed. For example (6) proposed a system subject generalized mixed shock.

Imperfect maintenance action widely use to reduced the expected cost per unit time by

considering stochastic process as like as wiener process ((10),(3)), gamma process ((2),(4)) and

Inverse gaussian process (1).

In this study a single unit system is considering with two competing causes of failures, i.e.,

degradation and shock. Inverse gaussian process (IG) used to describe the degradation behav-

ior of this system and external shocks arriving at random times according Non-homogeneous

poisson processes. This shocks are fatal so they can cause the system to fail immediately. Both

perfect and imperfect maintenance are considering for this system. We try to find an opti-

mal degradation levels after imperfect maintenance by determined a relationship between the

expected degradation reduction and the cost of the imperfect maintenance.

The rest of the paper is organized as follows. Section B discribes the failure behavior of

the system. Section C introduced the proposed maintenance policy and section D a numerical

example describe the proposed maintenance policy.

B System description

B.1 Degradation behaviors

The degradation behavior is modeled based on Inverse gaussian process with shape and scale

parameters given by µ and λ, (µ, λ > 0). Inverse gaussian process has the following properties.

1. X(0)=0, whit probability one.

2. Inverse gaussian process has independent increment.

3. Each increment follow Inverse gaussian distribution X(t + h) − X(t) ∼ IG(µh, λh2), for

h ≥ 0. Probability density function (PDF) of IG(µh, λh2) is defined by:

fX(t)(x) =

√
λh2

2πx3
exp

{
− λh2(x− µh)2

2(µh)2x

}
. (B.1)

So, Inverse gaussian process has mean µh and variance µ3h
λ .

B.2 External shocks

In addition internal-based degradation, systems suffer from external shocks. This shocks are

fatal and the system can fail immediately. External shocks arriving at random times according
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Non-homogeneous Poisson Processes. ν(t) denote the occurrence rate of a shock and intensity

function is:

Λ(t) =

∫ t

0

λ(x)x. (B.2)

If Ts denote the random time to an external shock the cumulative distribution function (CDF)

of Ts can be written as

FTs(t) = 1− exp

{
−
∫ t

0

ν(y)y

}
. (B.3)

C Maintenance policy

We consider a single unit system that can fail by two competing causes, degradation and random

shock. The basic assumptions of the system are following:

a) System subject periodic inspections every T time to determine degradation levels and the

state of a system. These Inspections are assumed to instantaneous and perfect.

b) System is non-self announced so, If a failure occurred the system stopped until next in-

spection.

c) At an inspection if degradation level exceeded a critical threshold L or a fatal shock is

detected, then a corrective replacement performed and system replaced by a new one.

e) We assume yik is the degradation level after kth imperfect maintenance, ∆ is imperfect

maintenance threshold and M is preventive maintenance threshold. At an inspection if

degradation level is between (M,L),then If M − yik ≤ ∆ a perfect preventive replacement

performed and system replaced by a new one. If M − yik > ∆ an imperfect preventive

replacement performed and degradation level reduce to yik by cost Ckp .

f) At an inspection if degradation level is less thanM then no preventive actions is performed.

g) The cost of maintenance actions for this system are: The corrective replacement action

cost Cc; the perfect preventive replacement action cost Cp; the k
th imperfect preventive

replacement action cost Ckp ; the expected downtime cost Cdown; the inspection cost Cins.

It is assumed that

Cc > Cp ≥ Ckp > Cdown > Cins

.
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C.1 Imperfect maintenance action

According imperfect maintenance actions system can divide into three parts such as initial part,

middle part and final part. The initial part started at time 0 with degradation level 0 and

ended with first imperfect maintenance. The length of this part could be 0 if the system failed

before first imperfect maintenance. The middle part started at an imperfect maintenance until

next imperfect maintenance. The length of this part can be 0 to infinity. At the end, final part

started from last imperfect maintenance until a corrective maintenance or a preventive main-

tenance occurred. There are three possible scenarios for replacement system at the final part,

preventive replacement, corrective replacement due to degradation and corrective replacement

due to external shock.

In this way kth imperfect maintenance performed at inspection ik and degradation level

reduce to a level yik (yi(k−1)
< yik < M), clearly i0 = 0 and yi0 = 0.

Figure 1 has shown this reduction for a system that replaced by a preventive maintenance.

Figure 1: Impact of imperfect maintenance on degradation level

The number of imperfect maintenance is not known in this study, it‘s depend on system

situation, in fact an imperfect maintenance performed if and only if the degradation level is

between (M,L) and M − yik > ∆. The degradation level after kth imperfect maintenance can

be written as:

yik = γ + (k − 1)

(
Xik

L

)α
. (C.1)

In this equation Xik is degradation level before imperfect maintenance. This reduction has

performed based on a relationship between degradation reduction and the cost of imperfect
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maintenance. This relation can be linear so:

Ckp = C0
pU(ik) + β(k − 1), (C.2)

or non-linear that can be written as:

Ckp = C0
p(U(ik))

η + β(k − 1). (C.3)

In above equations U(ik) is the degradation improvement factor and is given by:

U(ik) =

(
Xik − yik
Xik

)
(C.4)

Also C0
p is a constant cost for imperfect maintenance action when the degradation level of the

system is reduced to 0 at the first time that imperfect maintenance action occured. Therefore,

when yi1 = 0 the imperfect maintenance cost is constant C1
p = C0

p = Cp.

If K is the number of last imperfect maintenance action, So the following relationshipes

exists for yik :

yi0 ≤ yi1 ≤ · · · ≤ yiK ,

and for imperfect maintenance cost:

C0
p ≥ C1

p ≥ · · · ≥ CKp .

Figure 2 has shown the impact of imperfect maintenance cost function on the degradation

improvement factor that can have three different shapes.

Figure 2: Impact of imperfect maintenance cost function

According above assumptions the decision process has shown by algorithm C.1 [h!] Decision

process [1] Giving degradation and shock parameters
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L,M, T, γ,∆, η

k = 0; ik = 0;X(0) = 0; yik = 0 Monitor the system at ik ∗ T X(ik) ≥ L OR ik ∗ T ≥ Ts

Corrective replacement k = 0 and X(i0) = 0 M ≤ X(ik) < L M − yik ≤ ∆ Preventive

replacement k = 0 and X(i0) = 0 M − yik > ∆ imperfect maintenance k = k + 1 yik =

γ + (k − 1)

(
Xik

L

)α
Ckp = C0

p

(
Xik

−yik
Xik

)η
+ β(k − 1) X(ik) = yik X(ik) < M ik = ik + 1 Go to

line 2

C.2 Cost optimization

According the proposed maintenance policy the expected cost per unit time of the system is

given by:

C(T,M, γ, α) =
CcPc + CpPP + CinsE[Nins] + CdownE[Tdown] + E[

∑∞
k=0 C

k
p ]

E[Nins]T
(C.5)

In this equation Pc is the probability of corrective replacement, Pp probability of preventive

replacement, E[Nins] the expected number of inspections, E[Tdown] the expected downtime and

E[
∑∞
k=0 C

k
p ] the expected imperfect maintenance cost.

So to minimize the expected cost per unit time we try to determine the optimal value of the

decision variation. In fact we try to find

C∗(T,M, γ, α) = inf{C(T,M, γ, α);T ≥ 0, 0 < γ < M < L,α ≥ 0}. (C.6)

The artificial bee colony (ABC) algorithm is used to detemine the optimal variables.

D Simulation study

The proposed maintenance policy is simulated. We consider Inverse gaussian process to describe

degradation process by scale parameter µ = 0.5 and shape parameter λ = 5 so each increment

follows

X(t) ∼ IG(0.5t, 5t2)

Shock process occurred based on Non-homogeneous poisson processes and the occurrence rate

of a shock is given by:

ν(t) = 0.019t0.72

Table 1 has shown the cost values for maintenance actions.
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Table 1: Maintenance actions cost

Cc Cp C0
P Cdown Cins β

1000 800 800 400 100 3

And critical threshold for a failure due to initial degradation is L = 20, imperfect maintenance

threshold is ∆ = 0.5. Table 1 has shown the expected cost per unit time based on the proposed

maintenance policy and optimal variables for different η.

Table 2: Optimal maintenance policy with different η.

η T ∗ M∗ γ∗ α∗ Expected cost

1.5 3.22 17.56 1.29 4 148.0494

1 3.06 17.92 2.27 5 148.2259

0.3 2.95 18.14 8.22 3 148.2823
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Abstract: In this paper, statistical inference for the reliability of stress-strength models when

stress and strength are independent discrete Weibull random variables is discussed. The so called

proportion method estimator of model is studied and is compared with maximum likelihood

(ML) estimator. Also, based on simulation, the root mean square error (RMSE) and the relative

bias (RB) of the estimator of R = P (X < Y ) and its variance are computed and compared.

Furthermore, we have provied a confidence interval for R as well as its coverage rate. Keywords

Discrete Weibull distribution, Stress-Strength model, Maximum likelihood estimator.
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A Introduction

Stress-Strength models are one of the key issues in reliability and many other sciences. If Y

represents the strength of a certain system and X the stress on it, R = P (X < Y ) represents the

probability that the strength overcomes the stress, and then the system works (R is then referred

to as the reliability parameter). Stress-Strength model in the last decades has attracted much

interest from various fields (8; 12), ranging from engineering to biostatistics. Most research in

this area is carried out for continuous distribution and less work is done for discrete case.

Among the recent works on continuous case, one can refer to the works of Kzlaslan (14),

Chaudhary and Tomer (6), Bai et al. (2; 3), Eryilmaz (7), Wang et al. (21), Yadav and Singh

(22) and Cetinkaya and Gen (5).

The majority of papers that study estimation of R deal with continuous probability distribu-

tions. However, in some real-life situations stress or strength can have the discrete distribution.

For example, this is the case when the stress is the number of the products that customers want

to buy and the strength is the number of the products that factory produces. The number

of cars that passes crossroads for a specified period of time has the Poisson distribution and

1Mahna Imani: mahnaimani@birjand.ac.ir



the number of interviews an employer needs to conduct until he finds a suitable candidate for

a vacant position follows the geometric distribution. These are also examples of the discrete

stress.

Ahmad et al. (1) and Maiti (15) considered the case when X and Y were from the geometric

distribution. The negative binomial distribution was studied by Ivshin and Lumelskii (9) and

Sathe and Dixit (19). Recently, the case when X is from the geometric distribution, and Y is

from the Poisson distribution was investigated by Obradovic et al. (17). Also Jovanovic (10)

has study the estimation of P{X < Y } for geometric-exponential model based on complete and

censored samples.

In reliability and lifetime analysis, the bathtub shaped hazard rate function is widely used

in many applications and lifetime analysis and Weibull distribution is of those distributions

that has bathub shaped hazard rate function. In discrete lifetime distributions, Nakagawa and

Osaki (16), Stein and Dattero (20), and Padgett and Spurrier (18) proposed three different

discrete versions of the Weibull distribution which were further studied by Khan et al. (11) and

Kulasekera (13).

The probability mass function (pmf) and cumulative distribution function (CDF) of type I

discrete Weibull distribution (denoted with DW (q, β)) which was first introduced by Nakagawa

and Osaki (16) are:

f(x) = q(x−1)β − qx
β

x = 1, 2, · · · ; 0 < q < 1, β > 0, (A.1)

F (x) = 1− qx
β

, (A.2)

respectively.

B Point Estimators of R

Let X and Y be two independent random variable with CDF, F (x) and G(y) which denoting

stress and strength respectively andX ∼ DW (q1, β1) and Y ∼ DW (q2, β2). Then, the reliability

R = P (X < Y ) of the stress-strength model is given by

R = P (X < Y ) =

∞∑
t=1

(1−G(t))f(t)

=
∞∑
t=1

qt
β2

2 (q
(t−1)β1

1 − qt
β1

1 )

= lim
k→∞

k∑
t=1

qt
β2

2 (q
(t−1)β1

1 − qt
β1

1 ). (B.1)
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Reliability can be actually computed taking into account only its first terms. As an example,

we compute the reliability R when β1 = β2 = β and q1, q2, β and k take different values. Some

parts of the results are shown in Table 1. As it is seen, the value of R is already stable at the

6th decimal digit when β > 1 and k = 4. So, for β > 1, we can use the closed approximation

form of reliability parameter as follow,

R ≈
4∑

x=1

q2
xβ2

(q1
(x−1)β1 − q1

xβ1
). (B.2)

Also, for estimating the parameters with method of moments (MM), we have

E(X) =
∞∑
x=1

qx
β

,

E(X2) = 2
∞∑
x=1

xqx
β

+ E(X).

So, we have to equate the population moments to the corresponding sample moments and then

solve the two equations simultaneously for q and β. But since E(X) and E(X2) have not

closed form the equations cannot be solved by ordinary techniques. Furthermore, for method of

maximum likelihood (ML) the log-likelihood function is,

logL =
n∑
i=1

log{q(xi−1)β − qxi
β

}.

Equating the partial derivatives with respect to q and β to 0 yields equations which again cannot

be solved easily. Barbiero (4) has presented an R software package named ”DiscreteWeibull”

which can estimate the parameters of discrete Weibull distribution with MM and ML methods.

Khan et al. (11) have proposed a simple method of estimating the parameters and call it

the method of proportions. If y denotes the number of 1’s in the sample of size n from discrete

Weibull distribution, then using the fact that f(1) = P (X = 1) = 1− q, we have

q̃ = 1− y

n
, (B.3)

and similary if z is the number of 2’s in the sample, then by using f(2) = P (X = 2) = q − q2
β

and (B.3), we have,

β̃ = log{log (1− y/n− z/n)/ log (1− y/n)}/ log 2. (B.4)

It is well-known that an empirical CDF is an unbiased and consistent estimator of the actual

CDF. Here q̃ = 1 − y
n is an empirical estimate of q = P (X > 1) and consistent estimator of q

and we have similar results for β̃.
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To compare the above estimates, we first generate two random samples of sizes n1 and n2

from discrete Weibull distribution, then based on (B.2), the MLE of R (R̂) and the estimate of

R based on (B.3) (R̃) are computed for different sample sizes. Table 2 shows the consequence.

As the results show, the difference between two estimators are tolerable.

C Variance of the Estimators and Confidence Interval

Whereas the exact value of the variance or the mean square error of either estimator introduced,

is almost impracticable to derive, an approximate value can be easily supplied recalling the delta

method. Considering the use of the delta method, we have

V ar(R̃) ≈
[
∂R̃/∂q̃1, ∂R̃/∂q̃2

] V ar(q̃1) Cov(q̃1, q̃2)

Cov(q̃1, q̃2) V ar(q̃2)

∂R̃/∂q̃1
∂R̃/∂q̃2

 ,
where

V ar(q̃1) =var(1− y/n1)

=q̃1(1− q̃1),

V ar(q̃2) =var(1− y/n2)

=q̃2(1− q̃2).

Since X and Y are independent Cov(q̃1, q̃2) = 0, then,

V ar(R̃) ≈
(
∂R̃/∂q̃1

)2
V ar(q̃1) +

(
∂R̃/∂q̃2

)2
V ar(q̃2)

Once one has computed V ar(R̃), an approximate (1 − α) 100 % confidence interval for R can

be built, recalling the asymptotic normality of R,(
R̃+ zα/2

√
V ar(R̃), R̃+ z1−α/2

√
V ar(R̃)

)
Since R is bounded in [0, 1], the corrected lower and upper bounds are,(

max

(
0, R̃+ zα/2

√
V ar(R̃)

)
,min

(
1, R̃+ z1−α/2

√
V ar(R̃)

))

D Simulation study

For each couple (q1, q2) and fixed β = 2, a huge number (B = 1000) of samples X of size n1 and

Y of size n2 are drawn from DW (q1, 2) and DW (q2, 2) independently. Different and unequal
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sample sizes are here considered. The empirical estimators are computed on each sample, their

approximate variances are calculated, and the corresponding 95 % confidence intervals for R

are built. In more detail, the root mean square error (RMSE) and the percentage relative bias

(RB) of the estimator are provided by,

RMSE(R̃) =

√√√√ 1

B

B∑
s=1

(R̃(s)−R)2,

RB(R̃) =

(
(1/B)

∑B
s=1 R̃(s)−R

)
R

· 100,

where R̃(s) denotes the value of R̃ for the sth sample. Also, the approximation of the variance

of the estimator is computed via,

V̂ ar(R̃) = E

[(
R̃− ¯̃R

)2]
,

where ¯̃R =
∑B
s=1 R̃(s)/B. Table 3 shows the true variance of R̃, (V ar(R̃)) and its approxiamtion

for different values of parameters and sample sizes.

The results show the accuracy of the estimators. Table 4 presented the root mean square

error (RMSE) and the relative bias (RB) of the estimators of R and its variance.

Also, Figure 1 shows the behaviour of the RMSE based on the different values of R and

sample sizes. According to the results with increasing sample size value of RMSE decreases.

The coverage rate of the confidence interval is simply defined as follows,

CR =
1

B

B∑
s=1

I

[
R̃(s) + zα/2

√
V ar(R̃(s)) ≤ R ≤ R̃(s) + z1−α/2

√
V ar(R̃(s))

]
,

where I(E) is the indicator function, taking value 1 if E is true and 0 otherwise. The length of

the confidence interval is then equal to 2z1−α/2

√
V ar(R̃(s)).

Table 5 shows the coverage rate of the confidence interval for different values of parameters

and sample sizes. It can be easily understood that increasing sample size cause increases real

percentage. The simulation result are presented in the below table.
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Table 1: The convergence of series (B.1) for different values of parameters and k

R

β q1 q2 k = 2 k = 3 k = 4 k = 20 k = 50

0.5 0.2 0.6 0.527254 0.5442277 0.5519919 0.562267 0.5623231

2 0.5 0.8 0.5792 0.5873265 0.587381 0.5873811 0.5873811

3 0.7 0.9 0.5465115 0.5498599 0.5498599 0.5498599 0.5498599

3 0.3 0.3 0.2100197 0.2100197 0.2100197 0.2100197 0.2100197

4 0.7 0.8 0.2596097 0.2596097 0.2596097 0.2596097 0.2596097

Table 2: Comparing the ML estimator (R̂) and estimator based on method of proportions (R̃)

n2 n1 R̃ R̂ diff

10 10 0.587381 0.5184652 0.06891

10 50 0.9987037 0.9215955 0.077

10 100 0.5198944 0.5137716 0.0061

10 1000 0.8037962 0.8055314 -0.0017

100 50 0.5458164 0.518862 0.027

100 100 0.6655324 0.6740383 -0.0085

100 1000 0.516161 0.5392271 -0.023

Table 3: The true variance of estimator of R (V ar(R̃)) and its bootstrap approximation

(V̂ ar(R̃))

(n1, n2, q1, q2) V ar(R̃) V̂ ar(R̃)

(10, 10, 0.8, 0.6) 0.02043607 0.02534769

(10, 20, 0.8, 0.6) 0.01305601 0.01381681

(10, 50, 0.8, 0.6) 0.009513626 0.01041398

(20, 50, 0.6, 0.3) 0.001997601 0.001921655

(50, 50, 0.6, 0.3) 0.001322801 0.001171524
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Table 4: The root mean square error (RMSE) and the relative bias (RB) of the estimators of

R and its variance

R = 0.8 R = 0.7 R = 0.6 R = 0.5

(n1, n2) = (10, 10)

RB(R̃) 1.395774 2.195337 7.773502 5.166667

RB(V (R̃)) -1.601882e-15 -7.10597e-15 -5.813333e-15 -7.220954e-15

RMSE(R̃) 0.1717109 0.1894999 0.2125658 0.2343813

RMSE(V (R̃)) 0.01931855 0.01756745 0.01618998 0.02455306

(n1, n2) = (10, 50)

RB(R̃) -1.211659 0.2836987 1.495738 -5.449599

RB(v(R̃)) 1.219214e-14 -1.503061e-15 5.004339e-15 6.370609e-15

RMSE(R̃) 0.09928318 0.1060792 0.1203305 0.1489042

RMSE(v(R̃)) 0.005752886 0.006123595 0.004949186 0.008004615

(n1, n2) = (50, 50)

RB(R̃) -0.5644108 0.7567041 3.351207 -0.258137

RB(v(R̃)) 2.921723e-15 8.362234e-16 -2.476251e-15 -3.423953e-15

RMSE(R̃) 0.07974157 0.08697079 0.09353506 0.09945494

RMSE(v(R̃)) 0.00172438 0.001253519 0.001019633 0.001823376
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Figure 1: The RMSE of estimmator of R
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Table 5: The coverage rate (CR) of confidence interval for R

(n1, n2, q1, q2) CR

(10, 10, 0.8, 0.6) 0.795

(10, 20, 0.8, 0.6) 0.832

(10, 50, 0.8, 0.6) 0.872

(20, 50, 0.6, 0.3) 0.909

(50, 50, 0.6, 0.3) 0.924
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Abstract: In this paper we consider to construct confidence interval for the stress-strength

reliability parameter under the gamma distribution. A generalized pivotal quantity is proposed

for this parameter and a Monte Carlo simulation approach is given to obtain a generalized

confidence interval. This approach is illustrated using a real data set.
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A Introduction

For two independent random variables X and Y , the stress-strength reliability model is defined

as R = P (X > Y ). In engineering, this model has very application and X is considered as

strength of a structure and Y is considered as the stress imposed on it. The system fails if

the stress exceeds the strength. In medicine, let X represents the response for a control group

and Y represents the response for a treatment group. In biology, this probability is useful in

estimating heritability of a generic trait. For other applications, see (10).

The term stress-strength was first introduced by (4) and various distributions of X and Y are

considered in the literature, for example exponential, normal and Weibull distributions. When

both X and Y have gamma distributions, (7) paid to estimate of the stress-strength reliability

parameter. Bootstrap estimators and confidence intervals are proposed by (5; 6). When the

shape parameters are known, the uniformly minimum variance unbiased estimator (UMVUE)

of R is obtained by (9). Some normal-based approaches for inference on R is proposed by (12).

In this paper, using the concept of generalized pivotal quantity (GPQ) introduced by(14),

we propose a generalized confidence interval (GCI) for the parameter R when both X and Y

have gamma distributions, and the shape and scale parameters are unknown.

1Javad Shaabani: javadshaabani@gmail.com



The paper is organized as follows. In Section 2, some properties of gamma distribution are

reviewed. In Section 3, a GCI is presented for the stress-strength reliability parameter in gamma

distribution. In Section 4, the proposed approach is illustrated using a real example.

B Properties of gamma distribution

The gamma distribution with shape parameter α and scale parameter λ has the probability

density function

fX (x) =
xα−1λαe−λ x

Γ (α)
, x > 0, α > 0, λ > 0,

where Γ (.) is the gamma function. It is denoted by Ga (α, λ).

Let X1, . . . , Xn be a random sample of size n from Ga (α, λ). The likelihood function can

be written as

L(α, λ) =
λnα

[Γ (α)]
n x̃

n(α−1)e−λ nx̄,

where x̄ and x̃ are the observed values of X̄ and X̃, respectively, which denote the arithmetic

and geometric means of the random samples, i.e. X̄ =
∑n
i=1Xi/n and X̃ = (

∏n
i=1Xi)

1/n
.

When the both parameters are unknown, the maximum likelihood estimator (MLE) of λ is

λ̂ = α̂
X̄
, but the MLE of α does not have closed form and can be obtained by using numerical

methods (3). An approximation to α̂ is given by

α̂ ≈
3 + T +

√
(T + 2)

2 − 24T

−12T
,

Where T = log(W ) and W = X̃
X̄

(11).

In the following Lemma some properties of statistics in gamma distribution. For more details

see (1; 13).

Lemma1:

1. X̄ and W are jointly sufficient and complete statistics for the vector parameters (α, λ).

2. The distribution of W does not depend on λ.

3. The statistics X̄ and W are independent random variables.

4. nX̄ ∼ Ga (nα, λ) and 2nλX̄ ∼ χ2
(2nα).
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5. the ith cumulant of T is given by

κ1 (α) = log(n) + ψ (α)− ψ (nα) ,

κi (α) =
1

ni−1
ψ(i−1) (α)− ψ(i−1) (nα) , i = 2, 3, . . . ,

where ψ(α) is the digamma function and ψ(k)(α) is the kth derivative of ψ(α).

C Inference on stress-strength reliability

Let X and Y are independent continuous random variables. Then, the stress-strength reliability

R is calculated as

R = P (Y < X) =

∫ +∞

0

FY (x) fX (x) dx,

where fX is probability density function (pdf) of X and FY is cumulative distribution function

(cdf) of Y . Now, consider X and Y are the independent random variables such that X ∼

Ga(α1, λ1) and Y ∼ Ga (α2, λ2). Therefore, the parameter R can be expressed as

R =
λα1
1

Γ (α1) Γ (α2)

∫ +∞

0

γ (α2, λ2x) x
α1−1e−λ1xdx := R(α1, λ1, α2, λ2), (C.1)

where γ(., .) is lower incomplete gamma function.

In especial case, if α2 = 1, the stress-strength reliability parameter in (C.1) becomes to

R =
λα1
1

Γ (α1)

∫ +∞

0

[
1− e−λ2x

]
xα1−1e−λ1xdx = 1−

(
λ1

λ1 + λ2

)α1

.

If αi =
ni

2 , i = 1, 2, where ni’s are integer values, then, the reliability parameter R is given by

R = 1− F2α1,2α2 (α2λ1/(α1λ2)) ,

where F2α1,2α2 denotes the cdf of F distribution with 2α1 and 2α2 degrees of freedom. See (5).

If α1 is an integer, then R can also be expressed as

R =

α1−1∑
j=0

Γ (j + α2)

Γ (j + 1)Γ (α2)
(

ρ

1 + ρ
)
α2

(
1

1 + ρ
)
j

,

where ρ = λ2

λ1
(9).

The concepts of GPQ and GCI are introduced by (14). These are explained as follow. For

details see (15).
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Let X be a random vector whose distribution depends on the vector of parameters (θ,η)

where θ is the parameters of interest and η is the vector of nuisance parameters. Furthermore,

let x be the observed value of X.

Definition. A GPQ for θ, to be denoted by T (X; x; θ, η), is a function of X, x, θ and η, and

satisfies the following conditions:

(i) The distribution of T (X; x; θ,η) is free of all unknown parameters.

(ii) The observed value of T (X; x; θ,η), i.e., tobs=T (x; x; θ,η) is free of the nuisance pa-

rameters η.

If tobs equals to the parameter of interest θ, then the GPQ is called the fiducial GPQ. In

this case, a two-sided equally tailed 100(1 −γ)% GCI for θ is given by (Tγ/2, T1−γ/2) where Tτ

is τth percentile of the distribution of T . It is proved that the GCIs based fiducial GPQs have

asymptotically correct frequentist coverage probability (8).

Using Cornish–Fisher expansion, (13) obtained the approximate GPQs for the parameters

of gamma distribution. Consider

h (α) = κ1 (α ) + [κ2 (α )]
1/2

Q (α, U)− t,

where U ∼ U (0, 1) , κi(θ ) is the ith cumulant of T , t is observed value of T and

Q (α, γ) = zγ +
1

6
κ′3 (α)

(
z2γ − 1

)
+

1

24
κ′4 (α)

(
z3γ − 3zγ

)
− 1

36
[κ′3 (α)]

2 (
2z3γ − 5zγ

)
+

1

120
κ′5 (α)

(
z4γ − 6z2γ + 3

)
− 1

24
κ′3 (α)κ

′
4 (α)

(
z4γ − 5z2γ + 2

)
+

1

324
[κ′3 (α)]

3 (
12z4γ − 53z2γ + 17

)
,

where κ′i (α) = κi (α)/[κ2 (α)]
i/2
, i = 2, 3, 4, 5, and zγ is the γ quantile of the standard normal

distribution N(0, 1).

Let Tα be the solution of h (α) = 0. When n ≥ 5 and zγ ≤ 4, (13) showed that h(α)

is a strictly increasing function of α. Therefore, the solution of h (α) = 0 is unique and can

be obtained by the bisection method. Therefore, Tα is an approximate GPQ for α. Define

Tλ = V
2nx̄ where V ∼ χ2

(2nTα), and x̄ is observed value of X̄. Therefore, based on Lemma 1, Tλ

is GPQ for λ.

Suppose X1, . . . , Xn is a random sample from the strength population and Y, . . . , Ym is a

random sample from the stress population such that Xi ∼ Ga(α1, λ1) and Yj ∼ Ga(α2, λ2).
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Consider

T1 = log

(
X̃

X̄

)
, T2 = log

(
Ỹ

Ȳ

)
,

where X̄ =
∑n

i=1Xi

n , X̃ = (
∏n
I=1Xi)

1/n
, Ȳ =

∑n
j=1 Yi

m , Ỹ = (
∏m
j=1Xj)

1/m
.

Also, consider that the observed values of X̄, Ȳ , T1, T2 are x̄, ȳ, t1, t2. A GPQ for the

parameter stress-strength reliability can be obtained by using the GPQs for the parameters

α1, λ1, α2, λ2 as

TR = R(Tα1 , Tλ1 , Tα2 , Tλ2),

where Tα1 , Tλ1 , Tα2 , Tλ2 are GPQ for α1, λ1, α2, λ2. It can be used to construct a GCI for R.

It can be obtained using Monte Carlo simulation based on the following algorithm:

Algorithm 1: For given x̄, ȳ, t1, t2,

1. Generate Uj from U (0, 1), j = 1, 2.

2. Obtain the solution of h(α) = 0, and call it Tαi where

hj (α) = κ1 (α ) + [κ2 (α )]
1/2

Q (α, Uj)− tj .

3. Generate V1 from χ2
(2nTα1 )

and V2 from χ2
(2mTα2 )

.

4. Compute Tλ1 = V1/(2nx̄ ) and Tλ2 = V2/(2mȳ ).

5. Compute TR = R(Tα1 , Tλ1 , Tα2 , Tλ2)

6. Repeat Steps 1 and 5, M times. Then, there are M values of TR.

7. A GCI for R is (T
γ/2
R , T

1−γ/2
R ) where T γR is the γth quantile of TR.

D A real example

Here, we illustrate the proposed generalized approach for the stress-strength reliability using a

real data set. It is given by (2) to study comparing lifetimes two kind of drills that a company

uses in cutting machines. After a certain period of usage, it is of interest to know which brand

is more reliable so that the factory can make the subsequent purchase decision. Table 1 presents

the lifetimes of the drill of size 1.88 mm from the two suppliers.

The probability that the drill lifetime by the first supplier is larger than that by the second

supplier can be computed by R = P (X > Y ). (2) showed that the gamma distribution can be
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Table 1: Lifetimes (in Minutes) of 1.88-mm Drill from Two Suppliers

X 135 98 114 137 138 144 99 93 115 106 132 122 94 98 127 122

102 133 114 120 93 126 119 104 119 114 125 107 98 117 111 106

108 127 126 135 112 94 127 99 120 120 121 122 96 109 123 105

Y 105 105 95 87 112 80 95 97 77 103 78 87 107 96 79 91

108 97 80 76 92 85 76 96 77 80 100 94 82 104 91 95

93 99 99 94 84 99 91 85 86 79 89 89 100

good fitted for each these drill lifetimes. Here,

x̄ = 115.125, ȳ = 91.422, t1 = −0.0069, t2 = −0.0055.

Based on Algorithm 1 by M = 10000, a 95% lower GCI for R is 0.855. Therefore, we can

concluded that drills from the first supplier have a higher quality.

References

[1] Bain, L.J. and Engelhardt, M. (1987), Introduction to Probability and Mathematical Statis-

tics, Brooks/Cole.

[2] Chen, P. and Ye, Z.S. (2017), Approximate statistical limits for a gamma distribution,

Journal of Quality Technology, 49(1), 64-77.

[3] Choi, S.C. and Wette, R. (1969), Maximum likelihood estimation of the parameters of the

gamma distribution and their bias, Technometrics, 11(4), 683-690.

[4] Church, J.D. and Harris, B. (1970), The estimation of reliability from stress-strength rela-

tionships, Technometrics, 12(1), 49-54.

[5] Constantine, K., Karson, M. and Tse, S.K. (1989), Bootstrapping estimators of in the gamma

case, Journal of statistical computation and simulation, 33(4), 217-231.

[6] Constantine, K., Karson, M.J. and Tse, S.K. (1990), Confidence interval estimation of in the

gamma case, Communications in Statistics-Simulation and Computation, 19(1), 225-244.

[7] Constantine, K., Tse, S.K. and Karson, M. (1986), Estimation of in the gamma case, Com-

munications in Statistics-Simulation and Computation, 15(2), 365-388.

157



[8] Hannig, J., Iyer, H. and Patterson, P. (2006), Fiducial generalized confidence intervals,

Journal of the American Statistical Association, 101 (473), 254-269.

[9] Huang, K., Mi, J. and Wang, Z. (2012), Inference about reliability parameter with gamma

strength and stress, Journal of Statistical Planning and Inference, 142 (4), 848-854.

[10] Kotz, S. and Pensky, M. (2003), The Stress-Strength Model and Its Generalizations: Theory

and Applications, World Scientific.

[11] Krishnamoorthy, K., Lee, M. and Xiao, W. (2015), Likelihood ratio tests for comparing

several gamma distributions, Environmetrics, 26 (8), 571-583.

[12] Krishnamoorthy, K., Mathew, T. and Mukherjee, S. (2008), Normal-based methods for a

gamma distribution: Prediction and tolerance intervals and stress-strength reliability, Tech-

nometrics, 50 (1), 69-78.

[13] Wang, B.X. and Wu, F. (2018), Inference on the gamma distribution, Technometrics, 60

(2), 235-244.

[14] Weerahandi, S. (1993), Generalized confidence intervals, Journal of the American Statistical

Association, 88 (423), 899-905

[15] Weerahandi, S. (1995), Exact Statistical Methods for Data Analysis, Springer, New York,

NY.

158



Allocating Two Redundancies in Series Systems with
Dependent Component Lifetimes

Hamideh Jeddi, Mahdi Doostparast1

Department of Statistics, Ferdowsi University of Mashhad, P. O. Box 1159,

Mashhad 91775, Iran

Abstract: This article deals with the problem of allocating redundancies for improving engi-

neering system performances where component lifetimes are dependent and heterogeneous and
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Allocations are derived under general conditions and hold for arbitrary dependency structures

among lifetimes. Various examples are also given.
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A Introduction

Spares are usually used to attain high reliable systems. Finding optimal allocations of spares is

then essential in practice. Since system lifetimes are stochastic phenomena, partial (stochastic)

orders are implemented for comparison purposes in literature; See, e.g. Boland et al. (4), Romera

et al. (14), Valdes and Zequeira (17; 18), Belzunce et al. (2; 3), Jeddi and Doostparast (8), Zhang

(19) and references therein. Boland et al. (4) considered two-component series and parallel sys-

tems with a spare and then compared system lifetimes under various policies for allocating the

spare. They assumed that component lifetimes and spare lifetimes are statistically independent.

The assumption of independence for components and spares are restrictive for practical purposes

and occur rarely in engineering systems (Barlow and Proschan, 1975, P.29 (1)). Jeddi and Doost-

parast (8) relaxed the assumption of independence and provided optimal allocations for arbitrary

dependence structure among component lifetimes; See also Kotz et al. (10), da Costa Bueno and

Martins do Carmo (6), Belzunce et al. (2; 3) for more information. The redundancy allocation

problem (RAP) may be extended for k(≥ 2) spares. The RAP with k = 2 has been studied in

the literature under the assumption of independence; See, e.g. Romera et al. (14), Valdes and

1Mahdi Doostparast: doustparast@um.ac.ir



Zequeira (17; 18), Hu and Wang (7), Brito et al. (5). This paper considers RAP with k = 2

in general and then removes the assumption of independence among component and spare life-

times. Specifically, there is a n-component series system with lifetimes X1, · · · , Xn. Also, there

exist two spares with lifetimes S1 and S2 and one wishes to find optimal design for allocating the

spares to the original components. Following Boland et al. (4), two possible schemes are consid-

ered: (I) Allocating S1 toX1 and S2 toX2; (II) Allocating S2 to X1 and S1 to X2. If spares work

jointly with original components, then the RAP is called “active policy”. Therefore, for the n-

component series system and under active policy, we face with two possible systems which should

be compared. The system lifetimes are T
[AC]
[1] = ∧{∨{X1, S1},∨{X2, S2}, X3, · · · , Xn} and

T
[AC]
[2] = ∧{∨{X1, S2},∨{X2, S1}, X3, · · · , Xn}. Here, “∧{a1, · · · , am}” and “∨{a1, · · · , am}”

call for the minimum and the maximum of real numbers ai(i = 1, · · · ,m), respectively.

The rest of this article is organized as follows. In Section 2, we review some notions of stochastic

orderings that will be used in sequel. Comparison of allocations of two active spars for series

systems with dependent component lifetimes is considered in Section 3. Also in Section 3, the

RAP is considered for two-component series in greater details. In Section 4, a guidance to obtain

optimal allocation is given. Conclusions and further works are given in Section 5.

Notice that the active policy for a n-component parallel system with two spares under

Schemes I and II are identical and hence this case is not discussed.

If spares wait to fail the respective original components and then joint to system, the RAP

is called “standby policy”. The standby policies are not studied in the paper.

B Stochastic orders

In this section, we review some (marginal and jointly) stochastic orders which are used in the

next section. [Shaked and Shantikumar, (16)] Let FX(t) = P (X ≤ t) and FY (t) = P (Y ≤ t),

for t > 0, be distribution functions (DFs) of lifetimes X and Y , respectively. Then X is said to

be smaller than Y in the “usual stochastic order”, denoted by X ≤st Y, if FX(t) ≤ FY (t) for

all t > 0, where FX(t) = 1 − FX(t) and FY (t) = 1 − FY (t) are the survival functions (SFs) of

X and Y, respectively. Let X and Y be two random variables. X is smaller than Y in the

“joint likelihood ratio order”, denoted by X ≤lr:j Y , if

E(g(X,Y )) ≤ E(g(Y,X)), (B.1)
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for all g ∈ Glr, where Glr = {g ∈ D|g(y, x) ≤ g(x, y), ∀ y ≤ x} and D is the set of

all functions from R2 to R. If Inequality (B.1) holds for all g ∈ Gst = {g ∈ D|g(x, y) −

g(y, x) is increasing in x, ∀y ∈ R}, then X is smaller than Y in “jointly stochastic order”, de-

noted by X ≤st:j Y . [Shaked and Shantikumar (16), p. 266] Let U = (U1, · · · , Un) and

V = (V1, · · · , Vn) be two random vectors. If E[ϕ(U)] ≤ E[ϕ(V)] for all increasing function

ϕ from Rn to R, then U is smaller than V in stochastic order and denoted by U ≤st V.

[Lehmann, (11)] The random variables X and Y are said “positive (negative) quadrant depen-

dent” (PQD/NQD) if for every (y1, y2) ∈ R2,

FY1,Y2(y1, y2) ≥ (≤)FY1(y1)FY2(y2). (B.2)

[Shaked and Shantikumar, (16), p. 388] Let (U1, U2) and (V1, V2) be two random vectors

with the joint DFs FU1,U2(., .) and FV1,V2(., .), respectively. Furthermore, FU1,U2 and FV1,V2 have

identical marginals. If

FU1,U2(a, b) ≤ FV1,V2(a, b), ∀(a, b) ∈ R2, (B.3)

then (U1, U2) is called smaller than (V1, V2) in the PQD order, and denoted by (U1, U2) ≤PQD
(V1, V2). [Shaked and Shantikumar, (16), p. 392]

Let U = (U1, · · · , Un) and V = (V1, · · · , Vn) be two random vectors with joint DFs F

and G and joint SFs F̄ and Ḡ, respectively. Then, U is smaller than V in the PQD order if

F (x) ≤ G(x) and F̄ (x) ≤ Ḡ(x) for all x = (x1, · · · , xn).

C Active-based RAPs for series systems

We study series systems including n dependent components under the active redundancies in

Subsection 3.1. The 2-component series systems are investigated with a greater detail in Sub-

section 3.2.

C.1 n-component series system

Let Xi (i = 1, 2, · · · , n) and Si (i = 1, 2) denote the i-th component lifetime and the i-th spare

lifetimes, respectively. The component lifetimes X1, · · · , Xn and S1, S2 are also dependent.

In sequel, “U
D≡ V ” means that the distribution functions of U and V are identical. Let

TAC[1] = ∧{∨{X1, S1},∨{X2, S2}, X3, · · · , Xn}, TAC[2] = ∧{∨{X1, S2},∨{X2, S1}, X3, · · · ,
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Xn}. Then TAC[1] ≥st TAC[2] , if and only if

P (B(−{2,n+1})) + P (B(−{1,n+2})) ≥ P (B(−{1,n+1})) + P (B(−{2,n+2})), (C.1)

where B(−{j,k}) =
n+2∩

i=1,i/∈{j,k}

[Xi > a] for 1 ≤ j ≤ n and 1 ≤ k ≤ n, by convention Xn+1
D≡ S1

and Xn+2
D≡ S2.

. For all a > 0, one can see that

FTAC
[1]

(a) = P (X1 > a,∨{X2, S2} > a, · · · , Xn > a)

+ P (X1 < a, S1 > a,∨{X2, S2} > a, · · · , Xn > a)

= FX1,··· ,Xn(a, · · · , a) + P ({X2 < a} ∩B(−{2,n+1})) + P ({X1 < a} ∩B(−{1,n+2}))

+ P ({X1 < a} ∩ {X2 < a} ∩B(−{1,2})). (C.2)

Similarly

FTAC
[2]

(a) = FX1,··· ,Xn(a, · · · , a) + P ({X2 < a} ∩B(−{2,n+2})) + P ({X1 < a} ∩B(−{1,n+1}))

+ P ({X1 < a} ∩ {X2 < a} ∩B(−{1,2})). (C.3)

Then

TAC[1] ≥st TAC[2] ⇐⇒ P ({X2 < a} ∩B(−{2,n+1})) + P ({X1 < a} ∩B(−{1,n+2}))

≥ P ({X2 < a} ∩B(−{2,n+2})) + P ({X1 < a} ∩B(−{1,n+1}))

⇐⇒ P (B(−{2,n+1}))− P (B(−{n+1})) + P (B(−{1,n+2}))− P (B(−{n+2}))

≥ P (B(−{2,n+2}))− P (B(−{n+2})) + P (B(−{1,n+1}))− P (B(−{n+1})).

(C.4)

So

TAC[1] ≥st TAC[2] ⇐⇒ P (B(−{2,n+1})) + P (B(−{1,n+2})) ≥ P (B(−{2,n+2})) + P (B(−{1,n+1}))

⇐⇒ P

( n+2∩
i=1,i/∈{2,n+1}

[Xi > a]

)
+ P

( n+2∩
i=1,i/∈{1,n+2}

[Xi > a]

)

≥ P

( n+2∩
i=1,i/∈{2,n+2}

[Xi > a]

)
+ P

( n+2∩
i=1,i/∈{1,n+1}

[Xi > a]

)
,

as required. �
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In Theorem C.1, there exist a perspective of reliability engineering. The quantity P (B−{2,n+1})

denotes the reliability function of the original series system in which X2 is replaced by S2.

Denote this by R
[−2]
S2

. Similarly, let R
[−1]
S2

= P (B−{1,n+1}), R
[−2]
S1

= P (B−{2,n+2}) and R
[−1]
S1

=

P (B−{1,n+2}). Condition (C.1) is equivalent by

R
[−2]
S2

−R
[−2]
S1

≥ R
[−1]
S2

−R
[−1]
S1

. (C.5)

Therefore, Inequality (C.5) holds if increment in original system reliability by replacing Compo-

nent 2 with either S2 or S1 is greater than increment in original system reliability by replacing

Component 1 with either S2 or S1. That is, TAC[1] ≥st TAC[2] if and only if change of system

reliability caused by replacing spares S1 and S2 instead of Component 2 is greater than change

of system reliability caused by replacing spares S1 and S2 instead of Component 1.

A special case of Theorem C.1 is given in the next corollary which extends result obtained

by Romera et al. (14).

Suppose that (X1, X2), (X3, · · · , Xn) and (S1, S2) are independent. Then, T
[AC]
1 ≥st T [AC]

2

if X1 ≥st X2 and S1 ≤st S2 or X1 ≤st X2 and S1 ≥st S2. Notice that in Corollary C.1,

X3, · · · , Xn may be dependent. It is only necessary that the first two original components X1

and X2 be independent of the rest (original) components X3, · · · , Xn as well as independent

of the spars S1 and S2. Corollary C.1 says that the stronger spare should be allocated to the

weaker component.

[Jeddi and Doostparast (9)] If (X1, X3, · · · , Xn|S2 = a) ≥st (X2, X3, · · · , Xn|S2 = a)

and (X2, X3, · · · , Xn|S1 = a) ≥st (X1, X3, · · · , Xn|S1 = a) for all a > 0, then T
[AC]
1 ≥st

T
[AC]
2 . [Jeddi and Doostparast (9)] If (X1, X3, · · · , Xn, S2) ≥st (X2, X3, · · · , Xn, S2) and

(X2, X3, · · · , Xn, S1) ≥st (X1, X3, · · · , Xn, S1) then T
[AC]
1 ≥st T [AC]

2 .

Now, we provide sufficient conditions for Theorem C.1 in terms of the quadratic dependence

structure in the next proposition. The proof is immediately derived from Theorem C.1 and

Definition B. T
[AC]
1 ≥st T [AC]

2 provided that one of the following conditions holds:

(I) (X1, X3, · · · , Xn, S2) ≥PQD (X2, X3, · · · , Xn, S2) and

(X2, X3, · · · , Xn, S1) ≥PQD (X1, X3, · · · , Xn, S1);

(II) (X1, X3, · · · , Xn, S2) ≥PQD (X1, X3, · · · , Xn, S1) and

(X2, X3, · · · , Xn, S1) ≥PQD (X2, X3, · · · , Xn, S2).
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As mentioned by Shaked and Shantikumar (16) (p. 392), the multivariate PQD order in

Definition B implies the random vectors must have same univariate marginals. Therefore, in

Proposition B, we require that X1
D≡ X2 in Case I and S1

D≡ S2 in Case II.

Assume that components and spares are homogeneous. Then Proposition B concludes that

T
[AC]
1 ≥st T [AC]

2 if strength of positive dependency in (X2, X3, · · · , Xn, S2) is smaller than

(X1, X3, · · · , Xn, S2) and (X1, X3, · · · , Xn, S1) is smaller than (X2, X3, · · · , Xn, S1), then one

should redundant the spare to the former in series systems. In summarize, one should allocate

spares to components with weaker positive dependency. The assumptions of X1
D≡ X2 and

S1
D≡ S2 in Remark B are not restrictive specially if the units are coming from the same

production company/line. Albeit, there exist statistical tests for verifying this assumption on

the basis of reliability component data sets. For more information, see Meeker and Escobar

(12) and references therein. Meanwhile, there are systems in which component lifetimes do not

follow the same marginal distributions.

C.2 Two-component series systems

Let T
[AC]
1 = ∧{∨{(X1, S1)},∨(X2, S2)} and T

[AC]
2 = ∧{∨(X1, S2),∨{(X2, S1}}. For n = 2,

Theorem C.1 concludes:

T
[AC]
1 ≥st T [AC]

2 if and only if

F̄X1,S2(a, a)− F̄X2,S2(a, a) ≥ F̄X1,S1(a, a)− F̄X2,S1(a, a), ∀a > 0. (C.6)

Similarly to Section 3, Condition (C.6) is defined on the basis of the pairwise dependences

in random vectors (X1, S1), (X1, S2), (X2, S1) and (X2, S2) while the dependence structures in

(X1, X2) and (S1, S2) play no role. Moreover, if (X1, S2) ≥st (X2, S2) and (X2, S1) ≥st (X1, S1)

then T
[AC]
1 ≥st T [AC]

2 .

Now for two-component series systems, we provide a sufficient condition for T
[AC]
1 ≥st T [AC]

2 on

the basis of the jointly likelihood order.

[Jeddi and Doostparast (9)] If (X1|S2 = a) ≥lr:j (X2|S2 = a) and (X2|S1 = a) ≥lr:j
(X1|S1 = a) then T

[AC]
1 ≥st T [AC]

2 .

Suppose that the pairs (X1, S2) and (X2, S1) are PQD and the pairs (X1, S1) and (X2, S2)

are NQD. Then T
[AC]
1 ≥st T [AC]

2 provided that either X1
st
= X2 or S1

st
= S2. . The proof is

immediately concluded by Proposition C.2 and Definition B. �
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Let (X1, S2) ≥PQD (X2, S2) and (X2, S1) ≥PQD (X1, S1) or (X1, S2) ≥PQD (X1, S1) and

(X2, S1) ≥PQD (X2, S2) then T
[AC]
1 ≥st T [AC]

2 .

(FGM copula) The Farlie-Gumbel-Morgenstern (FGM) n-copulas is defined by

C(u1, · · · , un) = u1 · · ·un

1 +

n∑
k=2

∑
1≤j1<···<jk≤n

θj1···jk(1− uj1) · · · (1− ujk)

 , (C.7)

for 0 ≤ ui ≤ 1, i = 1, · · · , n, and −1 < θj1···jk < 1. Notice that θj1···jk are the parameters of the

FGM copulas in Equation (C.7) to capture the dependency structures among the corresponding

random variables. One can easily verify that these parameters are the correlation coefficients

among the respective random variables. For a greater detail, see Nelsen (13). Now, assume a

joint DF with the FGM 4-copulas for the lifetime vector (X1, X2, S1, S2). From Equations (C.6)

and (C.7), T
[AC]
1 ≥st T [AC]

2 if and only if

(FX1(a)− FX2(a))(FS2(a)− FS1(a)) + FS2(a)FS2(a)
(
θ14FX1(a)FX1(a)− θ24FX2(a)FX2(a)

)
+ FS1(a)FS1(a)

(
θ23FX2(a)FX2(a)− θ13FX1(a)FX1(a)

)
(C.8)

for all a > 0. Note that Inequality (C.8) is free of θ12, and θ34, the dependency parameters within

(X1, X2) and (S1, S2), respectively. From Equation (C.8), one can see that: (1) If X1
D≡ X2 or

S1
D≡ S2 and θ14 ≥ θ24 and θ23 ≥ θ13 then T

[AC]
1 ≥st T [AC]

2 . Note that this sufficient condition

for the FGM distribution is also derived directly by Proposition B; (2) For −1 < θ12, θ34 < 1,

and θ13 = θ23 = θ14 = θ24 = 0, we have X1 ≥st X2 and S2 ≥st S1 if and only if T1 ≥st T2.

For θ12, θ34 = 0 the claim of Romera et al. (14) is obtained. This result can also be proved

by Corollary C.1; (3) If X1 ≥st X2 and S2 ≥st S1 and θ14, θ23 ≥ 0 and θ24, θ13 ≤ 0 then

T
[AC]
1 ≥st T [AC]

2 . To see this, notice that the FGM copula in Equation (C.8) for θij ∈ [0, 1]

is PQD and for θij ∈ [−1, 0] is NQD (Nelsen (13), p. 188). Then, Proposition C.2 implies

T
[AC]
1 ≥st T [AC]

2 . �

D A guidance to obtain optimal allocation

In practice, one should consider all

(
n

2

)
possible combinations and apply Theorem C.1 to derive

the optimal allocation. To see this, the next example is given. Let Xi ∼ Exp(i), 1 ≤ i ≤ 3 and

Sj ∼ Exp(1/j), j = 1, 2, where Exp(θ) stands for the exponential distribution with mean

θ ≥ 0. Suppose that the lifetime vectors (X1, X2, X3) and (S1, S2) are independent. There exist
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(
3

2

)
= 6 possible schemes to allocate S1 and S2 as follow:

T
[AC]
1 = ∧{∨{(X1, S1)},∨(X2, S2), X3},

T
[AC]
2 = ∧{∨{(X1, S2)},∨(X2, S1), X3},

T
[AC]
3 = ∧{∨{(X1, S1)}, X2,∨(X3, S2)},

T
[AC]
4 = ∧{∨{(X1, S2)}, X2,∨(X2, S1)},

T
[AC]
5 = ∧{X1,∨{(X2, S1)},∨(X3, S2)},

T
[AC]
6 = ∧{X1,∨{(X2, S2)},∨(X3, S1)}.

By Corollary C.1, we see that T
[AC]
1 ≥st T [AC]

2 , T
[AC]
3 ≥st T [AC]

4 and T
[AC]
5 ≥st T [AC]

6 . Moreover,

Theorem 3.4 in Jeddi and Doostparast (8) implies that T
[AC]
1 ≥st T [AC]

3 ≥ T
[AC]
5 . Hence the

optimal allocation assigns S1 to X1 and S2 to X2. � Suppose that

there exist m spares. For implementing the above-mentioned guideline, one should first select

two spares among

(
m

2

)
possible ways, and then find the best optimal allocation. Now, the new

system consists n+2 components. In fact, it includes n components in which two of them have

been strengthened by two selected spares. Hence, we can assume that the new system is still

a series system with size n. Secondly, she/he must select the next two spares from

(
m− 2

2

)
possible ways and proceed similarly until all the spares been allocated. For illustration purpose,

let n = 3 and m = 4. Denote by Xi, 1 ≤ i ≤ 3 and Sj , 1 ≤ j ≤ 2, the original and spare

component, respectively. Therefore, there exist

(
4

2

)
= 6 ways to select two spares. Suppose

that we selected S2 and S4. Thus there are

(
3

2

)
= 3 possible allocations as follows:

T
[AC]
1 = ∧{∨{(X1, S2)},∨(X2, S4), X3},

T
[AC]
2 = ∧{∨{(X1, S4)},∨(X2, S2), X3},

T
[AC]
3 = ∧{∨{(X1, S2)}, X2,∨(X3, S4)},

T
[AC]
4 = ∧{∨{(X1, S4)}, X2,∨(X2, S2)},

T
[AC]
5 = ∧{X1,∨{(X2, S2)},∨(X3, S4)},

T
[AC]
6 = ∧{X1,∨{(X2, S4)},∨(X3, S2)}. (D.1)

Similarly, to Example D, we can compare the pair lifetimes (T1, T2), (T3, T4) and (T5, T6) by

Theorem C.1. For example assume that X1 ≤st X2 ≤st X3 and S2 ≥st S4. Then, T1 ≥st
T2, T3 ≥st T4 and T5 ≥st T6. Moreover by Theorem 3.4 in Jeddi and Doostparast (8), T3 ≥st T5
since X1 ≤st X2. Similarly T1 ≥st T3 since X2 ≤st X3. In summarize, T1 is the best allocation
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based on two spares S2 and S4. Now, let X∗
1 = ∨(X1, S2) and X

∗
2 = ∨(X2, S4) and X

∗
3 = X3.

Then, we have a series system of size 3 with component lifetimes X∗
1 , X

∗
2 and X∗

3 , the system

lifetime is T ∗ = ∧(X∗
1 , X

∗
2 , X

∗
3 ). For allocating S1 and S3, similarly there exist possible ways

as given by (D.1), replacing Xi by X
∗
i , (1 ≤ 3) and (S1, S3) by (S2, S4). Now, one must verify

conditions (C.1) in order to find the optimal configuration for allocating S1 and S3. To end

this, we usually need to specify the SFs of the component and spare lifetimes. Let m be odd.

Then, there is only one spare for allocating to the recently improved system, in the last step.

Therefore, we have a series system with dependent components and an additional spare which

must be allocated to the system. Hence one may use Theorem 3.4 in Jeddi and Doostparast

(8).

E Conclusions

This article considered RAP with two spares for series engineering systems when component

lifetimes are dependent. The findings do not rely on any specific form for structural dependency

among component lifetimes. This paper is based on the first author’s PhD thesis and an extended

version of this paper is presented in Jeddi and Doostparast (9).
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Under Type-II Censored Order Statistics
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Abstract: Two methods of estimation of parameters in Weibull distribution under type-II

censored order statistics have been considered. It is because of the complex behavior in the

calculation of the likelihood function of the presented scheme in this situation without loss of

generality, this problem fixed with Gumbel model. The one to one transformation between

these models and its satisfying in their parameters able us for the use of this alternative model.

Moreover, some statistical inferences of a new strategy of estimating based on The Bayesian

conditional method have provided and the numerical results of these strategies are compared.

Keywords Bayes, Conditional, Gumbel, Maximum Likelihood Estimators, Weibull.
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A Introduction

Weibull distribution is commonly used in reliability studies. It is used for modeling observed

failures of many different types of components and phenomena. In some situations, statistical

inference about its parameters in quality control and some engineering problems is of our inter-

est. Depending on a kind of sampling plan, and based on maximum likelihood estimation, the

performance of estimating in this model can differ. One of the most applicable sampling strate-

gies in engineering problems is type-II censored order statistics scheme. For a comprehensive,

perfect and complete discussion on censored sampling scheme see (2). The main problem of

estimating parameters under this scheme is a major fault occurrence, especially for large scale

parameters in the confrontation with Weibull models. A routine solution of this end is utilizing

Gumbel or extreme value distribution, which have the capacity of one to one transformation

between corresponding random variables and related parameters. Yet, the problem of bad per-

formance of maximum likelihood estimators (MLEs) is still holding on but a little better than

1Jaber Kazempoor: kazempoor.jaber@mail.um.ac.ir



previous estimating.

However, in the situations of having a location scale family of distributions for sampling,

some authors proposed a conditional method of estimating. This method was introduced by

(10), and applied in some inferences problem by (11) and (9). A generalize conditional strategy

of estimating in location scale family of distribution done by (16). In continuing, the conditional

Bayes estimators have been discussed in some quality control disciplines by (5). In addition, in

this concept the conditional strategy has been used alone in (7) and (6).

The combined of Bayes and conditional method have used effectively in (5) for quality control

disciplines. In the Bayes method, choosing a good prior distribution is so important but the

presented method has focused on improper Jeffreys prior or proportion to this prior. The

extension of this prior has been considered in this study and the best of these priors has been

identified.

For text shortening and page boundaries, only formulas and relationships are presented in the

Gumbel distribution. The derivation of the results for the Weibull distribution is accomplished

with a simple transformation of ex, and conversions are kept one by one in the parameters (see

(5)). Therefore, without diminishing loss of generality, in section 2, the required relationships

in the Gumbel distribution are shown, and in Section 3, the numerical comparison of the two

methods presented in deducing the parameters of the location and the scale for µ = −5, 0, 5, 10

and σ = 1, 5, 10 .

B Notations and Models

Suppose that X1, X2, . . . , Xn are some random variables following to the Gumbel distribution

with parameters µ and σ. The probability density function of this distribution is

fXi(x) =
1

σ
e

x− µ

σ e−e

x− µ

σ , i = 1, 2, . . . , n, (x, µ) ∈ R, σ ∈ R+. (B.1)

For simplicity the notation of these representation is considered as X ∼ G(µ, σ).
The joint probability density function of first r ordinary order statistics X1:n, X2:n, . . . , Xr:n

arising from independent and identical random variables X1, X2, . . . , Xn is (see (1))

fX1:n,X2:n,...,Xr:n
(x1, x2, . . . , xr) =

1

σr
exp(

r∑
j=1

xj − µ

σ
)exp(−((n − r)e

xr − µ

σ +

r∑
j=1

e

xj − µ

σ )). (B.2)

It is noteworthy that this sampling method can be considered as a special case of progres-

sively type-II censored order statistics which named as type-II censored order statistics sampling
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scheme. However, the maximum likelihood estimators (MLEs) based on maximizing likelihood

function B.2, called by µ̂ and σ̂ respectively referred as MLE of µ and σ. In continuing an-

other method of estimating these parameters according to the Bayesian conditional strategy are

introduced. The performance of this manner of estimating is constructed as follows

Let π(µ, σ) =
1

σm
, m ∈ R+ denote the improper prior distribution for two location and scale

parameters and immediately from B.2, the posterior distribution π(µ, σ | x) satisfies

π(µ, σ | x) = 1

σr+m
exp(

r∑
j=1

xj − µ

σ
)exp(−((n− r)e

xr − µ

σ +
r∑
j=1

e

xj − µ

σ ))

Now, consider two ancilary statistics Z1 =
µ̂− µ

σ̂
and Z2 =

σ̂

σ
and moreover pivotal quantity

ai =
xi − µ̂

σ̂
, i = 1, 2, . . . , r. According to these notations

f(Z1,Z2)|(a1,a2,...,ar)(z1, z2) ∝ z
r+m−2
2 exp(

r∑
j=1

(z1 + aj)z2)exp(−((n − r)e
(z1+ar)z2 +

r∑
j=1

e
(z1+aj)z2 ))

or equivalently

f(Z1,Z2)|(a1,a2,...,ar)(z1, z2) = Cz
r+m−2
2 exp(

r∑
j=1

(z1 + aj)z2)exp(−((n − r)e
(z1+ar)z2 +

r∑
j=1

e
(z1+aj)z2 ))

where C is normalizing constant such that

1

C
=

∫
R

∫
R+

zr+m−2
2 exp(

r∑
j=1

(z1 + aj)z2)exp(−((n− r)e(z1+ar)z2 +
r∑
j=1

e(z1+aj)z2))dz2dz1

In order to calculate Bayesian estiomator of Z1 and Z1, the full conditional probability

density function of these parameters are be needed which be derived in the following

fZ1(z1) ∝ erz1z2−e
z1z2 [(n−r)earz2+

∑r
j=1 e

ajz2 ], z1 ∈ R

and

fZ2(z2) ∝ zr+m−2
2 ez2(

∑r
j=1(z1+aj))−[(n−r)ez2[z1+ar ]−

∑r
j=1 e

z2[z1+aj ]], z2 ∈ R+

It is clearly that finding a closed normalizing constant for these distribution do not be

manipualting esay and we shoud apply the Gibbs sampling method for generating random

variables from these two probability density functions. Moreover, it is because of Z1 and Z2 are

the linear combination of parameters µ and σ, the Bayes estimator of these new parameters can

keep their Bayesian features under the first and last of these loss functions. However, under the

second loss function, some challenges have appeared. It is clearly understood with some slight

mathematical calculations that the Bayes estimator of a linear combination δ∗2B(aθ + b) under

the LinEx loss function is aδ∗2B(aθ) + b (see (12)).
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Finally, it is worth to mention that the similar distribution of Z1 is

u(x) =
βλ

α

β

Γ(
α

β
)
eαx−λe

βx

, x ∈ R, (α, β, λ) ∈ R+.

where it’s cumulative distribution function is

U(x) =

∫ eβx

0

βλ

α

β

Γ(
α

β
)
t

α

β
−1

e−λtdt (B.3)

Hence, the generating random samples from fZ1(z1) can be easily done but for fZ2(z2) some

complicated problems has been appeared. For calculation conditional Bayes estimator of Z1 and

Z2 , three loss functions have considered and these estimators have compared with their MLE’s.

• Absolute Error Loss Functions (AEL)

L(δ, θ) =| δ − θ |

δ∗1B(θ) = median of θ in posterior density function

• Linear Exponential Loss Functions (LinEx)

L(δ, θ) = ec(δ−θ) − c(δ − θ)− 1, c ∈ R+

δ∗2B(θ) =
−log(E[e−cθ])

c

In present study c = 1 has been considered.

• Squared Error Loss Functions (SE)

L(δ, θ) = (δ − θ)2

δ∗3B(θ) = mean of θ in posterior density function

In each case, δ∗B(θ), represent the corresponding bayesian estimator to each of loss functions

(see (12)).

C Numerical comparison of two presented methods

In this section, we provide some comparison results for the performance of two presented methods

of estimating parameters in Gumbel distribution. The MLE estimators of these parameters
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can be easily derived by maximizing the likelihood function B.2, but the calculation of Bayes

estimators have some conflicts.

Metropolis et al. (13), introduced the Metropolis-Hastings (M-H) algorithmic rule in pro-

gram as a general Mont Carlo Markov Chain (MCMC) technique and afterward Hastings (8),

expanded the M-H algorithm. One can apply the M-H algorithm to get random sample from any

subjectively complicated target distribution of any dimension that is known up to a normalizing

constant. Gibbs sampling method is a particular instance for the MCMC method. It can be

utilized to generate a sample from the full conditional probability distributions of two or more

random variables. Gibbs sampling requires decomposing the joint posterior distribution into full

conditional distributions for each parameter and then sampling from them. We propose using

the Gibbs sampling plan to generate a sample from the posterior density functions fZ1(z1) and

fZ2(z2) in turn compute the Bayesian estimates under given loss functions (see (14) and (15)).

Generating random samples such that distributed as similar as Z1 is expressed previously.

For such a same task in Z2 we propose the following steps.

I: fix values n = 15, r = 8, R1 = 0, R1 = R2 = · · · = R7 = 0, and R8 = 7.

II: Utilize the given algorithm in (3), to generating type-II censored order statistics arising

from independent and identical Gumbel random variables under the scheme which intro-

duced in previous step.

III: Calculate MLEs of parameters µ and σ based on samples that generated in previous step,

say µ̂ and σ̂ respectively.

IV: Construct ai =
xi − µ̂

σ̂
, i = 1, 2, . . . , 8.

V: Assume that a fix value of z2 say z2 = 1.

VI: Generate a random sample z1 based on a cdf B.3, with parameters α = 8z2, β = z2 and

λ = 7ea8z2 +
∑8
j=1 e

ajz2 .

VI: Generate a new random sample t based on a cdf B.3, with parameters α =
∑8
j=1(z1+aj),

β = z1 + a8 and λ = 7.

VII: For M = 20000 and N = 100000 calculate CC =

∑100000
j=20001 t

m+6e−
∑8

j=1 e
t(z1+aj)

N −M
. Hence,

fz2(z2) =
1

CC
zr+m−2
2 ez2(

∑r
j=1(z1+aj))−[(n−r)ez2[z1+ar ]−

∑r
j=1 e

z2[z1+aj ]], z2 ∈ R+

.
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VIII: It is clearly that z2 belong to the log concave family of distribution. Therefore, using the

given algorithm of this family of distributions in (4), and generate one random variable

from this pdf.

IX: Call the generated random variable z1s and z2s. Moreover repeat this step for s =

1, 2, . . . , 100000 and afterward delete the first 20000th and construct new vectors z1s and

z2s with length 80000. It is straightforeward to see that δ∗1B(zi) =
z(i(60000)) + z(i(60001))

2
,

δ∗2B(zi) = −log[
∑100000
s=20001

e−zis

80000
], and δ∗3B(zi) =

∑100000
s=20001

zis
80000

, i = 1, 2

Now, based on these samples calculate the bayes estimators of Z1 and Z2, and sequently

calculate the bayes estimators of µ and σ. The number of repeated in each tables is 1000000.
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True

Values of

Parameters Bias MSE MAE

µ = −5 0.68680050 0.63839000 0.70501050

σ = 1 -0.04166361 0.21870780 0.38150950

µ = −5 -0.93424835 4.32319800 1.62188400

σ = 5 0.05166332 4.49697100 1.62527700

µ = −5 -2.88157680 22.1155700 3.71012200

σ = 10 0.10755720 18.0756800 3.25669600

µ = 0 0.68716310 0.63873880 0.70513560

σ = 1 -0.04246840 0.21780420 0.38138020

µ = 0 -0.93734297 4.32370200 1.62178800

σ = 5 0.05174331 4.50535600 1.62830300

µ = 0 -2.87358300 22.0749800 3.70312600

σ = 10 0.10011000 17.9499900 3.24967700

µ = 5 0.68562740 0.63654430 0.70387780

σ = 1 -0.04257320 0.21866210 0.38165130

µ = 5 -0.93823280 4.33715900 1.62496700

σ = 5 0.05137040 4.52099100 1.62886800

µ = 5 -2.87603700 22.0890500 3.70735800

σ = 10 0.10698600 18.0351600 3.25654700

µ = 10 0.65110020 0.56575350 0.67037940

σ = 1 1.13773740 1.44024000 1.13773740

µ = 10 -0.93614990 4.32951100 1.62322800

σ = 5 1.05268570 5.60223000 1.71455800

µ = 10 -2.87460300 22.0702600 3.70402900

σ = 10 1.11072600 19.2965000 3.24181500
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Conditional Bayes Estimators

True

Values of

Parameters Bias MSE MAE

µ = −5 0.8722585 0.791762 0.8722585

σ = 1 -0.0479138 0.04196371 0.1637934

µ = −5 -0.89537 0.8310668 0.89537

σ = 5 -0.04946586 0.04220974 0.1640008

µ = −5 -1.176859 1.385527 1.176859

σ = 10 0.09995236 0.04999095 0.1791974

µ = 0 0.6835907 0.5058638 .6836182

σ = 1 -0.04048524 0.04148003 0.1622532

µ = 0 -0.9004636 0.839695 0.9004636

σ = 5 0.04918261 0.04233654 0.1642744

µ = 0 -1.17571 1.382866 1.17571

σ = 10 0.09990332 0.04973746 0.1786718

µ = 5 0.6806113 0.5016124 0.6806389

σ = 1 -0.04001441 0.04170052 0.163145

µ = 5 -0.900369 0.8393726 0.900369

σ = 5 0.05015226 0.04250714 0.1644665

µ = 5 -1.176583 1.384879 1.176583

σ = 10 0.01089497 0.4598741 0.5843977

µ = 10 0.0729195 0.4612334 0.5853499

σ = 1 0.125118 0.4633722 0.5870599

µ = 10 -0.1040864 0.4626862 0.586616

σ = 5 0.1218691 0.4643177 0.5874308

µ = 10 -0.3145018 0.4995298 0.6156897

σ = 10 0.1265605 0.4652878 0.5883557

The last table denotes the behavior of Conditional Bayes estimators of corresponding pa-

rameters under LinEx loss function. The similar tables for another loss functions are omitted.

Finally, as you can see the new strategy of estimating has so good performance in comparison

with MLEs.

177



References

[1] Arnold, B.C., Balakrishnan, N. and Nagaraja, H.N. (1992), A first course in order statistics,

Volume 54, Siam.

[2] Balakrishnan, N. and Cramer, E. (2014), The art of progressive censoring, Springer New

York.

[3] Balakrishnan, N. and Sandhu, R. A. (1995), A simple simulational algorithm for generating

progressive Type-II censored samples, The American Statistician, 49(2), 229-230.

[4] Devroye, L. (1984), A simple algorithm for generating random variates with a log-concave

density, Computing, 33(3-4), 247-257.

[5] Haghighi, F. (2017), Bayes conditional control charts for Weibull quantiles under type II

censoring, Quality and Reliability Engineering International, 33(5), 959-968.

[6] Haghighi, F. and Castagliola, P. (2015), Conditional control charts for monitoring the

Weibull shape parameter under progressively type II censored data, Quality and Reliability

Engineering International, 31(6), 1013-1022.

[7] Haghighi, F., Pascual, F. and Castagliola, P. (2015), Conditional control charts for Weibull

quantiles under type II censoring, Quality and Reliability Engineering International, 31(8),

1649-1664.

[8] Hastings, W.K. (1970), Monte Carlo sampling methods using Markov chains and their

applications, Biometrika, 57, 97-109.

[9] Lawless, J.F. (1978), Confidence interval estimation for the Weibull and extreme value

distributions, Technometrics, 20(4), 355-364.

[10] Lawless, J.F. (1973), Conditional versus unconditional confidence intervals for the param-

eters of the Weibull distribution, Journal of the American Statistical Association, 68(343),

665-669.

[11] Lawless, J.F. (1975), Construction of tolerance bounds for the extreme value and Weibull

distributions, Technometrics, 17(2), 255-261.

[12] Lehmann, E.L. and Casella, G. (2006), Theory of point estimation, Springer Science &

Business Media.

178



[13] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953),

Equation of state calculations by fast computing machines, The journal of chemical physics,

21(6), 1087-1092.

[14] Soliman, A.A., Abd-Ellah, A.H., Abou-Elheggag, N.A. and Ahmed, E. A. (2012), Modified

Weibull model: A Bayes study using MCMC approach based on progressive censoring data,

Reliability Engineering & System Safety, 100, 48-57.

[15] Soliman, A.A., Abd-Ellah, A.H., Abou-Elheggag, N.A. and Ahmed, E. A. (2013), Reliability

estimation in stressstrength models: an MCMC approach, Statistics, 47(4), 715-728.

[16] Viveros, R. and Balakrishnan, N. (1994), Interval estimation of parameters of life from

progressively censored data, Technometrics, 36(1), 84-91.

179



Allocation Policy of Redundancies in Two-Parallel-Series
System with Randomized Components

Maryam Kelkinnama1

Department of Mathematical Sciences, Isfahan University of Technology, Esfahan

81744, Iran

Abstract: In this paper, we consider two-parallel-series system consisting two types of com-

ponents chosen from two batches of n independent components. Suppose that the number of

components from the first batch (say K) is chosen randomly according to a probability distribu-

tion. We purpose to compare the systems when K is distributed by two probability distributions

such that they stochastically ordered.

Keywords Coherent system, Redundancy, Stochastic orders, Randomized components.

Mathematics Subject Classification (2010): 60E15, 62N05.

A Introduction

In the theory of coherent systems, the study of the stochastic properties of coherent systems

which composed of different types of components is an important topic. Consider a situation

that there are two different batches of components to built the system. The random lifetimes

of the components in the first and the second batches are denoted by {Xi, i = 1, · · · , n} and

{Yi, i = 1, · · · , n}, respectively. Assume that the k components from the first batch and the

n− k components from the second batch are selected to construct the system.

One way to improve the reliability of systems is to allocate redundancies, at component level

or at system level. The former means that some spares connect in parallel to each components

and in the latter case, a duplicated system consisting of spares connects to the original system

in parallel.

In this paper, we consider a series structure and suppose that to improve the reliability of the

system, the redundancy at system level is employed as it can shown in Figure 1. Note that in

up-series subsystem there are k components from the first batch and the remaining components

from the second batch while in the down-series subsystem, the components combination is vice
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versa. This system which is called ”two-parallel-series” system, studied by Laniado and Lillo

Figure 1: Two-parallel-series system

(3), for which they stochastically compared the allocation policies by some common stochastic

orders.

In this paper, we suppose that K is random variable with support in {0, · · · , n}. This

assumption is considered by Di Crescenzo and Pellery (1) for series and parallel systems where,

they compared the systems when random variables K1 and K2 are stochastically ordered. Their

results are strengthened by Hazra and Nanda (2) using some other stochastic orders. Navarro

et al. (5) extended the results from series and parallel systems to general coherent systems with

possibly dependent components.

Here, we suppose that the random number of components (K) is chosen with two prob-

ability distributions, say K1 and K2 where they are stochastically ordered and compare the

corresponding two-parallel-series systems.

A.1 Some useful definitions and lemmas

Let X and Y be random variables with corresponding distribution functions F and G, reliability

functions F̄ and Ḡ, density functions f and g, hazard rate functions rX and rY and reverse

hazard rate functions r̃X and r̃Y . Then X is said to be smaller than Y in the

• usual stochastic order (denoted by X ≤st Y ) if F (x) ≤ G(x) for all x,

• hazard rate order (denoted by X ≤hr Y ) if G(x)

F (x)
is increasing in x, or, equivalently,

rX(x) ≥ rY (x) for all x,

• reversed hazard rate order (denoted by X ≤rhr Y ) if G(x)
F (x) is increasing in x, or, equiva-

lently, r̃X(x) ≤ r̃Y (x) for all x,

• likelihood ratio order (denoted by X ≤lr Y ) if g(x)
f(x) is increasing in x, for all x.
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It is known that the following implications hold:

X ≤lr Y ⇒ X ≤hr[rhr] Y ⇒ X ≤st Y,

(Karlin (1968). A function h(x, y) is said to be Sign-Regular of order 2 (SR2) if ϵ1h(x, y) ≥ 0

and

ϵ2

∣∣∣∣∣∣ h(x1, y1) h(x1, y2)

h(x2, y1) h(x2, y2)

∣∣∣∣∣∣ ≥ 0

whenever x1 < x2, y1 < y2 for ϵ1 and ϵ2 equal to +1 or -1. If the above relations hold with

ϵ1 = +1 and ϵ2 = +1, then h is said to be Totally Positive of order 2 (TP2); and if they hold

with ϵ1 = +1 and ϵ2 = −1 then h is said to be Reverse Regular of order 2 (RR2).

It should be pointed out that TP2 (RR2) property of h(t, x) is equivalent to that h(t,x2)
h(t,x1)

is

increasing (decreasing) in t whenever x1 ≤ x2.

Let ψi : [0,∞)× [0,∞) → R, i = 1, 2, be a function and let gi(θ) be the Lebesgue probability

distribution function of a random variable Ti, i = 1, 2. Let

ψ(x) =

∫∞
0
ψ2(x, θ)g2(θ)dθ∫∞

0
ψ1(x, θ)g1(θ)dθ

, x > 0. (A.1)

(Misra and Naqvi (2018) (4)) Suppose that ψ2(x,θ)
ψ1(x,θ)

increases (decreases) in x ∈ (0,∞) and

increases in θ ∈ (0,∞). Further suppose that any of the following three conditions hold:

(i) T1 ≤lr T2 and ψ1(x, θ) or ψ2(x, θ) is TP2 (RR2) in (x, θ) ∈ (0,∞)× (0,∞);

(ii) T1 ≤hr T2 and

ψ1(x, θ) is TP2 (RR2) in (x, θ) ∈ (0,∞)× (0,∞) and is increasing in θ ∈ (0,∞) or;

ψ2(x, θ) is TP2 (RR2) in (x, θ) ∈ (0,∞)× (0,∞) and is increasing in θ ∈ (0,∞),

(iii) T1 ≤rhr T2 and

ψ1(x, θ) is TP2 (RR2) in (x, θ) ∈ (0,∞)× (0,∞) and is decreasing in θ ∈ (0,∞) or;

ψ2(x, θ) is TP2 (RR2) in (x, θ) ∈ (0,∞)× (0,∞) and is decreasing in θ ∈ (0,∞).

Then the function ψ(x) as defined in (A.1), is increasing (decreasing) in x ∈ (0,∞).

B Main results

Let Sk denote the lifetime of the system shown in Figure 1, in which the components are assumed

to be independent and hence the corresponding distribution function is obtained as

FSk
(t) = [1− F̄ k(t)Ḡn−k(t)][1− F̄n−k(t)Ḡk(t)]. (B.1)
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Laniado and Lillo (3) supposed that the F̄ and Ḡ follow the proportional hazards (PH) model

as Ḡ(t) = F̄α(t) for some positive α > 0 and for all t ≥ 0 and proved the following result. (3)

For the system with different combinations of components, we have for every k1 ≤ k2 ≤ n
2

(i) Sk1 ≥rhr Sk2

(ii) Sk1 ≥hr Sk2 .

Afterwards, Wang and Laniado (6) extended the stochastic ordering to likelihood ratio order.

(6) For the system with different combinations of components, we have

Sk1 ≥lr Sk2

for every k1 ≤ k2 ≤ n
2 . Their results state that, if the allocation of components and redundan-

cies is unbalanced as much as possible (in other words, the heterogeneity is maximized) then

one can get the higher reliable system.

In this paper, we want to suppose that K is random variable which take the value in

{0, 1, · · · , n}. In this case, we denote the lifetime of the system by SK . The distribution

function of SK is represented as follows

FSK (t) =

n∑
k=0

[1− F̄ k(t)Ḡn−k(t)][1− F̄n−k(t)Ḡk(t)]P (K = k),

and under the PH model, we have

FSK
(t) =

n∑
k=0

[1− F̄ k+α(n−k)(t)][1− F̄n−k+αk(t)]P (K = k).

At the continue, we purpose to compare the systems when the random number K follow two

probability distributions which are ordered stochastically. If K1 ≤st K2 then SK1 ≥st SK2 . .

From Theorem B we have the the F̄Sk
is a decreasing function of k. We can write

F̄SK1
(t) =

n∑
k=0

[
1− (1− F̄ k+α(n−k)(t))(1− F̄n−k+αk(t))

]
P (K1 = k)

= E(ϕF̄ (t)(K1))

≥ E(ϕF̄ (t)(K2))

=

n∑
k=0

[
1− (1− F̄ k+α(n−k)(t))(1− F̄n−k+αk(t))

]
P (K2 = k) = F̄SK2

(t)

where, ϕF̄ (t)(k) = 1− FSk
(t). The inequlaity follows from Shaked and shantikumar (2007). �
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This result show that the reliability of the system increases in ususal stochastic order sense,

when the random number of components decreases in the usual stochastic order. In the simpler

words, as the mean value of K increases, the reliability of the system decreases.

In the next of the paper, we extend the obtained result to the other stochastic orders. If

K1 ≤hr K2 then SK1 ≥rhr SK2 . . The desired result is equivalent to show that∑n
k=0[1− F̄ k+α(n−k)(t)][1− F̄n−k+αk(t)]P (K2 = k)∑n
k=0[1− F̄ k+α(n−k)(t)][1− F̄n−k+αk(t)]P (K1 = k)

(B.2)

is decreasing function of t.

From Theorem B(i) and Definition A.1, we have that

[1− F̄ k2+α(n−k2)(t)][1− F̄n−k2+αk2(t)]

[1− F̄ k1+α(n−k1)(t)][1− F̄n−k1+αk1(t)]

is decreasing in t and hence [1 − F̄ k+α(n−k)(t)][1 − F̄n−k+αk(t)] is RR2 in (t, k) ∈ R+ ×

{0, 1, · · · , n}. Also, from Theorem B, it is clear that FSk
(t) is increasing function of k, then

according to Lemma A.1 (ii) we obtain the result. �
If K1 ≤rhr K2 then SK1 ≥hr SK2 . . The desired result is equivalent to show that∑n

k=0

(
1− [1− F̄ k+α(n−k)(t)][1− F̄n−k+αk(t)]

)
P (K2 = k)∑n

k=0

(
1− [1− F̄ k+α(n−k)(t)][1− F̄n−k+αk(t)]

)
P (K1 = k)

(B.3)

is decreasing function of t.

From Theorem B(ii) and Definition A.1, we have that

1− [1− F̄ k2+α(n−k2)(t)][1− F̄n−k2+αk2(t)]

1− [1− F̄ k1+α(n−k1)(t)][1− F̄n−k1+αk1(t)]

is decreasing in t and hence 1 − [1 − F̄ k+α(n−k)(t)][1 − F̄n−k+αk(t)] is RR2 in (t, k) ∈ R+ ×
{0, 1, · · · , n}. Also, it is evident that F̄Sk

(t) is decreasing function of k, then according to Lemma

A.1 (iii) we get the result. �
If K1 ≤lr K2 then SK1 ≥lr SK2 . . First, note that the density function of Sk is

fSK (t) =
f(t)

F̄ (t)
[(k + α(n− k))F̄ k+α(n−k)(t) + (αk + (n− k))F̄αk+(n−k)(t)− (α+ 1)nF̄ (α+1)n]

The desired result is equivalent to show that∑n
k=0 fSk

(t)P (K2 = k)∑n
k=0 fSk

(t)P (K1 = k)

is decreasing function of t. From Theorem B it follows that
fSk2

(t)

fSk1
(t) decreases in t and hence,

fsk(t) is RR2 in (t, k) ∈ R+ × {0, 1, · · · , n}. Now, using Lemma A.1 (i) we get the result. �
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A Introduction

Mathematical and statistical theory of system reliability is based on the central concept ”struc-

ture function”, which is a binary function and describes deterministically the state of a system

when the states of its components are given. In practical uses and real world applications it

is somewhat restricted as for various reasons the functioning of system components does not

always provide absolute certainty that the system will function. In other words, except the

failures of system components there are other random factors that may cause to system failure.

For example in a car system sometimes we have seen that the main and key components of

the car are functioning but the car does not work. Therefore because of lack of our perfect

knowledge and our uncertainty about the quality of the system functioning, a generalization

of structure function from binary function to a probability may have substantial advantages

for realistic system reliability quantification. This idea was recently suggested by Coolen and

Coolen-Maturi (2016). They did not give any specific model for probabilistic structure function.

In this paper, among different factors that may have effects on system performance, we only

consider the quality of the links between system components that we think it is an important

factor for functioning of the system. In the following section we explain our model in details.
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Illustrative examples are also given. Finally in Section 3, we show that the survival signature a

concept defined by Coolen and Coolen-Maturi (2012) can be successfully used in our model for

probability structure function.

B Probabilistic structure function

In this section, for the sake of completeness we first review the binary structure function and

then present our probabilistic model for structure function.

2.1 Binary Structure Function

Consider a system consists of n components and assume that all components and the system are

in functioning or failed state. In a fixed point of time let state vectorX = (X1, . . . , Xn) ∈ {0, 1}n,

with

Xi =

 1 if ith component is working

0 otherwise

The structure function ϕ : {0, 1}n → {0, 1} is defined as

ϕ(X) = ϕ(X1, . . . , Xn) =

 1 if the system is working

0 otherwise

The system is said to be coherent if ϕ(X) is not decreasing in any Xi and all components be

relevant, that is

ϕ(1i,X)− ϕ(0i,X) = 1

at least for one X ∈ {0, 1}n−1.

Obviously ϕ(1, . . . , 1) = 1 and ϕ(0, . . . , 0) = 0.

Also ϕ(X) = Xiϕ(1i,X) + (1−Xi)ϕ(0i,X), i = 1, . . . , n (pivotal decomposition).

If ϕ(X) = 1(0) then X is said to be a path(cut) vector and the corresponding subset P = {1 ≤

i ≤ n|Xi = 1}(C = {1 ≤ i ≤ n|Xi = 0}) is called a path(cut) set of the system. Note that

an arbitrary vector X ∈ {0, 1}n always is a path vector or a cut vector but not both. Whereas

P ⊆ {1, . . . , n} can be both a path and a cut set.

If P (C) ⊆ {1, . . . , n} be a path(cut) set and Q ⊂ P (C) is not a path(cut) set then P (C) is a

minimal path(cut) set of the system. It is known that if P1, . . . , Pr(C1, . . . , Cs) be all minimal

path(cut) sets of the system then

ϕ(X) = max1≤i≤r minj∈PiXj = min1≤i≤s maxj∈CiXj (B.1)
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.

If pi = EXi = P (Xi = 1) be the reliability of component i then h(p) = h(p1, . . . , pn) =

Eϕ(X) = P (ϕ(X) = 1) is the reliability function of the system. For more details on reliability

of coherent systems with binary structure function, see Barlow and Proschan (1975).

2.2 Structure Function as Probability

Here we still assume that the binary state for the system components. We also take into account

the quality of the links between the components as an effective factor on system performance.

This factor may cause to failure of the system even if all its components are working. Therefore

given the states of components, we consider the state of the system to be a conditional probability

as follow

ϕa(x) = Pa(system is functioning|X = x)

where a = (a1, . . . , am) with

al = P (the lth minimal link is functioning), l = 1, . . . ,m

and m is the number of minimal links between the system components. As usual we assume

that the failure of the components leads to failure of the system definitely. Let

S =

 1 if system is functioning

0 otherwise

then

ϕa(x) = Pa(S = 1|X = x).

ASSUMPTIONS

A1. ϕa(x) is increasing in xi, i = 1, . . . , n.

A2. The component i is relevant, that is ϕa(1i,x) > 0 and ϕa(0i,x) = 0 at least for one

x ∈ {0, 1}n−1, i = 1, . . . , n. Under the above conditions we call the system as a coherent

system. In a coherent system we have ϕa(0, . . . , 0) = 0. Also ϕa(1, . . . , 1) > 0, but it is not

necessary equal to 1. It means that even if all components of the system are working, there

exists a positive probability for system failure. But if x is a cut vector we have ϕa(x) = ϕ(x) = 0

in which ϕ(x) is the binary structure function.

A3. We assume that the links between components are functioning independently and are

independent of the states of components.

Minimal Path(Cut) Sets
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If ϕa(x) > (=)0 we call x as a path(cut) vector. The path(cut) sets and the minimal path(cut)

sets are defined as in previous subsection 2.1. Although ϕa(x) is simply satisfied in pivotal

decomposition but the Equation (2.1) does not hold true for ϕa(x).

Lemma 2.1. For p = (p1, . . . , pn) and a = (a1, . . . , am) the system reliability is given by

ha(p) = EaS = Pa(S = 1) =
∑

x ϕa(x)P (X = x)

where summation is taken over all path vectors. Also

1− ha(p) = Pa(S = 0) =
∑
xp

(1− ϕa(xp))P (X = xp) +
∑
xc

P (X = xc)

xp(xc) is a path(cut) vector of the system.

Proof. We have

ha(p) =
∑
x

Pa(S = 1|X = x)P (X = x) =
∑
x

ϕa(x)P (X = x).

The second equality of the lemma given for unreliability of the system can similarly be proved.

Remark 1. The above lemma shows clearly that the system failure is not only depended

to components failures but also to the minimal links between components. The first sum in

1−ha(p) gives in fact the contribution of the minimal links between the system components to

failure of the system and the second sum gives the same for failure of system components.

Remark 2. Note that ϕa(x) reduces to the binary structure function ϕ(x) when a = (1, . . . , 1),

that is all minimal links between components are in functioning state definitely. Therefore we

can say that the coherent systems with binary structure functions is a subclass of the coherent

systems with probabilistic structure functions. Obviously ϕa(x) ≤ ϕ(x) and therefore ha(p) ≤

h(p).

In the following examples we also assume that the system components are independent. EX-

AMPLES

1(Series System).

1 2bb bn
In this system we havem = n−1, ϕa(x) = a1a2 · · · an−1x1x2 · · ·xn and ha(p) = a1a2 · · · an−1p1p2 · · · pn.

Note that for i = 1, . . . , n− 1 we have

ai = P (link between componets i and i+ 1 is functioning).

2(Parallel System).

In this system we have m = n, ϕa(x) = 1−
∏n

1 (1− aixi) and ha(p) = 1−
∏n

1 (1− aipi).

3(2-out-of-3 System). In this system we have m = 3, ϕa(x) = a1x1x2 + a2x1x3 + a3x2x3 −

x1x2x3(a1a2 + a1a3 + a2a3 − a1a2a3) and ha(p) = a1p1p2 + a2p1p3 + a3p2p3 − p1p2p3(a1a2 +

a1a3 + a2a3 − a1a2a3).
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4(Series-Parallel System).

c
1

2

c3c
For this system we have m = 2, ϕa(x) = a1x1x2 + a2x1x3 − a1a2x1x2x3 and ha(p) = a1p1p2 +

a2p1p3 − a1a2p1p2p3.

Remark 3. In a coherent system, the minimal links between system components can be

obtained just by the collection of its minimal path sets. Suppose P(r) ⊆ {1, . . . , n} be a minimal

path set of the system consisting of r ≥ 2 components. Obviously it contains r−1 minimal links

between components. We also assume that P(1) has one minimal link(see the parallel system in

Example 2). It is an interesting problem if one can obtain a closed form for ϕa(x) in terms of

its minimal path sets and a, as like as the Equation (2.1) for ϕ(x).

C Survival Signature of Coherent Systems with Probabil-

ity Structure Functions

The concept of system signature introduced by Samaniego (1985). It is a very useful tool

and has a wide range of applications in study of reliability analysis of coherent systems. Let

T = ϕ(T1, . . . , Tn) be the lifetime of a coherent system where Ti is the lifetime of component i.

When Ti’s are independent and identically distributed (i.i.d), Samaniego (1985) showed that

P (T > t) =
n∑
i=1

siP (Ti:n > t) (C.1)

where Ti:n is the ith ordered component lifetime, si = P (T = Ti:n) and the probability vector

s = (s1, . . . , sn) is the signature of the system.

Although the system signature is an important tool and has many applications in reliability

studies of coherent systems with binary structure function but it seems that is not case for the

coherent systems with probabilistic structure functions as we have seen in previous section that

the system failure is not determined by the failure of components deterministically. Note that

the Equation (3.1) does not hold true for the systems with probability structure functions.

In this section we show that the ”survival signature”, a concept introduced by Coolen and

Coolen-Maturi (2012), how plays the role of system signature in coherent systems with proba-

bilistic structure functions.

Coolen and Coolen-Maturi (2012) introduced a new measure and called it the survival signature

for a coherent system of order n with components of r different types. They assumed that the
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system has mk components of type k, k = 1, . . . , r and also assumed that the components of

the same type are exchangeable and the components of different types are independent. For

ik = 0, . . . ,mk and k = 1, . . . , r their measure is defined as follow

s̄(i1, . . . , ir) = P (ϕ(X) = 1|exactly ik components of type k are working)

=

[
r∏

k=1

(
mk

ik

)]−1 ∑
x∈Si1,...,ir

ϕ(x)

where Si1,...,ir = {x|
∑mk

j=1 x
k
j = ik, k = 1, . . . , r.}

They also obtained the system reliability as follow:

P (T > t) =

m1∑
i1=0

· · ·
mr∑
ir=0

s̄(i1, . . . , ir)
r∏

k=1

P (Ckt = ik)

where Ckt ∈ {0, 1, . . . ,mk} is the number of components of type k that function at time t.

Under the above stated assumptions they showed that the s̄, as like as the system signature is

not depended to the joint distribution of the components.

Definition 3.1. We define the survival signature of a coherent system with probability structure

function as follow

s̄a(i) = Pa(system is functioning|the number of working components is i).

The following lemma gives an expression for s̄a(i) in a coherent system with i.i.d. components.

It is useful for determining the reliability function of the system.

Lemma 3.1. In a coherent system with i.i.d. components and with probability structure

function ϕa(x) we have

s̄a(i) =

∑
x:|x|=i ϕa(x)(

n
i

)
where |x| =

∑
xj .

Proof. We have

s̄a(i) = Pā(S = 1|
n∑
j=1

Xj = i) =

∑
x:|x|=i Pa(S = 1,X = x)

P (
∑
Xj = i)

=

∑
x:|x|=i Pa(S = 1|X = x)P (X = x)

P (
∑
Xj = i)

=

∑
x:|x|=i ϕa(x)p

i(1− p)n−i(
n
i

)
pi(1− p)n−i

where p is the common reliability of components.

Lemma (3.1) shows that the survival signature s̄a(i) is not depended to component reliabilities.

We now in the next theorem obtain the reliability function of the system.
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Theorem 3.1. Under the assumptions of Lemma (3.1) we have

ha(p) =
n∑
i=1

s̄a(i)

(
n

i

)
pi(1− p)n−i. (C.2)

Proof. We have ha(p) = Pa(S = 1)

=
n∑
i=1

Pa(S = 1|
∑
j

Xj = i)

(
n

i

)
pi(1− p)n−i =

n∑
i=1

s̄a(i)

(
n

i

)
pi(1− p)n−i.

The Equation (3.2) is the similar version of the Equation (3.1).
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A Introduction

Recently, several researchers study the statistical distribution theory and modeling. Since there

are the various data in the real world, it is necessary to extend the classic statistical models

and finally introduce the more accurate models. In recent year, the different methods have been

introduced for constructing the statistical distributions by researchers.

The change point models are often important in the statistical distribution theory. The

change point distributions are used in the different branch of sciences such as economic, engi-

neering, agriculture and so on. A family of the change point distributions is introduced by Van

Dorp and Kotz (2002a) so-called two-sided power distribution (TSP ) with the pdf ,

f(x;α, β) =

 α
(
x
β

)α−1

, 0 < x ≤ β,

α
(

1−x
1−β

)α−1

, β ≤ x < 1,
(A.1)

and with the cumulative distribution function (cdf),

F (x;α, β) =

 β
(
x
β

)α
, 0 < x ≤ β,

1− (1− β)
(

1−x
1−β

)α
, β ≤ x < 1,

(A.2)

1Mansour Zargar: zargar−m@vru.ac.ir



where 0 ≤ β ≤ 1 and α > 0. The parameter β is the location parameter called ”turning point”

and α is the shape parameter that control the shape of distribution on the left and right of β.

Van Dorp and Kotz (2002b) introduced an extension of the three-parameter triangular dis-

tribution utilized in risk analysis. Their model includes the TSP distribution as a special case.

Van Dorp and Kotz (2003) considered a family of continuous distributions on a bounded interval

generated by convolutions of the TSP distributions.

Recently, some of researchers have proposed some new distributions by using Alzaatreh’s

technique (2013) that these distributions are one-sided and have not any change point. The

Alzaatreh’s technique, as an important method for developing statistical distributions, hasn’t

been used for the change point distributions, yet.

Alzaatreh et al. (2013) introduced a new technique to drive families of distributions by using

any pdf as a generator. Suppose that G(x) is a parent distribution and r(x) is a probability

distribution function (pdf). Then Alzaatreh et al. (2013) introduced a new lifetime distributions

family by combining the parent G and the pdf r(x) as follows.

F (x) =

∫ W (G(x))

a

r(t)dt, (A.3)

where T ∈ [a, b] and −∞ ≤ a < b ≤ ∞ and W (G(x)) satisfies the following conditions.

• W (G(x)) ∈ [a, b]

• W (G(x)) is differentiable and monotonically non-decreasing

• W (G(x)) → a as x→ −∞ and W (G(x)) → b as x→ ∞.

A special case ofW (k) is generalized odd ratio function that have considered by scientific re-

searchers widely in recent years. The generalized odd ratio is a well-known quantity in reliability,

survival analyse and engineering systems. W (k) should be state.

Kharazmi and Zargar (2018) introduced a new family of distribution to apply the transmu-

tation technique in the two-sided distributions for increasing the flexibility and usefulness of the

TSP distribution and generalized this class of distributions with pdf

f(x;α, β, λ) =


α

(
(1 + λ)

(
x
β

)α−1

− 2λ
(
x
β

)2α−1
)
, 0 < x ≤ β,

α

(
(1 + λ)

(
1−x
1−β

)α−1

− 2λ
(

1−x
1−β

)2α−1
)
, β ≤ x < 1,

(A.4)

and its cdf is given by

F (x;α, β, λ) =


β

(
(1 + λ)

(
x
β

)α
− λ

(
x
β

)2α)
, 0 < x ≤ β,

1− (1− β)

(
(1 + λ)

(
1−x
1−β

)α
− λ

(
1−x
1−β

)2α)
, β ≤ x < 1.

(A.5)
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The main motivation of the present paper is to apply the Alzaatreh’s method for increasing

the flexibility and usefulness of the two-sided distributions. For this purpose, a new distribu-

tion is proposed based on generalized odd ratio for transmuted two-sided model introduced by

Kharazmi and Zargar (2018).

B Generalized odd transmuted two-sided-G distribution

Suppose that G(x; ξ) be a parent cdf of a continuous random variable with pdf g(x; ξ). Based

on the relations (A.4) and (A.5) and parent G(x; ξ), one can see the following distribution. A

random variable X is said to be generalized odd transmuted two-sided-G distribution if its pdf

is given by

f(x) =


αψ′(x; η, ξ)

(
(1 + λ)

(
ψ(x;η,ξ)

β

)α−1

− 2λ
(
ψ(x;η,ξ)

β

)2α−1
)
, −∞ < x ≤ Ω1,

αψ′(x; η, ξ)

(
(1 + λ)

(
1−ψ(x;η,ξ)

1−β

)α−1

− 2λ
(

1−ψ(x;η,ξ)
1−β

)2α−1
)
, Ω1 ≤ x < Ω2,

(B.1)

and its cdf is given by

F (x) =


β

(
(1 + λ)

(
ψ(x;η,ξ)

β

)α
− λ

(
ψ(x;η,ξ)

β

)2α)
, −∞ < x ≤ Ω1,

1− (1− β)

(
(1 + λ)

(
1−ψ(x;η,ξ)

1−β

)α
− λ

(
1−ψ(x;η,ξ)

1−β

)2α)
, Ω1 ≤ x < Ω2,

(B.2)

where Ω1 = G−1
(x;ξ)

((
β

1+β

) 1
η

)
, Ω2 = G−1

(x;ξ)

(
( 12 )

1
η

)
, ψ(x; η, ξ) =

Gη
(x;ξ)

1−Gη
(x;ξ)

and ψ′(x; η, ξ) =

ηg(x;ξ)G
η−1
(x;ξ)(

1−Gη
(x;ξ)

)2 is derivative of ψ(x; η, ξ) and ξ is a parameter vector in the cdf G(x; ξ) and G−1
(x;ξ)(.) is

its inverse. Also, ψ(x; η, ξ) =W (G(x; ξ)) satisfies the conditions in Alzaatreh ’s method. We de-

note generalized odd transmuted two-sided-G family of distributions byGOTTS−G(α, β, λ, η, ξ).

If λ = 0, we get a new model with the pdf

f(x;α, β, η, ξ) =

 αψ′(x; η, ξ)
(
ψ(x;η,ξ)

β

)α−1

, −∞ < x ≤ Ω1,

αψ′(x; η, ξ)
(

1−ψ(x;η,ξ)
1−β

)α−1

, Ω1 ≤ x < Ω2,
(B.3)

and its cdf is given by

F (x;α, β, η, ξ) =

 β
(
ψ(x;η,ξ)

β

)α
, −∞ < x ≤ Ω1,

1− (1− β)
(

1−ψ(x;η,ξ)
1−β

)α
, Ω1 ≤ x < Ω2.

(B.4)

Notice that this new model is obtained by applying generalized odd quantity for two-sided power

distribution and it called GOTSP −G.
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If λ = 0 and α = β = 1, we get have

f(x; η, ξ) = ψ′(x; η, ξ), −∞ < x ≤ Ω2, (B.5)

and its cdf is given by

F (x; η, ξ) = ψ(x; η, ξ), −∞ ≤ x < Ω2. (B.6)

B.1 Quantile function

For generating random variables from the GOTTS − G distribution, one can use the inverse

transformation method. The quantile of order q of the GOTTS −G distribution is

xq = F−1(q;α, β, λ, η, ξ) =


G−1

(x;ξ)

[(
A1

1+A1

) 1
η

]
, 0 < q ≤ β,

G−1
(x;ξ)

[(
A2

1+A2

) 1
η

]
, β ≤ q < 1,

where, A1 = β

(
1+λ−

√
(1+λ)2− 4λq

β

2λ

) 1
α

and A2 = 1− (1− β)

(
1+λ−

√
(1+λ)2− 4λ(1−q)

1−β

2λ

) 1
α

.

C Estimation of the parameters of GOTTS−G distribution

In this section, we obtain the estimation of parameters GOTTS − G distribution by using

maximum likelihood estimation (MLE).

C.1 Maximum likelihood estimation

We consider the estimation of the parameters of the new family from sample by maximum

likelihood method. Let X1, X2, . . . , Xn be a random sample of size n from the GOTTS − G

distribution and X1:n ≤ X2:n ≤ . . . ≤ Xn:n denote the corresponding order statistics. The

log-likelihood function is given by

ℓ = n logα+
n∑
i=1

log(ψ′(x; η, ξ))

+ log

{
r∏
i=1

(
(1 + λ)

(
ψ(xi:n; η, ξ)

β

)α−1

− 2λ

(
ψ(xi:n; η, ξ)

β

)2α−1
)

×
n∏

i=r+1

(
(1 + λ)

(
1− ψ(xi:n; η, ξ)

1− β

)α−1

− 2λ

(
1− ψ(xi:n; η, ξ)

1− β

)2α−1
)}

,

196



where xr:n ≤ Ω1 < xr+1:n for r = 1, 2, . . . , n and X0:n = −∞, Xn+1:n = ∞.

For estimating the parameters, we obtain the partial derivatives of the log-likelihood function

with respect to the parameters. According to Van Dorp and Kotz (2002a), we can find the

maximum likelihood estimates (MLE’s) of parameters. We first consider the MLE’s of α and

β when the parameters λ, η and ξ are known. At the corner point β, the log-likelihood function

for the GOTTS−G distribution is not differentiable and we can not find the estimate of β in a

regular way. Without loss of generality, we assume that λ = 0. So, the log-likelihood function

will be

ℓ = n logα+
n∑
i=1

log(ψ′(xi; η, ξ))

+ log

{
r∏
i=1

(
ψ(xi:n; η, ξ)

β

)α−1 n∏
i=r+1

(
1− ψ(xi:n; η, ξ)

1− β

)α−1
}

= n logα+

n∑
i=1

log(ψ′(xi; η, ξ))

+(α− 1) log

{∏r
i=1 ψ(xi:n; η, ξ)

∏n
i=r+1 (1− ψ(xi:n; η, ξ))

βr(1− β)n−r

}
.

According to Van Dorp and Kotz (2002a) and Korkmaz and Genç (2017), the MLE’s of α and

β are as follows

α̂ = − n

logM(r̂, η, ξ)
,

β̂ = ψ(xr̂:n; η, ξ),

where r̂ = argmaxM(r, η, ξ), r ∈ {1, 2, . . . , n} with

M(r, η, ξ) =
r−1∏
i=1

ψ(xi:n, η, ξ)

ψ(xr:n, η, ξ)

n∏
r+1

1− ψ(xi:n, η, ξ)

1− ψ(xr:n, η, ξ)
.

By taking the derivative of the log-likelihood function with respect to parameter vector ξ and

parameters η and λ, the MLE’s of parameters ξ, η and λ are obtained by equating it to zero.

These derivative are given as

∂ℓ

∂λ
=

r̂∑
i=1

(
ψ(xi:n;η,ξ)

β

)α−1

− 2
(
ψ(xi:n;η,ξ)

β

)2α−1

(1 + λ)
(
ψ(xi:n;η,ξ)

β

)α−1

− 2λ
(
ψ(xi:n;η,ξ)

β

)2α−1

+
n∑

i=r̂+1

(
1−ψ(xi:n;η,ξ)

1−β

)α−1

− 2
(

1−ψ(xi:n;η,ξ)
1−β

)2α−1

(1 + λ)
(

1−ψ(xi:n;η,ξ)
1−β

)α−1

− 2λ
(

1−ψ(xi:n;η,ξ)
1−β

)2α−1 ,
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∂ℓ

∂ξk
=

n∑
i=1

ψ′′(xi:n; η, ξ)

ψ′(xi:n; η, ξ)

+

r̂∑
i=1

ψ′(xi:n; η, ξ)

β
.
(1 + λ)(α− 1)

(
ψ(xi:n;η,ξ)

β

)α−2

− 2λ(2α− 1)
(
ψ(xi:n;η,ξ)

β

)2α−2

(1 + λ)
(
ψ(xi:n;η,ξ)

β

)α−1

− 2λ
(
ψ(xi:n;η,ξ)

β

)2α−1

+
n∑

i=r̂+1

−ψ′(xi:n; η, ξ)

1− β
.
(1 + λ)(α− 1)

(
1−ψ(xi:n;η,ξ)

1−β

)α−2

− 2λ(2α− 1)
(

1−ψ(xi:n;η,ξ)
1−β

)2α−2

(1 + λ)
(

1−ψ(xi:n;η,ξ)
1−β

)α−1

− 2λ
(

1−ψ(xi:n;η,ξ)
1−β

)2α−1 ,

where ψ′′(t; η, ξ) = ∂ψ′(t;η,ξ)
∂ξk

and ψ′(t; η, ξ) = ∂ψ(t;η,ξ)
∂ξk

.

However, these equations are nonlinear and there are no explicit solutions. Thus, they have

to be solved numerically. So, the optim function is used for estimating the parameters in R

program.

D Generalized odd transmuted two-sided exponential dis-

tribution

The GOTTS − G distribution is specialized by taking G as the well-known distribution. We

suppose that the base distribution G has an exponential distribution with pdf , cdf and inverse

cdf functions g(x; θ) = 1
θ e

− x
θ , G(x; θ) = 1 − e−

x
θ , x > 0, θ > 0 and G−1(x; θ) = −θ log(1 − x),

respectively. By substituting g(x; θ) and G(x; θ) in equations ψ(x; η, ξ) and ψ′(x; η, ξ), the pdf

of GOTTS −G distribution can be given as

f(x) =


αψ′(x; η, θ)

(
(1 + λ)

(
ψ(x;η,θ)

β

)α−1

− 2λ
(
ψ(x;η,θ)

β

)2α−1
)
, 0 < x ≤ Ω3,

αψ′(x; η, θ)

(
(1 + λ)

(
1−ψ(x;η,θ)

1−β

)α−1

− 2λ
(

1−ψ(x;η,θ)
1−β

)2α−1
)
, Ω3 ≤ x < Ω4,

(D.1)

and its cdf is given by

F (x) =


β

(
(1 + λ)

(
ψ(x;η,θ)

β

)α
− λ

(
ψ(x;η,θ)

β

)2α)
, −∞ < x ≤ Ω3,

1− (1− β)

(
(1 + λ)

(
1−ψ(x;η,θ)

1−β

)α
− λ

(
1−ψ(x;η,θ)

1−β

)2α)
, Ω3 ≤ x < Ω4,

(D.2)

where Ω3 = −θ ln
(
1−

(
β

1+β

) 1
η

)
and Ω4 = −θ ln

(
1−

(
1
2

) 1
η

)
.

We call this distribution the odd transmuted two-sided generalized exponential distribution

and denote by GOTTS − E(α, β, λ, η, θ). Figure 1 showes the graphs of the densities of the

GOTTS − E distribution with 0 ≤ λ ≤ 1.
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Figure 1: The graphs of the densities of the GOTTS − E distribution with 0 ≤ λ ≤ 1.

D.1 Hazard function of the GOTTS − E distribution

Generally, the hazard function of a distribution is

r(x) =
f(x;α, β, λ, η, ξ)

1− F (x;α, β, λ, η, ξ)
. (D.3)

Now, the hazard rate function of the GOTTS − G can be obtained by substituting relations

(B.1) and (B.2) in (D.3). In special case, when the parent distribution is exponential, one can

calculate the hazard rate function of the GOTTS − E function.

E Application of the GOTTS − E distribution

To investigate the advantage of the proposed distribution, we consider a real data set provided

by Bjerkedal (1960). The windshield on a large aircraft is a complex piece of equipment, com-

prised basically of several layers of material, including a very strong outer skin with a heated

layer just beneath it, all laminated under high temper- ature and pressure. Failures of these

items are not structural failures. Instead, they typically involve damage or delamination of the
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Table 1: The MLE’s of parameters for data set.
Model Estimation Log-likelihood AIC BIC

GOTTSE (α̂, β̂, λ̂, θ̂, η̂)=(2.362, 0.855, 0.893,12.807, 0.596) -122.286 254.571 266.726

TTSGE (α̂, β̂, λ̂, θ̂)=(2.330,0.953, -0.790, 1.471) -127.144 262.287 272.011

gamma (α̂, λ̂)=(3.492, 1.365) -136.937 277.874 282.735

Weibull (β̂, λ̂)=(2.374,2.863) -130.053 264.107 268.968

TSGE (α̂, β̂, θ̂)=( 3.211, 0.922, 1.691) -130.979 267.958 275.250

GE (α̂, λ̂)=(3.562, 0.758) -139.841 283.681 288.543

nonstructural outer ply or failure of the heating system. The data are given below:

Failure times of 84 Aircraft Windshield

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911,

2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779,1.248,

2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902,

4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506,

2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117,

4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663.

E.1 MLE inference and comparing with other models

We fit the proposed distribution to the real data set by MLE method and compare the results

with the gamma, Weibull, two-sided generalized exponential (TSGE), transmuted two-sided

generalized exponential (TTSGE) and generalized exponential (GE) distributions.

Here we provide numerical results for the real data set. For each model, Table 1 includes

the MLE’s of parameters, corresponding log-likelihood, Akaike information criterion (AIC)

and Bayesian Akaike information criterion (BIC) for the first data set. We fit the GOTTSE

distribution to the real data set and compare it with the mentioned distributions. The selection

criterion is that the lowest AIC and BIC statistic corresponding to the best fitted model. The

GOTTSE distribution provides the best fit for the data set as it has lower AIC and BIC

statistic than the other competitor models. The histogram of data set, fitted pdf of GOTTSE

distribution and fitted pdfs of other competitor distributions for the real data set are plotted in

Figure 2. The plots of empirical and fitted cdfs functions, P − P plots and Q−Q plots for the

OGTTSE and other fitted distributions are displayed in Figures 2. These plots also support

the results in Table 1.
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Figure 2: P − P plots of fitted pdfs for the first data set.
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Abstract: The hazard rate function of a k-out-of-n:F system is studied in the situation in which

all observations except one have the same distribution. Such model is known as a single outlier

model. The sensitivity of the hazard rate function with respect to the outlier is investigated in

some different cases. Analogously, the reversed hazard rate function is computed. Moreover,

the aging behavior of series and parallel systems are of interest in this paper.

Keywords Reliability function, Series system, Parallel system, Proportional (reversed) hazard

rate model, Order statistics.
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A Introduction

The k-out-of-n systems are of interest in the literature of reliability. A k-out-of-n:F system

consists of n components which fails if and only if at least k of the components fail. Such

systems have various applications in engineering. For more details, we refer to (13). In the

special cases of k = 1 and k = n, the series and parallel systems are deduced, respectively.

The hazard rate function is an important measure to study the lifetime random variable

in reliability theory, survival analysis and stochastic modeling. Let T be a random variable

representing the lifetime of living organism or of a system having an absolutely continuous

cumulative distribution function F (·), reliability function F̄ (·) and probability density function

f(·). The hazard rate function of T is given by

hF (t) =
f(t)

F̄ (t)
. (A.1)

The hF (t)dt is the conditional probability that the system is failed between time t and t + dt,

given that it was not failed up to time t. If hF (t) is increasing, constant or decreasing in t,

then F is belong to the class of distributions with increasing failure rate (IFR), constant failure

1Bahare Khatib Astane: khatib−b@neyshabur.ac.ir



rate (CFR) of decreasing failure rate (DFR) property, respectively. There are also systems with

bathtub shaped or inverse bathtub shape hazard rate functions. See, Lawless (13) for more

details.

Similarly, Barlow (3) introduced the concept of reversed hazard rate function of T as

rF (t) =
f(t)

F (t)
.

To interpret the reversed hazard rate function, note that rF (t)dt is the conditional probability

that the system is failed in an infinitesimal interval of width dt preceding t, given that it failed

before t. For more applications of reversed hazard rate, see (7) and (5). In general, the reversed

hazard rate has been found to be useful in estimating the survival function for left censored

data, see (8), (14) and (4) have presented several interesting results regarding the reversed

hazard rates. If rF (t) is decreasing in t, then F is belong to the class of distributions with

decreasing reversed failure rate (DRFR).

Many researchers have studied the k-out-of-n:F system assuming the lifetimes of the com-

ponents are independent and identically distributed random variables. But, there are some

situations in life-testing and reliability experiments in which the observations are independent

but not identically distributed. Khanjari (9) investigated mean past and mean residual life

functions of a parallel system with nonidentical components. Tavangar and Bayramoglu (15)

studied the residual lifetimes of coherent systems with exchangeable components.

In this paper, a single outlier model is investigated in which the distribution of one of the

observations is different from the others. Such model had been previously studied by (10) in

both problems of estimation and prediction of future order statistics under Type-II censoring.

Predicting the lifetime of a k-out-of-n:F system in this model Was also considered by (11).

Indeed, it is assumed that (n − 1) component of a k-out-of-n:F system have the cumulative

distribution function (cdf) F (·), whereas the last component has the cdf G(·). We focus on the

hazard rate and reversed hazard rate of a k-out-of-n:F system as well as the special cases of

series and parallel system.

The rest of paper is as follows. In Section 2, the hazard rate of a k-out-of-n:F system in

is studied. In this section, the special case of series system is also studied in view of some

aging properties. The reverse hazard rate of a k-out-of-n:F system has been considered in

Section 3. This section includes some reliability results about the parallel systems. Finally,

some conclusions are stated in Section 4.
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B Hazard rate of system

Let us denote the lifetimes of the components of a k-out-of-n:F system by T1, . . . , Tn which are

independent random variables, such that T1, . . . , Tn−1 come from a population with the cdf F (·)

and pdf f(·); moreover, Tn is an outlier from a different population with the cdf G(·) and pdf

g(·). Denote the corresponding order statistics by T1:n < · · · < Tn:n. Then, it is obvious that

the lifetime of a k-out-of-n:F system is Tk:n. From (2), the pdf of Tk:n (1 ≤ k ≤ n) in the

presence of an outlier is

fk:n(t) =
(n− 1)!

(k − 2)!(n− k)!
[F (t)]k−2G(t)f(t)[F̄ (t)]n−k

+
(n− 1)!

(k − 1)!(n− k)!
[F (t)]k−1g(t)[F̄ (t)]n−k

+
(n− 1)!

(k − 1)!(n− k − 1)!
[F (t)]k−1f(t)[F̄ (t)]n−k−1Ḡ(t), (B.1)

where the first and last terms vanish when k = 1 and k = n, respectively.

It is also not difficult to show that the reliability function of Tk:n (1 ≤ k ≤ n) is as follow

F̄k:n(t) = [F̄ (t)]n−1Ḡ(t)I(k = 1)

+

{ k−1∑
i=0

(
n− 1

i

)
F i(t)[F̄ (t)]n−1−i

−
(
n− 1

k − 1

)
[F (t)]k−1[F̄ (t)]n−kḠ(t)

}
I(1 < k < n)

+
(
1− [F (t)]n−1G(t)

)
I(k = n). (B.2)

where I(A) stands for the indicator on event A. Therefore, using (A.1), (B.1) and (B.2), the

hazard rate function of a k-out-of-n:F system is given by

hk:n(t) =
fk:n(t)

F̄k:n(t)
. (B.3)

For more investigation about the sensitivity of hk:n(t) with respect to the outlier, let us

assume F (·) and G(·) to be the cdfs of exponential and weibull distributions with the cdfs

F (t) = 1− eθt and G(t) = 1− e−(λt)β , t > 0,

respectively. Note that F (t) is CFR; on the other hand, for all values of λ, G(t) is IFR, CFR or

DFR for β > 1, β = 1 or β < 1, respectively. The behavior of hk:n(t) in the presence of outlier

(solid lines) and without any outlier (dash lines) is plotted in Figure 1 for n = 5, θ = 2 and

λ = 3 and some choices of k and β. From this figure, the following results are deduced:
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• Although the hazard rate function of series (1-out-of-5:F ) system is constant when there

is no outlier, it is decreasing (or increasing) when an outlier with wibull distribution exists

such that β < 1 (or β > 1).

• The behavior of hazard rate function of other k-out-of-5:F systems for k = 2, 4, 5 in

presence of an outlier is similar to that when there is no outlier, but, the values of this

function are so different, specially around the mode of hazard function.

Here, the aging behavior of a series system is studied, theoretically. As previously mentioned,

the lifetime of a series system is presented by T1:n, whose cdf is F1:n.

If F (t) and G(t) are both IFR, CFR or DFR, then F1:n is also IFR, CFR or DFR, respec-

tively.

. For k = 1 and substituting (B.1) and (B.2) into (C.1), the hazard rate function of a series

system is given by

h1:n(x) =
g(t)[F̄ (t)]n−1 + (n− 1)f(t)[F̄ (t)]n−2Ḡ(t)

[F̄ (t)]n−1Ḡ(t)

= hG(x) + (n− 1)hF (x). (B.4)

Hence, the proof is complete. �

Now, suppose that the hazard rate functions of the outlier and other observations follow a

proportional hazard rate model (PHRM), in which for a positive constant α, we have

hG(t) = αhF (t),

where hF (·) is the hazard rate function of T1, . . . , Tn−1 and hG(·) is the hazard rate function of

Tn. In this case, we get

Ḡ(t) = [F̄ (t)]α.

The PHRM includes several well-known lifetime distributions such as: Exponential, Pareto,

Lomax, Burr type XII, Weibull (one parameter) and so on. For more details, see for example

(13). In such a model, using (B.4), the hazard rate function of a series system is as follows:

h1:n(t) = (n− 1 + α)hF (t).

Therefore, the behavior of h1:n(t) is identical to hF (t). For example, if F is IFR, CFR or DFR,

then F1:n is also IFR, CFR or DFR, respectively.
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Figure 1: Plots of hk:5(t) for θ = 2, β = 0.5, 3, λ = 2 and k = 1, 2, 4, 5.

207



C Reversed Hazard rate of system

Analogous to the previous section, reversed hazard rate function may be also considered to study

the reliability properties of a k-out-of-n:F system. Using (A.2), (B.1) and (B.2), we get

rk:n(t) =
fk:n(t)

Fk:n(t)
. (C.1)

Here, it is of interest to study the behavior of reversed hazard rate function of a parallel

system. A parallel system, consisting of n components, is a system which functions if and only

if at least one of its n components functions. As mentioned earlier in k-out-of-n:F system,

where k = n, the system is a parallel system. Hence, the lifetime of a parallel system with n

components is Tn:n and the associated reversed hazard rate function is

rn:n(x) =
(n− 1)[F (t)]n−2G(t)f(t) + [F (t)]n−1g(t)

[F (t)]n−1G(t)

= (n− 1)rF (x) + rG(x).

Therefore, if F and G are both DRFR, then the cdf of Tn:n is also DRFR.

If the reversed hazard rate functions of outlier and other observations satisfy

rG(t) = βrF (t), (C.2)

where β is a positive parameter, then we will say that the observations obey a proportional

reversed hazard rate model (PRHRM) with proportionality constant rate β. In such model

G(t) = [F (t)]β . This model was proposed by (6) in contrast to the celebrated PHRM. They

studied the monotonicity of the reversed failure rates in the case of exponentiated Weibull, expo-

nentiated exponential, exponentiated Pareto and exponentiated Gamma family of distributions.

Some properties of reversed hazard rate of order statistics and record values are studied in (12).

It is easy to show that in a PRHRM in (C.2),

rn:n(t) = (n− 1 + β)rF (t).

Therefore, the behavior of rn:n(t) is identical to rF (t). For example, if F is DRFR, then Fn:n is

also DRFR.

D Concluding Remark

A single outlier model was considered in this paper. Indeed, a system consisting n components

was of interest such that (n− 1) components had the cdf F , whereas the last component came
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from the cdfG. The hazard rate function of a k-out-of-n:F system with one outlier was computed

and its sensitivity was investigated with respect to the outlier, when F and G are the cdfs of

exponential and weibull distributions, respectively; it was shown that the hazard rate function

of a series system is completely different when an outlier exists, but it is not so sensitive for other

k-out-of-n:F systems with 2 ≤ k ≤ n. The sensitivity of hazard rate function of a k-out-of-n:F

system may be studied for other distributions. It was also deduced that when F and G are both

IFR, CFR or DFR, the cdf of a series system is IFR, CFR or DFR, respectively. Further, in a

proportional hazard rate model, it was stated that the aging behavior of a series system is as

the same of F . The reversed hazard rate function of a k-out-of-n:F system was also presented.

It was proved that when F and G are both DRFR, then a parallel system is also DRHR. The

results of this paper may be extended to other reliability concepts such as mean residual life,

mean past life, reliability orderings, etc. In this paper, a single outlier model was considered.

Studying about the coherent systems with more than one outlier is under progress.
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Abstract:

This paper deals with inference for stress-strength interference(SSI), R = P (X < Y ), where

the distributions of X and Y follow discrete proportional hazard rate (PHR) models. In spe-

cial case of Geometric PHR, maximum likelihood estimator (MLE) of R and it variances are

obtained. Also approximation problem of the estimator’s variance of R are discussed via Bhat-

tacharyya lower bounds for Poisson SSI model.
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A Introduction

R = P (Y < X) is a measure of component reliability, which provides a general measure of the

difference between two populations and has applications in many areas such as clinical trials,

genetics, and reliability. For example, if Y is the response for a control group, and X refers to

a treatment group, R is a measure of the effect of the treatment. Or, if Y is the water pressure

on the dam wall, and X be the strength of the dam, then the parameter R is of very important

in maintenance.

A lot of authors on various topics have done extensive research on stress-strength models

and a good review of many papers on theory and applications about R = P (Y < X) can be

found on Kotz et al. (9) and Patowary et al. (11) in continuous cases.

On the other hand, discrete lifetime distributions and their application in real-life situations

greatly increase the importance of studying the concepts of reliability for this case. A few works

have been done when the stress Y and strength X are taken to be discrete random variables.

The first works on discrete cases are done by Maiti (10) in the geometric case and Chaturvedi

1Mohammad Khorashadizadeh: m.khorashadizadeh@birjand.ac.ir



and Tomer (5) and Sathe and Dixit (14) in the negative binomial case. Behboodian (3) find

properties of P (X > Y ) for binomial distribution.

B Telescopic form of discrete distributions

If X has extended exponential distribution then its pdf and reliability function are respectively

given by

f(x) = αk′θ(x)e
−αkθ(x); x > 0, α > 0; (B.1)

R(x) = e−αkθ(x), (B.2)

where kθ(x) is a strictly increasing function of x with kθ(0) = 0 and kθ(x) → ∞ as x→ ∞ (Al-

Hussaini(1)). Rezaei et al. (12) have introduced a general form of any discrete distribution and

named it ”Telescopic form of distribution” by discretizing the extended exponential distribution

as

pX(x) = qkθ(x) − qkθ(x+1), x = 0, 1, 2, ... (B.3)

SX(t) = P (X ≥ t) = qkθ(t).

and denoted by X ∼ T (q, kθ).

Some of important distributions that belong to this family are: discrete exponential (geo-

metric), discrete Rayleigh, discrete Weibull, discrete linear exponential, discrete Gompertz and

discrete Burr III and XII.

C Discrete Stress Strength reliability Model

If X and Y are two independent discrete random variables with PMF of forms,

pX(x) = q
kθ(x)
1 − q

kθ(x+1)
1 , x = 0, 1, 2, ...,

and

pY (y) = q
kθ(y)
2 − q

kθ(y+1)
2 , y = 0, 1, 2, ...,
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respectively, we have,

R = P (Y ≤ X) =
∞∑
x=0

P (Y ≤ x)pX(x)

=
∞∑
x=0

(1− q
kθ(x+1)
2 )(q

kθ(x)
1 − q

kθ(x+1)
1 )

= 1 +

∞∑
x=0

(q1q2)
kθ(x+1) −

∞∑
x=0

q
kθ(x)
1 q

kθ(x+1)
2 . (C.1)

Similarly on can obtain,

R∗ = P (Y < X) = 1−
∞∑
x=0

(q1q2)
kθ(x) +

∞∑
x=0

q
kθ(x+1)
1 q

kθ(x)
2 .

As special cases for Geometric distribution (i.e. kθ(x) = x) we have,

R = P (Y ≤ X) =
1− q2
1− q1q2

,

R∗ = P (Y < X) =
q1(1− q2)

1− q1q2
, (C.2)

which is coincide with the result of Maiti (10).

As it is seen, in some discrete case, obtaining a closed functional form for parameter R is

not always straightforward, since the series (C.1) are not converge for some kθ(x). But in most

cases the parameter R can be approximate by the first terms of series. Indeed the sums of (C.1)

are rapidly converge to a specified quantity.

C.1 MLE of R:

For obtianing the MLE of R we should first compute the MLE of the parameters q1 and q2.

Suppose Xi ∼ T (q, kθ), i = 1, . . . , n with known kθ and unknown parameter q. Then from

maximum likelihood method q̂ml is obtainable as the solution of the following equation:

n∑
i=1

kθ(x)

1− q∆kθ(x)
=

n∑
i=1

kθ(x+ 1)

q−∆kθ(x)−1
, (C.3)

which is not generally available in closed form; therefore, numerical methods like Newton-

Raphson may be employed. But in discrete distributions another method called ”method of

proportions” have been proposed by Khan et al. (7). Based on this method for distributions of

form (B.3) we have

pX(0) = p(X = 0) = 1− qkθ(1). (C.4)
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Therefore if Y be the number of zero’s in the sample then the proportion Y
n estimates the

probability pX(0), so q̂mp as the estimator of q, can be expressed in a simple form of

q̂mp =

(
1− Y

n

) 1
kθ(1)

. (C.5)

Our simulation results indicate that the likelihoods of q̂ml and q̂mp are equal to the high precision

(< 0.00001), so q̂mp can be used instead of q̂ml. Therefore, with a little ignore, the closed form

of MLE of R can be expressed as

R̂ = 1 +

c∑
x=0

(q̂1mpq̂2mp)
kθ(x+1) −

c∑
x=0

q̂1
kθ(x)
mp q̂2

kθ(x+1)
mp , (C.6)

where c is a constant in which the series (C.1) is converge. Imani and Khorashadizadeh (6) have

used this method for discrete Weibull SSI model.

D Stress Strength reliability inference in PHR models

Let X and Y are two non-negative discrete random variables with reliability functions R(t) and

S(t) respectively, then we say X and Y satisfying proportional hazard model with resilience

parameter θ > 0 if,

S(t) = [R(t)]θ, ∀t = 0, 1, . . . , (D.1)

where R(t) is regarded as baseline distribution function (15). The model (D.1) can be different

specific models based on the different choices of the baseline function, such as Geometric, discrete

Weibull, discrete Rayleigh and so on. In the continuous case the model (D.1) is known as the

PHM where the hazard rate corresponding to the random variable Y is proportional to the

hazard rate of X (i.e. hY (t) = θhX(t)). However, the model (D.1) does not yield proportional

hazards in the discrete setup when we use hX(t) = pX(t)
P (X≥t) = 1− R(t+1)

R(t) as the hazard rate of X.

Actually in model (D.1) we have, hY (t) = 1− [1−hX(t)]θ. But if we use the alternative hazard

rate function in discrete lifetime models defined by Roy and Gupta (13) as h∗X(t) = − ln S(t+1)
S(t) ,

the model (D.1) will satisfy the proportional hazard rate in discrete case.

Let X (the strength) and Y (the stress) are independent and have proportional CDF to

common baseline CDF, S0(t), with proportional parameters α and β respectively. So, if the

baseline distribution, S0(t), be a discrete distribution with pdf of form (B.3), we have,

SX(t) = [S0(t)]
α = qαkθ(t),

SY (t) = [S0(t)]
β = qβkθ(t).
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So,

R = P (Y ≤ X) =
∞∑
t=0

P (X ≥ t)P (Y = t)

=
∞∑
t=0

S0(t)
α+β −

∞∑
t=0

S0(t)
αS0(t+ 1)β

Example (Geometric PHR model)

Suppose the SSI model withX and Y are proportional hazard rate to common baseline geometric

distribution. (i.e. S0(t) = qt), then for t = 0, 1, . . .,

SX(t) = qαt, pX(t) = qαt(1− qα),

SY (t) = qβt, pY (t) = qβt(1− qβ),

so, the reliability parameter is given by,

R = P (Y ≤ X) =

∞∑
t=0

SX(t)pY (t)

=
1− qβ

1− qα+β
.

For estimating R by maximum likelihood (ML) approach, first, we obtain the MLEs of α and

β. Suppose that X1, . . . , Xn and Y1, . . . , Ym are two samples coming from SX(t) and SY (t)

respectively. Then, the log likelihood function of combining two samples is

l = l(q, α, β) = n ln(qα − 1) + α ln(q)
n∑
i=1

xi +m ln(qβ − 1) + β ln(q)
m∑
i=1

yi,

Likelihood equations are then obtained as follows,

∂l

∂α
=

qα ln (q)

qα − 1
+X ln (q) = 0,

∂l

∂β
=

qβ ln (q)

qβ − 1
+ Y ln (q) = 0,

∂l

∂q
=

α

m

(
1

1− q−α
+X

)
+
β

n

(
1

1− q−β
+ Y

)
= 0 (D.2)

Solving the likelihood equations with respect to α and β we get that theMLE’s for α and β are

α̂ =
ln
(

X
X+1

)
ln q

,

β̂ =
ln
(

Y
Y+1

)
ln q

.
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The equation (D.2) does not have closed solution for q, so the MLE for q can be obtain numeri-

cally. In PHM usually the parameters of the baseline distribution is known, therefor the Plug-in

MLE of R is as follow,

R̂ =
1− qα̂

1− qα̂+β̂
=

Y + 1

X + Y + 1
, (D.3)

which is not depend on q. Based on Maiti (10) the asymptotic variance of R̂ is given by,

V ar(R̂) ≈
(
1

n
+
qα+β

m

)
qβ(1− qα)2(1− qβ)2

(1− qα+β)4
(D.4)

E Approximation of the Variance of R’s unbiased Estima-

tors

Sometimes due to complicated form of estimators, we can not compute their variances. In some

cases the best way to approximate the variance is using lower bounds such as Cramer-Rao and

its extension Bhattacharyya lower bounds.

Under some regularity conditions, the Bhattacharyya bound for any unbiased estimator of

the g(θ) is defined as follows,(4)

V arθ(T (X)) ≥ JθW
−1Jtθ := Bk(θ), (E.1)

where t refers to the transpose, Jθ = (g(1)(θ), g(2)(θ), . . . , g(k)(θ)), g(j)(θ) = ∂jg(θ)/∂θj for

j = 1, 2, . . . , k and W−1 is the inverse of the Bhattacharyya matrix, where

W = (Wrs) =

(
Covθ

{
f (r)(X|θ)
f(X|θ)

,
f (s)(X|θ)
f(X|θ)

})
,

such that Eθ(
f(r)(X|θ)
f(X|θ) ) = 0 for r, s = 1, 2, . . . , k.

If we substitute k = 1 in (E.1), then it indeed reduces to the Cramer-Rao inequality. By

using the properties of the multiple correlation coefficient, it is easy to show that as the order

of the Bhattacharyya matrix (k) increases, the Bhattacharyya bound becomes sharper.

Khorashadizadeh et al. (8) studied the approximation of the variance of any unbiased esti-

mator of R in Burr XII distribution.
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Example (Poisson distribution)

Let X and Y be independent r.v. modeling stress and strength, respectively, with X ∼

Poisson(θ1) and Y ∼ Poisson(θ2). then,

R = P (Y ≤ X) =
∞∑
x=0

e−θ1θx1
x!

(
x∑
y=0

e−θ2θy2
y!

)
. (E.2)

As it was noted in Barbiero (2) the above sums are rapidly converge and the reliability R can

be approximated by first terms with a very high precision. As an example the Figure 1 shows

the terms of sum (E.2) for different values of θ1 and θ2.

Figure 1: The converge of series (E.2) for the parameter R in Poisson distribution.

As it can seen, the finite sum of this series converges to the real value of the reliability

parameter. Table 1 shows the first five Bhattacharyya lower bounds for the variance of any

unbiased estimator of R for Poisson distribution.
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Bayesian Inference on Stress-Strength Parameter in Burr
type XII Distribution under Hybrid Progressive

Censoring Samples
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Abstract: In this paper, the Bayesian inference of stress-strength parameter for Burr type XII

distribution under the Type-II hybrid progressive censored samples is considered. The problem

is solved in three cases. In first case, assuming that stress and strength have the unknown

common first shape parameter and different second shape parameters, the Bayes estimate of

stress-strength parameter is derived by two approximation method: Lindley’s approximation

and MCMC method. In second case, assuming that stress and strength have the known common

first shape parameter and unknown different second shape parameters, the exact Bayes estimate

of stress-strength parameter is derived. In third case, assuming that all parameters are different

and unknown, the Bayesian inference of stress-strength parameter is derived by MCMC method.

We use one Monte Carlo simulation study to compare the performance of different methods.

Keywords Type-II hybrid progressive censored sample, Stress-strength model, Burr type XII

distribution, Bayesian inference.

Mathematics Subject Classification (2010) : 62N05, 62F15, 62F10.

A Introduction

Statistical inference about the stress-strength parameter, R = P (X < Y ), is one of the most

important problem in reliability theory and statistics and has been done from the frequentist

and Bayesian viewpoints. In spite of the fact that, many papers have studied the stress-strength

models in complete samples, much consideration has not been paid to censored data (see (3)).

Type-I and Type-II censoring schemes are two most fundamental schemes and by mixing

of theses two schemes, hybrid scheme is derived. Unfortunately, none of above schemes cannot

remove active units during the experiment. So, the progressive censoring scheme is mentioned.

1Akram Kohansal: kohansal@SCI.ikiu.ac.ir



Combining hybrid and progressive schemes, hybrid progressive censoring (HPC) scheme is pro-

vided which introduced by Kundu and Joarder (4) and can be described as follows. Let N units

are put on the test with censoring scheme (R1, . . . , Rn) and pausing time T ∗ = min{Xn:n:N , T},

where X1:n:N ≤ . . . ≤ Xn:n:N be a progressive censoring scheme and T > 0 is a fixed time. It is

obvious that if Xn:n:N < T then we finish the test at time Xn:n:N and {X1:n:N , . . . , Xn:n:N} is

the observed sample. Otherwise, if XJ:n:N < T < XJ+1:n:N then we finish the test at time T

and {X1:n:N , . . . , XJ:n:N} is the observed sample. We denote a HPC sample with {X1, . . . , XJ}

under the scheme {N,n, T, J,R1, . . . Rn}. The likelihood function of the HPC samples is as

follows:

L(θ) ∝
J∏
i=1

f(xi)[1− F (xi)]
Ri [1− F (T )]R

∗
J .

where R∗
J1

= N − J −
J∑
i=1

Ri.

Burr type XII (Bur) distribution with the first and second shape parameters λ and α, has

the probability density function as f(x) = λαxλ−1(1+xλ)−α−1, x, α, λ > 0. Some recent works

on this distribution can be found in (8) and (6). In this paper, we obtain the Bayesian inference

of the R = P (X < Y ) based on HPC sample, when X and Y are two independent random

variables from the Bur distribution.

B Bayesian inference of R with unknown common λ

If X ∼ Bur(λ, α) and Y ∼ Bur(λ, β), then the stress-strength parameter can be obtained as

R = P (X < Y ) =
α

α+ β
.

In this section, the Bayesian inference of R is considered under squared error loss functions,

when α, β and λ are independent gamma random variables. Based on the observed censoring

samples, the joint posterior density function is as follows:

π(α, β, λ|data) ∝ L(data|α, β, λ)π1(α)π2(β)π3(λ) (B.1)

where π1(α) ∝ αa1−1e−b1α, α, a1, b1 > 0, π2(β) ∝ βa2−1e−b2β , β, a2, b2 > 0 and π3(λ) ∝

λa3−1e−b3λ, λ, a3, b3 > 0. As we see, from equation (B.1), the Bayes estimate cannot be obtained

in a closed form. So, we should approximate it by applying two methods:

• Lindley’s approximation,

• MCMC method.
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B.1 Lindley’s approximation

Lindley (5) introduced one of the most numerical techniques to derive the Bayes estimate. If

U(θ) be a function of θ = (θ1, θ2, θ3), Lindley’s approximation of it, I
(
data

)
, is

I
(
data

)
= u+ (u1d1 + u2d2 + u3d3 + d4 + d5) +

1

2
[A(u1σ11 + u2σ12 + u3σ13)

+B(u1σ21 + u2σ22 + u3σ23) + C(u1σ31 + u2σ32 + u3σ33)],

calculated at θ̂ = (θ̂1, θ̂2, θ̂3), where ℓ(θ) is the logarithm of the likelihood function, and ρ(θ)

is the logarithm of the prior density of θ. Also, ui = ∂u(θ)/∂θi, uij = ∂2u(θ)/∂θi∂θj , ℓijk =

∂3ℓ(θ)/∂θi∂θj∂θk, ρj = ∂ρ(θ)/∂θj , and σij = (i, j)th element in the inverse of matrix [−ℓij ] all

evaluated at the MLE of the parameters. Moreover,

di = ρ1σi1 + ρ2σi2 + ρ3σi3, i = 1, 2, 3,

d4 = u12σ12 + u13σ13 + u23σ23,

d5 =
1

2
(u11σ11 + u22σ22 + u33σ33),

A = ℓ111σ11 + 2ℓ121σ12 + 2ℓ131σ13 + 2ℓ231σ23 + ℓ221σ22 + ℓ331σ33,

B = ℓ112σ11 + 2ℓ122σ12 + 2ℓ132σ13 + 2ℓ232σ23 + ℓ222σ22 + ℓ332σ33,

C = ℓ113σ11 + 2ℓ123σ12 + 2ℓ133σ13 + 2ℓ233σ23 + ℓ223σ22 + ℓ333σ33.

In our case, for (θ1, θ2, θ3) ≡ (α, β, λ), we have

ρ1 =
a1 − 1

α
− b1, ρ2 =

a2 − 1

β
− b2, ρ3 =

a3 − 1

λ
− b3,

ℓ11 = −J1
α2
, ℓ22 = −J2

β2
, ℓ12 = ℓ21 = 0,

ℓ13 = ℓ31 = −
J1∑
i=1

(Ri + 1)xλi
log(xi)

1 + xλi
−R∗

J1T
λ
1

log(T1)

1 + Tλ1
,

ℓ23 = ℓ32 = −
J2∑
j=1

(Sj + 1)yλj
log(yj)

1 + yλj
− S∗

J2T
λ
2

log(T2)

1 + Tλ2
,

ℓ33 = −J1 + J2
λ2

−
J1∑
i=1

(
α(Ri + 1) + 1

)
xλi
( log(xi)
1 + xλi

)2 − αR∗
J1T

λ
1

( log(T1)
1 + Tλ1

)2
−

J2∑
j=1

(
β(Sj + 1) + 1

)
yλj
( log(yj)
1 + yλj

)2 − βS∗
J2T

λ
2

( log(T2)
1 + Tλ2

)2
.
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σij , i, j = 1, 2, 3 are obtained by using ℓij , i, j = 1, 2, 3 and

ℓ111 =
2J1
α3

, ℓ222 =
2J2
β3

ℓ133 = ℓ331 = ℓ313 = −
J1∑
i=1

(Ri + 1)xλi
( log(xi)
1 + xλi

)2 −R∗
J1T

λ
1

( log(T1)
1 + Tλ1

)2
,

ℓ233 = ℓ332 = ℓ323 = −
J2∑
j=1

(Sj + 1)yλj
( log(yj)
1 + yλj

)2 − S∗
J2T

λ
2

( log(T2)
1 + Tλ2

)2
,

ℓ333 =
2J1
λ3

−
J1∑
i=1

(
α(Ri + 1) + 1

)
xλi (1− xλi )

( log(xi)
1 + xλi

)3 − αR∗
J1T

λ
1 (1− Tλ1 )

( log(T1)
1 + Tλ1

)3
+

2J2
λ3

−
J2∑
j=1

(
β(Sj + 1) + 1

)
yλj (1− yλj )

( log(yj)
1 + yλj

)3 − βS∗
J2T

λ
2 (1− Tλ2 )

( log(T2)
1 + Tλ2

)3
,

and other ℓijk = 0. Hence,

d4 = u12σ12, d5 =
1

2
(u11σ11 + u22σ22),

A = ℓ111σ11 + ℓ331σ33, B = ℓ222σ22 + ℓ332σ33, C = 2ℓ133σ13 + 2ℓ233σ23 + ℓ333σ33.

So, the approximate Bayes estimate of R, under the squared error loss function is obtained by

setting u(θ) = R = α
α+β . Also, u3 = 0, ui3 = 0, i = 1, 2, 3 and

u11 =
−2β

(α+ β)3
, u12 = u21 =

α− β

(α+ β)3
, u22 =

2α

(α+ β)3
.

Consequently, under the squared error loss function, the Bayes estimate of R is

R̂Lin = R+ [u1d1 + u2d2 + d4 + d5] +
1

2
[A(u1σ11 + u2σ12)

+B(u1σ21 + u2σ22) + C(u1σ31 + u2σ32)]. (B.2)

Notice that all parameters are calculated at (α̂, β̂, λ̂).

B.2 MCMC method

From the equation (B.1), the posterior pdfs of of α, β and λ can be derived as:

α|λ, data ∼ Γ
(
J1 + a1, b1 + V (λ)

)
,

β|λ, data ∼ Γ
(
J2 + a2, b2 + U(λ)

)
,

π(λ|α, β, data) ∝
( J1∏
i=1

xλ−1
i (1 + xλi )

−α(Ri+1)−1

)( J2∏
j=1

yλ−1
j (1 + yλj )

−β(Sj+1)−1

)
× λJ1+J2+a3−1e−λb3(1 + Tλ1 )

−αR∗
J1 (1 + Tλ2 )

−βS∗
J2 .
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where

V (λ) =

J1∑
i=1

(Ri + 1) log(1 + xλi ) +R∗
J1 log(1 + Tλ1 ),

U(λ) =

J2∑
j=1

(Sj + 1) log(1 + yλj ) + S∗
J2 log(1 + Tλ2 ). (B.3)

It is observed that generating samples from the posterior pdf of λ should be done by the

Metropolis-Hastings method. So, we propose the following algorithm of Gibbs sampling:

1. Start with initial values (α(0), β(0), λ(0)).

2. Set t = 1.

3. Generate λ(t) from π(λ|α(t−1), β(t−1), data), using Metropolis-Hastings method.

4. Generate α(t) from Γ
(
n+ a1, b1 − V (λ(t−1))

)
.

5. Generate β(t) from Γ
(
m+ a2, b2 − U(λ(t−1))

)
.

6. Evaluate Rt =
αt

αt+βt
.

7. Set t = t+ 1.

8. Repeat T times, steps 3-7.

Therefore, the Bayes estimate of R, under the squared error loss functions is:

R̂MB =
1

T

T∑
t=1

Rt. (B.4)

Also, the 100(1−γ)% HPD credible interval of R can be constructed, using the method of Chen

and Shao (1).

C Bayesian inference of R with known common λ

In this section, the Bayesian inference of R is considered under the squared error loss function,

when α and β are independent gamma random variables. Based on the observed censoring

samples, the joint posterior density function is as follows:

π(α, β|λ, data) =
(
α(V (λ) + b1)

)J1+a1(
β(U(λ) + b2)

)J2+a2
αβΓ(J1 + a1)Γ(J2 + a2)

e−α(V (λ)+b1)−β(U(λ)+b2), (C.1)
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where V (·) and U(·) are given in (B.3). So, the Bayes estimate of R under the squared error

loss function, should be achieved by solving the following integral:

R̂B =

∫ ∞

0

∫ ∞

0

α

α+ β
× π(α, β|λ, data)dαdβ.

By applying the idea of Kizilaslan and Nadar (2), the exact Bayes estimate is obtained as:

R̂B =


(1− z)J1+a1(J1 + a1)

w
2F1(w, J1 + a1 + 1;w + 1, z) if |z| < 1,

(J1 + a1)

w(1− z)J2+a2
2F1(w, J2 + a2;w + 1,

z

1− z
) if z < −1,

(C.2)

where w = J1 + J2 + a1 + a2, z = 1− V (λ) + b1
U(λ) + b2

and

2F1(α, β; γ, z) =
1

B(β, γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− tz)−αdt, |z| < 1

is hypergeometric series, which is quickly calculated and readily available in standard software

such as MATLAB. Furthermore, the 100(1− γ)% Bayesian interval of R can be constructed as

(L,U), where L and U should be satisfied, respectively, in

∫ L

0

fR(R)dR =
γ

2
,

∫ U

0

fR(R)dR = 1− γ

2
, (C.3)

where fR(R), using change-of-variable method, can be earned by (C.1) as

fR(R) =
(1− z)J1+a1RJ1+a1−1(1−R)J2+a2−1(1−Rz)−w

B(J1 + a1, J2 + a2)
, 0 < R < 1.

D Bayesian inference of R in general case

If X ∼ Bur(λ1, α) and Y ∼ Bur(λ2, β), then the stress-strength parameter can be obtained as

R = P (X < Y ) = 1−
∫ ∞

0

βλ2y
λ2−1(1 + yλ2)−β−1(1 + yλ1)−αdy.

In this section, the Bayesian inference of R is considered under squared error loss functions,

when α, β, λ1 and λ2 are independent gamma random variables. Like in section 2, as the Bayes

estimate of R can not be evaluated in a closed form, it is approximated by MCMC method.

From the joint posterior density function, we can be derived the posterior pdfs of α, β, λ1 and
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λ2 as follows:

α|λ1, data ∼ Γ
(
J1 + a1, b1 + V (λ1)

)
,

β|λ2, data ∼ Γ
(
J2 + a2, b2 + U(λ2)

)
,

π(λ1|α, data) ∝
( J1∏
i=1

xλ1−1
i (1 + xλ1

i )−α(Ri+1)−1

)
λJ1+a3−1
1 e−λ1b3(1 + Tλ1

1 )−αR
∗
J1 ,

π(λ2|β, data) ∝
( J2∏
j=1

yλ2−1
j (1 + yλ2

j )−β(Sj+1)−1

)
λJ2+a4−1
2 e−λ2b4(1 + Tλ2

2 )−βS
∗
J2 .

It is observed that generating samples from the posterior pdfs of λ1 and λ2 should be done by

the Metropolis-Hastings method. So, we propose the following algorithm of Gibbs sampling:

1. Start with initial values (α(0), β(0), λ1(0), λ2(0)).

2. Set t = 1.

3. Generate λ1(t) from π(λ1|α(t−1), data), using Metropolis-Hastings method.

4. Generate λ2(t) from π(λ2|β(t−1), data), using Metropolis-Hastings method.

5. Generate α(t) from Γ
(
J1 + a1, b1 + V (λ1(t−1))

)
.

6. Generate β(t) from Γ
(
J2 + a2, b2 + U(λ2(t−1))

)
.

7. Evaluate Rt = 1−
∫∞
0
β(t)λ2(t)y

λ2(t)−1(1 + yλ2(t))−β(t)−1(1 + yλ1(t))−α(t)dy.

8. Set t = t+ 1.

9. Repeat T times, steps 3-8.

Therefore, the Bayes estimate of R, under the squared error loss functions is:

R̂MB =
1

T

T∑
t=1

Rt. (D.1)

Also, the 100(1−γ)% HPD credible interval of R can be constructed, using the method of Chen

and Shao (1).

E Simulation Study

We consider the performance of different Bayes estimates, under HPC schemes by using the

Monte Carlo simulations. The different estimates, in terms of mean squared errors (MSEs) are
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compared together and the different confidence intervals, in terms of average confidence lengths

and coverage percentages are compared together. Based on 3000 replications, all results are

gathered. Also, the used censoring schemes are as:

Scheme 1: R1 = . . . = Rn =
N − n

n
,

Scheme 2: R2k =
N − n

n
− 1, R2k−1 =

N − n

n
+ 1, k = 1, . . . ,

n

2
,

Scheme 3: R2k =
2(N − n)

n
, R2k−1 = 0, k = 1, . . . ,

n

2
.

In the first case, with unknown common λ, the parameter values (α, β, λ) = (2, 2, 2) are used

to obtain the simulation results. Also, the Bayesian inference is considered by assuming two

priors as Prior 1: aj = 0, bj = 0, j = 1, 2, 3, Prior 2: aj = 0.5, bj = 0.5, j = 1, 2, 3. Under

the above hypotheses, the MSEs of Bayesian estimates of R, via Linldey’s approximation and

MCMC method are derived by (B.2) and (B.4), respectively. Also, we derived the 95% HPD

intervals for R. The simulation results are given in Table 1.

In the second case, with known common λ, the parameter values (α, β) = (2.5, 2.5) are used

to obtain the simulation results. Also, the Bayesian inference is considered by assuming two

priors as Prior 3: aj = 0, bj = 0, j = 1, 2, Prior 4: aj = 0.5, bj = 0.5, j = 1, 2. Under the

above hypotheses, the Bayes estimate and Bayesian intervals of R are derived by (C.2) and

(C.3), respectively. The results are provided in Table 1.

In the third case, with unknown different λ1 and λ2, the parameter values (α, β, λ1, λ2) =

(3, 3, 3, 3) are used to obtain the simulation results. Also, the Bayesian inference are considered

by assuming two priors as Prior 5: aj = 0, bj = 0, j = 1, 2, 3, 4, Prior 6: aj = 0.5, bj =

0.5, j = 1, 2, 3, 4. Under the above hypotheses, the MSEs of Bayesian estimates of R are derived

by (D.1). Also, we derived the 95% HPD intervals for R. The simulation results are given in

Table 1.

From Table 1, we observed that the best performance, in terms of MSE, belong to informative

priors (priors 2, 4 and 6). Furthermore, in first case, performance of Bayes estimates which

obtained by MCMCmethod are generally better than those obtained by Lindleys approximation.

Also, we observed that the best performance among the different intervals belong to HPD

intervals based on informative priors (priors 2, 4 and 6).

To tell the truth, from Table 1, with increasing n for fixed N and T , and also with increasing

T for fixed N and n, MSEs and average confidence lengths decrease and the associated coverage

percentages increase in all cases.
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Table 1: Simulation results
Unknown common λ

MCMC Lindley

(N,n, T ) C.S Prior 1 Prior 2 Prior 1 Prior 2

MSE length C.P MSE length C.P MSE MSE

(40,10,1) (1,1) 0.0103 0.4085 0.911 0.0080 0.4018 0.916 0.0148 0.0086

(2,2) 0.0110 0.4127 0.910 0.0072 0.4025 0.913 0.0149 0.0092

(3,3) 0.0122 0.4120 0.909 0.0073 0.4031 0.918 0.0166 0.0104

(1,2) 0.0115 0.4078 0.910 0.0080 0.3999 0.914 0.0146 0.0095

(60,10,2) (1,1) 0.0094 0.4066 0.918 0.0052 0.3970 0.924 0.0133 0.0081

(2,2) 0.0091 0.4054 0.917 0.0060 0.3999 0.920 0.0121 0.0077

(3,3) 0.0100 0.4044 0.918 0.0061 0.4004 0.926 0.0121 0.0083

(1,2) 0.0102 0.4016 0.919 0.0052 0.3974 0.925 0.0133 0.0087

(40,10,2) (1,1) 0.0092 0.4067 0.918 0.0061 0.3970 0.926 0.0111 0.0078

(2,2) 0.0059 0.4069 0.920 0.0043 0.3999 0.925 0.0078 0.0050

(3,3) 0.0080 0.4019 0.917 0.0062 0.3971 0.924 0.0125 0.0067

(1,2) 0.0087 0.4062 0.915 0.0066 0.3991 0.926 0.0127 0.0073

(60,20,2) (1,1) 0.0041 0.2993 0.940 0.0036 0.2945 0.944 0.0050 0.0041

(2,2) 0.0047 0.2961 0.941 0.0043 0.2934 0.943 0.0054 0.0046

(3,3) 0.0043 0.2982 0.942 0.0040 0.2951 0.945 0.0056 0.0045

(1,2) 0.0050 0.2961 0.940 0.0045 0.2956 0.944 0.0060 0.0049
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Known common λ

Exact

(N,n, T ) C.S Prior 3 Prior 4

MSE length C.P MSE length C.P

(40,10,1) (1,1) 0.0109 0.4062 0.903 0.0086 0.4008 0.915

(2,2) 0.0117 0.4053 0.903 0.0092 0.4000 0.919

(3,3) 0.0105 0.4065 0.908 0.0082 0.4016 0.912

(1,2) 0.0116 0.4059 0.907 0.0091 0.4004 0.911

(40,20,1) (1,1) 0.0065 0.3031 0.930 0.0057 0.3003 0.935

(2,2) 0.0063 0.3054 0.931 0.0055 0.3021 0.934

(3,3) 0.0056 0.3031 0.934 0.0049 0.2999 0.935

(1,2) 0.0068 0.3046 0.932 0.0060 0.3014 0.934

(60,20,1) (1,1) 0.0058 0.2985 0.930 0.0051 0.2953 0.933

(2,2) 0.0058 0.2999 0.933 0.0052 0.2969 0.933

(3,3) 0.0057 0.2986 0.934 0.0051 0.2955 0.935

(1,2) 0.0061 0.3000 0.932 0.0054 0.2967 0.935

(60,20,2) (1,1) 0.0053 0.2980 0.941 0.0047 0.2948 0.944

(2,2) 0.0057 0.2965 0.943 0.0050 0.2942 0.946

(3,3) 0.0052 0.2985 0.940 0.0046 0.2943 0.943

(1,2) 0.0049 0.2965 0.943 0.0043 0.2941 0.943
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General Case

MCMC

(N,n, T ) C.S Prior 5 Prior 6

MSE length C.P MSE length C.P

(60,10,1) (1,1) 0.0088 0.4110 0.910 0.0077 0.4023 0.910

(2,2) 0.0107 0.4066 0.911 0.0098 0.4003 0.919

(3,3) 0.0103 0.4098 0.907 0.0090 0.4039 0.910

(1,2) 0.0143 0.4076 0.909 0.0124 0.3995 0.911

(40,10,2) (1,1) 0.0064 0.4023 0.918 0.0056 0.3983 0.929

(2,2) 0.0094 0.3991 0.918 0.0081 0.3944 0.925

(3,3) 0.0056 0.4078 0.917 0.0048 0.4009 0.927

(1,2) 0.0093 0.4059 0.919 0.0080 0.3999 0.925

(60,10,2) (1,1) 0.0086 0.4083 0.917 0.0076 0.4001 0.927

(2,2) 0.0100 0.4052 0.918 0.0090 0.3998 0.924

(3,3) 0.0072 0.4038 0.917 0.0065 0.3995 0.926

(1,2) 0.0102 0.4000 0.919 0.0088 0.3940 0.925

(40,20,2) (1,1) 0.0041 0.3002 0.940 0.0039 0.2968 0.944

(2,2) 0.0046 0.3017 0.942 0.0043 0.3001 0.945

(3,3) 0.0052 0.2967 0.939 0.0049 0.2945 0.942

(1,2) 0.0040 0.3040 0.942 0.0037 0.3012 0.945
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Abstract: A general class of mean residual life models is studied for analysing survival data

under the case-cohort design. Martingale estimating equations are proposed for estimation of

the regression parameters and the baseline mean residual life function. It is shown that the

resulting regression estimators are asymptotically normal, with variance-covariance matrix that

has a closed form.
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A Introduction

The mean residual life function is of interest in many fields such as actuarial studies, reliability

research, survival analysis, demography, and other disciplines. For a non-negative survival time

T with finite expectation, the mean residual life function (MRLF) at time t ≥ 0 is defined as

m(t) = E(T − t|T > t). This function can sometimes serve as more desirable tool than the

survival function and the hazard function. For instance, it may be more informative to tell a

breast cancer patient how long she can survive, on average given her survival up to time t as

compared with her instantaneous survival chance.

To study the effects of covariates on the MRLF, the proportional mean residual life model

by (11) may be used:

m(t|Z) = m0(t) exp(Z
⊤β), (A.1)

where m(t|Z) is the MRLF corresponding to the p-vector covariate Z, m0(t) is some unknown

baseline MRLF when Z = 0, and β is an unknown vector of regression parameters. For inference

on the parameters in model (A.1), (9) developed estimation procedures for β in model (A.1),

when m0(t) is unknown, but mainly for uncensored survival data. To accommodate censoring,

1Zahra Mansourvar: z.mansourvar@sci.ui.ac.ir



(5) extended the estimation procedure of (9) to censored survival data using the inverse proba-

bility of censoring weighting technique to estimate the parameters in model (A.1). (3) employed

counting process theory to develop new inference procedures for the regression analysis of model

(A.1) when censoring is present and m0(t) is not known. (10) considered the proportional re-

stricted mean residual life model and discussed a goodness-of-fit test of the model. A class

of additive mean residual life model was also proposed by (4) and (2). In these articles, the

authors discussed various estimation methodologies with or without right censoring. Later, (14)

considered a more general class of mean residual life regression models given by

m(t|Z) = m0(t)g(Z
⊤β), (A.2)

where g(.) is a pre-specified non-negative link function and assumed to be twice continuously

differentiable. Choices of g include g(t) = 1+t, g(t) = exp(t) and g(t) = log(1+exp(t)). Selection

of an appropriate link function g may be based on prior data or the desiring interpretation of

the regression parameters.

However, the above methods for inference on the parameters of the mean residual life models

can not be used when some covariates are missing. Epidemiologic cohort studies and disease

prevention trials typically require a large cohort to provide definitive information about covariate

effects for relatively rare disease. Often it is expensive to collect the covariates of interest in large

cohort studies. To provide a cost effective way of conducting such cohort studies, (12) suggested

the case-cohort design. Under this design, a random sample is selected from the full cohort,

named the subcohort. Survival times and censoring indicators are collected for the cohort and

covariate information is collected only for the subjects in the subcohort and all the cases who

experience the event of interest. The case-cohort design was later studied in a modified version

by (13) and (7) using the Cox proportional hazards model. Other regression models were also

studied, for example the additive hazards model ((6)), the proportional odds model ((1)) and

the semiparametric transformation regression model ((8)).

Although, some authors have studied statistical inference for the hazards models under case-

cohort design, it seems to have been no work for the mean residual life models under case-cohort

design. Thus in this paper, we have studied a class of mean residual life regression models (A.2)

under case-cohort design. The proposed models are generalization of the proportional mean

residual life model with more choices of the link function g(.). We develop inference procedures

for estimating the parameters of models (A.2), using the martingale theory.

The rest of the paper is organized as follows. Section 2 is devoted to semiparametric inference
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procedures for estimating the non-parametric component m0(t) and parametric component β in

model (A.2) by applying martingale estimating equations under case-cohort design. Section 3

gives the asymptotic properties of the proposed regression estimators with theoretical proofs.

B Estimating equations

Let C be the potential censoring time, and assume that the survival time T is independent of

C given the p× 1 covariate vector Z. To avoid lengthy technical discussion of the tail behavior

of the limiting distributions, we further assume that Pr(C ≥ τ) > 0, where 0 < τ = inf{t :

Pr(T ≥ t) = 0} < ∞. The observed data for a cohort of n independent subjects is denoted by

(T̃i, δi, Zi), i = 1, 2, . . . , n, where T̃i = min(Ti, Ci), δi = I(Ti ≤ Ci). Here, I(.) is the indicator

function. Define the counting process Ni(t) = I(T̃i ≤ t, δi = 1) and at-risk process Yi(t) =

I(T̃i ≥ t). Consider the filtration defined by Ft = σ{Ni(u), Yi(u), Zi : 0 ≤ u ≤ t; i = 1, . . . , n},

then Mi(t) = Ni(t) −
∫ t
0
Yi(u)dΛ(u|Zi) are zero-mean martingale with respect to Ft, where

Λ(t|Zi) denotes the cumulative hazard function of Ti given Zi. (14) proposed the following two

estimating equations to estimate m0(t) and β respectively, in model (A.2)

n∑
i=1

[
m0(t)dNi(t)− Yi(t){g(Z⊤

i β)
−1dt+ dm0(t)}

]
= 0 (0 ≤ t ≤ τ), (B.1)

n∑
i=1

∫ τ

0

g(1)(Z⊤
i β)

g(Z⊤
i β)

Zi
[
m0(t)dNi(t)− Yi(t){g(Z⊤

i β)
−1dt+ dm0(t)}

]
= 0, (B.2)

where g(1)(t) = dg(t)/dt. Under the case-cohort design in which the covariate information is

not observed for entire cohort, the estimating equations (B.1) and (B.2) are not suitable for

estimating the parameters of model (A.2).

To develop the estimating equations for estimation of the regression parameter of model

(A.2) under the case-cohort design, we need some additional notation. We define the size of

the cohort n and the size of subcohort ñ which is selected from the full cohort by the simple

random sampling. Let di be the subcohort indicator with di = 1 if the subject is included in

the subcohort and di = 0 otherwise. We assume that Pr(di = 1) = p which means each subject

has the same probability p to be selected into the subcohort, and since we are sampling without

replacement p = ñ/n. The survival time T̃i and the failure status δi are observed for all subjects

in the full cohort. However, we only observe Zi for subjects in the subcohort, where di = 1,

and all the cases outside the subcohort, where δi = 1 and di = 0. Therefore, the observed data

can be summarized as [T̃i, δi, di, {δi + (1 − δi)di}Zi], (i = 1, · · · , n). Here di is independent
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of (T̃i, δi, Zi), for i = 1, · · · , n, while the di’s are dependent because of the sampling without

replacement.

Similar to (8), for each subject in the full cohort, we define a weight πi = δi + (1 − δi)di/p

by the inverse selection probabilities. Then we propose the following estimating equations by

incorporating the weight πi to estimate m0(t) and β, respectively

n∑
i=1

πi
[
m0(t)dNi(t)− Yi(t){g(Z⊤

i β)
−1dt+ dm0(t)}

]
= 0 (0 ≤ t ≤ τ), (B.3)

n∑
i=1

∫ τ

0

g(1)(Z⊤
i β)

g(Z⊤
i β)

Ziπi
[
m0(t)dNi(t)− Yi(t){g(Z⊤

i β)
−1dt+ dm0(t)}

]
= 0. (B.4)

In fact, the estimating equation (B.3) is a first-order linear ordinary differential equation in

m0(t) {∑n
i=1 πidNi(t)∑n
i=1 πiYi(t)

}
m0(t)− dm0(t) = Q(t;β)dt,

where Q(t;β) =
∑n
i=1 πiYi(t)g(Z

⊤
i β)

−1/
∑n
i=1 πiYi(t). It thus has the closed form solution

m̂0(t;β) = Ŝ(t)−1

∫ τ

t

Ŝ(u)Q(u;β)du,

where Ŝ(t) = exp{−
∫ t
0

∑n
i=1 πidNi(u)/

∑n
i=1 πiYi(u)}.

To obtain an estimator for β, we replace m0(t) with m̂0(t;β) in equation (B.4). Then it is

straight-forward to show that the resulting equation (B.4) is equivalent to

U(β, m̂0(t;β)) =
n∑
i=1

∫ τ

0

πi
{
h(Z⊤

i β)Zi − Z̄(t)
}[
m̂0(t;β)dNi(t)− Yi(t)g(Z

⊤
i β)

−1dt
]
, (B.5)

where h(t) = g(1)(t)/g(t), and Z̄(t) =
∑n
i=1 πiYi(t)h(Z

⊤
i β)Zi/

∑n
i=1 πiYi(t). Let β̂ denote the

solution to U(β, m̂0(t;β)) = 0. The corresponding estimator of m0(t) is given by m̂0(t) =

m̂0(t; β̂).

C Asymptotic normality of regression parameters

In order to study the asymptotic properties of β̂, some notations and regularity conditions are

required. For any t ∈ (0, τ ], define

Z̃(t) =
Ŝ(t)∑n

i=1 πiYi(t)

∫ t

0

Ŝ(u)−1
n∑
i=1

πi
{
h(Z⊤

i β)Zi − Z̄(u)
}
dNi(u).

Let µ(t) and µ̃(t) be the limits of Z̄(t) and Z̃(t), respectively. The regularity conditions are also

as the following:
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(C1) Pr(C ≥ τ) > 0, and N(τ) is bounded almost surely.

(C2) The covariate Z is bounded.

(C3) m0(t) is continuously differentiable on [0, τ ].

(C4) A = E
[ ∫ τ

0
πi{h(Z⊤

i β)Zi − µ(t)}⊗2Yi(t)g(Z
⊤
i β)

−1dt
]
is non-singular, where a⊗2 denotes

aa⊤ for a vector a.

In order to prove the asymptotic normality of β̂, first we need to prove the asymptotic

normality of U(β; m̂0(t;β)). Note that

n∑
i=1

πi
[
m0(t)dNi(t)− Yi(t){g(Z⊤

i β)
−1dt+ dm0(t)}

]
=

n∑
i=1

πim0(t)dMi(t),

and
n∑
i=1

πi
[
m̂0(t;β)dNi(t)− Yi(t){g(Z⊤

i β)
−1dt+ dm̂0(t;β)}

]
= 0.

Then it follows that∑n
i=1 πidNi(t)∑n
i=1 πiYi(t)

{
m̂0(t;β)−m0(t)

}
− d
{
m̂0(t;β)−m0(t)

}
= −

∑n
i=1 πim0(t)dMi(t)∑n

i=1 πiYi(t)
,

which is a first-order linear ordinary differential equation in m̂0(t;β) −m0(t). It thus has the

closed-form solution given by

m̂0(t;β)−m0(t) = −Ŝ(t)−1
n∑
i=1

∫ τ

t

Ŝ(u)
m0(u)πi∑n
i=1 πiYi(u)

dMi(u). (C.1)

A decomposition of n−1/2U(β; m̂0(t;β)) can be considered of the form

n−1/2U(β; m̂0(t;β)) =n
−1/2

n∑
i=1

∫ τ

0

πi
{
h(Z⊤

i β)Zi − Z̄(t)
}
m0(t)dMi(t)

+n−1/2
n∑
i=1

∫ τ

0

πi
{
h(Z⊤

i β)Zi − Z̄(t)
}{
m̂0(t;β)−m0(t)

}
dNi(t)

Thus, by the representation of m̂0(t;β)−m0(t) in equation (C.1), it can be written that

n−1/2U(β; m̂0(t;β)) = n−1/2
n∑
i=1

∫ τ

0

πi
{
h(Z⊤

i β)Zi − Z̄(t)− Z̃(t)
}
m0(t)dMi(t),

where

Z̃(t) =
Ŝ(t)∑n

i=1 πiYi(t)

∫ t

0

Ŝ(u)−1
n∑
i=1

πi
{
h(Z⊤

i β)Zi − Z̄(u)
}
dNi(u).
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By the uniform strong law of large numbers, it can be written that

n−1/2U(β; m̂0(t;β)) =n
−1/2

n∑
i=1

∫ τ

0

πi
{
h(Z⊤

i β)Zi − µ(t)− µ̃(t)
}
m0(t)dMi(t) + op(1)

=n−1/2
n∑
i=1

∫ τ

0

{
h(Z⊤

i β)Zi − µ(t)− µ̃(t)
}
m0(t)dMi(t) (C.2)

+n−1/2
n∑
i=1

∫ τ

0

(πi − 1)
{
h(Z⊤

i β)Zi − µ(t)− µ̃(t)
}
m0(t)dMi(t) + op(1)

(C.3)

with µ(t) and µ̃(t) are the limit in probability of Z̄(t) and Z̃(t), respectively. The two terms

on the right-hand side of the above equation are uncorrelated. The first term (C.2) can be

decomposed as a sum of independent and identically distributed terms as n−1/2
∑n
i=1 ξi+op(1),

where ξi =
∫ τ
0
πi
{
h(Z⊤

i β)Zi − µ(t) − µ̃(t)
}
m0(t)dMi(t). Hence using the multivariate central

limit theorem, term (C.2) converges in distribution to a normal distribution with mean 0 and

variance-covariance Σ1 = E{ξ⊗2
i }. The second term (C.3) can be written as

− n−1/2
n∑
i=1

∫ τ

0

(1− δi)(1− di/p)
{
h(Z⊤

i β)Zi − µ(t)− µ̃(t)
}
m0(t)dMi(t) + op(1)

=− n−1/2
n∑
i=1

ηi(1− di/p) + op(1),

where ηi = (1− δi)
∫ τ
0
{h(Z⊤

i β)Zi−µ(t)− µ̃(t)}m0(t)dMi(t). Then it can be seen that E{ηi(1−

di/p)} = E{ηiE(1 − di/p|Fi)} = 0, and var{ηi(1 − di/p)} = E{η⊗2
i var(1 − di/p|Fi)} = (1 −

p)/pE{η⊗2
i } = Σ2. Hence n

−1/2U(β; m̂0(t;β)) is asymptotically normal with mean zero and

variance-covariance matrix Σ = Σ1 +Σ2.

Since the censoring time C is independent of T and Z, and
∫ τ
t
S(u|Z)g(Z⊤β)−1du =

m0(t)S(t|Z), then under model (A.2), it follows from the uniform strong law of large num-

bers that

∂m̂0(t;β)

∂β
=− Ŝ(t)−1

∫ τ

t

Ŝ(u)∑n
i=1 πiYi(u)/n

{
n−1

n∑
i=1

πiYi(u)h(Z
⊤
i β)g(Z

⊤
i β)

−1Zidu
}

=− S(t)−1E
{
h(Z⊤

i β)Zi

∫ τ

t

S(u|Zi)g(Z⊤
i β)

−1du
}
+ op(1)

=−m0(t)µ(t) + op(1). (C.4)
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Let Â = n−1∂U(β; m̂0(t;β))/∂β, and h
(1)(t) = dh(t)/dt. Then it follows from (C.4) that

Â =n−1
n∑
i=1

∫ τ

0

πi
{
h(1)(Z⊤

i β)Z
⊗2
i −

∑n
i=1 πiYi(t)h

(1)(Z⊤
i β)Z

⊗2
i∑n

i=1 πiYi(t)

}[
m̂0(t;β)dNi(t)− Yi(t)g(Z

⊤
i β)

−1dt
]

+n−1
n∑
i=1

∫ τ

0

πi
{
h(Z⊤

i β)Zi − Z̄(t)
}[∂m̂0(t;β)

∂β
dNi(t)− Yi(t)h(Z

⊤
i β)Zig(Z

⊤
i β)

−1dt
]

=n−1
n∑
i=1

∫ τ

0

πi
{
h(1)(Z⊤

i β)Z
⊗2
i −

∑n
i=1 πiYi(t)h

(1)(Z⊤
i β)Z

⊗2
i∑n

i=1 πiYi(t)

}[
m0(t)dMi(t) + Yi(t)dm0(t)

]
−n−1

n∑
i=1

∫ τ

0

πi
{
h(Z⊤

i β)Zi − Z̄(t)
}[
µ(t)

{
m0(t)dMi(t) + Yi(t)g(Z

⊤
i β)

−1dt+ Yi(t)dm0(t)
}]

−n−1
n∑
i=1

∫ τ

0

πi
{
h(Z⊤

i β)Zi − Z̄(t)
}
Yi(t)h(Z

⊤
i β)Zig(Z

⊤
i β)

−1dt+ op(1) = A+ op(1),

where A = E
[ ∫ τ

0
πi{h(Z⊤

i β)Zi − µ(t)}⊗2Yi(t)g(Z
⊤
i β)

−1dt
]
. Therefore, the asymptotic distri-

bution of β̂ follows from a Taylor series expansion of U(β̂) at β which gives

n1/2(β̂ − β) =−A−1n−1/2U(β, m̂0(t;β)) + op(1)

=−A−1n−1/2
n∑
i=1

∫ τ

0

πi
{
h(Z⊤

i β)Zi − µ(t)− µ̃(t)
}
m0(t)dMi(t) + op(1).

Thus n1/2(β̂ − β) is asymptotically normal with zero mean and variance-covariance matrix

A−1ΣA−1, which can be consistently estimated by Â−1Σ̂Â−1, where

Â =
1

n

n∑
i=1

πi

∫ τ

0

{h(Z⊤
i β̂)Zi − Z̄(t)}⊗2Yi(t)g(Z

⊤
i β̂)

−1dt,

Σ̂ =Σ̂1 + Σ̂2,

Σ̂1 =
1

n

n∑
i=1

[ ∫ τ

0

πi{h(Z⊤
i β̂)Zi − Z̄(t)− Z̃(t)}m̂0(t)dM̂i(t)

]⊗2

,

Σ̂2 =
1− p

p

1

n

n∑
i=1

[
(1− δi)

∫ τ

0

{h(Z⊤
i β̂)Zi − Z̄(t)− Z̃(t)}m̂0(t)dM̂i(t)

]⊗2

.
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Abstract: In this paper, we consider weighted-k-out-of-n system in which m ≥ 2 type of

components each with its own positive integer-valued weight ωi, (i = 1, · · · ,m). The random

lifetimes of components are from two cases: (1) the identically distributed and dependent random

lifetimes of components, (2) the exchangeable and dependent random lifetimes of components

in the same type with independent classes (i.e. the product copula is used). It was assumed

that the random numbers Ni, Ni = 0, 1, · · · , ni of components are chosen from class Ci for type

i(i = 1, · · · ,m). The structure of dependency of the system component lifetimes is modelled

by copula function. The reliability of the system is obtained as a mixture of the reliability of

weighted-k-out-of-n systems consisting m types of components with fixed number of them in

terms of the probability mass function of the random vector (N1, · · · , Nm−1).

Keywords Copulas, Reliability, Weighted-(k1, k2, · · · , km)-out-of-n system.
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A Introduction

In the most of real life systems, the total contribution of the components plays an important

role and must be exceeding a predefined performance level. In many situations, the components

contribute variously to the system’s capacity. The weighted systems with unequal weights for

each components are introduced by Wu and Chen(18) to deal with this situation which has been

studied in the literature. A system including n components with their different positive integer

weights is known as weighted-k-out-of-n:G system when it works if and only if the sum total

weights of functioning components is exceeding a given threshold k.

Chen and Yang (1) developed the existing algorithms to calculate the system reliability of

one-stage weighted-k-out-of-n model to two-stage weighted-k-out-of-n models. Samaniego and

1RahmatSadat Meshkat: r.meshkat@gmail.com



Shaked (16) presented a review on weighted-k-out-of-n systems. Navarro et al. (12) extended

the signature-based representations of the reliability functions of coherent systems to systems

with heterogeneous components. Eryilmaz (4) studied the reliability properties of a k-out-of-

n system with random weights for components. Rahmani et al. (14) defined the weighted

importance (WI) measure for k-out-of-n system with random weights that depends only on

the distribution of component weights and also, Meshkat and Mahmoudi (10) generalized this

measure for two component i and j and the relation of these measures is investigated with

Birnbaum reliability importance measure. Eryilmaz and Sarikaya (6) studied the special case of

weighted-k-out-of-n:G system containing two types of components, each group having different

weights and reliabilities such that one group has the common weight ω and reliability p1, while

the other has the common weight ω∗ and reliability p2. They also obtained the non-recursive

equations for the system reliability, survival function and Mean Time To Failure (MTTF).

The ordinary k-out-of-n system operates if at least k components work. In these kind of

systems all components perform same tasks with an equal portion to the performance of the

entire system. In a more general setting, the system consisting multiple types of components

having different functions may be existed that different numbers of components of each type may

be required for the proper operation of the whole system. Recently, Eryilmaz (7) introduced

the (k1, k2, · · · , km)-out-of-n system including ni components of type i for i = 1, · · · ,m and

n =
∑m
i=1 ni. The corresponding system is assumed to work if at least k1 components of type

1, k2 components of type 2, · · · , km components of type m function. Its reliability and the

setup of weighted-(k1, k2, · · · , km)-out-of-n system is also defined and studied. In this system,

it is assumed that the random lifetimes of components of the same type are exchangeable and

dependent, and that the random lifetimes of components of different type are dependent. That

is, there are two levels of dependence: The first level dependence defines the dependence between

the components of same type, and the second level of dependence is a dependence among different

types of components.

Let (T
(i)
1 , · · · , T (i)

ni ) be the vector of lifetimes of type i and ωi denote the weight of all

components of type i. The weighted-(k1, k2, · · · , km)-out-of-n system is functioning if and only if

the total weight of functioning components of type 1 is at least k1, the total weight of functioning

components of type 2 is at least k2, · · · and the total weight of functioning components of type

m is at least km. The total weight of functioning components of type i at time t(≥ 0) is

Wi(t) =

ni∑
j=1

ωiI(T
(i)
j > t),
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and the total weight of the system at time t(≥ 0) can be defined by

Wn(t) =
m∑
i=1

ni∑
j=1

ωiI(T
(i)
j > t),

where I(T
(i)
j > t) is an indicator function (which is 1 if T

(i)
j > t and 0 if T

(i)
j ≤ t).

Recently, the weighted-k-out-of-n systems with dependent components have attracted great

deal of attention in reliability studies. One of applied methods for modelling this dependence is

to use copula functions. Nelsen (13) is provided an introduction and wide investigation on the

theory of copulas. Jia and Cui (9) proposed a copula-based method for analysing the reliability

of supply chains. Tang et al. (17) presented a copula-based method to investigate the impact of

copulas for modelling bivariate distributions on system reliability under incomplete probability

information. Eryilmaz (5) applied a multivariate copula-based method for dynamic reliability

modelling of weighted-k-out-of-n systems is applied.

Using the copula is a useful viewpoint to describe the dependence between the random

variables. According to Sklars theorem ((13)), any joint distribution function H of a random

vector (X1, · · · , Xn) with the marginal distribution functions F1, · · · , Fn can be written as

following

H(x1, · · · , xn) = Cα(F1(x1), · · · , Fn(xn)), ∀xi ∈ R, (A.1)

where Cα : [0, 1]n → [0, 1] is the copula function in which α is the copula parameter describing

the dependency between X1, · · · , Xn. In addition, if the marginals F1, · · · , Fn are continuous,

then the copula Cα given by following is unique

Cα(u1, · · · , un) = H(F−1
1 (u1), · · · , F−1

n (un)),

where F−1
i (u) = inf{x : Fi(x) ≥ u}. Conversely, if the marginal distributions of X1, · · · , Xn

and the copula function are known, then the joint distribution of random vector (X1, · · · , Xn)

can be determined by (A.1). Indeed, the copula parameter α determines the properties of

Cα(u1, · · · , un). In reliability, the dependence structure among the component lifetimes are

commonly positive, therefore the FGM family of copulas with α > 0 is an appropriate choice

for positive dependence. The n-variate form of FGM family of copulas is defined as

Cα(u1, · · · , un) =

(
n∏
i=1

ui

){
1 + α

n∏
i=1

(1− ui)

}
, α ∈ (−1, 1).

In some situations, a random strategy might be a better option when the choice must be between

some kinds of units such that one is more reliable than the others. Crescenzo (2), Crescenzo
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and Pellerey (3), Navarro et al. (11) and Hazra et al. (8) presented some useful applications

of the random strategy. Salehi et al. (15) investigate the reliability and stochastic properties

of weighted-k-out-of-n systems which consist of a random number of components when the

components are from two different types. The structure of dependency of the components is

assumed that is modelled by a copula function.

In this study, we consider the mentioned general setup of weighted-k-out-of-n system in which

m ≥ 2 types of components each with its own positive integer-valued weight ωi, (i = 1, · · · ,m)

when the random lifetimes of components are from two cases: (1) the identically distributed

and dependent random lifetimes of components, (2) the exchangeable and dependent random

lifetimes of components in the same type with independent classes (i.e. the product copula is

used). The aim of this paper is to investigate the reliability of this system which consist of the

random number of components in each different types. We assume that among the n number

of the components of the system, the random numbers Ni, Ni = 0, 1, · · · , ni of components

are chosen from class Ci for type i(i = 1, · · · ,m). The structure of dependency of the system

component lifetimes is modelled by copula function. The reliability of the system was expressed

as a mixture of the reliability of weighted-k-out-of-n systems consisting m types of components

with fixed number of each types in terms of the probability mass function of the random vector

(N1, · · · , Nm−1).

The remainder of the paper is arranged as follows: In Section 2, for mentioned weighted-k-

out-of-n system, the description of system and the reliability of the system lifetime is provided.

Also, one example is illustrated the result. The concluding remarks are provided in Section 3.

B The system model

In this section, we consider the setup of weighted-k-out-of-n system withm types of components.

The components of same type are assumed to have the same weight. This system is supposed

to work with performance level k if and only if the total weight of functioning components of

all types is at least k.

The components belong tom distinct classes C1 = {T (1)
1 , · · · , T (1)

n1 }, C2 = {T (2)
n1+1, · · · , T

(2)
n1+n2

}, · · ·

and Cm = {T (m)
n−nm+1, · · · , T

(m)
n } with sizes n1, n2, · · · and nm, respectively. Suppose F1, · · · and

Fm denote the distribution functions of the components lifetime in C1, · · · and Cm with cor-

responding weights ω1, · · · and ωm, respectively. Indeed, components of the system are chosen

from m distinct classes of components such that ni of them is from type i with weight ωi and
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lifetime distribution Fi. If T
(1)
1 , · · · , T (1)

n1 , · · · , T
(m)
n−nm+1, · · · , T

(m)
n denote the lifetimes of the

system components in the m classes, so the total weight of functioning components of type i at

time t(≥ 0) is

Wi(t) =

ni∑
j=1

ωiI(T
(i)
j > t),

and the total weight of the system at time t(≥ 0) can be defined as

Wn(t) =
m∑
i=1

ni∑
j=1

ωiI(T
(i)
j > t),

where I(T
(i)
j > t) is an indicator function. Considering T as the lifetime of the system, then it

is defined as

T = inf{t :Wn(t) < k}.

and the system reliability is

R(t) = P (T > t) = P (Wn(t) ≥ k), ∀t ≥ 0.

Suppose that the dependence between T
(1)
1 , · · · , T (1)

n1 , · · · , T
(m)
n−nm+1, · · · , T

(m)
n is modelled by the

n-dimensional copula function C. Now, we consider two cases: (1) the identically distributed

and dependent random lifetimes of components, (2) the exchangeable and dependent random

lifetimes of components in the same type with independent classes (i.e. the product copula is

used). Therefore

H1(t1, · · · , tn)=C(F1(t1), · · · , F1(tn1), · · · , Fm(tn−nm+1) · · · , Fm(tn)),

H2(t1, · · · , tn)=C(F1(t1), · · · , F1(tn1))× · · · × C(Fm(tn−nm+1) · · · , Fm(tn)).

Here, we consider that the size of m classes C1, · · · and Cm are random. Let N1, · · · and Nm−1

be a random variables with support contained in {0, 1, · · · , n}. If n1, · · · and nm−1 (the numbers

of components from C1, · · · and Cm−1 ) is selected randomly according to the random variables
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N1, · · · and Nm−1, then the system reliability function can be given as

R1
N1,··· ,Nm−1

(t) = P (TN1,··· ,Nm−1 > t)

=
n∑

n1=0

· · ·
n∑

nm−1=0

P

ω1

n1∑
j=1

I(T
(1)
j > t) + · · ·+ ωm

nm∑
j=1

I(T
(m)
j > t) > k


×P (N1 = N1, · · · , Nm−1 = nm−1)

=

n∑
n1=0

· · ·
n∑

nm−1=0

∑
· · ·
∑

ω1y1+···+ωmym≥k
0≤yi≤ni, i=1,··· ,m

(
n1
y1

)
· · ·
(
nm
ym

) y1∑
l1=0

· · ·
ym∑
lm=0

(−1)l1+···+lm

×
(
y1
l1

)
· · ·
(
ym
lm

)
C(F1(t), · · · , F1(t)︸ ︷︷ ︸

n1−y1+l1

, · · · , Fm(t), · · · , Fm(t)︸ ︷︷ ︸
nm−ym+lm

)

×P (N1 = N1, · · · , Nm−1 = nm−1).

R2
N1,··· ,Nm−1

(t)

=
n∑

n1=0

· · ·
n∑

nm−1=0

∑
· · ·
∑

ω1y1+···+ωmym≥k
0≤yi≤ni, i=1,··· ,m

(
n1
y1

)
· · ·
(
nm
ym

) y1∑
l1=0

· · ·
ym∑
lm=0

(−1)l1+···+lm

×
(
y1
l1

)
· · ·
(
ym
lm

) m∏
i=1

C(Fi(t), · · · , Fi(t)︸ ︷︷ ︸
ni−yi+li

)P (N1 = N1, · · · , Nm−1 = nm−1).

Consider a weighted-7-out-of-6 system consisting 3 types of components with the weights

ω1 = 2, ω2 = 1 and ω3 = 3. Also, suppose that the components have the lifetime distri-

butions F1(t) = 1 − 1
t , F2(t) = 1 −

(
2
t

)3
and F3(t) = 1 −

(
3
t

)2
. Let FGM copula mod-

els the dependence structure among components. Assume that the number of components

from C1 and C2 is selected randomly according to the random variables N1 and N2 which

(N1, N2, N3) ∼Multi(6, 0.2, 0.3, 0.5) with

P (N1 = n1, · · · , Nm = nm) =

(
n

n1, · · · , nm

) m∏
i=1

pni
i ,

m∑
i=1

pi = 1,
m∑
i=1

ni = n.

Hence

R
(1)
N1,N2

(t)=

6∑
n1=0

6∑
n2=0

P

(
2

n1∑
j=1

I(T
(1)
j > t) +

n2∑
j=1

I(T
(2)
j > t) + 3

n3∑
j=1

I(T
(3)
j > t) > 7

)
×P (N1 = n1, N2 = n2)
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=
6∑

n1=0

6∑
n2=0

∑
· · ·
∑

2y1+y2+3y3≥7

0≤yi≤ni, i=1,··· ,3

(
n1
y1

)(
n2
y2

)(
n3
y3

) y1∑
l1=0

· · ·
y4∑
l4=0

(−1)l1+···+l4

×
(
1− 1

t

)n1−y1+l1 (
1− 8

t3

)n2−y2+l2 (
1− 9

t2

)n3−y3+l3

×

(
1 + α

(
1

t

)n1−y1+l1 ( 8

t3

)n2−y2+l2 ( 9

t2

)n3−y3+l3
)

×P (N1 = n1, N2 = n2).

R
(2)
N1,N2

(t)=
6∑

n1=0

6∑
n2=0

∑
· · ·
∑

2y1+y2+3y3≥7

0≤yi≤ni, i=1,··· ,3

(
n1
y1

)(
n2
y2

)(
n3
y3

) y1∑
l1=0

· · ·
y4∑
l4=0

(−1)l1+···+l4

×
(
1− 1

t

)n1−y1+l1
(
1 + α

(
1

t

)n1−y1+l1
)

×
(
1− 8

t3

)n2−y2+l2
(
1 + α

(
8

t3

)n2−y2+l2
)

×
(
1− 9

t2

)n3−y3+l3
(
1 + α

(
9

t2

)n3−y3+l3
)
P (N1 = n1, N2 = n2).

C Conclusion

In this paper, we studied reliability of weighted-k-out-of-n system in which m ≥ 2 types of

components each with its own positive integer-valued weight ωi, (i = 1, · · · ,m). The random

lifetimes of components are from two cases: (1) the identically distributed and dependent random

lifetimes of components, (2) the exchangeable and dependent random lifetimes of components

in the same type with independent classes (i.e. the product copula is used). It was assumed

that the random numbers Ni, Ni = 0, 1, · · · , ni of components are chosen from class Ci for type

i(i = 1, · · · ,m). The structure of dependency of the system component lifetimes is modelled

by copula function. The reliability of the system was expressed as a mixture of the reliability

of weighted-k-out-of-n systems consisting m types of components with fixed number of them in

terms of the probability mass function of the random vector (N1, · · · , Nm−1).
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Abstract: The problem of estimation lifetime parameters in the presence of masked data is

considered for a series system. Maximum Likelihood Estimations are derived and compared

under missing not at random (MNAR) and missing at random (MAR) mechanisms. The results

show superior performance of our approach when non-ignorable missing mechanism is occurred.

Morevere, the Bayesian approach is expanded for estimation of model parameters. Bayesian

analysis led to less biasness for parameters estimation than classical analysis. The proposed

method is illustrated through a real example.

Keywords Masked Data, Non-ignorable Missing Data, Markov chain Monte Carlo Method.
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A Introduction

The exact cause of failure is important in reliability estimation of a series system. However,

in many cases, because of some reasons, such as cost and time limitations, the exact cause of

failure is not recognized, but only is identified that belongs to a smaller set of causes. These

data are called to be Masked data (Miyakawa;1984, Basu, et al;1999).

Some works have been done on classical statistical inference of Masked data. For example:

Miyakawa (1984), Usher and Hodgson (1988) and Lin et al. (1993). Also some authors consid-

ered Bayesian analysis for Masked data, such as: Reiser et al. (1995), Berger and Sun (1993),

Mukhopadhyay and Basu (1997), Basu et al. (1999), Mukhopadhyay (2006) and Xu et al.

(2014).

Missing data appears when data value is not observed for a variable. Missing data have dif-

ferent mechanisms with respect to missingness reasons. If missingness depends only on observed

values, missing mechanism is called missing at random (MAR), while if missingness depends on

1Hasan Misaii: hasanmisaii14@gmail.com



both observed and missing values, missing mechanism is called missing not at random (MNAR)

(Little & Rubin, 2002).

In this work we aim to estimate the parameters of interest in Bayesian framework, introducing

a missing indicator according to the masking status of each observed failure time. A MNAR

mechanism is assumed and the Bayesian estimates are derived. We conducted some simulation

studies, which show superior results for our proposed model when masking has a non-ignorable

mechanism. The rest of the paper is as follow. In Section 2, the model assumptions are

introduced, and the general formulation of the likelihood functions are given. In Section 3,

the auxiliary variables are introduced, and the Bayesian analysis is discussed. In section 4, The

proposed methodology is presented using numerical example. Finally we conclude the paper in

Section 5.

B Model Assumptions and Likelihood Function

A. Assumptions

Suppose that we have r series systems under the test such that all of them have equal compo-

nents, say J components. Assume that at the end of the test we observe failure data, t1, t2, ..., tr,

but the exact cause of failure might be unknown, and only we know that belongs to the Mini-

mum Random Subset (MRS) of {1, 2, ..., J}. Let Mi be the observed MRS corresponding to the

failure time ti, i = 1, 2, ..., r for ith system. The set Mi essentially includes components that are

possible to be cause for system failure. If Mi be a singleton set, then the data are competing

risks data. While if Mi = {1, ..., J} then the system is called to be completely masked. We

define the binary variable Ri which takes 1, when Mi is a singleton set and 0 for masked data

(when Mi has more than one element). Thus, the observed data are

(t1,M1, R1), (t2,M2, R2), ..., (tr,Mr, Rr). (B.1)

The model used in this paper is based on the following assumptions:

• Let T1, T2, ..., TJ be the lifetimes of J independent components, also assume that sys-

tem fails only due to one of the J components, therefor system failure time is T =

min(T1, ..., TJ ).

• Tl, the failure time of the lth component, follows a distribution in continuous distribution

family with density and reliability functions denoted by fl(t), Rl(t).
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• Pr(M =Mi|T = ti,Ki = l) is called the masking probability, where Ki denotes the exact

cause of failure of ith system. In this article, we assume Pr(M = Mi|T = ti,Ki = l) =

Pr(M = Mi|Ki = l) = pl(Mi), that is, the masking probability is independent of failure

time, but is dependent to the causes of failure.

• pl(Mi)s have some constraints. Suppose M be the all of nonempty subsets of {1, ..., J}

that have 2J − 1 members. Define Ml = {M0 ∈M : l ∈M0, l ∈ {1, ..., J}} thus

pl(Mi) = P (M =Mi|Ki = l) = 0 ∀Mi ∈M c
l =M −Ml

and ∑
Mi∈M

pl(Mi) =
∑

Mi∈Ml

pl(Mi) = 1, l = 1, ..., J. (B.2)

Denote pl = {Pl(Mi) :Mi ∈Ml}, l = 1, 2, ..., J then p = (p1, ..., pJ).

• If T be the system failure time, the reliability function is given by

R(t) = R(t; θ) = P (T > t) =
J∏
l=1

[1− Fl(t)] (B.3)

Where θ = (θ1, ..., θJ ), and θl is parameters set related to component l.

• Suppose K be a random variable which indicates the cause of failure. Then the joint

probability distribution function of (T,K) is given by

fT,K(t, l) = fl(t)
∏
j ̸=l

[1− Fj(t)]. (B.4)

• Ri is a Bernoulli variable with success probability

p(Ri = 1|ki = jI{j∈Mi},Mi, ti) = h(β0 + β1ki + β2ti) ,

where h(.) is some appropriate link function (e.g. logit, probit, clog-log,...). When β1 = 0, the

missing is ignorable and missing mechanism is MAR.

B. Likelihood Function

The likelihood function for data (B.1) can be written as follow:

L(θ, p, β|t,M,R) =

r∏
i=1

[
∑
j∈Mi

P (Ri|ti,Mi,Ki = j)p(Mi|ti,Ki = j)fT,K(ti, j)]

=
r∏
i=1

[
∑
j∈Mi

P (Ri|ti,Mi,Ki = j)pj(Mi)fT,K(ti, j)] (B.5)
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Where β = (β0, β1), and θ is the vector of parameters related to liftime distribution.

If the missing mechanism is at random (β1 = 0) then the above likelihood is reduced to:

LR(θ) ∝
r∏
i=1

f(Ri|ti) ∑
j∈Mi

pj(Mi)fT,K(ti, j)

 (B.6)

Where simple masked data analysis is used.

C Bayesian Analysis

First, we simplify the likelihood function using the auxiliary random variables. Define Iij =

I(Tj = ti) for 1 ≤ i ≤ r and 1 ≤ j ≤ J , where I(.) is the indicator variable such that shows

the exact cause-of-failure. Iij = 1 means that the ith system failed due to component j where

j ∈ Mi. If Mi = {j} is a singleton set, that is the failure cause is known, then Iij = 1 and

Iij′ = 0, j′ ̸= j. Therefore likelihood function (B.5) can be rewritten as follow, respectively:

L(θ, p, β|t,M,R) =

r∏
i=1

[
∏

j∈Mi

(P (Ri|ti,Mi, Ki = j)pj(Mi)fT,K(ti, j))
Iij ]

=

r∏
i=1

[

J∏
j=1

(P (Ri|ti,Mi, Ki = j)pj(Mi)fT,K(ti, j)
Iij )] (C.1)

Then, we consider the Dirichlet distribution, D(γj), as prior distribution for pj , where γj

is the 2J−1 dimensional vector. The choice of prior distributions for other parameters will be

s-dependent on the CDF that is considered for Tl.

If π(θ), π(β) and πl(pl) be the priors for parameters θ, β and pl respectively, then the joint

density function of (t,M, I,R) is

p(t,M, I,R) = p(θ, p, β|t,M, I,R)π(θ)π(β)

J∏
l=1

πl(pl) (C.2)

The likelihood function for Exponential distribution with parameter αl for lth component
based on C.1 is as follow:

L(θ, p, β|t,M,R) =

r∏
i=1

[

J∏
j=1

(P (Ri|ti,Mi, Ki = j)
Iij pj(Mi)

Iijα
Iij
j )

Iij ]

×exp{−
r∑

i=1

J∑
l=1

αlti}. (C.3)
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D Numerical Example

In this section, we would try to illustrate the proposed method by a simulation study.

A. Exponential Distribution

In this subsection we assume 100 series systems with two components where the lifetime of

components follow Exponential distribution with parameters α1 and α2 for first and second

component, respectively. We have generated non-ignorable missing mechanism according to the

logistic regression logit(p(Ri = 1|ki = j)) = β0 + β1ki. The masking probabilities of the data

are p1 and p2, where p1 = p1({1, 2}) and p2 = p2({1, 2}). Let α1 = 0.3, α2 = 0.7, β0 = −0.1,

β1 = 0.5, p1 = 0.1 and p2 = 0.2.

The simulated data are listed in Table 1.

The results of maximum likelihood estimation of parameters α1 and α2 are presented in Table

2. In Table 2, there are the true value of the parameters and the amount of biasness for α1

and α2 (denoted by Bα1 and Bα2, respectively) in 1000 iterations of each simulation study.

According to the results, MNAR model leads to less biased estimators compared with the usual

MAR model.

Table 1: The simulated data
(t,k,R)
(1.501,1,1),(2.386,1,1),(0.849,2,1),(2.223,1,0),(3.055,1,1),(0.444,0,0),(1.878,1,0),(4.101,2,1),

(1.965,2,0),(0.252,1,0),(1.938,2,1),(0.221,1,0),(0.282,1,1),(2.006,2,1),(0.511,2,1),(3.057,1,1),

(0.563,2,1),(1.308,2,1),(0.160,1,0),(1.341,2,1),(2.546,2,1),(0.040,0,0),(1.863,1,0),(1.207,2,1),

(1.497,1,1),(1.717,0,0),(0.705,2,1),(3.170,1,1),(0.067,1,1),(1.808,1,1),(0.319,2,0),(3.444,2,1),

(0.676,2,1),(0.566,2,1),(0.960,1,1),(0.299,0,0),(2.111,0,0),(0.210,1,1),(0.433,2,1),(0.868,2,1),

(0.275,2,1),(2.029,2,0),(3.218,2,1),(0.584,1,1),(1.221,2,1),(0.224,0,0),(0.485,1,1),(0.333,0,0),

(0.919,2,1),(0.209,2,1),(0.816,1,1),(1.488,2,1),(1.234,2,1),(1.792,0,0),(1.681,2,1),(0.291,2,1),

(0.815,1,0),(0.444,2,1),(2.776,2,1),(0.718,1,0),(0.847,2,1),(1.362,2,1),(2.438,2,0),(1.735,2,1),

(1.481,2,1),(0.471,2,1),(0.545,0,0),(0.688,1,1),(1.489,2,1),(2.274,1,0),(1.095,1,1),(0.265,2,1),

(0.166,2,1),(0.557,1,1),(0.181,2,1),(0.544,2,0),(2.207,2,1),(0.246,2,1),(0.645,1,1),(0.095,1,0),

(0.090,2,1),(0.195,2,0)(0.486,2,1),(0.203,2,1),(0.215,2,1),(0.248,2,1),(1.310,2,1),(0.826,2,1),

(0.198,2,1),(1.634,0,0),(0.689,2,1),(0.357,1,0),(3.419,0,0),(1.148,2,0),(0.607,2,1),(1.249,2,1),

(1.259,1,1),(0.921,2,1),(0.071,2,1),(2.169,2,1)
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Table 2: The results of simulation analysis

α1 α2 β1 β0 Bα1 Bα2

MAR 0.3 0.7 -0.1 0.5 0.038 0.033

MNAR 0.023 0.018

Now we introduce some proper priors for parameters in the MNAR model and obtain

Bayesian estimates for the parameters using MCMCmethod with masking probabilities p1 = 0.1,

p2 = 0.2 and true values a1 = 0.3, a2 = 0.7. We consider the following prior set

a1 ∼ gamma(0.9, 3), a2 ∼ gamma(0.49, 0.7), β0 ∼ norm(−0.1, 1000),

β1 ∼ norm(0.5, 1000) p1 ∼ Beta(0.8, 7.2) p2 ∼ Beta(0.01, 0.05). (D.1)

Using 10,000 iterations of Gibbs sampling with burn-in 2,000 iterations and length of the thin-

ning interval 5, the Bayes estimates of the parameters based on (D.1) in 1,600 posterior samples

are listed in table 3. Also standard deviation (SD), lower bound (LCI) and upper bound (UCI)

of credible interval is calculated.

Table 3: Bayes estimates of parameters

Parameter True Value mean SD LCI UCI

p1 0.1 0.388 0.079 0.241 0.545

p2 0.2 0.340 0.058 0.224 0.460

a1 0.3 0.295 0.056 0.195 0.415

a2 0.7 0.606 0.075 0.474 0.756

b0 -0.1 -0.138 0.301 -0.199 -0.077

b1 0.5 0.418 0.028 0.364 0.471

E Conclusion

In this paper, we have introduced a new approach for handle masked data. We have used a

generalized linear model to illustrate relationship between masking probability and exact cause

of failure in a missingness framework. MCMC sampling method has been used to obtain Bayes
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estimates of model parameters. Finally, simulation study demonstrates the usefulness of our

methods.
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Abstract: In this paper, a model for two dependent series-parallel systems with random num-

ber of sub-systems is introduced and the dependence structure of the proposed model is studied.

Moreover, the dependency measures including the Kendall’s tau and Spearman’s rho are investi-

gated. Furthermore, some of the bivariate reliability indexes such as the bivariate mean residual

life and the bivariate reversed hazard rate are presented.
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A Introduction

Constructing flexible families of lifetime distributions is one of the most interesting topics in

reliability. Several methods have been presented to construct such families. One of them was

introduced by Marshall and Olkin (1997) in which the authors considered the component-wise

maximum (minimum) of N independent and identical bivariate random vectors when N is a

discrete random variable. Some other researchers such as Kundu and Gupta (2014), Zhang et al.

(2016) and Roozegar and Nadarajah (2017) used the same method to construct flexible lifetime

distributions.

Modeling dependence has attracted the researchers attention in recent decades. The form

of stochastic dependence is a useful way of formulating properties of a dependent model. There

has been several dependence concepts defined in the literature. Let (X,Y ) be a random vector

with the bivariate survival distribution function F̄ (., .) and the marginal survival distributions

F̄1(.) and F̄2(.), respectively. Then

(i) It is said that X and Y are positively quadrant dependent (denoted by PQD(X,Y )) if

and only if F̄ (x, y) ≥ F̄1(x)F̄2(y) for all x, y ≥ 0.

1Vahideh Mohtashami-Borzadaran: vmb1369@yahoo.com



(ii) The random variable Y is said to be right tail increasing (denoted by RTI(Y | X)) when

F̄ (x, y)/F̄1(x) is non-decreasing in x for all y ≥ 0.

(iii) The random vector (X,Y ) is said to be right corner set increasing (denoted byRCSI(X,Y ))

if P (X > x, Y > y | X > x′, Y > y′) is non-decreasing in x′ and in y′ for all x and y, equivalently

if
∂2 log H̄

∂x∂y
≥ 0.

See for example, Nelsen (2006), for dependence concepts.

Kendall’s tau τ and Spearman’s rho ρ are two well-known measures of dependence that

express the strength of association between random variables. For the pair (X,Y ) they are

given by, respectively,

τ = 4

∫ ∞

0

∫ ∞

0

F̄ (x, y)dF̄ (x, y)− 1,

and

ρ = 12

∫ ∞

0

∫ ∞

0

(
F̄ (x, y)− F̄1(x)F̄2(y)

)
dF̄1(x)dF̄2(y). (A.1)

For more information about the structure and measure of dependence, we refer the reader to

Joe (1997) and Nelsen (2006). In reliability theory, several indexes has been introduced for

characterizing the properties of survival models. The mean residual life function characterizes

the stochastic behavior of survival over time. For non-negative continuous random variables X

and Y the bivariate mean residual life is given by m(x, y) = (m1(x, y),m2(x, y)), where

m1(x, y) = E (Y − y | X > x, Y > y) =

∫∞
x
F̄ (u, y)du

F̄ (x, y)

and

m2(x, y) = E (X − x | X > x, Y > y) =

∫∞
y
F̄ (x, u)du

F̄ (x, y)
,

for more details we refer the reader to Arnold and Zahedi (1988), Nair and Asha (2008) and Kolev

and et al. (2017). Roy (2002) introduced the bivariate vector r1,2(x, y) = (r1(x, y), r2(x, y)) as

the bivariate reversed hazard rate where

r1(x, y) = r(x | Y < y) =
∂ logF (x, y)

∂x
,

and

r2(x, y) = r(y | X < x) =
∂ logF (x, y)

∂y
.

One could refer to Domma (2010) for more details.

In this paper, we are going to model the lifetime distribution of two dependent series-parallel

systems with random number of sub-systems and we are going to investigate the dependency

and reliability indexes of the corresponding model. The general form of the proposed model is
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discussed in Section 2. In Section 3, we are going to study the dependency properties of the

model. The reliability indexes of the model are obtained in Section 4. Concluding remarks are

given in Section 5.

B The Proposed Model

It is known that systems with parallel structure succeed if at least one of it’s components work

correctly and a system with series structure succeed if all of it’s components work correctly.

Series-parallel (parallel-series) systems are composed of fixed number of parallel (series) sub-

systems which are connected in series (parallel). Here, we intend to introduce a lifetime model

constructed from two dependent series-parallel systems with random number of sub-systems.

With this in mind, consider two series-parallel systems with random number of sub-systems N ,

which N is a positive integer-valued random variable with two values 1 and 2 with probability

1− θ and θ, respectively, where 0 ≤ θ ≤ 1. Let Z
(1)
i,j and Z

(2)
i,j for j = 1, . . . ,m and i = 1, . . . , N

be the lifetimes of the j-th component of the i-th sub-system in system(I) and system(II),

respectively. Also, assume that Z
(r)
i,j are iid with common marginal cdf Fr(.) for j = 1, . . . ,m,

i = 1, . . . , N , r = 1, 2. Furthermore, suppose that Z
(1)
i,j , Z

(2)
i,j and N are independent random

variables. Let Xi = max{Z(1)
i,1 , . . . , Z

(1)
i,m} for i = 1, . . . , N be the lifetime of the i-th sub-

system of system (I) and Yl = max{Z(2)
i,1 , . . . , Z

(2)
i,m} for l = 1, . . . , N be the lifetime of the l-th

sub-system of system (II), respectively. Moreover, suppose that T1 = min{X1, . . . , XN} and

T2 = min{Y1, . . . , YN} are the lifetimes of system (I) and system (II), respectively. Then the

bivariate survival function of (T1, T2) is as the following

H̄T1,T2(x, y) = (1− θ)P (T1 > x, T2 > y | N = 1) + θP (T1 > x, T2 > y | N = 2)

= (1− θ)P (X1 > x, Y1 > y) + θ

2∏
i=1

P (Xi > x, Yi > y).

Since for j = 1, . . . ,m the random variables Z
(1)
i,j and Z

(2)
i,j are independent the random variables

Xi and Yi for i = 1, 2 are independent too. Thus, the corresponding survival function of (T1, T2)

is found to be

H̄T1,T2(x, y) = P (X1 > x)P (Y1 > y) (1− θ(1− P (X2 > x)P (Y2 > y))) . (B.1)

Given that Z
(1)
i,j for i = 1, 2 and j = 1, . . . ,m are iid random variables with corresponding cdf

F1(.) and Z
(2)
l,j for l = 1, 2 and j = 1, . . . ,m are iid random variables with corresponding cdf
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F2(.), for i = 1, 2 we have

P (Xi > x) = P (max{Z(1)
i,1 , . . . , Z

(1)
i,m} > x)

= 1− P (max{Z(1)
i,1 , . . . , Z

(1)
i,m} ≤ x) = (1− Fm1 (x)) (B.2)

and

P (Yi > y) = P (max{Z(2)
i,1 , . . . , Z

(2)
i,m} > x)

= 1− P (max{Z(2)
i,1 , . . . , Z

(2)
i,m} ≤ x) = (1− Fm2 (y)). (B.3)

By exploiting (B.2) and (B.3) in (B.1) the survival function of (T1, T2) can be reexpressed as

H̄T1,T2(x, y) = (1− Fm1 (x))(1− Fm2 (y))[1− θ(1− (1− Fm1 (x))(1− Fm2 (y)))]. (B.4)

In the special case let m = 1 in (B.4), then

H̄T1,T2(x, y) = F̄1(x)F̄2(y)[1− θ(1− F̄1(x)F̄2(y))]. (B.5)

That is a member of the model proposed in Mirhosseini et al. (2015). It should be noted that

the corresponding density function of (B.4) is found to be

h(x, y) = m2f1(x)f2(y)F
m−1
1 (x)Fm−1

2 (y) ((1− θ) + 4θ(1− Fm1 (x))(1− Fm2 (y))) .

Now, let us take F1(x) = 1− e−α1x and F2(y) = 1− e−α2y in (B.4), then

H̄T1,T2
(x, y) =(1− (1− e−α1x)m)(1− (1− e−α2y)m)

× [1− θ
(
1− (1− (1− e−α1x)m)(1− (1− e−α2y)m)

)
]. (B.6)

Moreover, if m = 1 we have

H̄T1,T2(x, y) = e−(α1x+α2y)[1− θ
(
1− e−(α1x+α2y)

)
]. (B.7)

And the corresponding density function of (B.6) is given by

h(x, y) =m2α1α2e
−α1xe−α2y(1− e−α1x)m−1(1− e−α2y)m−1

×
(
(1− θ) + 4θ(1− (1− e−α1x)m)(1− (1− e−α2y)m)

)
. (B.8)

The pdf (B.8) is displayed in Figure 2 when m = 10, α1 = 5, α2 = 10, θ = 0.5.
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Figure 1: The pdf in (B.8) when m = 10, α1 = 5, α2 = 10, θ = 0.5.

C Dependency Properties

In the problem of the dependence modeling, the researchers are interested to know about the

dependence structure of the model which illustrates the attitude of two random variables that

are related to each other. In the next proposition, some concepts of dependence are presented

for the proposed model. Let (T1, T2) be a random vector distributed as (B.4), then

i) PQD(T1, T2);

ii) RTI(T2 | T1);

iii) RCSI(T1, T2).

. i) Since

H̄(x, y)− H̄1(x)H̄2(y) = θ(1− θ)Fm1 (x)Fm2 (y)(1− Fm1 (x))(1− Fm2 (y)) ≥ 0,

we can conclude that PQD(T1, T2).

ii) Let ϕ(x, y) =
H̄(x, y)

H̄1(x)
then

ϕ(x, y)

∂x
=
mθ(1− θ)f1(x)F

m−1
1 (x)Fm2 (y)(1− Fm2 (y))

(1− θFm1 (x))2
≥ 0.

This proves that RTI(T2 | T1).

iii) By simple calculation from (B.4), we have

∂2 log H̄

∂x∂y
=
m2θ(1− θ)f1(x)F

m−1
1 (x)f2(y)F

m−1
2 (y)

(1− θ(1− (1− Fm1 (x))(1− Fm2 (y))))
2 ≥ 0.
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So, the random vector (T1, T2) is RCSI. �
It is interesting to note that the dependence measures quantify the strength of dependence

between two random variables. In the next proposition, the Kendall’s tau and Spearman’s rho

of model (B.6) are given. Consider (T1, T2) as a random vector distributed as (B.6), then

i) τ =
2

9
θ(1− θ);

ii) ρ =
12θ(1− θ)

α1α2

(∑m
j=1

1

2m− j + 1

∑m
i=1

1

2m− i+ 1

)
.

Figure 1 displays the Kendall’s tau and Spearman’s rho of (B.6) when m = 10, α1 = 5 and

α2 = 10. As we can see these two dependence measures increase by increasing θ and after

reaching their maximum value at θ = 0.5, they decrease.

Figure 2: The Kendall’s tau and Spearman’s rho of the proposed model.

D Reliability Properties

In this section we will investigate some reliability properties. The probability that a system fails

before the other one is an important issue in reliability theory. The next proposition provides

this probability for the proposed model. Suppose that (T1, T2) have the bivariate distribution

as given in (B.6), then

P (T1 < T2) =
2α3

2 + (2θ + 5)α1α
2
2 + 2(1− θ)α2

1α2

(α1 + α2)(α2 + 2α1)(α1 + 2α2)
. (D.1)

Figure 2 illustrates the attitude of P (T1 < T2) with respect to α1, α2 and θ. As we can see

P (T1 < T2) increase with respect to θ when m = 10, α1 = 5, α2 = 10. Moreover, P (T1 < T2)
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Figure 3: The probability that a system I fail before system II.

increase with respect to α2 when m = 10, α1 = 5, θ = 0.5. In addition,when m = 10, α2 =

10, θ = 0.5, P (T1 < T2) increase with respect to α1.

The bivariate reversed hazard rate of the proposed model is the next result. Let (T1, T2) be

distributed as (B.6) then the corresponding bivariate reversed hazard rate is given by r1,2(x, y) =

(r1(x, y), r2(x, y)) where

r1(x, y) = mα1e
−α1x(1− e−α1x)m−1{2θ(1− e−α1x)m + (1− θ)(1− e−α2y)m

H(x, y)

− 2mθ(1− (1− e−α1x)m)(1− (1− e−α2y)m)

H(x, y)
}

and

r2(x, y) = mα2e
−α2y(1− e−α2y)m−1{2θ(1− e−α2y)m + (1− θ)(1− e−α1x)m

H(x, y)

− 2mθ(1− (1− e−α2y)m)(1− (1− e−α1x)m)

H(x, y)
}.
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In the special case, if m = 1, then

r1(x, y) =
α1e

−α1x
(
2θ(1− e−α1x) + (1− θ)(1− e−α2y)− 2θe−(α1x+α2y)

)
H(x, y)

and

r2(x, y) =
α2e

−α2y
(
2θ(1− e−α2y) + (1− θ)(1− e−α1x)− 2θe−(α1x+α2y)

)
H(x, y)

,

where

H(x, y) = 1− e−α1x
(
(1− θ) + θe−α1x

)
− e−α2y

(
(1− θ) + θe−α2y

)
+ e−(α1x+α2y)

(
(1− θ) + θe−(α1x+α2y)

)
.

It should be mentioned that r1(x, y)△x is an approximation for the probability for the failure

of the first component in interval (x,△x) given that it has failed before x and the second

component has failed before y.

The bivariate mean residual life is another ageing measure which is stated in the next propo-

sition. Suppose that the random vector (T1, T2) is distributed as in (B.6) then the vector of

mean residual life is m1,2(x, y) = (m1(x, y),m2(x, y)) where

m1(x, y) =
(1− θ(1− e−α2y)m)

∑m
i=1(

1− (1− e−α1x)m−i+1

m− i+ 1
)

(1− (1− e−α1x)m) (1− θ(1− (1− (1− e−α1x)m)(1− (1− e−α2y)m)))

−
θ(1− (1− e−α2y)m)

∑m
i=1(

(1− e−α1x)2m−i+1 − 1

2m− i+ 1
)

(1− (1− e−α1x)m) (1− θ(1− (1− (1− e−α1x)m)(1− (1− e−α2y)m)))

and

m2(x, y) =
(1− θ(1− e−α1x)m)

∑m
i=1(

1− (1− e−α2y)m−i+1

m− i+ 1
)

(1− (1− e−α2y)m) (1− θ(1− (1− (1− e−α2y)m)(1− (1− e−α1x)m)))

−
θ(1− (1− e−α1x)m)

∑m
i=1(

(1− e−α2y)2m−i+1 − 1

2m− i+ 1
)

(1− (1− e−α2y)m) (1− θ(1− (1− (1− e−α2y)m)(1− (1− e−α1x)m)))
.

In the special case, if m = 1, then

m1(x, y) =
2 (1− θ(1− e−α2y)) e−α1x − θe−α2y

(
(1− e−α1x)2 − 1

)
2e−α1x

(
1− θ(1− e−(α1x+α2y))

)
and

m2(x, y) =
2 (1− θ(1− e−α1x)) e−α2y − θe−α1x

(
(1− e−α2y)2 − 1

)
2e−α2y

(
1− θ(1− e−(α1x+α2y))

) .

263



E Conclusions

In this paper, a dependent model consisting two series-parallel systems that contain a random

number of parallel sub-systems with fixed components connected in series was presented. More-

over, the dependence structure and some dependence measures such as the Kendall’s tau and

Spearman’s rho were calculated. Furthermore, some bivariate reliability properties such as the

bivariate hazard rate and the vector of mean residual life was investigated.
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Abstract: Condition based maintenance (CBM) is a practical and effective way to guarantee the

product availability. The optimization strategy of CBM is widely studied. Despite the gamma

process, the inverse Gaussian (IG) process is new in this concept. Here, we deal with a dynamic

condition-based maintenance of single-unit systems where the deterioration is governed by an

IG process. To be more realistic, the parameters of the model are considered to be unknown.

We employ the Bayes method to use the available information of degradation paths and update

the information about parameters during the time.

Keywords Condition-based maintenance, Remaining useful life, Inverse Gaussian process,

Bayesian update.
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A Introduction

Maintenance is an important method for products to guarantee availability. Many mainte-

nance strategies have been proposed; Wang (11) made a clear classification of different possible

strategies. The great improvement in technology which enables accurate online measurements of

degradation levels made engineers to tend towards condition-based maintenance (CBM) policies.

Degradation modeling plays an important role in maintenance decision-making. Many kinds

of degradation models have been developed in CBM. Alaswad and Xiang (1) classifies CBM

policies depending on the deterioration model. The major part of their paper discussed the

maintenance strategies in which the degradation evolution is described by stochastic processes;

1Elham Mosaebi omshi: elham mosayebi2@ut.ac.ir



the Wiener, the gamma and the inverse Gaussian (IG) processes received special mention. Ex-

amples of CBM policies based on the Wiener process are investigated by (4), (6), and (14). A

vast amount of literature is devoted to the use of the gamma process in maintenance modeling;

e.g. see (5; 3; 9; 8; 10).

Another stochastic process appropriate for modeling degradation and for maintenance studies

is the IG process. Wang and Xu (12) originally introduced this process to reliability literature.

Ye and Chen (13) then gave a meaningful physical interpretation for modeling degradation by

showing that the IG process is a limit of a compound Poisson process. The IG process has greate

flexibility in modeling degradation data. However, the literature on CBM policies is scarce (

see e.g. (2; 7)). Chen et al.(2) investigated the optimal CBM policy with periodic inspections

when the system degradation follows an IG process with a random-drift model, while Li et al.

(7) obtained the optimal CBM strategy by maximizing the availability under cost contraints.

In this paper, we discuss the condition-based maintenance of a single unit system whose

degradation follows an IG process. The considered system has degradation parameters that

are unknown but a prior information like expert judgment is available. An adaptive Bayesian

method is employed to update the information about parameters after inspections as the degra-

dation state of the system is measured. In order to reduce unnecessary inspections and to control

maintenance actions, an aperiodic maintenance policy is considered. The time interval between

two successive inspections is scheduled based on the remaining useful life (RUL) of the system.

We show how to employ Bayes theorem to obtain successive updates for posterior distribution of

the parameters, thus increasing our knowledge of the model parameters with inspection results.

We also study the effect of these updates on the RUL function, used in inspection planning, as

well as on the behavior of the cost function.

The remainder of the paper is organized as follows. Section B provides a basic description of

the system and states the main assumptions of the maintenance policy. The system state and

long run maintenance cost is described Section C for the case of unknown model parameters.

Section D describes the procedure of Bayesian updating and its use in adapting current infor-

mation. Different maintenance policies are introduced in Section E In order to demonstrate the

validity of the proposed maintenance policies, they are compared in Section F. Finally, Section

G contains a conclusion.
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B System and Maintenance Decision Rule: Descriptions

and Main Assumptions

Consider a single component system which is subjected to degradation. Let Xt denote the

degradation state of the system at time t. In the absence of repair or replacement actions,

the evolution of the system degradation is assumed to be strictly increasing. Then Xt can be

modeled by an increasing stochastic process. Moreover, other assumptions are considered:

• The initial state X0 is 0.

• The system is failed if its degradation crosses a critical threshold level L.

• The system failure is not self-announcing and if it fails, it remains failed until the next

inspection. This down time imposes some extra cost.

To avoid the occurrence of system failure, a preventive threshold M < L is chosen such that

corrective action is taken when the degradation level crosses this threshold.

B.1 Stochastic Degradation Process

We assume that the stochastic degradation process Xt can be modeled by an IG process such

that

1. X0 = 0 with probability one;

2. Xt has independent non-overlapping increments;

3. Each increment follows an IG distribution, that is, Xt −Xs ∼ IG(µ(t− s), λ(t− s)2) for

all t > s; where the probability distribution function of IG(µt, λt2) is defined as follows:

fµt,λt2(x) =

√
λt2

2πx3
exp{− λ

2x
(
x

µ
− t)2}, x > 0, µ, λ > 0. (B.1)

B.2 Predictive Maintenance Decision Rule

Let {Tn}n∈N be the aperiodic sequence of inspection times (T0 = 0). At each inspection, one

must take the required maintenance decision according to the condition of the system at the

time. We assume that the maintenance actions are performed in a negligible time and T−
n refers

to the time just before the maintenance. The possible scenarios which can arise are:

• If XT−
n

≥ L, the system has failed and is correctively replaced.

268



• If M ≤ XT−
n
< L, the system has not yet failed but it has deteriorated to the extent that

it cannot function properly. In this case a preventive action is taken.

• If XT−
n
< M , the system is still properly functioning and there is no need for replacement.

The system is left as it is.

Both preventive and corrective replacements are perfect and reset the system to “as good as

new”. Hence after the inspection we have:

XTn =


0 if XT−

n
≥ L,

0 if M ≤ XT−
n
< L,

XT−
n

if XT−
n
< M.

In all cases, the inspections scheduling is carried out based on the RUL which is defined

as the duration for which a system will work before it fails. The main idea of a RUL based

inspection plan is that the next inspection time is chosen so that the probability of failure before

the inspection remains lower than a value p (0 < p < 1)), where p is a decision variable to be

jointly optimized with M . Hence:

Tn+1 = Tn + τp(XTn),

where τp(XTn) = {△t : Pr(XTn+△t ≥ L|XTn) = p}. In other words, Tn+1 is the p-quantile the

remaining useful life distribution. This inspection plan provides a reliability (safety) level equal

to (1− p).

B.3 Cost Function

The inspections are planned discretely and each of them incurs a cost Ci. At each inspection,

a preventive or corrective action is performed if necessary, with costs Cp and Cc respectively.

Clearly, Cc > Cp. Moreover, since failure can only be detected through inspection, there is a

system downtime after failure and an additional cost at a rate of Cd is incurred from the failure

time until the next replacement time. Hence the cumulative maintenance cost is:

C(t) = CiNi(t) + CpNp(t) + CcNc(t) + Cdd(t),

where Ni(t), Np(t), and Nc(t) are respectively the number of inspections, the number of preven-

tive replacements, and the number of corrective replacements in [0, t]. Furthermore, d(t) is the

total time passed in a failed state in [0, t). Now two objective cost functions can be considered:
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• The expected cost function on a finite horizon time Tend; i.e., ECTend=E[C(Tend)]. For

comparison between strategies, we use ECTend
/Tend.

• The expected cost of the system per unit of time, or long-run average cost per time unit,

defined by

EC∞ = lim
t→∞

E[C(t)]

t
.

It is well known that if the degradation process has the regenerative property,

EC∞ =
E[C(S1)]

E(S1)
, (B.2)

where S1 is the first replacement time. This means that the long-run average cost per time unit

is equal to the ratio of the expected cost on the first regenerative cycle, S1, over the expected

length of the regenerative cycle for almost any realization of the process.

C System State and Long Run Maintenance Cost

In this section, we derive an expression for the long run expected maintenance cost when the

parameters of the degradation are unknown. The considered maintenance policy is based on the

maintenance decision rule given in subsection B.2.

Let {Yn = XTn}n∈N be the discrete-time random process describing the system state at each

inspection time. Grall et al. (5) derived the properties of the process {Xt}t≥0 and the embedded

chain {Yn}n∈N, when {Xt}t≥0 is a gamma process and the parameters of the models are known.

Here, we use the IG process instead of gamma process.

In practice, the parameters of the model are not known and Bayesian approach can be help-

full. In this case, the available information about the parameters is used as a prior distribution

and then this information is updated using Bayesian methods. Here, for ease of calculation we

use conjugate priors . Hence, suppose λ has the gamma density function

f(λ) =
λα−1

Γ(α)βα
exp{−λ/β}, (C.1)

and let δ = 1/µ have the conditional normal density function with mean ξ and variance σ2/λ

f(δ|λ) =
√

λ

2πσ2
exp{−λ(δ − ξ)2

2σ2
}. (C.2)

Then the joint prior distribution of (δ, λ) is given by f(δ, λ) = f(δ|λ)f(λ). It is worthwhile to

mention that to avoid the probability of obtaining negative degradation slopes, we suppose that

P (δ ≤ 0) is negligible.
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The objective is to determine the distribution of the time until the degradation signal reaches

the failure threshold, given the knowledge of the condition state of the system at time t. The

CDF of remaining useful life can be obtained by:

FR(r|Xt) = 1−
√

β

2π

Γ(α+ 1/2)r

Γ(α)

∫ L−Xt

0

z−3/2(σ2z + 1)−1/2

(
1 +

β(ξz − r)2

2z(σ2z + 1)

)−(α+1/2)

dz,

(C.3)

where Xt is the observed degradation at time t.

Then, the time between inspections given the current degradation value is the p-quantile of

the distributions given in (C.3).

For unknown parameters and given priors, the properties of {Xt}t≥0 and {Yn = XTn}n∈N

are listed as follows.

• The process {Xt}t≥0 is a regenerative and semi-regenerative process with regeneration

time and semi-regeneration times, S1 and T1, respectively.

• The process {Yn}n∈N is a Markov chain that takes values in [0,M) and has transition

probability density function (conditioned on the current state)

Pr(dy|x) = Gτp(x)(M − x)δ0(dy) + gτp(x)(y − x)I{x≤y<M}dy,

where

gτp(x)(z) =

√
β

2π

Γ(α+ 1/2)τp(x)

Γ(α)
z−3/2(σ2z + 1)−1/2

(
1 +

β(ξz − τp(x))
2

2z(σ2z + 1)

)−(α+1/2)

,

and

Gτp(x)(z) =

∫ ∞

z

gτp(x)(u)du.

• Similarly, the unique stationary probability distribution of {Yn}n∈N is given by:

π(dx) = aδ0(dx) + (1− a)b(x)dx, (C.4)

with

a =
1

1 +
∫M
0
B(x)dx

, b(y) =
a

1− a
B(y), (C.5)

where

B(y) = gτp(0)(y) +

∫ y

0

B(x)gτp(x)(y − x)dx. (C.6)
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• In this case, the expected cost of the system per unit of time can also be assessed by:

EC∞ = lim
t→∞

E[C(t)]

t
=
Eπ[C(T1)]

Eπ[T1]

=
CiEπ[Ni(T1)]

Eπ[T1]
+
CpEπ[Np(T1)]

Eπ[T1]
+
CcEπ[Nc(T1)]

Eπ[T1]
+
CdEπ[d(T1)]

Eπ[T1]
. (C.7)

The corresponding expectations are computed as follows:

Eπ(Np(T1)) = Pπ(M ≤ XT−
1
< L) =

∫ M

0

[
Gτp(x)(M − x)−Gτp(x)(L− x)

]
π(dx),

Eπ(Nc(T1)) = Pπ(XT−
1

≥ L) =

∫ M

0

Gτp(x)(L− x)π(dx),

Eπ(d(T1)) =

∫ M

0

[∫ τp(x)

0

Gs(L− x)ds

]
π(dx),

Eπ(T1) =

∫ M

0

τp(x)π(dx).

D Degradation Model Update

The previous section gives probabilistic characteristics of the system evolution under a given

aperiodic maintenance policy. It allows us to derive the long run expected maintenance cost

and hence optimize the decision variables, p andM uch that the long-run expected maintenance

cost reaches its minimum value. As the prior information could be not so near to dynamic of

a system, such optimized values of p and M may differ from the optimized vlues which can be

obtained if the parameter were known. Then in this section, we propose using Bayes method to

update the information about parameters of model with available degradation data as follows.

Proposition: Suppose Data = {Xt0 , Xt1 , . . . , Xtk} are the observed degradation data at

times t0, t1, . . . , tk, then given the observed data, the posterior distributions are:

f(δ|λ,Data) =
√

λ

2πσ∗2 exp{−λ(δ − ξ∗)2

2σ∗2 },

f(λ|Data) = λα
∗−1

Γ(α∗)β∗α∗ exp{−λ/β∗}.

The updated hyperparameters are ξ∗ = B/A, σ∗ = A−1/2, α∗ = α + k/2, and β∗ = (1/β +

1/D)−1; where △xi = Xti −Xti−1 , △ti = ti − ti−1 and

A =
k∑
i=1

△xi +
1

σ2
, B =

k∑
i=1

△ti +
ξ

σ2
,

C =
k∑
i=1

(△ti)2

△xi
+
ξ2

σ2
, D =

1

2
(C − B2

A
).
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This Bayesian procedure allows us to update current information about δ and λ with each

new observation. Updating can take place at each inspection or at the end of each cycle with

a specified number of inspections. It is notable that these updates affect the RUL function and

consequently the next inspection time.

E Different Maintenance Policies

The maintenance decision rule described in B.2 depends on two decision variables which are the

value of p for the p-quantile of the RUL and the preventive threshold M .

Here, we consider options for maintenance policies. With consideration of previous sections,

there are different maintenance policies for unknown parameters which can be compared with

known parameter case to see which one is more appropriate. We listed them as follows:

Maintenance policy 1: in this case, using a given proir information, the EC∞ can be assessed

with the method in C. Then the optimal value of EC∞ and the corresponding optimal values

of M and p can be obtained. This policy is so dependaent to the choice of prior distribution.

Maintenance policy 2: in this case, the Bayesian update is invovled. The hyperparameters

are updated at each inspection time. The expression for the p-quantile of the RUL is modified

accordingly. No analytical expression is available for EC∞ when using this policy. To illustrate

what can be obtained and assess the best results possible, ECTend
can be estimated by Monte

Carlo simulation and then be minimized. This policy have good properties to reach the optimal

values. But real values µreal and λreal are required for such simulations which is a drawback.

Maintenance policy 3: to overcome the above mentioned difficulty, this policy proposes a

sub-optimal procedure in which the decision variables are optimized for each cycle according to

the available knowledge at the beginning of the cycle and used for one renewal cycle, i.e. until

the next update. The optimization is based on the long-run cost rate EC∞ as given in C and

is conducted using the most recent updated values of hyperparameters.

In the next section, these policies are analyzed on a finite time horizon and compared nu-

merically using the estimate of ECTend
as a criterion.

F Simulation Study

To illustrate the procedure, a simulation study with a predefined parameters is conducted and

the outcome is compared with the outcome in the case of unknown parameter. A system is
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considered on a limited time horizon (from t = 0 to t = Tend with Tend = 200). The limited time

horizon allows us to discuss the adaptation performance of the policies for unknown parameters.

All samples of degradation increments are generated from an IG process with fixed parameters

µreal = 2 and λreal = 8. The failure level is set at L = 9. In the case of unknown parameters

parameters a prior distribution is assumed as described in C. Initial values considered for the

hyperparameters are as follows:

α = 1.5, β =
2

3
, ξ = 1, and σ =

1√
3
. (F.1)

F.1 Comparison of Maintenance policies

In the case of known parameters, the optimal EC∞ and the optimal values of p and M are as

follows:

p∗ = 0.028, M∗ = 7.02, and EC∗
∞ = 1.313. (F.2)

In the case of unknown parameters, the optimized values for the Maintenance policy 1 are:

p∗ = 0.115, M∗ = 6.49, and EC∗
∞ = 1.19, (F.3)

which differ from the optimal value in (F.2).

According to Maintenance policy 2, the optimal values are:

p∗ = 0.036, M∗ = 7, and ÊC
∗
Tend

/Tend = 1.322. (F.4)

A comparison of the values with values from (F.2) reveals the efficiency of the Bayesian update

in the maintenance decision rule. The estimated minimum values of ECTend
are very close to

those obtained for known decision variables which means that the influence of the prior weakens

over the time and that the Bayesian update is efficient from the maintenance point of view.

The Maintenance policy 3 allows decision variables to be optimized sequentially. But different

simulation shows that this sequence of optimal values tend to the otimal values in the case of

known parameters. For this simulation study, we can see the optimal values are close to (F.2).

p∗ = 0.032, M∗ = 6.82, and ÊC
∗
Tend

/Tend = 1.318. (F.5)

Obviously, the Maintenance policy 3 has a good ability to find the optimal values of decision

variables and then minimize the cost while it has no same drawback like the Maintenance policy

2.
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G Conclusion

This paper investigated optimizing the CBM strategy for single-unit systems with unknown

degradation parameters assuming that the degradation is governed by an IG process and that

the unknown parameters jointly follow a prior distribution with specified hyperparameters. The

Bayes method is employed to update information about parameters over time. Simulation

studies are conducted to illustrate the behavior of the policy and optimal maintenance variables

are obtained using cost as a criterion.
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A Introduction

The study of reliability properties of (n−m+1)-out-of-n systems, which have important role in

many fields of engineering, has attracted most attention of several engineers and system design-

ers. In the last decades, researchers have shown great interest to the study of two conditional

random variables residual lifetime (RL) and inactivity time (IT) of (n−m+1)-out-of-n systems.

An (n−m+1)-out-of-n system works if at least (n−m+1) of the n components work, and fails if

at least m components fail. Some properties of the lifetime of (n−m+1)-out-of-n systems have

been investigated in the literature. See, for example, Asadi and Bayramoglu (2006), Khaledi

and Shaked (2007), Tavangar and Bairamov (2015) and Tavangar (2016).

Consider a coherent system with lifetime T whose component lifetimes are X1, X2, . . . , Xn.

In recent years, several authors have studied the residual lifetime and inactivity time of the sys-

tems where the component lifetimes are assumed to be independent and identically distributed.

Recently, some researchers have also considered general residual lifetime and general inactivity

1Ebrahim Salehi: salehi@birjandut.ac.ir



time. The conditional RL and IT of (n−m+ 1)-out-of-n system are defined respectively, as:

(Xm:n − t | Xr:n ≤ t < Xk:n), 1 ≤ r < k ≤ m ≤ n,

(t−Xs:n | Xr:n ≤ t < Xm:n), 1 ≤ s ≤ r < m ≤ n.

Many researchers have been studied these conditional random variables of (n − m + 1)-

out-of-n systems under different conditions on the components. Most of the results have been

obtained under the independence of component lifetimes. Among others, we can refer to Asadi

and Bayramoglu (2006), Khaledi and Shaked (2007), Li and Zhang (2008), Zhao et al. (2008),

Salehi and Asadi (2012), Parvardeh and Balakrishnan (2013) and Tavangar (2016). Among the

authors who have studied the reliability properties of the coherent systems with exchangeable

components, one can find in Navarro and Rubio (2011), Tavangar and Asadi (2015), Salehi and

Hashemi-Bosra (2017), Salehi and Tavangar (2019).

This paper is organized as follows. In Section 2, we first introduce some the concepts and

tools that will be used in the article. In Section 3, we present some stochastic ordering results

for the conditional RL and IT of m-out-of-n systems.

B Preliminaries

Let the vector X = (X1, X2, . . . , Xn), that denote the component lifetimes of the system, has an

arbitrary joint distribution function F (t1, t2, . . . , tn) with corresponding joint reliability function

F̄ (t1, t2, . . . , tn). We denote the vector of order statistics corresponding to Xi’s by (X1:n, X2:n

, . . . , Xn:n). It is known that the lifetime of the system is the mth order statistic, i.e. Xm:n,

with reliability function

P (Xm:n > t) =
m−1∑
i=0

∑
π∈Ci

P{A(t,π)
i }, (B.1)

where π = (π1, π2, . . . , πn), A
(t,π)
i is the event [Xπ1 ≤ t,Xπ2 ≤ t, . . . , Xπi ≤ t,Xπi+1 >

t, . . . ,Xπn > t] and Ci is the set of all permutations {π1, π2, . . . , πn} of {1, 2, . . . , n} for which

1 ≤ π1 < · · · < πi ≤ n and 1 ≤ πi+1 < · · · < πn ≤ n. It is obvious that in the exchangeable

case, we have ∑
π∈Ci

P{A(t,π)
i } =

(
n

i

)
Pi,n(t),

where

Pi,n(t) = P{X1 ≤ t,X2 ≤ t, . . . ,Xi ≤ t,Xi+1 > t, . . . ,Xn > t},
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with P0,n(t) ≡ F̄ (t, t, . . . , t).

First of all, we recall some definitions and concepts which are necessary for presenting the

main results of the paper (see Shaked and Shanthikumar (2007)).

i) Let X and Y be two random variables with reliability functions F̄ and Ḡ, respectively. X

is said to be smaller than Y in stochastic order (denoted by X ≤st Y ) if F̄ (x) ≤ Ḡ(x) for

all x.

ii) A random vector X = (X1, X2, . . . , Xn) is said to be smaller than another random vector

Y = (Y1, Y2, . . . , Yn) in the usual multivariate stochastic order (denoted by X ≤st Y) if

E[ϕ(X)] ≤ E[ϕ(Y)] holds for all increasing functions ϕ for which the expectations exist.

A density function f : Rn → R+ is said to be multivariate totally positive of order 2 (MTP2) if

f(x)f(y) ≤ f(x ∧ y)f(x ∨ y) for all x,y ∈ Rn.

Below, we give a useful result which will be required for our conclusions. Let {X1, X2, . . .} be

a sequence of (not necessarily independent) random variables. Then Xi:m ≤st Xj:n, whenever

i ≤ j and m− i ≥ n− j.

C Main results

Consider an (n − m + 1)-out-of-n system with arbitrary dependent components. Salehi and

Tavangar (2019) obtained the reliability function of two interested conditional random variable

(Xm:n − t | Xr:n ≤ t < Xk:n) and (t−Xs:n | Xr:n ≤ t < Xk:n) of the system as follow:

Let X1, X2, . . . , Xn be the arbitrary dependent lifetimes of components with joint reliability

function F̄ (x1, x2, . . . , xn).

i) For x, t > 0, and 0 ≤ r < k ≤ m ≤ n,

ψr,km:n(x|t) = P{Xm:n − t > x | Xr:n ≤ t < Xk:n}

=

∑k−1
i=r

∑
π∈Ci

P{A(t,π)
i }F̄ (t,π)

m−i:n−i(x)∑k−1
i=r

∑
π∈Ci

P{A(t,π)
i }

, (C.1)

ii) For 0 ≤ x ≤ t, and 1 ≤ s ≤ r < m ≤ n,

ϕr,ms:n (x|t) = P{t−Xs:n > x | Xr:n ≤ t < Xm:n}

=

∑m−1
i=r

∑
π∈Ci

P{A(t,π)
i }H̄(t,π)

i−s+1:i(x)∑m−1
i=r

∑
π∈Ci

P{A(t,π)
i }

, (C.2)
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where A
(t,π)
i and Ci are as defined in (B.1), F̄

(t,π)
m−i:n−i(x) is the reliability function of the

(m− i)th order statistic according to the random vector (Xπi+1 − t, . . . , Xπn − t | A(t,π)
i )

and H̄
(t,π)
i−s+1:i(x) is the reliability function of the (i− s+ 1)th order statistic according to

the random vector (t−Xπ1 , . . . , t−Xπi |A
(t,π)
i ).

Let X1, X2, . . . , Xn be exchangeable lifetimes of the components of a (n −m + 1)-out-of-n

system. Then representation (C.1) and (C.2) will be reduced to

i) for x, t > 0, and 0 ≤ r < k ≤ m ≤ n,

ψr,km:n(x|t) =

∑k−1
i=r

(
n
i

)
P{A(t)

i }F̄ (i,t)
m−i:n−i(x)∑k−1

i=r

(
n
i

)
P{A(t)

i }
(C.3)

ii) for 0 < x < t and 1 ≤ s ≤ r < k ≤ n,

ϕr,ks:n(x|t) =

∑k−1
i=r

(
n
i

)
P{A(t)

i }H̄(i,t)
i−s+1:i(x)∑k−1

i=r

(
n
i

)
P{A(t)

i }
, (C.4)

where

A
(t)
i = [X1 ≤ t, . . . , Xi ≤ t,Xi+1 > t, . . . ,Xn > t],

F̄
(i,t)
m−i:n−i(x) is the reliability function of the (m− i)th order statistic corresponding to the

random vector (Xi+1−t, . . . ,Xn−t | A(t)
i ) and H̄

(i,t)
i−s+1:i(x) is the reliability function of the

(i− s+ 1)th order statistic corresponding to the random vector (t−X1, . . . , t−Xi|A(t)
i ).

Now, we present some stochastic comparisons on the conditional residual lifetime and con-

ditional inactivity time of the (n−m+1)-out-of-n system that is already derived by Salehi and

Tavangar (2019). Let the joint probability density function of the exchangeable random vector

(X1, X2, . . . , Xn) be MTP2. Then,

i) for any t ≥ 0 and 1 ≤ r < k + 1 ≤ m ≤ n,

(Xm:n − t | Xr:n ≤ t < Xk+1:n) ≤st (Xm:n − t | Xr−1:n ≤ t < Xk:n).

ii) for all t ≥ 0 and 1 ≤ s ≤ r − 1 < k − 1 ≤ n− 1,

(t−Xs:n | Xr−1:n ≤ t < Xk:n) ≤st (t−Xs:n | Xr:n ≤ t < Xk+1:n).

Here, we obtain a new result that is extend the result of Theorem 4 in Salehi and Tavangar

(2019) for exchangeable case. Let the joint probability density function of the exchangeable
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random vector (X1, X2, . . . , Xn+1) satisfy the MTP2 property. Furthermore, suppose that for

each t ≥ 0, P{Xn+1 > t | A(t)
i } is increasing in i. Then, for any t ≥ 0 and 1 ≤ r < k ≤ m ≤ n,

(Xm:n+1 − t | Xr:n+1 ≤ t < Xk:n+1) ≤st (Xm:n − t | Xr:n ≤ t < Xk:n).

. Let ψr,km:n(x|t) and ψ
r,k
m:n+1(x|t) denote the reliability functions of (Xm:n−t | Xr:n ≤ t < Xk:n)

and (Xm:n+1 − t | Xr:n+1 ≤ t < Xk:n+1), respectively. Define

A
(n+1,t)
j = [X1 ≤ t,X2 ≤ t, ..., Xj ≤ t,Xj+1 > t, . . . ,Xn > t,Xn+1 > t].

Using Theorems 6.E.2, 6.E.4 and 6.E.8 in Shaked and Shanthikumar (2007), it can be shown

that

(Xj+1, . . . , Xn+1 | A(t)
j ) ≤st (Xj+1, . . . , Xn+1 | A(n+1,t)

j ).

Then, after simplifications and using Theorem B we have

ψr,k
m:n(x|t)− ψr,k

m:n+1(x|t)

sgn
=

k−1∑
i=r

k−1∑
j=r

(
n

i

)(
n+ 1

j

)
P{A(t)

i }P{A(n+1,t)
j }

{
F̄

(i,t)
m−i:n−i(x)− F̄

(j,t)
m−j:n+1−j(x)

}

≥
k−1∑
i=r

k−1∑
j=r

(
n

i

)(
n+ 1

j

)
P{A(t)

i }P{A(n+1,t)
j }

{
F̄

(i,t)
m−i:n−i(x)− F̄

(j,t)
m−j:n−j(x)

}
.

=

k−1∑
i=r

k−1∑
j=i

{(
n

i

)(
n+ 1

j

)
P{A(t)

i }P{A(n+1,t)
j } −

(
n+ 1

i

)(
n

j

)
P{A(n+1,t)

i }P{A(t)
j }

}

×
[
F̄

(i,t)
m−i:n−i(x)− F̄

(j,t)
m−j:n−j(x)

]
(C.5)

If P{Xn+1 > t | A(t)
i } is increasing in i, then so is(

n+1
i

)
P{A(n+1,t)

i }(
n
i

)
P{A(t)

i }
=

n+ 1

n+ 1− i
P{Xn+1 > t | A(t)

i },

and hence the first braces in the right-hand side of (C.5) is non-negative. On the other hand,

using Theorem 6.E.4 and then Theorem 6.E.8 in Shaked and Shanthikumar (2007) one can

derive for i < j, that

{X1, X2, . . . , Xk|A(t)
i } ≤st {X1, X2, . . . , Xk|A(t)

j }.

Therefore, it follows from Theorem B that for i ≤ j, F̄
(i,t)
m−i:n−i(x) ≥ F̄

(j,t)
m−j:n−j(x). Hence, the

desired result follows. �
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Abstract: In this study a step-stress accelerated degradation test (SSADT) is considered when

the degradation follows an Inverse Gaussian process (IG). Under constraint that the total ex-

perimental cost does not exceed a pre-specified budget the optimal setting such as sample size,

measurement frequency and number of measurement at each stress level are obtained. Finally

an example is presented to illustrate the proposed method.
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A Introduction

For highly-reliable products, it is not an easy task to assess the lifetime distribution of the

products by using the traditional life-testing procedures which record only time to failure data.

Even using the accelerating techniques, the information about the lifetime distribution is still

very limited. Under this situation, an alternative approach is to collect the degradation data

at higher levels of stress for predicting a products lifetime at a certain use stress level. Such

an experiment is called an accelerated degradation tests(ADT). Although ADT is an efficient

life-test method, it is usually very expensive to conduct. In addition, the selection of suitable

levels of stress is not straightforward. In this situation, a constant-stress ADT is not suitable.

Tseng and Wen (4) proposed a SSADT to handle this problem. In the SSADT experiment, an

item is first tested, subject to a predetermined stress for a specied length of time. If it does

not fail, it is tested again subject to a higher stress level for another specied length of time.

The stress on a specimen is thus increased step by step until an appropriate termination time

is reached. Obviously, the advantage of the SSADT is that only a few test units are needed

1Soudabeh Shemehsavar: shemehsavar@khayam.ut.ac.ir



to conduct a life test. Moreover is useful to record degradation measure of a product over the

time. Degradation behavior can describe by stochastic process. Wiener ((1),(3)), Gamma (5)

and Inverse Gaussian process (IG) (8) are most popular stochastic process in these studies.

Recent studies have shown that in real-world the Wiener and Gamma processes cannot handle

all degradation data. As we can mention ((6)) has been shown that both Wiener and Gamma

processes can not fit some GaAs laser degradation data, while the IG process model performs

well in fitting these data because it has many nice properties as like as monotone increasing

behavior and flexible dealing with covariates and random effects. In this paper, we first use an

Inverse Gaussian process to model a typical SSADT problem. Next, under the constraint that

the total experimental cost does not exceed a predetermined budget, the optimal settings of

decision variables are obtained by minimizing the asymptotic variance of the estimated mean

time to failure of the lifetime distribution of the product. The rest of this paper is organized as

follow s. SectionB, discribes the problem of a SSADT test and general assumptions. Section C,

introduces this model under an Inverse Gaussian degradation process. Section D, presentes the

optimal design.Section E, presentes an example to describe the proposed method.

B Problem description

Inverse Gaussian process (IG) utilized to describe the degradation behavior of a product and

L(t, S0) denote the degradation path at time t under normal stress (S0). This process has the

following properties.

1. X(0)=0, whit probability one.

2. Inverse gaussian process has independent increment.

3. Each increment follow Inverse gaussian distribution

∆L(t, Si) ∼ IG(Λi(t), λΛi(t)
2)

.

Where

Λi(t) = µit

µi = exp{a+ bSi} (B.1)
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and ∆L(t, Si) = L(Λi(t+∆t), Si)− L(Λi(t), Si) with probability density function (PDF)

is defined by:

f∆L(x) =

√
λΛi(t)2

2πx3
exp

{
− λΛi(t)

2(x− Λi(t))
2

2Λi(t)2x

}
(B.2)

Λi(t) and λΛi(t)
2 are scale and shape parameters of Inverse gaussian distribution.

4. The first passage time of this process defined when L(t, S0) crosses a critical threshold (D)

and we can write:

TD = inf{t|L(t, S0) ≥ D}

5. The formula for the mean time- to-failure (MTTF) under normal stress S0 is given by:

MTTF = E[TD|S0] = (
D

µ0
+

1

µ0λ
)Φ(

√
λD) +

1

µ0

√
D

λ
ϕ(
√
λD)− 1

2µ0λ
(B.3)

For high reliable products which are not fail in a short period time we are interested to calculate

MTTF with design an efficient Step-stress accelerated degradation testing (SSADT) experiment.

Let S0, S1, . . . , Sm are different stress levels such as

S0 ≤ S1 ≤ · · · ≤ Sm

There are n test units subject to a degradation test with a measurement frequency per f

units time under stress S1 up to t1. In this time stress level increase to S2 and the product stay

in this situation until t2. This process continue until the stress is up to Sm. Generally we can

say:

S =



S1, if : 0 ≤ t < t1

S2, if : t1 ≤ t < t2
...

Sm, if : tm−1 ≤ t < tm

Let li denote the total number of measurements under stress Si and M̂TTF denote the estimated

MTTF. To minimize the total cost of a SSADT experiment (TC(n, f, l1, l2, . . . , lm)) we try to

solve

AV ar(M̂TTF |n, f, l1, l2, . . . , lm)

by determine the optimal value of n, f, l1, l2, . . . , lm, under confined cost

TC(n, f, l1, l2, . . . , lm) < Cb
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In which

TC(n, f, l1, l2, . . . , lm) = Copf

m∑
i=1

li + Cmean

m∑
i=1

li + Citn (B.4)

Where Cop,Cmea and Cit are the unit cost of operation, the unit cost of measurement, and the

unit cost of an item.

C SSADT subject Inverse Gaussian process

Let Lss(t) denote the degradation path of a SSADT with an Inverse Gaussian degradation

model. Therefor

Lss(t) = L(t, S1) ∼ IG(Λ1(t), λΛ1(t)
2), t ∈ [0, t1)

and when the stress level up to S2 at time t1

Lss(t) = L(t1, S1) + L((t− t1), S2)

∼ IG(Λ1(t1) + Λ1(t− t1), λ(Λ1(t1) + Λ2(t− t1))
2), t ∈ [t1, t2)

Similarly in the stress level Sm at time tm−1

Lss(t) = L(t1, S1) + L((t2 − t1), S2) + · · ·++L((t− tm−1), Sm)

∼ IG(
m−1∑
i=1

Λ1(ti − ti−1), λ(
m−1∑
i=1

Λ2(ti − ti−1))
2)

If L
(k)
ss (t) denote the SSADT degradation path of the kth test sample at time t so that τi−1 <

ti−1 < ti < τi. Let Yijk = L
(k)
ss (tj|Si) − L

(k)
ss (tj−1|Si). So by using independent increment

property of the inverse gaussian process we can say:

Yijk ∼ IG(Λi(tj)− Λi(tj−1), λ(Λi(tj)− Λi(tj−1))
2)

The likelihood function of the SSADT model for an inverse gaussian process is given by

L(a, b, λ|y) =
n∏
k=1

m∏
i=1

ξi∏
j=ξi−1+1

√
λ(Λi(tj)− Λi(tj−1))2

2πy3ijk
exp

{
λ(yijk − Λi(tj)− Λi(tj−1))

2

2yijk

}
(C.1)

In above equation ξi = l1 + l2 + · · ·+ li and ξ0 = 0.
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D Optimization

To minimize the total cost of an SSADT experiment at first we should compute the approximate

variance M̂TTF . The asymptotic variance of M̂TTF can then be derived using the delta method

as:

AV ar(M̂TTF ) = ´h(Θ)I(Θ)−1h(Θ) (D.1)

Where Θ = (a, b, λ) and matrix I(Θ) is the Fisher information matrix which can be computed

by:

I(Θ) =


E

(
− ∂2 lnL(Θ|y)

∂a2

)
E

(
− ∂2 lnL(Θ|y)

∂a∂b

)
E

(
− ∂2 lnL(Θ|y)

∂a∂λ

)
E

(
− ∂2 lnL(Θ|y)

∂b∂a

)
E

(
− ∂2 lnL(Θ|y)

∂b2

)
E

(
− ∂2 lnL(Θ|y)

∂b∂λ

)
E

(
− ∂2 lnL(Θ|y)

∂λ∂a

)
E

(
− ∂2 lnL(Θ|y)

∂λ∂b

)
E

(
− ∂2 lnL(Θ|y)

∂λ2

)

 (D.2)

and ´h(Θ)

´h(Θ) =

(
∂MTTF

∂a
,
∂MTTF

∂b
,
∂MTTF

∂λ

)
(D.3)

Vector ´h(Θ) denotes the transpose of h(Θ) and it can be expressed as

∂MTTF

∂a
=

(
− D

µ0
− 1

µ0λ

)
Φ(

√
λD)−

√
D
λ ϕ(

√
λD)

µ0
+

1

2µ0λ

∂MTTF

∂b
=

(
− DS0

µ0
− S0

µ0λ

)
Φ(

√
λD)−

√
D
λ ϕ(

√
λD)S0

µ0
+

S0

2µ0λ

∂MTTF

∂λ
= −Φ(

√
λD)

λ2µ0
+

1

2µ0λ

(D.4)

and the elements of the Fisher information matrix I(Θ) in Eq. (D.2) can be expressed as:

E

(
− ∂2 lnL(Θ|y)

∂a2

)
= nfλ

∑m
i=1 µili + 2n

∑m
i=1 li, E

(
− ∂2 lnL(Θ|y)

∂a∂λ

)
= n

λ

∑m
i=1 li

E

(
− ∂2 lnL(Θ|y)

∂a∂b

)
= nfλ

∑m
i=1 µiSili + 2n

∑m
i=1 liSi, E

(
− ∂2 lnL(Θ|y)

∂b∂λ

)
= n

λ

∑m
i=1 liSi

E

(
− ∂2 lnL(Θ|y)

∂b2

)
= nfλ

∑m
i=1 µiS

2
i li + 2n

∑m
i=1 liS

2
i , E

(
− ∂2 lnL(Θ|y)

∂λ2

)
= 1

2
1
λ2n

∑m
i=1 li

The main objective of this paper is minimizing the total cost TC(n, f, l1, l2, . . . , lm) by detemine the

optimal value of n, f, l1, l2, . . . , lm through the following algorithm.
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[h!] Optimization of SSADT plan [1] Giving degradation parameters, stress levels, Cop,Cmea,

Cit ,n and m nmax = ⌊ Cb−Copm

Cmeam+Cit
⌋ n = 1 to nmax fmax = ⌊Cb−Cmeanm−Citn

Copm
⌋ f= 1 to fmax Find

l1, l2, . . . , lm ∈ N which TC(n, f, l1, l2, . . . , lm) < Cb Calculate AV ar(M̂TTF |n, f, l1, l2, . . . , lm) Find

optimal value of n∗, f∗, l∗1 , l
∗
2 , . . . , l

∗
m then be obtained as

minAV ar(M̂TTF |n, f, l1, l2, . . . , lm)

E Numerical example

In this section the proposed method describe with a numerical example based on the data from the

stress relaxation problem description by Yang (2007), Example 8.7, p.351. We consider Inverse gaussian

process to describe degradation process by shape parameter λ = 0.10019014 and scale parameter µi =

exp{1.9274− 0.088718Si}

In this study we consider only two stress levels (S0 = 65, S1 = 85 ,S2 = 100) and critical threshold

is D = 20. The cost configuration of Cop,Cmea, and Cit are respectively

Cop = $2.9/per unit cost of operation

Cmea = $2.3/per unit cost of measurement

Cit = $60/per unit cost of device

Table 1 has shown the optimal test plan for various budgets Cb based on the proposed method.

Table 1: Optimal value under different Cb

Cb n∗ f∗ l∗1 l∗2 Total test cost Std(M̂TTF |n, f, l1, l2, . . . , lm)

1500 8 5 21 10 545.8 5284.471

2000 10 5 25 12 675 4326.12

2500 11 6 29 14 745.4 3686.212

3000 14 7 27 14 945 3243.728

For example, when Cb = 1500, the optimal test plan is (n∗, f∗, l1∗, l2∗) = (8, 5, 21, 10); that is

the optimal sample size is 11, the optimal measurement frequency is 8 and the corresponding optimal

numbers of measurements for stress S1, S2 are 21 and 10, respectively.

References

[1] DeGroot, M.H. and Goel, P.K. (1979), Bayesian estimation and optimal designs in partially accel-

erated life testing, Naval Research Logistics, 26(2), 223-235

289



[2] Peng, C.Y., Tseng, S.T. (2010), Progressive-stress accelerated degradation test for highly-reliable

products, IEEE Transactions on Reliability, 59(1), 30-37

[3] Sung, S.L. and Yum, B.J. (2016), Optimal design of step-stress accelerated degradation tests based

on the Wiener degradation process, Quality Technology and Quantitative Management, 13(4), 367-

393.

[4] Tseng, S.T and Wen, Z.C. (2000), Step-stress accelerated degradation analysis of highly-reliable

products, Journal of Quality Technology, 32, 209-216.

[5] Tsai, C.C., Tseng, S.T. and Balakrishnan, N. (2012), Optimal Design for Degradation Tests Based

on Gamma Processes With Random Effects, IEEE Transactions on Reliability, 61(2), 604-613.

[6] Wang, X. and Xu, D. (2010), An inverse Gaussian process model for degradation data, Technomet-

rics, 52(2), 188197.

[7] Yang, G. (2007), Life Cycle Reliability Engineering, Hoboken, NJ, USA: Wiley

[8] Ye, Z.S., Chen, L.P., Tang, L.C. and Xie, M. (2014), Accelerated degradation test planning using

the inverse Gaussian process, IEEE Trans Reliab, 63(3),750-63.

[9] Zhang, C., Lu, X., Tan, Y. andWang, Y. (2015), Reliability demonstration methodology for products

with Gamma Process by optimal accelerated degradation testing, Reliability Engineering and System

Safety, 142, 369-377.

290



On a New Bivariate Survival Model for the Analysis of
Dependent Lives and Its Generalization

Shirin Shoaee1

Department of Statistics, Faculty of Mathematical Sciences, Shahid Beheshti University,

Tehran, Iran.

Abstract: In this paper, a new bivariate model based on the model of dependent lives is introduced.

This new bivariate distribution has natural interpretations, and it can be applied in fatal shock models

or in competing risks models. Then, the proposed bivariate model is generalized. We call these new

distributions as the bivariate Gompertz (BGP) distribution and bivariate Gompertz-geometric (BGPG)

distribution, respectively. Then, we present various properties of the new bivariate models. Also, the

ageing properties and the bivariate hazard gradient are discussed. We propose to use the EM algorithm

to compute the maximum likelihood estimators of the unknown parameters. Finally, we analyze one

real data set.

Keywords Bivariate model, Competing risks model, Expectation-Maximization algorithm, Gompertz

distribution, Shock model.
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A Introduction

The modeling of a lifetime is an important problem in a variety of scientific and technological fields.

Also, models that consider the dependency feature are very interesting and are applied in many various

areas such as reliability, survival analysis, insurance risk analysis, life insurance (see, e.g., Iyer and

Manjunath(9)).

Traditionally in statistics and also the actuarial theory of multiple life insurance is based on the

assumption of independence for the remaining lifetimes. However, in many situations, this assumption

is not valid. Intuitively, pairs of individuals exhibit dependence in mortality because they share common

risk factors, which may be purely genetic, as in the case of twins, or environments, as in the case of a

married couple. So, we propose that to use the model of dependent lives. For an example, Carriere(5))

showed that there is a very high positive correlation between the times of deaths of coupled lives.

Also, Jagger and Sutton (10) addressed that after the marital bereavement, the risk of mortality is

significantly increased.

One classical model of dependent lives that captured our attention is called the ”common shock” model,

1Shirin Shoaee: Sh Shoaee@sbu.ac.ir



This model assumes that the lifetimes of two persons, say T1 and T2, are independent unless a common

shock causes the death of both. For example, a contagious deadly disease, a natural catastrophe or a

car accident may affect the lives of the two spouses. Thus, if T0 denotes the time until the common

disaster, the actual ages-at-death are modeled by

X1 = min(T1, T0), and X2 = min(T2, T0).

Then, the joint survival function of (X1, X2) is given by

F̄ (x1, x2) = P (X1 > x1, X2 > x2) = P (T1 > x1)P (T2 > x2)P (T0 > max(x1, x2)).

in view of the mutual independence of T0, T1 and T2. This model is also called the bivariate survival

model of the Marshall-Olkin type. Several other bivariate distributions of Marshall-Olkin type have

been proposed. For more details, the readers can refer to (18), (2), (12) and (16).

Also, for modeling survival data, Marshall and Olkin (14) introduced a class of univariate distri-

butions which can be obtained by minimum and maximum of independent and identically distributed

continuous random variables, where the sample size follows the geometric distribution. In fact, their

method induces an extra parameter to a model, hence affords more flexibility. Also, extensive work

has been done on their method. For more details, the readers can refer to (17), (7), (8), (15), (6),

(4), (3) and the references cited therein. In fact, it can be seen that due to the lack of analyzes for

bivariate distributions, see for example (13). In the following, we assume that the failure times follow

the Gompertz (GP) distribution. Therefore, we introduce two new bivariate distributions.

In the first case, a new bivariate distribution based on the model of dependent lives is obtained.

This new bivariate distribution is called the bivariate Gompertz (BGP) distribution and the marginal

distributions have GP distributions.

In the second case, we generalize the BGP distribution. So, a new bivariate distribution by com-

pounding geometric distribution and Gompertz model is introduced. We call this new bivariate dis-

tribution as the bivariate Gompertz-geometric (BGPG) distribution. In fact, this method produces a

new bivariate distribution which is analytically quite tractable. Also, the marginals and conditionals

are univariate Gompertz-geometric distributions (UGPG), and it is also very flexible.

The maximum likelihood estimators (MLEs) of the unknown parameters of the BGPG distribution

cannot be obtained in closed forms. The Newton-Raphson or Gauss-Newton type algorithm iterative

procedure is needed to solve these non-linear equations. Moreover, the choice of initial values and the

convergence of the iterative algorithm are important subjects. To avoid these problems, we investigate

it as a missing value problem and propose to use the EM algorithm.

The paper is organized as follows. In Section 2, we introduce a new bivariate distribution based on

the model of dependent lives and discuss various properties of the new bivariate distribution. A new

bivariate distribution by compounding geometric distribution and Gompertz model are introduced and
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also, different properties of this model are investigated in Section 3. The maximum likelihood estimators

are discussed in Section 4. The analysis of one real data set has been presented in Section 5 and finally

we conclude the paper in Section 6.

B Model Formulation

In this section, a new bivariate distribution is obtained based on the model of dependent lives. We use the

Gompertz distribution. This distribution is often applied to describe the distribution of adult lifespans

by demographers and actuaries. Also, the bivariate distributions are introduced in this structure has

popular descriptions and it can be used in shock models or in competing risks models.

B.1 Bivariate Gompertz Distribution

Suppose Ti ∼ GP (α, λi) for i = 0, 1, 2 and they are independent. Define Xi = min{T0, Ti} for i = 1, 2,

then the bivariate vector (X1,X2) is a bivariate Gompertz distribution and it will be denoted from now

on as BGP (α, λ0, λ1, λ2). If (X1, X2) ∼ BGP (α, λ0, λ1, λ2), for z = max{x1, x2},

F̄X1,X2(x1, x2) =


F̄GP (x1, α, λ1 + λ0)F̄GP (x2, α, λ2) if x2 < x1

F̄GP (x1, α, λ1)F̄GP (x2, α, λ2 + λ0) if x1 < x2

F̄GP (x, α, λ0 + λ1 + λ2, λ) if x1 = x2 = x.

The joint PDF of (X1, X2) is:

fX1,X2(x1, x2) =


α2λ2(λ0 + λ1)e

α(y1+y2)e−(λ0+λ1)(e
αy1−1)e−λ2(e

αy2−1) if x2 < x1

α2λ1(λ0 + λ2)e
α(y1+y2)e−(λ0+λ2)(e

αy2−1)e−λ1(e
αy1−1) if x1 < x2

αλ0e
αye−(λ0+λ1+λ2)(e

αy−1) if x1 = x2 = x,

(B.1)

The joint PDF of (X1, X2), for z = max{x1, x2} is

fX1,X2(x1, x2) =
λ1 + λ2

λ0 + λ1 + λ2
fa(x1, x2) +

λ0

λ0 + λ1 + λ2
fs(z), (B.2)

where

fa(x1, x2) =
λ1 + λ2

λ0 + λ1 + λ2

 fGP (x1, α, λ0 + λ1)fGP (x2, α, λ2) if x2 < x1

fGP (x2, α, λ1)fGP (x2, α, λ0 + λ2) if x1 < x2,

and

fs(z) = fGP (z, α, λ0 + λ1 + λ2).

where fa(x1, x2) and fs(z) are the absolutely continuous and singular part. If (X1, X2) ∼ BGP (α, λ0, λ1, λ2).

Then,
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1) F̄X1|X2≥x2
(x1) is an absolute continuous survival function as follows

F̄X1|X2≥x2
(x1) =

 e−(λ0+λ1)(e
αx1−1)eλ0(e

αx2−1) if x2 < x1

e−λ1(e
αx1−1) if x1 < x2.

(B.3)

2) The conditional survival function in (B.3) has a representation

F̄X1|X2≥x2
(x1) = pG(x1) + (1− p)H(x1),

where,

G(x1) =
1

p

 e−(λ0+λ1)(e
αx1−1)eλ0(e

αx2−1) if x2 < x1

e−λ1(e
αx1−1) − λ0

λ0+λ2
e−λ1(e

αx2−1) if x1 < x2,
H(x) =

 1 if x < x2

0 if x > x2,

and

p = 1− λ0

λ0 + λ2
e−λ1(e

αx2−1).

If (X1, X2) ∼ BGP (α, λ0, λ1, λ2). Then,

1) X1 ∼ GP (α, λ0 + λ1) and X2 ∼ GP (α, λ0 + λ2).

2) P (X1 < X2) =
λ0

λ0+λ1+λ2
.

3) min{X1, X2} ∼ BGP (α, λ0 + λ1 + λ2).

If (X1, X2) ∼ BGP (α, λ0, λ1, λ2). Then,

a) The multivariate increasing failure rate (MIFR) property for α ≥ 1 and has the multivariate

decreasing failure rate (MDFR) property for 0 < α < 1.

b) For all value of x1, x2 > 0, both the components of hX1,X2(x1, x2) = (− ∂
∂x1

,− ∂
∂x2

) lnP (X1 >

x1, X2 > x2) are increasing functions of x1 and x2.

c) The positive upper orthant dependent (PUOD) property.

d) The right tail increasing (RTI) property.

e) The right corner set increasing (RCSI) property.

C Generalization

C.1 Bivariate Gompertz-Geometric Distribution

Suppose {(X1n, X2n);n = 1, 2, . . .} is a sequence of i.i.d. non-negative bivariate random variables

with common joint distribution function FX(., .) where X = (X1, X2) and N is a geometric random

variable independent of {(X1n, X2n), n = 1, 2 . . .}. Consider the following bivariate random variable

Y = (Y1, Y2), so that, Yi = min{Xi1, . . . , XiN} for i = 1, 2. The joint survival function of Y = (Y1, Y2)

becomes

Ḡ(y1, y2) = P (Y1 > y1, Y2 > y2) =
θF̄X(y1, y2)

1− (1− θ)F̄X(y1, y2)
. (C.1)
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Therefore, the random variable Y = (Y1, Y2) is said to have the bivariate Gompertz-geometric distri-

bution with parameters θ, α, λ0, λ1, λ2, if the distribution F in (C.1) is BGP (α, λ0, λ1, λ2).Therefore,

the joint survival function of (Y1, Y2) becomes

Ḡ(y1, y2) =


θe−(λ0+λ1)(eαy1−1)e−λ2(eαy2−1)

1−(1−θ)e−(λ0+λ1)(eαy1−1)e−λ2(eαy2−1)
if y2 ≤ y1

θe−(λ0+λ2)(eαy2−1)e−λ1(eαy1−1)

1−(1−θ)e−(λ0+λ2)(eαy2−1)e−λ1(eαy1−1)
if y1 < y2.

(C.2)

It will be denoted by (Y1, Y2) ∼ BGPG(θ, α, λ0, λ1, λ2).

Let (Y1, Y2) ∼ BGPG(θ, α, λ0, λ1, λ2), the joint PDF of (Y1, Y1) is

gY1,Y2(y1, y2) =


g1(y1, y2) if y2 < y1

g2(y1, y2) if y1 < y2

g0(y1, y2) if y1 = y2 = y.

where

g1(y1, y2) =
θα2λ2(λ0 + λ1)e

α(y1+y2)e−(λ0+λ1)(e
αy1−1)e−λ2(e

αy2−1)

[1− (1− θ)eα(y1+y2)e−(λ0+λ1)(e
αy1−1)e−λ2(e

αy2−1)]3

× [1 + (1− θ)eα(y1+y2)e−(λ0+λ1)(e
αy1−1)e−λ2(e

αy2−1)].

g2(y1, y2) =
θα2λ1(λ0 + λ2)e

α(y1+y2)e−(λ0+λ2)(e
αy2−1)e−λ1(e

αy1−1)

[1− (1− θ)eα(y1+y2)e−(λ0+λ2)(e
αy2−1)e−λ1(e

αy1−1)]3

× [1 + (1− θ)eα(y1+y2)e−(λ0+λ2)(e
αy2−1)e−λ1(e

αy1−1)].

g0(y) =
θαλ0e

αye−(λ0+λ1+λ2)(e
αy−1)

[1− (1− θ)e−(λ0+λ1+λ2)(eαy−1)]2
.

Let (y1, y2) ∼ BGPG(θ, α, λ0, λ1, λ2). Then

(I) Each Yi has a univariate Gompertz-geometric distribution (UGPG) with parameters α, λ0 + λi

and θ.

(II) The random variable Y = min(Y1, Y2) has an UGPG distribution with parameters λ0 + λ1 + λ2,

α and θ.

(III) P (Y1 < Y2) =
λ1

λ0+λ1+λ2
.

Using the conditional probability mass function of N given Y1 = y1 and Y2 = y2, we can compute

E(N |y1, y2) =


(1−ξ1(y1,y2,θ,γ))

2−6(1−ξ1(y1,y2,θ,γ))+6

(1−ξ1(y1,y2,θ,γ))2
if y2 < y1

(1−ξ2(y1,y2,θ,γ))
2−6(1−ξ2(y1,y2,θ,γ))+6

(1−ξ2(y1,y2,θ,γ))2
if y1 < y2

1+ξ0(y1,y2,θ,γ)
1−ξ0(y1,y2,θ,γ)

if y1 = y2 = y.

D Estimation

In this section, we describe the problem of computing the MLEs of the unknown parameters of the

BGPG distributions using the EM algorithm.
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D.1 EM Algorithm

Suppose {(y11, y21), . . . , (y1m, y2m)} is a random sample from BGPG(θ, α, λ0, λ1, λ2). Therefore, I0 =

{i : y1i = y2i = yi}, I1 = {i : y1i > y2i} and I2 = {i : y1i < y2i}. Also, |I0| = m0, |I1| = m1, |I2| = m2

and m = m0 +m1 +m2. Therefore, the log-likelihood function can be written as

ℓ(Θ) =
∑
i∈I0

ln g0(yi) +
∑
i∈I1

ln g1(y1i, y2i) +
∑
i∈I2

ln g2(y1i, y2i), (D.1)

where g0, g1 and g2 are defined in Theorem C.1. We can obtain the MLEs of the parameters by

maximizing ℓ(Θ) in (D.1) with respect to the unknown parameters. Clearly, it is difficult to compute

the MLEs of the unknown parameters directly. We propose to use the EM algorithm and treat this as

a missing value problem.

For given n, consider that independent random variables

{Ui|N = n} ∼ GP (α, nλi), i = 0, 1, 2. (D.2)

Also, It is well known that {Yi|N = n} = min{U0, Ui}|N = n, for i = 1, 2.

Assumed that for the bivariate random vector (Y1, Y2), there is an associated random vectors

(∆1,∆2) =



(0, 0) if Y1 = U0, Y2 = U0

(0, 1) if Y1 = U0, Y2 = U2

(1, 0) if Y1 = U1, Y2 = U0

(1, 1) if Y1 = U1, Y2 = U2 .

(D.3)

Here Yi’s are same as defined above. Therefore, a sample is obtained from (Y1, Y2,∆1,∆2, N) which is

the complete observation. It is clear that, if we know (Y1, Y2), the associated (∆1,∆2) may not always

be known. We compute the pseudo log-likelihood function. The conditional ’pseudo’ log-likelihood

function is formed by conditioning on N , and then N is replaced by E(N |Y1, Y2).

In the ’E’ step, we kept the log-likelihood contribution of all the observations belonging to I0 intact, as

in this case the corresponding (∆1,∆2) are known completely. The observations are treated as missing

observations, if they belong to I1 or I2.

If (y1, y2) ∈ I1, the ’pseudo observation’ is formed, by fractioning (y1, y2) to two partially complete

’pseudo observations’ of the form (y1, y2, u1(Θ)) and (y1, y2, u2(Θ)). The fractional mass u1(Θ) and

u2(Θ) assigned to the ’pseudo observation’ are the conditional probabilities that (∆1,∆2) takes values

(0,1) or (1,1), respectively, given that (Y1, Y2) ∈ I1. Similarly, if (Y1, Y2) ∈ I2, ’pseudo observations’ are

formed. Therefore,

v1(Θ) =
λ0

λ0 + λ2
, v2(Θ) =

λ2

λ0 + λ2
, u1(Θ) =

λ0

λ0 + λ1
, u2(Θ) =

λ1

λ0 + λ1
.

Therefore, we will use the following notations in the k-th step of the EM algorithm for the estimates of

the parameters.
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• Θ(k) = (α(k), λ
(k)
0 , λ

(k)
1 , λ

(k)
2 ) is defined for the estimates of the parametersin the k-th step.

• E(N |y1i, y2i,Θ) = ai, and E(N |y1i, y2i,Θ(k)) = a
(k)
i .

• u1(Θ
(k)) = u

(k)
1 , u2(Θ

(k)) = u
(k)
2 , v1(Θ

(k)) = u
(k)
1 and v2(Θ

(k)) = u
(k)
2 .

E-Step: At the k-step of the EM algorithm, the ’pseudo’ log-likelihood function without the additive

constant can be written as follows:

ℓpseudo(Θ) = (m0 + 2m1 + 2m2) lnλ0 + (m2 +m1u
(k)
2 ) lnλ1 + (m2v

(k)
2 +m1) lnλ2

− λ0{
∑
i∈I0

a
(k)
i (eαyi − 1) +

∑
i∈I2

a
(k)
i (eαy2i − 1) +

∑
i∈I1

a
(k)
i (eαy1i − 1)}

− λ1{
∑
i∈I0

a
(k)
i (eαyi − 1) +

∑
i∈I2

a
(k)
i (eαy1i − 1) +

∑
i∈I1

a
(k)
i (eαy1i − 1)}

− λ2{
∑
i∈I0

a
(k)
i (eαyi − 1) +

∑
i∈I2

a
(k)
i (eαy2i − 1) +

∑
i∈I1

a
(k)
i (eαy2i − 1)}

+ α{
∑
i∈I0

yi +
∑
i∈I2

y1i +
∑
i∈I2

y2i +
∑
i∈I1

y2i +
∑
i∈I1

y1i}

+ (m0 + 2m1 + 2m2) lnα+m ln
θ

1− θ
+ ln(1− θ)

m∑
i=1

a
(k)
i . (D.4)

M-Step: The ’M’-step involves maximizing ℓpseudo(Θ) with respect to the unknown parameters.

ALGORITHM

• Step 1: Take some initial value of Θ, say Θ(0) = (θ(0), α(0), λ
(0)
0 , λ

(0)
1 , λ

(0)
2 ).

• Step 2: Compute a
(0)
i = E(N |y1i, y2i; Θ(0)).

• Step 3: Compute u1, u2, v1, and v2.

• Step 4: Find α̂ and say α̂(1).

• Step 5: Compute λ̂
(1)
i = λ̂i(α̂

(1)), i = 0, 1, 2.

• Step 6: Find θ̂.

• Step 7: Replace Θ(0) by Θ(1) = (θ(1), α(1), λ
(1)
0 , λ

(1)
1 , λ

(1)
2 ), go back to step 1 and continue the

process until convergence take place.

E Data analysis and comparison study

For illustrative purposes, we have analyzed one data set to see how the proposed model and the EM

algorithm works in practice. This data set has been reported in Johnson andWiechern (11). It represents

the two diefferent measurements of stiffness, ”Shock” and ”Vibration” of each of 30 boards.

For illustrative purposes, first we plot the scaled TTT plots, see Aarset (1) for details, of the

marginals in Figure 1 for real data. Since both are concave functions, it can be assumed that the hazard

function of the marginals is increasing functions. Moreover, the correlation between the two marginals

297



Figure 1: The scaled TTT plots of the marginals for data set.

is positive.

Before going to analyze the data using BGPG distribution, we fit the GP distribution to Y1, Y2 and

min{Y1, Y2} separately. The MLEs of parameters, the corresponding Kolmogorov-Smirnov distances

and the associated p-values are calculated and the results are presented in Table 1. Based on the p-

values the Gompertz distribution cannot be rejected for the marginals and for the minimum also.

Table 1: The MLEs of parameters, the K-S distances and the associated p-values.

Data Set Variable α λ K-S p-value

Y1 2.3598 0.0075 0.1420 0.9032

Shock and Vibration data Y2 2.4296 0.0097 0.1553 0.8660

min{Y1, Y2} 2.4301 0.0098 0.1977 0.5775

Now, we will fit the BGPGmodel. Using the proposed EM algorithm, the MLE’s and their corresponding

log-likelihood values are calculated. For the fitted model, the Akaike Information Criterion (AIC) and

the Bayesian information criterion (BIC) are calculated. The results are given in Table 2.

Table 2: The MLEs of parameters, the corresponding log-likelihood, AIC and BIC.

Data Set α̂ λ̂0 λ̂1 λ̂2 θ̂ log(ℓ) AIC BIC

Shock and Vibration data 2.3833 0.0019 3.1077 × 10−4 0.0028 0.5941 -34.5795 79.1590 86.1650

We also obtain the Kolmogorov-Smirnov (K-S) distances with the corresponding p-values between the

fitted distribution and the empirical CDF for three random variables Y1, Y2 and min(Y1, Y2). The results

are given in Table 3.

Finally, the likelihood ratio test (LRT) and the corresponding p-values are obtained for testing the

BGP model against the BGPG model. On the other hand, our goal is to test the null hypothesis

H0 : BGP against the alternative hypothesis H1 : BGPG. The statistics and the corresponding p-

values are given in Table 4. Hence, for any usual significance level, we reject the model in H0 (BGP) in

favor of the alternative model (BGPG).

F Conclusions

In this paper, we have proposed two new bivariate distributions using the model of dependent lives.

This new model was called as the bivariate Gompertz distribution (BGP). Then, this model has been

generalized. We called this distribution as the bivariate Gompertz-geometric distribution (BGPG).

Several properties of this distribution have been established. The estimation of unknown parameters by
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Table 3: The K-S distances and the corresponding p-values for three random variables Y1, Y2 and min(Y1, Y2).

Data Set Y1 Y2 min{Y1, Y2}

K-S p-value K-S p-value K-S p-value

Shock and Vibration data 0.1260 0.9591 0.1776 0.7442 0.1877 0.7255

Table 4: The log-likelihood, AIC, BIC, LRT and the corresponding p-values for different models.

Data Set Models Test

AIC BIC logℓ LRT p-value

BGPG 79.1590 86.1650 -34.5795

Shock and Vibration data 20.1320 7.2277 × 10−6

BGP 99.2910 106.2970 -44.6455

the method maximum likelihood is acquired. However, it is not directly easy to solve the associated log

likelihood equations. Therefore, we have suggested using the EM algorithm to compute the MLEs of the

unknown parameters, and it is observed that the proposed EM algorithm works quite well in practice.

As shown, the proposed models work quite well for data analysis purposes. Finally, we compare BGPG

model with BGP model.
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Defining Stochastic Orderings and Ageing Classes of Life
Distributions: A Unified Approach
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Abstract: In this talk, we present some new characterizations of the well-known reliability classes of

life distributions such as IFR, DFR, NBU, HNBUE, NBUC, etc. For this purpose, a unified approach

based on a weighted average of the failure rate of the equilibrium distribution is utilized. Different

properties of the proposed measure are also considered.

Keywords Equilibrium distribution, Failure rate, Stochastic orders.

Mathematics Subject Classification (2010) : 62N05, 60K10.

A Introduction

In the literature, many attempts have been made to classify various categories of life distributions. A

number of classes of life distributions have been studied in reliability theory. Usually, the fact that

a distribution belongs to a particular class can be justified by a physical understanding of the failure

mechanism. In these circumstances, one can utilize an appropriate method of data analysis among

many statistical procedures developed for the cited classes.

Let F be a cumulative distribution function (cdf) with the corresponding reliability function F̄ =

1 − F . The function − log F̄ (t) is called the hazard function of the cdf F . The concept of monotone

hazard rate has played a crucial role in reliability engineering. In the following, we give formal definitions

of some basic reliability classes.

• F is said to have an increasing (decreasing) failure rate [IFR (DFR)] if its hazard function is

concave (convex).

• A cdf F with F (0−) = 0 is said to have an increasing failure rate average (IFRA) if its hazard

function is star-shaped (that is, − log F̄ (t)/t is increasing in t ≥ 0). Similarly, F is said to have a

decreasing failure rate average (DFRA) if − log F̄ (t)/t is decreasing in t ≥ 0.

• F is said to be new better (worse) than used [NBU (NWU)] if F̄ (s+t) ≤ (≥)F̄ (s)F̄ (t), for s, t ≥ 0.

• F is said to be new better (worse) than used in expectation [NBUE (NWUE)] if
∫∞
t
F̄ (x)dx ≤

(≥)µF̄ (t), for t ≥ 0.

1Mahdi Tavangar: m.tavangar@stat.ui.ac.ir



• F is said to be harmonically new better (worse) than used in expectation [HNBUE (HNWUE)]

if
∫∞
t
F̄ (x)dx ≤ (≥)µ exp(−t/µ), for t ≥ 0.

• F is said to be new better than used in failure rate average [NBUFRA (NWUFRA)] if r(0) ≤ (≥

)− 1
t
log F̄ (t) for t ≥ 0.

• F is said to be new better than used in convex ordering (NBUC) if
∫∞
s+t

F̄ (x)dx ≤ F̄ (t)
∫∞
s
F̄ (x)dx,

for all s, t ≥ 0.

Various aspects of the classes of life distributions mentioned above and many others have been

extensively studied in the literature. These classes possess a number of very interesting properties;

see Barlow and Proschan (1975), Lai and Xie (2006) and Marshall and Olkin (2007). For example, it

is known that a mixture of DFR distributions is DFR. Another key result is that the class of IFRA

is closed under the formation of coherent systems; it is the smallest class containing the exponential

distributions which is closed under weak limits.

Throughout the article, we also need the following concepts of stochastic orders. Let X and Y be

two non-negative random variables with reliability functions F̄ = 1 − F and Ḡ = 1 − G, respectively.

X is said to be less than Y in the

• usual stochastic order (denoted by X ≤st Y ) if Ḡ(t) ≥ F̄ (t), for all t ≥ 0.

• hazard rate order (denoted by X ≤hr Y ) if Ḡ(t)

F̄ (t)
is increasing in t ≥ 0.

• mean residual life order (denoted by X ≤mrl Y ) if
∫∞
t
Ḡ(x)dx/

∫∞
t
Ḡ(x)dx is increasing in t ≥ 0.

The following implications hold among the stochastic orders:

X ≤hr Y ⇒ X ≤st Y, X ≤hr Y ⇒ X ≤mrl Y.

For more details on properties of stochastic orders, we refer the reader to Shaked and Shanthiku-

mar (2007).

The main purpose of this work is to study various properties of the MEFR. We also aim to unify

the definitions of all mentioned ageing classes based on the notion of MEFR. Precisely, It is shown

that all the above mentioned classes of life distributions can be characterized by considering different

properties of the MEFR. We will also introduce new ageing classes of life distributions and discuss about

their interpretations in the field of reliability engineering. Also, by utilizing the concept of MEFR, the

definitions of some stochastic orders (such as usual, hazard rate and mean residual life orders) will be

unified.
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B Characterization of the reliability classes based on MEFR

Suppose that F is the cdf of a nonnegative random variable X with finite mean µ. A distribution related

to F is the equilibrium distribution with the probability density function

fe(t) =


F̄ (t)
µ
, t ≥ 0;

0, t < 0.

The equilibrium distribution arises as the limiting distribution of the forward recurrence time in a

renewal process. It is well-known that the hazard rate of the equilibrium distribution is the reciprocal

of the mean residual life of the original distribution.

One can define higher-order equilibrium distributions. For n = 1, 2, ..., the equilibrium distribution

of order n is given by

F̄n(t) =

∫∞
t
F̄n−1(x)dx

µn−1
,

where µn−1 is the mean of the distribution Fn−1 and F̄0 = F̄ is the baseline reliability function.

In the present research, we introduce the concept of mean equilibrium failure rate (MEFR). This

new measure is defined as

ξn(s, s+ t) = −1

t
log

(
F̄n(s+ t)

F̄n(s)

)
, s, t ≥ 0; n = 0, 1, ....

It may be rephrased as

ξn(s, s+ t) = E [ws,t(X)hn(X)] ,

where X denotes the original random variable and hn is the failure rate of the nth order equilibrium

distribution. The last expression is, in fact, a weighted average of hn with the weight function

ws,t(x) =
1

tf(x)
I[s,s+t](x),

where IA(·) denotes the indicator function on the set A. This explains the terminology of the definition

of MEFR. Using a result of Gupta (2007), the MEFR can also be written as

ξn(s, s+ t) = −1

t
log

(
E [(X − s− t)n+]

E
[
(X − s)n+

] )
,

where E [(X − s)n+] is known as the nth order stop-loss transform.

In the following results, we briefly describe the applications of the MEFR in unification of the

reliability classes, and stochastic orderings. The proofs together with more results including character-

izations of the reliability classes based on reversed hazard rate, mean inactivity time, etc., can be seen

in Tavangar (2019). In the cited reference, some new classes of life distributions are also introduced.

Let F be an arbitrary cdf.

a F is IFR (DFR) if and only if ξ0(s, s+ t) is increasing (decreasing) in s for all t ≥ 0.

b F is IFRA (DFRA) if and only if ξ0(0, t) is increasing (decreasing) in t.
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c F is NBU (NWU) if and only if ξ0(s, s+ t) ≥ (≤)ξ0(0, t) for s, t ≥ 0.

d F is NBUE (NWUE) if and only if ξ1(0, t) ≥ (≤)ξ0(0, t) for t ≥ 0.

e F is HNBUE (HNWUE) if and only if ξ1(0, t) ≥ (≤)ξ1(0, 0) for t ≥ 0.

f F is NBUFRA (NWUFRA) if and only if ξ0(0, t) ≥ ξ0(0, 0) for s, t ≥ 0.

g F is NBUC if and only if ξ1(s, s+ t) ≥ ξ0(0, t) for s, t ≥ 0.

Let X and Y be two random variables with the reliability functions F̄ and Ḡ, and the MEFR

ξn(s, s+t) and ζn(s, s+t), respectively. In the next result, some characterizations of the usual stochastic

order, the hazard rate order and the mean residual order, based on the notion of MEFR, are provided.

Let X and Y be two random variables with the corresponding MEFR ξn(s, s+ t) and ζn(s, s+ t). Then

a X ≤st Y if and only if ξ0(0, t) ≤ ζ0(0, t) for all t ≥ 0.

b X ≤hr Y if and only if ξ0(s, s+ t) ≤ ζ0(s, s+ t) for all s, t ≥ 0.

c X ≤mrl Y if and only if ξ1(0, t) ≥ ζ1(0, t) for all t ≥ 0.
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Abstract: The shock models have attracted great deal of attention because of their important role

in the engineering systems. A shock model is called when a system fails if the interval time between

two consecutive shocks is less than a fixed threshold δ. In this paper, the generalized δ-shock model

by assuming that the system is subject to two types of shocks under a Polya process of shock arrival

which has dependent interarrival times is studied. The survival function of the system are obtained

and also, the illustrative examples is presented. Keywords δ-shock model, Interarrival times, Polya

process, Survival function.
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A Introduction

The δ-shock model proposed by Li et al. (3; 4) is a special type of shock model, which if the interarrival

time between two shocks is shorter than a prespecified threshold δ, the system fails. this shock model is

useful for systems that needs a period of time to recover from the shock. They studied lifetime properties

of the model that the shocks arrive according to a Poisson process. The δ-shock model is widely utilized

in many areas such as electrical systems, inventory theory, earthquake modeling, insurance mathematics.

Also, some generalizations were provided for the δ-shock model.

Eryilmaz (1) presented a generalization of the δ-shock model by using the concept of runs and

obtained the survival function and the mean value of the failure time of the system. Recently, Wang

and Peng (5) generalized the δ-shock model by assuming that the system is subject to two types of

shocks under homogeneous Poisson process of shock arrivals which the system fails, if a shock occurs

while the system still has not recovered from the consequence of the previous shock. Eryilmaz (2)

investigated the δ-shock model under a Polya process of shock arrival which has dependent interarrival

times and obtained survival function and mean lifetime of the system.

The rest of paper is organized as follows. In Section 2, some notations and the assumption of models

is provided. The survival function of the system are obtained in Section 3. In Section 4, the illustrative

examples is presented to evaluate the results. Finally, Concluding remarks are given in Section 5.

1Marjan Entezari: me.125n2@gmail.com



B Notations and model assumption

In this section, some notations and the assumption of models is provided for generalized δ-shock model

subject to two types of shocks.

B.1 Notations

The following notations are needed.

N(t) Polya process

α, β Parameters of Gamma distribution

Ni(t) Number of type i shocks occurred in time interval (0, t], i = 1, 2

ni Realization of Ni(t), i = 1, 2

p, q Probability of a shock belongs to type 1 or 2, with p+ q = 1

Xn Interval time between the (n− 1)th and nth shocks, n = 1, 2, ...

F (t) Common cumulative distribution function (CDF ) of

the interval time Xn, n = 1, 2, ...

δi System recovery time for a type i shock, i = 1, 2

Zn Type of the nth shock, equal to 1 or 2, n = 1, 2, ...

T Lifetime of the δ-shock model with two types of shocks

B.2 Assumption

Consider a generalized δ-shock model for a single component system with two types of shocks by the

following assumption.

Assumption. A new installed system at time t = 0, is deal with external shocks that includes

two types of shocks. Each shock is of type 1 with probability p, type 2 with probability q = 1 − p,

independently that based on a Polya process {Nt, t ≥ 0}. Polya process is a special case of mixed

Poisson process when the structure distribution H is Gamma with density

dH(λ) =
βα

Γ(α)
λα−1e−βλ,

and hence its one dimensional distribution can be written as

P (N(t) = n) =

∫ ∞

0

e−λt(λt)n

n!
dH(λ) (B.1)

=

(
α+ n− 1

n

)(
t

t+ β

)n (
β

β + t

)α

, ∀ n = 0, 1, . . . . (B.2)

The interarrival times Xi, i = 1, 2, . . . , n are dependent, exchangeable and the marginal distribution

of Xi is Pareto with cummulative distribution function

P (Xi ≤ t) = 1−
(

β

β + t

)α

, ∀ t ≥ 0.
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C Survival function of the generalized δ-shock Model

To obtain the survival function of the generalized δ-shock model with two types of shocks, the following

lemma is requested.

Let N(t), t ≥ 0 be a homogeneous Poisson process (HPP) with rate λ, and denote X1, X2, · · · , Xn

the interarrival times of the process. Given N(t) = n, then for any fixed constant a > 0,

P (X2 > a,X3 > a, ,Xn > a|N(t) = n) =

(
1− (n− 1)a

t

)n

+

, (C.1)

where y+ = max(y, 0); Li et al. (3; 4) and Eryilmaz (1).

If a shock occurs while the system has not recovered from a previous shock, the system breaks

down. So, it is important to obtain the survival function. The survival function of δ-shock model can

be indicated as

P (T > t) =

[ t
δ1

]∑
n1=0

[ t
δ2

]∑
n2=0

P (T > t,N1(t) = n1, N2(t) = n2). (C.2)

To get the survival function (C.2), there are three cases. Firstly, there is no shock occurred in [0, t], the

system will survive this time interval. So,

P (T > t,N1(t) = 0, N2(t) = 0) =

(
β

β + t

)α

. (C.3)

Secondly, we assume that there is only one type of shocks occurred in time interval [0, t]. If the first

type of shock occured, the survival function is

P (T > t,N1(t) = n1, N2(t) = 0)

= P (X1 > δ1, ..., Xn1 > δ1|N1(t) = n1, N2(t) = 0)P (N1(t) = n1, N2(t) = 0)

= P (X1 > δ1, ..., Xn1 > δ1|N1(t) = n1, N2(t) = 0)P (N1(t) = n1)P (N2(t) = 0)

= p

(
β

β + t

)2α
[ t
δ1

]∑
n1=0

(
α+ n1 − 1

n1

)(
t− n1δ1
t+ β

)n1

+

, ∀ n1 = 1, 2, · · · , (C.4)

where the last statement holds by using Lemma C. Likely for the second type of shock, we have

P (T > t,N1(t)=0, N2(t) = n2)

= (1− p)

(
β

β + t

)2α
[ t
δ2

]∑
n2=0

(
α+ n2 − 1

n1

)(
t− n2δ2
t+ β

)n2

+

, (C.5)

for n2 = 1, 2, · · · .

Finally, for the general case that both two types of shocks have occurred in time interval [0, t]. By

investigating the probability P (T > t,N1(t) = n1, N2(t) = n2), the survival function can be obtained
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as following. The survival function of the generalized δ-shock model is

P (T > t)=

[ t
δ1

]∑
n1=0

[ t
δ2

]∑
n2=0

P (T > t,N1(t) = n1, N2(t) = n2)

=P (T > t,N1(t) = 0, N2(t) = 0)

+p

[ t
δ1

]∑
n1=1

[ t
δ2

]∑
n2=0

P (T > t,N1(t) = n1, N2(t) = n2, Zn = 1)

+(1− p)

[ t
δ1

]∑
n1=0

[ t
δ2

]∑
n2=1

P (T > t,N1(t) = n1, N2(t) = n2, Zn = 2)

=

(
β

β + t

)α

+ p

[ t
δ1

]∑
n1=1

[ t
δ2

]∑
n2=0

(
α+ n1 − 1

n1

)(
α+ n2 − 1

n2

)(
t
′

β + t′

)n(
β

β + t′

)2α

×
(

β

β + (n1 − 1)δ1 + n2δ2

)α

+ (1− p)

[ t
δ1

]∑
n1=0

[ t
δ2

]∑
n2=1

(
α+ n1 − 1

n1

)

×

(
α+ n2 − 1

n2

)(
t
′
1

β + t
′
1

)n(
β

β + t
′
1

)2α(
β

β + n1δ1 + (n2 − 1)δ2

)α

, (C.6)

where t
′
= [t− (n1 − 1)δ1 − n2δ2]+, t

′
1 = [t− n1δ1 − (n2 − 1)δ2]+ and [x] denotes the integer part of x.

D Example

In the following, the survival function is plotted for different values of parameters, α > 1, β, δ1, δ2 and

p. First, setting δ1 = 2, δ2 = 1, α = 1, β = 0.5 and varying the values of p, the survival function of

the generalized δ-shock model based on Polya process can be calculated. From 1, we can see that the

survival function decreases gradually with the increase of p for any t > 0. This is because that the

system needs a longer time to recover from a type 1 shock than from a type 2 shock, and the increase

of p means the proportion of type 1 shock increases in the shock process and the system is more easily

destroyed by the shocks.

The next, setting δ1 = 2, δ2 = 1, α = 1, p = 0.5 and varying the values of β, the survival function

of the generalized δ-shock model based on Polya process can be calculated. From 2, we can see that

the survival function decreases gradually with the decrease of β for any t > 0. Because both types of

shocks occur with the same probability, then the system needs a longer time to recover from both types

of shocks, and the decrease of β means the proportion of both types of shocks increase in the shock

process and the system is more easily destroyed by the shocks.
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Figure 1: The survival function R(t) with δ1 = 2, δ2 = 1, α = 1, β = 0.5, and for different p.

Figure 2: The survival function R(t) with δ1 = 2, δ2 = 1, α = 1, p = 0.5, and for different β.

E Conclusion

In this paper, we have discussed a generalized δ-shock model with two types of shocks. By assuming

that the shocks are generated by Polya process, and the recovery times for the two types shocks are δ1

and δ2, respectively. We have derived explicit expressions for the survival function of the system. This

paper assumes that the two types of shocks occure independently but the interarrival times between

shocks are exchangeable and dependent.
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A Study on Methods for Estimating the Parameters of the
Exponentiated Weibull Distribution Under Randomly

Right Censored Data Based on Misspesification of Model
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Abstract: Exponentiated Weibull distribution introduced as an extention of the weibull distribution is

derived usefull applications in reliability and survival studies. In this paper, we compared the maximum

likelihood estimator(MLE), the approximate maximum likelihood estimator(AMLE) and the approxi-

mate maximum likelihood Jackniffe estimator(AMLJE) of the parameters of the exponentiated weibull

distribution in case of the randomly right censored data. The performance of the MLE, AMLE and

AMLJE are compared by the simulation study. Simulation study show that, AMLE and AMLJE be

have better than MLE when the proposed model is misspecified and thay are not better when not so.

Keywords Exponentiated Weibull distribution, approximate maximum likelihood , Right censord data.

Mathematics Subject Classification (2010) : 62N02, 62N01.

A Introduction

The exponentiated Weibull(EW) distribution introduced by Mudholkar and Srivastava (1993) as an

extension of the Weibull distribution, is characterized by unimodal failure rates besides a broader class

of monotone failure rates. The applications of the EW distribution in reliability and survival studies

were illustrated by Mudholkar et al. (1995). Its properties were studied in detail by Mudholkar and

Hutson (1996) and Nassar and Eissa (2003, 2004).They denoted useful applications of the distribution in

the modeling of flood data and in reliability. Singh et al. ( 2005a, 2005b) obtained Bayes estimators of

the parameters, reliability function and hazard function for EW distribution type II censored data under

squared error. Jaheen and Al Harbi (2011) discussed Bayesian estimation based on dual generalized

order statistics from the EW distribution. Ashour and Afify (2007) analyzed EW distribution life time

data observed under type I progressive interval censoring with random removals. Ashour and Afify

(2008) derived MLEs of the parameters of the EW distribution and their asymptotic variance for type

II progressive interval censoring with random removals. A random variable X is said to have a three

parameter EW distribution if its probability density function and cumulative distribution function are

1Parisa Torkaman: p.torkaman@malayeru.ac.ir



h(x) = αβ
xβ−1

θβ
e
− xβ

θβ (1− e
− xβ

θβ )α−1, x > 0, α > 0, β > 0, θ > 0,

and

H(x) = (1− e
− xβ

θβ )α, x > 0, α > 0, β > 0, θ > 0,

respectively, where α and β are the shape parameters and θ is the scale parameter. Because it was

not always facing with complete data, it is also important to study the parameters estimation for

incomplete data. Including incomplete data, we can refer the randomly right censored data that are

of high standing because of saving time, money and also having vast applications in time-life tests,

survival analysis and reliability theory. Although a considerable number of studies have been made on

parametric estimation for censored data, little attention has been given to the misspecification of the

parametric model. Our main concern are to consider the parametric estimation of the EW distribution

under the misspecification. This idea of parametric estimation based on censored data was first proposed

by Oakes(1986), and which is reffered to as approximate maximum likelihood procedured In parametric

estimation, the Kullback-Leibler information is used as a measure of the divergence a true distribution

relative to the proposed parametric model.

B Main results

Suppose that X1, X2, ..., Xn are i.i.d. random variables from an unknown distribution H(x) with prob-

ability density h(x). Parametric inference is done within an assumed parametric family of densities

A = {f(x, θ), θ ∈ Θ}. If A contains h, there exists θ0 ∈ Θ such that, h(x) = f(x, θ0), and θ0 is called

the true parameter value and the proposed model is wellspecified, otherwise, the proposed model is

misspecified, On the other hand, if h(x) is not contained in A, we can obtained nearest f(x, θ) to the

true density h(x) by the Kullback-Leibler information. This means that a purpose of the MLE is to

find a parameter θ which minimizes the Kullback-Leibler information

KL(h(.), f(., θ)) =

∫
h(x) log

h(x)

f(x, θ)
dx, (B.1)

which is a measure of the divergence of h(x) relative to f(x, θ). Under suitable regularity conditions, the

maximum likelihood estimators(MLE), which is defined as a value of θ ∈ Θ is obtained from derivation

of logarithm of the likelihood function. So, MLE is converged to θ0 which is true parameter of data,

and data is generated from it, which is a parameter value minimizing(2.1).

In the analysis of lifetime data, an important problem is censorship of observations. For i = 1, ..., n,

suppose that Xi and Yi for be random variables which represent a lifetime and a censoring time of the

i-th individual, respectively. In lifetime data analysis, Xi and Yi are not observed. We can observe

(Zi, δi) = (min(Xi, Yi), I(Xi ≤ Yi)),
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where I(B) denotes the indicator function of the set B. The set of observations (Zi, δi), i =

1, .., n is called randomly right censored data in survival and reliability theory. Note that Xi’ s are

independent of Yi’s. G(y) where g(y) and are an unknown distribution and the probability density

function. respectively. Let Y1, Y2, ..., Yn are i.i.d. from G(y).

F̂n(x) = 1−
n∏

i=1

[1− δi
n− i+ 1

]I(Z(i)≤x),

where Z(1) ≤ Z(2) ≤ ... ≤ Z(n) are the order values of Zi and δi denotes the concomitaint associated with

Z(i). In the uncensored case the Kaplan-Meier estimator F̂n(x) coincides with the empirical distribution.

The parametric model A is assumed for the distribution of Xi, the log likelihood function is given by

Lfn(θ) =

n∑
i=1

{δi log f(Zi, θ) + (1− δi) log F̄ (Zi, θ)}, (B.2)

where F̄ (Zi, θ) =
∫
I(u > z)f(u, θ)du. The maximum likelihood estimator is an element θ̂n ∈ Θ

which attains the maximum likelihood value if ln(θ) in Θ. When data are complete , the MLE is a

consistent estimator of minimizing (2.1). Under random censorship, θ̂n is not suitable estimator when

A does not contain h. Oakes (1986) introduced the approximate maximum likelihood estimator to

parametic estimation based on censored data. Therefore, we consider another estimator θ̂∗n, which is

defined as an element in Θ which maximizes

Lf∗
n(θ) = n

∫
log f(x, θ)dF̂n(X), (B.3)

When all Xi’s are observable, the log-likelihood function can be expressed as

n∑
i=1

log f(xi, θ) = n

∫
log f(x, θ)dFn(X),

Thus Lf∗
n(θ) is a natural extension to the censored data in the sense that the empirical distribution Fn

is replaced by the Kaplan-Meier estimator F̂n. In case of complete data, Lf∗
n(θ) = Lfn(θ) and therefore

θ̂∗n = θ̂n.

Stute and Wang (1993) proved the law of large numbers of the Kaplan-Meier integral. The following

theorem, using Suzukawa’ assumptions( Suzukawa et al. (2001)) is shown.

Under the conditions (A1)-(A7), the AMLE (θ̂∗n) converges to θ
∗
0 in probability as n −→ ∞. where

θ∗0 gives the neast density function in A to the true density function. Suzukawa et al. (2001) consis-

tency and asymptotic normality of the AMLE under the misspecification of the proposed model and it

converges to θ∗0 in probability that which is a parameters value minimizingis (2.1). So if the proposed

model is wellspecified and in case uncensored θ0 = θ∗0 .

Mauro (1985) and Stute(1994) pointed out, for every integrable φ,
∫
φ(x)dF̂n(x) has a nonnegligible

bias as an estimator of
∫
φ(x)h(x)dx . ∫

φdF̂n(x) +Knφ(Z(n))
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as an estimator of
∫
φ(x)h(x)dx, where

Kn =
n− 1

n
δ(n)(1− δ(n))

n−2∏
j=1

(
n− 1− j

n− j
)δ(j) .

Thay showed that this estimator has smaller bias than
∫
φ(x)dF̂n(x) for φ(x) = x.

We consider an estimator θ∗JK
n which attains the maximum of Lf∗JK

n (θ) in Θ, where

Lf∗JK
n (θ) = Lf∗

n(θ) + nKn log f(Z(n), θ). (B.4)

So, we discuss comparision of the mentioned estimators based on a simulation study for the EW distri-

bution. We assume that Xi’s denote the EW distribution as follow:

h(x) = αβ
xβ−1

θβ
e
− xβ

θβ (1− e
− xβ

θβ )α−1,

and the censoring time Yi’s draw independently of the Xi’s are as follow:

g(y) = β
xβ−1

θβ
e
− xβ

θβ ,

and the proposed model is A = {f(x, θ) = 1
θ
exp(−x

θ
), θ > 0}.

Therefore, the MLE, AMLE and AMLJE are obtained as (2.2), (2.3) and (2.4), respectively, as follow:

θ̂n =

∑n
i=1 Zi∑n
i=1 δi

,

θ̂∗n =
n∑

i=1

WiZ(i),

θ∗JK
n =

KnZ(n) +
∑n

i=1WiZ(i)

1 +Kn
,

where Wi =
δ(i)

n−i+1

∏i−1
j=1(

n−j
n−j+1

)δ(i) . Based on Monte Carlo simulation a comparision these estimators

for the EW distribution. We derive mean square errors(MSEs) of these three estimators under right

censorship. Based on generating one thousand replications of samples of size n = 50, 100, 150, 200

from the EW distribution with parameters (α ,β)=(1,1/3),(1,1), (3/2,1) and (5/4,3/2), the MSEs are

computed. For a fixed θ = 3.00 the MSEs are observed in Table 1. Its worth to mention that the

inversion method is used to generate samples from the EW distribution. So the sample is generated by

solving following equation

(1− e
− xβ

θβ )α − u = 0,

where u ∼ U(0, 1) with ”uniroot” function in R statistical program. The smallest MSE is written in

blod script.

From Table 1, we can see the MSEs for α = 1 and β = 1(denote the proposed model is wellspecified)

the MLE is better than AMLE and AMLJE and when α and β are far from one, the propsed model is

misspecified therfore the result show that the smallest value of MSE for AMLE and AMLJE , so thay

are better than the MLE. Also, AMLJE is better than AMLE in case of heavy censorship. On the other
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hand, if the censoring probability is large, AMLJE is best.

In this paper we discussed that the proposed model must be checked carefully in analysis of censored

data. the result of this study can be shown that if the value of MLE and AMLE are significantly

different for large n, the possibility of misspecification is strong.

Table 1: Simulation results for MSEs of the MLE, the AMLE and the AMLJE , θ = 3.00

(α,β) (1,1/3) (1,1) (3/2,1) (5/4,3/2)

P(d=0) 0.42 0.31 0.38 0.26

θ̂n 1.925 1.409 2.897 5.712

n=50 θ̂∗n 1.422 1.898 0.613 1.176

θ̂∗JK
n 1.663 1.896 0.642 1.022

θ̂n 1.925 0.409 2.6603 4.699

n=100 θ̂∗n 1.421 1.598 0.513 1.124

θ̂∗JK
n 1.401 1.896 0.628 1.330

θ̂n 1.273 0.258 5.002 5.021

n=150 θ̂∗n 1.241 1.8985 1.301 0.421

θ̂∗JK
n 1.236 1.896 1.802 0.047

θ̂n 0.889 0.210 4.663 4.052

n=200 θ̂∗n 0.8741 1.496 1.020 1.211

θ̂∗JK
n 0.798 1.520 1.108 1.211
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