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Preface

Phrases such as “evidential inference” and “statistical evidence”, which one encounters
in resent statistics literature refer to a new statistical paradigm, in which statistical
inference is based only one probabilistic model and data and is not affected by subjective
components such as loss functions and prior distributions. The forerunner of this select is
(retired) professor Richard M. Royall, whose book titled “Statistical Evidence” subtitled
“A Likelihood Paradigm” contains the first principles of this new methodology of statistical
inference. Although the principle axis of this approach is the likelihood function, it not
only depends on “Likelihood Principle”, it is also shaped by another similar (but different)
principle, called “The Law of Likelihood”. Tests and confidence intervals (these names
are appropriate in this new methodology) are defined and interpreted quite differently as
compared with these ideas in classical statistics. Although this paradigm has his own critics
(some of whom express their dissatisfaction with Royall’s methods in the discussion par of
Royall (2000), is seems quite possible that this new school of statistical inference is going to
find place among other school such as Bayes and Neyman-Pearson.)

Mahdi Emadi (Chair)
June 2019
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Goodness of Fit Test based on Statistical Evidence for

Scale Family with Censored Data

Habibirad, A. 1

1Department of Statistics, School of Mathematical Sciences, Ferdowsi University of Mashhad

Abstract

The life distributions coming from scale family are of great significance in the area
of life testing studies, which has attracted interest from many researchers. Moreover,
goodness of fit procedures have been developed in the literature when the available
samples are censored. In this paper, a new test statistic based on statistical evidence
is proposed to goodness of fit test the distributions from the scale family with censored
data. The simulation results in order to compare the test powers are presented and
finally, the use of the proposed test is shown in some illustrative examples.

Keywords: Censored data, Goodness of fit test, Statistical evidence.

1 Introduction

The goodness of fit, of a statistical model describes how well it fits into a set of observations.
The goodness of fit indices summarize the discrepancy between the observed values and the
values expected under a statistical model. It is used to test if sample data fits a distribution
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from a certain population. In other words, it tells us if our sample data represents the data
we would expect to find in the actual population.
The statistical analysis of what are variously referred to as lifetime, survival time, or failure
time data is an important topic in many areas, including the biomedical, engineering, and
social sciences. Applications of lifetime distribution methodology range from investigations
of the durability of manufactured items to studies of human diseases and their treatment.
Some methods of dealing with lifetime data are quite old, but starting about 1970 the field
expanded rapidly with respect to methodology, theory, and fields of application. Software
packages for lifetime data analysis have been widely available since about 1980, with the
frequent appearance of new features and packages.
Suppose, in a life-testing experiment, n items are placed on the test. The failure times
observed from such a life-test, X(1) ≤ ... ≤ X(n), are the order statistics from a random
sample of size n from a parametric distribution with probability density function (pdf)
f(x; θ) and cumulative distribution function (cdf) F (x; θ), where θ ∈ R. However, one may
not continue the experiment until the last failure since the waiting time for the final failure
is unbounded (Muenz and Green, 1977). For this reason, in some cases, the life-testing
experiment is usually terminated when the rth failure, X(r), is observed, which is referred
to as a type II censoring scheme. This censoring model saves time and cost, but some
information about the underlying parameters is lost in the censored data (Zheng and Park,
2004). So, the inference based on type II censored data will naturally be less efficient than
that based on the complete data of n observations. More than the above specified scheme,
there exist some other different sorts of censoring schemes such as random censoring, hybrid
censoring (Epstein, 1954) and progressively type II censoring (Balakrishnan and Aggarwala,
2000).
Let X(1), ..., X(n) denote the ordered values of the random sample X1, ..., Xn (failure times).
In type II plan, observations terminate after the rth failure occurs. So we only observe the
r smallest observations in a random sample of n items. The likelihood function based on
X(1), ..., X(r) is given by (Arnold et al. 1992)

LtypeII =
n!

(n− r)!

r∏
i=1

f(Xi)[1− F (xr)]
(n−r).

An important role of the statistical analysis in science is interpreting observed data as
evidence, that is assessing What do the data say?
Although standard statistical methods (hypothesis testing, estimation, confidence intervals)
are routinely used for this purpose, the theory behind those methods contains no defined
concept of evidence and no answer to the basic question when is it correct to say that a
given body of data represent evidence supporting one statistical hypothesis against another?
(Royall, 1997, 2000). Emadi and Arghami (2003) and Emadi et al. (2007) have studied
some measures of support of statistical hypotheses. Doostparast and Emadi (2006), Arashi
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and Emadi (2008) have studied some measures of support of statistical hypotheses based on
independent and identically distribution (iid) observations and record statistics. Habibirad
et al. (2006) generalized the concept of expected true statistical evidence based on the
law of likelihood. So, when the objective of the study is to produce statistical evidence
for one hypothesis against another, it is desirable to have a measure of performance of the
experiments E1 and E2.
If the experimenters object is obtaining statistical evidence about some competing
hypotheses, then she/he would like to know the potential true evidence in the available
data.
The outline of this paper is as follows. In Section 2, we specify the scale family as model and
the likelihood functions based on type II censored data. The criteria of statistical evidence
introduce in Section 3, and we show the exponentiality test and Rayleigh tes results under
weibull alternative distribution by a simulation study in Section 4. The performance of the
considered tests for a real data is evaluated in section 5.

2 Introducing the Model

We consider the distribution from the scale family with probability density function (pdf)
f(x; θ) and the cumulative distribution function (cdf) F (x; θ) given by

f(x; θ) =
1

θ
g(
x

θ
); x > 0; θ > 0,

and

F (x; θ) = G(
x

θ
);x > 0; θ > 0,

respectively, where θ is the scale parameter, and the g(x) and G(x) are the standard pdf and
cdf for the scale family respectively. So the likelihood function based on X(1), ..., X(r) is

LtypeII =
n!

(n− r)!
(
1

θ
)r

r∏
i=1

g(
xi
θ
)[1−G(

xr
θ
)](n−r)

where r is the number of failures.

Consider the following hypotheses

H0 : f(x) = f0(x, θ) v.s. H1 : f(x) ̸= f0(x, θ),

where f0(x, θ) is the distribution from the scale family and the unknown θ, will be estimated
by the maximum likelihood estimator.
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2.1 Exponentiality Test

A large number of recent results pertaining to lifetime tests are obtained based on the
assumption that the lifetime of a system is described by an exponential distribution. Testing
methods to detect exponential distribution patterns still attract much attention and are the
topic of a large amount of recent researches. Many authors provide test statistics for detecting
departures from the hypothesis of exponentiality against specific or general alternatives. For
example, see Hanis (1976), Henze and Meintanis (2002b), Ebrahimi et al. (1992), Ebrahimi
(1998) and Baratpour and Habibirad (2012).
A random variable X follows the exponential distribution if and only if it has pdf and cdf,
respectively

f0(x, θ) =
1

θ
e−

x
θ , F0(x, θ) = 1− e−

x
θ ,

where, x > 0, θ > 0, and θ is unknown.
Then, the likelihood function associated with type II censored data is as

LTypeII(θ) =
n!

(n− r)!
(
1

θ
)r exp

(
− 1

θ

[ r∑
i=1

x(i) + (n− r)x(r)

])
, (2.1)

where r is the number of failures and the maximum likelihood estimator of θ is

θ̂ =
r∑

i=1

x(i)/r.

2.2 Rayleigh Test

The Rayleigh distribution is a special case of the Weibull distribution with a scale parameter
of 2 and a suitable model in various areas including reliability, life testing, and survival
analysis. The square of a Rayleigh random variable with a shape parameter 1 is equal to a
chi square random variable with 2 degrees of freedom. Also, the square root of an exponential
random variable has the Rayleigh distribution. Also, the Rayleigh distribution is widely used
in the physical sciences to model wind speed, wave heights and sound/light radiation and has
been used in medical imaging science, to model noise variance in magnetic resonance imaging.
For more information about the applications and properties of the Rayleigh distribution, we
refer the interested readers to Siddiqui (1962) and Johnson et al. (1994).
A random variable X follows the Rayleigh distribution if and only if it has pdf and cdf,
respectively

f0(x; θ) =
x

θ2
exp

(
− x2

2θ2

)
, F0(x) = 1− exp

(
− x2

2θ2

)
,
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where, x > 0, θ > 0, and θ is unknown.
Then, the likelihood function associated with Type II censored data is as

LtypeII(θ) =
n!

(n− r)!
(
1

θ
)2rΠxi exp

(
− 1

2θ2

[ r∑
i=1

x2(i) + (n− r)x2(r)

])
, (2.2)

where r is the number of failures. It is easy to show that the maximum likelihood estimator
of θ is

θ̂ =

√√√√ r∑
i=1

x2(i)/2r.

3 Creteria Statistical Evidence

Statistical evidence is represented and interpreted by the law of like-lihood and its strength
is measured by the likelihood ratio. The law of likelihood explains that the strength of
statistical evidence for one hypothesis over another is measured by their likelihood ratio,
(Blume, 2002).
Let p(x; θ) be the joint pdf of n iid observations from a distribution with pdf f(x; θ), then
the likelihood ratio

λ =
p(x; θ0)

p(x; θ1)

measures the strength of evidence favorable to the simple hypothesis H0 : θ = θ0 against the
simple hypothesis H1 : θ = θ1, (Royall, 1997, 2000).
Another measure of expected true statistical evidence, we use abc(η), defined by Emadi and
Arghami (2003), as

abc(η) = E0(η)− E1(η), (3.1)

where η = λ/(1 + λ) and Ei(η) is the expected value of η under Hi, i = 0, 1.
Suppose E1 and E2 are two experiments (or sampling schemes) with (approximately) the
same cost, having outcomes x and y, which are the realizations of random vectors X and Y
, with densities p(x; θ) and q(x; θ), respectively, where θ is an unknown parameter.
When the objective of the study is to produce statistical evidence for one hypothesis against
another (in the above sense), it is desirable to have a measure of performance of the
experiments E1 and E2. This can be defined as, (Habibirad et al., 2006)

Sφ(E) = Eθ0φ(λ) + Eθ1φ(1/λ),

where φ(.) is a non decreasing function.
(i) If

φ(t) =

{
1, t ≥ K
0, t < K

(3.2)
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Sφ(E) is the sum of the probabilities of observing strong true evidence under H0 and H1, as

S1φ(E) = Pθ0(λ ≥ K) + Pθ1(λ < 1/K),

where K is arbitrary and is usually between 8 and 32 (Royall, 1997).
(ii) If φ(t) = t/(1 + t), then

S2φ(E) = abc(E)

the area between the cumulative distribution function (cdf) curves (under H0 and H1) of
η = λ/(1 + λ) (Emadi and Arghami, 2003).
(iii) If φ(t) = log(t), then

S3φ(E) = Eθ1

[
log

p(X; θ1)

p(X; θ0)

]
+ Eθ0

[
log

p(X; θ0)

p(X; θ1)

]
= D(pθ1 , pθ0) +D(pθ0 , pθ1)

= J(pθ1 , pθ0), (3.3)

where D(pθ1 , pθ0) and J(pθ1 , pθ0) are, respectively, asymmetric and symmetric
KullbackLeibler divergance (information) of pθ1 and pθ0 . In this article, it is the last of
the above three criteria that we shall use by Sφ(E).

4 Simulation

In this part, we conducted a simulation study to compute λ, S1φ, S2φ and S3φ as four
criteria in statistical evidences. We considered n = 10, 15 and 20 for some different r,
(r ⩽ n). We used 50,000 Monte Carlo simulations to compute mentioned creteria. The
results for exponential and Rayleigh tests with Weibull alternative are presented in Tables
1 and 2, respectively.
The results in Tables 1 and 2 show, statistical evidence supports the H0 more than H1 and
obviously, when the value of n and r increase, the statistical evidence for supporting the H0

is increasing, too.
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Table 1: Evidencial criteria for exponentiality test when alternative is
Weibull.

W(0.5) W(1.5)

n r λ S1φ S2φ S3φ λ S1φ S2φ S3φ

10
5 3.168 0.602 0.366 3.273 20.273 1.101 0.179 1.112
7 9.479 0.638 0.524 4.564 37.949 1.130 0.261 1.545
9 33.518 0.891 0.651 6.023 52.387 1.120 0.338 2.002

15
8 5.289 0.339 0.451 6.283 147.612 1.313 0.245 2.122
12 58.673 0.717 0.727 8.572 468.712 1.428 0.409 2.850
14 225.414 0.973 0.807 10.063 664.298 1.139 0.480 3.319

20
10 55.18 0.484 0.406 8.823 128.454 1.530 0.235 2.976
15 104.257 0.593 0.757 11.368 160.760 1.378 0.450 3.773
18 756.351 0.926 0.865 13.122 532.720 1.182 0.558 4.364

Table 2: Evidencial criteria for Rayleigh Ttest when alternative is Weibull.

W(0.5)

n r λ S1φ S2φ S3φ

10
5 7.935 0.213 0.261 8.645
7 42.836 0.236 0.358 13.247
9 322.458 0.289 0.462 18.889

15
8 96.47 0.081 0.187 17.278
12 227.015 0.173 0.345 25.980
14 480.672 0.232 0.414 32.363

20
10 12.348 0.031 0.104 24.568
15 178.779 0.113 0.245 34.443
18 472.420 0.194 0.350 42.173
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5 Real example

Lawless (2011) analyzed an example with data presented in Wilk et al. (1962). These data
consisted of lifetimes of transistors obtained from an accelerated life test. The lifetimes
are singly type II censored and come from a sample of size n = 34, with three censored
observations. The lifetimes (in weeks) are given in Table 3 (three of them are censored and
denoted by asterisks). As can be seen, the data are heavily rounded off.
We computed the introduced criteria in Section 3 for the real data set in Table 3 and
presented the results in Table 4.
The results of Table 4 indicate evidencial criteria for real data set, λ, S1φ, S2φ and S3φ,
support that H0 hypothesis versus H1. Thus it is concluded that the data is from an
exponential distribution with type II censored data.

Table 3: Wilk data

3 4 5 6 6 7 8 8 9 9 9 10 10 11 11 11 13

13 13 13 13 17 17 19 19 25 29 33 42 42 52 52* 52* 52*

Table 4: Evidencial criteria for the real data set

W(0.5) W(0.7) W(1.5)

λ 13842.5 106.009 5.848
S1φ 1.049 1.50 0.558
S2φ 0.984 0.835 0.711
S3φ 27.595 8.3565 4.761



Habibirad, A. 17

References

[1] Ahmad, I. A., & Alwasel, I. A. (1999). A Goodnessoffit Test for Exponentiality Based on
the Memoryless Property. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 61(3), 681-689.

[2] Alwasel, I. (2001). On goodness of fit testing of exponenttality using the memoryless
property. Journal of Nonparametric Statistics, 13(4), 569-581.

[3] Arashi, M. & Emadi, M. (2008). Evidential inference based on record data and inter-
record times. Statist. Papers, 49, 291-301.

[4] Arnold, B. C., Balakrishnan, N., & Nagaraja, H. N. (1992). A first course in order
statistics (Vol. 54). Siam.

[5] Balakrishnan, N., Balakrishnan, N., & Aggarwala, R. (2000). Progressive censoring:
theory, methods, and applications. Springer Science & Business Media.

[6] Balakrishnan, N., Rad, A. H., & Arghami, N. R. (2007). Testing exponentiality based
on Kullback-Leibler information with progressively Type-II censored data. IEEE
Transactions on Reliability, 56(2), 301-307.

[7] Baratpour, S., & Rad, A. H. (2012). Testing goodness-of-fit for exponential distribution
based on cumulative residual entropy. Communications in Statistics-Theory and
Methods, 41(8), 1387-1396.

[8] Blume, J. D. (2002). Likelihood methods for measuring statistical evidence. Statistics
in Medicine, 21, 2563-2599.



The First Seminar on Evidential Inference 18

[9] Doostparast, M. & Emadi, M. (2006). Statistical evidence methodology for model
acceptance based on record values. J. Korean Statist. Soc., 35, 167-177.

[10] Ebrahimi, N., Habibullah, M., & Soofi, E. S. (1992). Testing exponentiality based
on Kullback-Leibler information. Journal of the Royal Statistical Society. Series B
(Methodological), 739-748.

[11] Epstein, B. (1954). Truncated life tests in the exponential case. The Annals of
Mathematical Statistics, 555-564.

[12] Emadi, M., Ahmadi, J. & Arghami, N. R., (2007). Comparing of record data and
random observation based on statistical evidence. Statist. Papers, 48, 1-21.

[13] Emadi, M. & Arghami, N. R. (2003), Some measures of support for statistical
hypotheses. J. Stat. Theory Appl., 2, 165-176.

[14] Habibirad, A. H., Yousefzadeh, F., & Balakrishnan, N. (2011). Goodness-of-fit test
based on Kullback-Leibler information for progressively Type-II censored data. IEEE
Transactions on Reliability, 60(3), 570-579.

[15] Habibirad, A., Arghami, N. R. and Ahmadi, J. (2006). Statistical evidence in
experiments and in record values. Comm. Statist.-Theory Meth., 35, 1971-1983.

[16] Lawless, J. F. (2011). Statistical models and methods for lifetime data (Vol. 362).
John Wiley & Sons.

[17] Muenz, L. R., & Green, S. B. (1977). Time savings in censored life testing. Journal of
the Royal Statistical Society. Series B (Methodological), 269-275.

[18] Noughabi, H. A., & Balakrishnan, N. (2015). Goodness of fit using a new estimate of
Kullback-Leibler information based on Type II censored data. IEEE Transactions on
Reliability, 64(2), 627-635.

[19] Royall, R. (1997). Statistical Evidence: A Likelihood Paradigm. London: Chapman &
Hall, New York.

[20] Royall, R. (2000). On the probability of observing misleading statistical evidence. J.
Amer. Statist. Assoc., 95, 760-780.

[21] Torabi, H., Montazeri, N. H., & Gran, A. (2018). A wide review on exponentiality tests
and two competitive proposals with application on reliability. Journal of Statistical
Computation and Simulation, 88(1), 108-139.



Habibirad, A. 19

[22] Wilk, M. B., Gnanadesikan, R., & Huyett, M. J. (1962). Estimation of parameters of
the gamma distribution using order statistics. Biometrika, 49(3/4), 525-545.

[23] Yousefzadeh, F., & Arghami, N. R. (2008). Testing exponentiality based on type II
censored data and a new cdf estimator. Communications in Statistics-Simulation and
Computation, 37(8), 1479-1499.

[24] Zheng, G., & Park, S. (2004). On the Fisher information in multiply censored and
progressively censored data. Communications in Statistics-Theory and Methods, 33(8),
1821-1835.



Evidence Tests and Optimal Sample Size

Determination for Risk Measures

Yousefzadeh, F. 1

1Department of Statistics, Faculty of Mathematics and Statistics, University of Birjand

Abstract

In actuarial applications we often work with risk measures for insurance products.
In this paper, some criteria based on statistical evidence are proposed to test a risk
measures. Optimal sample size in which the substantial evidence reaches a desired
level is determined. Also, a simulation is presented to illustrate the results.

Keywords: Evidence test, Empirical Likelihood, Jackknife, Risk measure.

1 Introduction

In life insurance and finance, quantifying risks is an essential task to price an insurance
product or manage a financial portfolio. In general, a risk measure is erected to be a mapping
from a set of risks to the set of real numbers. Some well known risk measures include coherent
risk measures (Yaari (1987); Artzner (1999)), distortion risk measures, Wangs premium
principle, and proportional hazards transform risk measures; see Wang et al (1997); Wang
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(1998); Wirch and Hardy (1999), and Necir and Meraghni (2009) for references. Jones and
Zitikis (2003) defined a large class of risk measures associated with a risk variable X with
distribution function F as,

R(F ) =

∫ 1

0

F−1(t)ψ(t)dt, (1.1)

where the generalized inverse function of F is denoted by F−1 , and ψ is a non negative
function chosen for showing the objective opinion about the risk loading. Different choices of
ψ result in different risk measures. For example, tail value-at-risk has ψ(t) = I(t > α)/(1−α)
with 0 < α < 1, the proportional hazards transform risk measure has ψ(t) = r(1− t)r−1, and
Wangs premium principle has ψ(t) = g′(1− t), where g is an increasing convex function with
derivatives over [0, 1]; see Jones and Zitikis (2003) for details. Other choices of the function
ψ can be found in Jones and Zitikis (2007). Jones and Zitikis (2003) also introduced a
related quantity to illustrate the right tail, left tail, and two sided deviations, which is defined
as

r(F ) =
R(F )

E(X)
. (1.2)

Note that the general definition of distortion measures as mentioned in Wang and Young
(1998) and Wirch and Hardy (1999) includes the two widely used risk measures: value-at-
risk (VaR) and tail value-at-risk (T-VaR). However the class defined by (1.1) excludes the
VaR.
In this paper, we focus on the evidence tests of the risk measure and its related quantity
defined in (1.1) and (1.2), respectively.
Statistical inference for R(F ) and r(F ) plays an important role in the applications of risk
measures. nonparametric estimation by replacing F−1 and E(X) by the sample quantile
function and sample mean, respectively, are proposed by Jones and Zitikis (2003) and
he derived the asymptotic normality. Therefore, confidence intervals for R(F ) and r(F )
can be constructed via estimating the asymptotic variance. For comparing the two risk
measures. Jones and Zitikis (2007) investigated the nonparametric estimation of the
parameter associated with distortion-based risk measures. In this paper we investigate the
possibility of applying an empirical likelihood method for constructing nonparametric tests
for R(F ) and r(F ). The empirical likelihood method is a nonparametric likelihood approach
for statistical inference, which has been shown to be powerful in interval estimation and
hypothesis testing. We refer to Owen (2001) for an overview of the method. However,
it is known that the empirical likelihood method is not effective in dealing with nonlinear
functionals. Recently, Jing et al (2009) proposed a so called jackknife empirical likelihood
method to deal with nonlinear functionals. ? formulate a jackknife sample based on
estimating the nonlinear functional and then apply the empirical likelihood method for a
mean to the jackknife sample. Since the risk measure R(F ) and its related quantity r(F )
are nonlinear functionals, we propose employing the jackknife empirical likelihood method
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to use in evidence tests, for these two quantities. Note that the profile empirical likelihood
method can be employed for some special risk measures such as VaR and T-VaR because
one can simply linearize them; for a study of VaR and T-VaR see Baysal and Staum (2008).
Interpreting observed data as evidence has a key role of the statistical analysis in science,
that is assessing What do the data say? Although standard statistical methods (hypothesis
testing, estimation, confidence intervals) are routinely used for this purpose, the theory
behind those methods contains no defined concept of evidence and no answer to the basic
question when is it correct to say that a given body of data represent evidence supporting
one statistical hypothesis against another? (Royal (2000).
Let p(x, θ) be the joint probability density function (pdf) of n iid observations from a
distribution with pdf f(x, θ) then the likelihood ratio

λ =
p(x, θ0)

p(x, θ1)
,

measures the strength of evidence favorable to the simple hypothesis H0 : θ = θ0 against
the simple hypothesis H1 : θ = θ1, (Royal (2000)). Some measures of support of statistical
hypotheses have been studied by Emadi and Arghami (2003) and Emadi et al (2007).
Doostparast and Emadi (2006), Arashi and Emadi (2008) have studied some measures of
support of statistical hypotheses based on independent and identically distribution (iid)
observations and record statistics. Habibirad et al (2006) generalized the concept of
expected true statistical evidence based on the law of likelihood. Hashempour (2017) studied
the statistical evidences in lifetimes of dynamic r-out-of-n systems, which are modeled by
sequential order statistics (SOS).
To produce statistical evidence for one hypothesis against another one can find a measure of
performance of the experiments for the objective of the study . This can be defined as

Sφ(E) = Eθ0(φ(λ)) + Eθ1(φ(1/λ)),

where φ(.) is a non decreasing function.
(i) If

φ(t) =

{
1 if t ≥ k,
0 if t ≤ k,

Sφ(E) is the sum of the probabilities of observing strong true evidence under H0 and H1,
where K is arbitrary and is usually between 8 and 32 (Royall, 1997). (ii) If φ(t) = t

1+t
, then

Sφ(E) = abc(E) the area between the cdf curves (under H0 and H1). (Emadi and Arghami
(2003). (iii) If φ(t) = log(t), then

Sφ(E) = Eθ0

(
log

p(x, θ0)

p(x, θ1)

)
+ Eθ1

(
log

p(x, θ1)

p(x, θ0)

)
= D(pθ0 , pθ1) +D(pθ1 , pθ0)

= J(pθ0 , pθ1)
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where D(.), J(.) are, respectively, asymmetric and symmetric Kullback-Leibler (KL) distance
(information).
The rest of the paper is organized as follows. Section 2, proposes the jackknife empirical
likelihood function based on data for statistical evidence tests. Optimal sample size that
guarantees the evidence reaches a desired level is obtained in Section 3. Then we compute
the average of the proposed criteria under different sample sizes in Section 4.

2 Evidence tests for risk measures

Consider the following hypotheses

H0 : R = R0 V.S. H1 : R = R1

and
H0 : r = r0 V.S. H1 : r = r1

Throughout, we assume that X1, ..., Xn are independent non negative random variables with
continuous distribution function F (x). Put Ψ(t) =

∫ t

0
ψ(s)ds. When R(F ) < ∞, we have

tΨ(1)−Ψ(F (t)) → 0 as t→ ∞. Thus we can write the risk measure defined in 1.1 as

R = R(F ) =

∫ ∞

0

Ψ(1)−Ψ(F (t))dt.

The empirical distribution function as Fn(x) = 1
n
I(Xj ≤ x) is defined. Then Jones and

Zitikis (2003) proposed estimating R(F ) and r(F ) by R̂n =
∫∞
0
(Ψ(1) − Ψ(Fn(t)))dt,

and r̂n =
n
∫∞
0 (Ψ(1)−Ψ(Fn(t)))dt∑n

i=1 Xj
, respectively, and showed that

√
n(R̂n − R) →d N(0, σ2

1)

and
√
n(r̂n − r(F )) →d N(0, σ2

2) under some regularity conditions, where σ2
1 = QF (Ψ,Ψ),

σ2
2 = 1

µ2 (QF (Ψ,Ψ) − 2r(F )QF (Ψ, 1) + (r(F ))2QF (1, 1)) and QF (a, b) =
∫∞
0

∫∞
0
(F (x ∧ y) −

F (x)F (y))a(F (x))b(F (y))dxdy, where a(.), b(.) are two functions on [0, 1].
Here, we apply the jackknife empirical likelihood method developed by Jing et al (2009).
This procedure is easy to implement and is described as follows.
Define Fn,i =

1
n−1

∑n
j=1,j ̸=i I(Xj ≤ x) and R̂n,i =

∫∞
0
(Ψ(1) − Ψ(Fn,i(t)))dt for i = 1, ..., n.

Then the jackknife sample is defined as

Yi = nR̂n − (n− 1)R̂n,i, i = 1, ..., n.

Now, we apply the empirical likelihood method to the above jackknife sample. That is, we
define the jackknife empirical likelihood function for θ = R(F ) as

L1(θ) = sup{
n∏

i=1

(npi) : pi ≥ 0, for i = 1, ..., n;
n∑

i=1

pi = 1;
n∑

i=1

piYi = θ}.
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By the Lagrange multiplier technique, we have pi = (λ1+λ2Yi)
−1, where λ1 = λ1(θ), λ2 =

λ2(θ) satisfies
∑n

i=1
Yi

λ1+λ2Yi
= θ,

∑n
i=1

1
λ1+λ2Yi

= 1.
Next, we consider the related quantity r(F ) = R(F )/µ, where µ = E(X1). Alternatively,
we consider the quantity R − θµ with θ = r(F ). Then, this quantity can be estimated by
R̂n − θn−1

∑n
i=1Xi = R̂n − θ

∫∞
0
xdFn(x).

As before, we define the jackknife sample as

n(R̂n − θ

∫ ∞

0

xdFn(x))− (n− 1)(R̂n,i − θ

∫ ∞

0

xdFn,i(x)) = Yi − θXi.

for i = 1, ..., n, where the Yi are defined as above. So the jackknife empirical likelihood
function for θ = r(F ) is defined as

L2(θ) = sup{
n∏

i=1

(npi) : pi ≥ 0, for i = 1, ..., n;
n∑

i=1

pi = 1;
n∑

i=1

pi(Yi − θXi) = 0}.

Statistical evidence is represented and interpreted by the law of likelihood and its strength
is measured by the likelihood ratio. The law of likelihood explains that the strength of
statistical evidence for one hypothesis over another is measured by their likelihood ratio,
(?). By using (ii), as a measure of expected true statistical evidence, we use Sφ(E), defined
by Emadi and Arghami (2003).Utilizing (iii) we have Sφ(E) measure as symmetric Kullback-
Leibler (KL) distance (information) of p1 and p0 .

3 Optimal sample size

Suppose a random sample X1, ..., Xn are independent non negative random variables with
continuous distribution function F (x). Here, we try to get an optimal value for n by
minimizing PD = min{D1, D2} where D1 and D2 are decisive and correct evidences defined
by

D1 = P (λ ≥ k|H0is true)

and
D2 = P (λ ≤ 1/k|H1is true)

As mentioned by De Santis (2004), a sample size that guarantees PD reaches a desired level
ξ , is often enough to also bound the probabilities of weak and misleading evidences. Hence,
for chosen ξ ∈ (0, 1) and k, we then need to solve the following optimization problem:

n = min{n : PD ≥ ξ}.

As an illustration, Table 1 presents optimal sample size for some selected values of k, ξ.
There are various choices for k. Following De Santis (2004), we considered k = 3, 7, 8 in
Table 1. The optimal sample size is increasing in k and ξ .
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Table 1: Optimal Sample size for R(F ), r(F ) based on some different k, ξ, a

Lognormal Gamma Weibull

ξ k a R r R r R r

0.7 3 0.55 30 20 10 50 25 20
0.85 30 20 10 35 35 55

7 0.55 40 30 10 50 25 25
0.85 35 30 10 35 45 55

8 0.55 40 35 10 50 25 25
0.85 45 35 10 35 40 60

0.8 3 0.55 45 35 15 150 30 40
0.85 55 40 15 55 50 95

7 0.55 55 40 15 140 40 40
0.85 60 45 15 60 55 95

8 0.55 60 45 15 155 35 40
0.85 60 45 15 60 60 100

0.9 3 0.55 80 50 25 220 50 50
0.85 80 55 20 110 70 130

7 0.55 90 60 55 230 50 60
0.85 95 60 20 115 80 135

8 0.55 110 70 55 235 55 65
0.85 110 70 20 115 95 155

4 Simulation study

In this section, we examine the finite-sample behavior of the proposed jackknife empirical
likelihood method in terms of the values of the evident measures, and compare them. We
focus on the proportional hazards transform risk measure with ψ(s) = a(1 − s)(a−1) and
choose a = 0.55, 0.85 for simulation. Since the Lognormal distribution, Weibull distribution,
and Gamma distribution are widely used in fitting the losses data in insurance (see Klugman
et al (2008), data is simulated from these distributions. We draw 10000 random samples of
sizes n = 10, 20, 30. The results are presented in Tables 2 and 3. The results based on three
criteria statistical evidences (i), (ii) and (iii) in Tables 2 and 3 show that simulated data
support that H0 hypothesis versus H1. Evidences based on lognormal distribution for R(F )
is more than r(F ), However that is decreased based on Gamma and weibull distributions.
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Table 2: Computed criteria for R(F ) based on some different n, a

Lognormal Gamma Weibull

n a abc J(pθ0 , pθ1) abc J(pθ0 , pθ1) abc J(pθ0 , pθ1)

10.00 0.55 0.91 11.74 0.38 9.44 0.25 10.87
10.00 0.85 0.45 16.39 0.14 5.11 0.05 7.14
20.00 0.55 0.97 11.91 0.43 10.54 0.31 11.47
20.00 0.85 0.49 16.59 0.16 6.06 0.10 8.11
30.00 0.55 0.98 12.79 0.51 11.83 0.38 12.60
30.00 0.85 0.53 17.29 0.20 7.93 0.12 9.30

Table 3: Computed criteria for r(F ) based on some different n, a

Lognormal Gamma Weibull

n a abc J(pθ0 , pθ1) abc J(pθ0 , pθ1) abc J(pθ0 , pθ1)

10.00 0.55 0.56 12.80 0.69 5.12 0.63 4.11
10.00 0.85 0.27 14.18 0.31 4.32 0.04 0.82
20.00 0.55 0.65 13.38 0.71 6.13 0.66 4.94
20.00 0.85 0.32 14.27 0.35 5.12 0.07 0.89
30.00 0.55 0.75 13.45 0.73 7.42 0.67 5.36
30.00 0.85 0.35 14.72 0.38 6.12 0.20 0.90

5 Real Data Analysis

Grzegorz et al (2005) analyzed auto-insurance bodily injury liability data that are given in
Table 4. The results of Table 5 indicate that based on two criteria statistical evidence (i),
(ii) and real data set support that H0 hypothesis versus H1.

Table 4: Auto-insurance bodily injury liability data

0.045 0.047 0.070 0.075 0.077 0.092 0.117 0.117 0.140 0.145
0.149 0.165 0.167 0.169 0.180 0.180 0.199 0.202 0.212 0.225
0.230 0.242 0.264 0.275 0.285 0.290 0.363 0.384 0.400 0.400
0.413 0.414 0.416 0.425 0.425 0.430 0.430 0.431 0.450 0.460
0.486 0.514 0.531 0.540 0.556 0.564 0.600 0.605 0.605 0.650

Conclusion

In this paper, we have proposed the jackknife empirical likelihood function based on data
for statistical evidence tests. Also Optimal sample size that guarantees the evidence reaches
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Table 5: Computed criteria for R(F ), r(F ) based on some different a

R(F ) r(F )

a abc J(pθ0 , pθ1) abc J(pθ0 , pθ1)

0.55 1.00 13.98 0.49 16.13
0.85 0.94 12.23 0.34 10.87

a desired level is obtained. Then we computed the average of the proposed criteria under
different sample sizes.
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1 Introduction

p-values indicate the probability that departure of some magnitude from the null hypothesis
occurs if the null is actually true. Bayes factors provide a measure of the strength of
the evidence in favor/against the null. For testing any hypothesis about distributional
parameters, Bayes factors are computed from the exact same input that is used to compute
a p-value under null hypothesis significance testing plus, occasionally, the researchers choice
of a prior distribution.

To conduct a Bayesian test, a prior distribution must be chosen. A reasonable prior, in
the point null hypothesis is given by

g(θ) = π0I{θ=θ0}(θ) + (1− π0)g1(θ)I{θ=θ0}(θ) (1.1)

where π0 is prior probability of H0 to be true, I(.) is indicator function and g1(θ) is a
multivariate density function which describes how the prior mass is spread out over the
alternative hypothesis. Using this representation, the weighted likelihood ratio or Bayes
factor in support of H0 against H1 is given by

B(x) =
L(θ = θ0|x)∫

Θ1
L(θ|x)g1(θ)dθ

=
m(x|H0)

m(x|H1)
, (1.2)

where m(x|H0) and m(x|H1) are the marginal likelihood densities of X for H0 and H1,
respectively. Thus the posterior probability of H0 is obtained by

P (H0|x) = [1 +
1− π0
π0

.
1

B(x)
]−1. (1.3)

A reasonable choice for π0, would be 1/2, assigning equal prior probability to the two
hypotheses. However there seems to be no agreeable objective density for g1 which use by
all Bayesian, even though the posterior probability is due to choice of g1 is almost arbitrary.
This criticized by classical statistician and is discussed (Berger and Perichi, (2001, 2004)).

The lower bound of the posterior probability of null hypothesis is given by

P (H0|x) = inf
g1∈G

P (H0|x) = [1 +
1− π0
π0

.
1

inf
g1∈G

B(x,G)
]−1. (1.4)

where G is the class of distribution that g1 is belonging to it. This class of distribution
should be larger enough to include all plausible densities, but not so large that includes
unreasonable densities and also should be impartial towards H0 and H1.

There is a substantial literature on the controversy between Bayesian and Classical
procedures for point null hypothesis testing.The most famous of these difficulties is the
paradox discovered by Jeffreys (1939), Lindley (1957) and Bartlett (1957). This paradox
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arises when parameters from the prior distribution appear in the posterior odds ratio or
Bayes factor, so that reasonable variations in the prior distribution (especially increasing
or decreasing the prior variance) lead to substantial changes in the test results. This leads
to difficulties in specifying scientifically objective prior distributions that could be widely
accepted as appropriate for precise hypothesis testing. A large literature exists attempting
to develop informative priors for precise hypothesis testing that mitigate the practical adverse
effects of the mentioned paradox (see Berger and Perichi, (2001, 2004), Perichi, (2005)). That
these effects can be large in practice, and no satisfactory solution has been found, is a serious
problem for Bayesian hypothesis testing ( Villa and Walker(2017)).

This paper, acording to the work of Chinipardaz and Abtahi(2008), compare p-value
and Bayesian evidence in multivariate normal distribution. In section 2 the lower bound of
posterior probability is considered when the prior distribution is belonged to one of three
important classes. Section 3, draws conclusions. In section 4 the calibrated p-value is adapted
to multivariate normal distribution and compared with lower bound.

2 Lower bound of the posterior probability in three

classes

In this section, the lower bound of the posterior probability of null hypothesis over three
classes of prior distribution are derived and compared with p-value.

2.1 All Distribution (GA))

Theorem 1. Let X1,X2, ...,Xn be a random sample from Nd(θ,Σ) (Σ is known). To test
H0 : θ = θ0 against H1 : θ ̸= θ0 when g1 in GA, then

inf
π∈GA

B(x,GA) = B(x,GA) = exp{−T (x)
2

}, (2.1)

and

P (H0|x,GA) = [1 +
1− π0
π0

.
1

B(x,GA)
]−1 = .[1 +

1− π0
π0

.exp{−T (x)
2

}]−1, (2.2)

where GA is the class of all distributions and T (x) is the observed value of test statistic
in significance test.

Proof. To proof, note that

sup
π∈GA

∫
f(x; θ,Σ)g1(θ)dθ = (

2π

n
)−

d
2 |
∑

|−
1
2 ,
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Because X̄ is the maximum likelihood estimator of θ. Then

inf
π∈GA

B(x,GA) = B(x,GA) =
m(x|H0)

m(x|H1

= exp{−T (x)
2

}.

Table 1 gives some p-value and their corresponding bounds obtained from (6). The table
show that for d ≥ 2 the lower bound is smaller than p-value. It is completely different result
with d = 1 which is given in Berger and Selke (1987). As d tends to be large the lower bound
tends to be zero and yet with fix p-value. Indeed, this result is true for any regular sampling
model and realistic classes of proir densities.

Table 1: Comparison between P (H0|x,GA) and p-value and callibration of
p-value (π0 = 1/2).

p-value 0.001 0.010 0.050 0.100

[1 + (−eplogp)−1]−1 0.0184 0.1113 0.2894 0.3849

d = 1 0.0044 0.0350 0.1278 0.2054

d = 2 0.0010 0.0099 0.0476 0.0909

d = 5 0.0000 5 0.0005 6 0.0039 0.0098

d = 10 0.0000 0.0000 0.0001 0.0003

d = 25 0.0000 0.0000 0.0000 0.0000

d = 40 0.0000 0.0000 0.0000 0.0000

Now let T (x) be a observed valued test for which p-value is p, with some algebra the
following lemma be obtained:

Lemma 1. Under the condition of Theorem 2.1, lower bound is larger than p-value if and
only if

χ2
d(p) ≤ ln(

1− p

p
)2, (2.3)

where χ2
d(p) is the upper p probability point for the chi-square distribution with d degrees

of freedom.

Note that only the left-hand side of equation (7) is clearly depended on degree of freedom.
Therefore, validity of (7) is depend on the dimension of x, In the case of d = 1, the equation
is valid for

|zp| ≤
√
2ln(

1− p

p
), p ≤ 1

2

where zp is the upper p probability point for the normal distribution. The different
inequality is given in theorem 2 of Berger and Selke (1987).
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2.2 Symmetric and Unimodal Distribution

Although using GA is simple and contains all density function, but it may also concludes
unreasonable priors. A reasonable class of g1 would be the class of GUS, unimodal, symmetric
distributions about θ0.

Theorem 2. Suppose X is d-variate normal mean θ = (θ1, θ2, ..., θd)
′ and identity covariance

matrix. To test H0 : θ = θ0 against H1 : θ ̸= θ0 we have

inf
g1∈GUS

B(x,GUS) =
exp{−1

2
(x− θ0)

2}
sup
k

1
v(k)

∫
|θ−θ0|≤k

exp{−1
2
(x− θ)2dθ}

,

and

P (H0|x,GUS) = [1 +
1− π0
π0

.
1

B(x,GUS)
]−1

where v(k) is the volume of a ball of radius k.

Proof. See Delampady (1989).

Table 2 gives some selected values of P (H0|x,GUS), for various d and for t corresponding
to certain p-value.

Table 2: Comparison between P (H0|x,GA) and p-value and callibration of
p-value (π0 = 1/2).

p-value 0.001 0.010 0.050 0.100

[1 + (−eplogp)−1]−1 0.0184 0.1113 0.2894 0.3849

d = 1 0.0179 0.1093 0.2904 0.3916

d = 2 0.0141 0.0891 0.2582 0.3630

d = 5 0098 0.0761 0.2350 0.3391

d = 10 0.0093 0.0721 0.2264 0.3292

d = 25 0.0092 0.0692 0.2214 0.3235

d = 40 0.0091 0.0680 0.2183 0.3200

Note, the discrepency between p-value and the lower bound of posterior null hypothesis
P (H0|x,GA) appears to be always larger than the corresponding p-value. Indeed,
P (H0|x,GA) decreases but remains almost constant as the distribution d increase.
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2.3 Normal Distribution

Theorem 3. Suppose that in theorem 2.1, g1 belongs to the class of distributions with density
Nd(0,

1
k

∑
). Then

B(x,GNOR) = (
T (x)

d
)
d
2 exp{d

2
− T (x)}

and

P (H0|x,GNOR) = [1 +
1− π0
π0

(
d

T (x)
)
d
2 exp{T (x)

2
− d

2
}]−1.

Proof. To proof, note that

B(x,GNOR) = (
n+ k

n
)
d
2 exp{− n2

2(n+ k)
(x− µ0)

′
−1∑

(x− µ0)} = (
n+ k

n
)
d
2 exp{− n2

2(n+ k)
T (x)}

with respect to x, using some easily calculations we have B(x,GNOR). Now, to minimize

B(x,GNOR) = inf
k
B(x,GNOR) = (

T (x)

d
)
d
2 exp{d

2
− T (x)

2
}

and

P (H0|x,GNOR) = [1 +
1− π0
π0

(
d

T (x)
)
d
2 exp{T (x)

2
− d

2
}]−1

P (H0|x,GNOR) computed for various d with π0 = 1/2. The result is shown in Table 3.
One can observe that for every d, P (H0|x,GNOR) is larger than the corresponding p-value,
similar to other classes, and it decreases as d increases and remain almost constant. In this
class the difference between lower bound as posterior probability and corresponding p-value
is much larger than the other classes. This is because GNOR is more restricted than two
other classes.

3 Comparison of the lower bounds

In this paper we computed lower bounds of posterior probability of null hypothesis over three
classes of prior (GA, GUS, GNOR). Note that
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Table 3: Comparison between P (H0|x,GNOR) and p-value and calibration of
p-value (π0 = 1/2).

p-value 0.001 0.010 0.050 0.100

[1 + (−eplogp)−1]−1 0.0184 0.1113 0.2894 0.3849

d = 1 0.0235 0.1333 0.3213 0.4112

d = 2 0.0184 0.1113 0.2894 0.3850

d = 5 0.0144 0.0925 0.2596 0.3580

d = 10 0.0125 0.0835 0.2440 0.3434

d = 25 0.0112 0.0772 0.2331 0.3329

d = 40 0.0104 0.0730 0.2250 0.3250

P (H0|x,GA) ≤ P (H0|x,GUS) ≤ P (H0|x,GNOR).

The computed lower bounds and corresponding p-value is given in Figure1. In symmetric
classes of priors (GUS, GNOR), the lower bound of posterior probability of null hypothesis,
like univariate case is larger than p-value and almost constant as d increases. However, if all
priors are considered, the results would be contrary, i.e., p-value is larger than lower bound.
In this case the lower bound tends to zero as d increases. The class GA may be too large,
leading to excessively small lower bounds. Notice that, this class includes many functional
forms which probably leads to an excessive bias in favor of alternative hypothesis.

4 Creating Agreement between Bayesian and

Significant test

P-values are commonly though to imply considerably great evidence against H0 than is
actually warranted. Sellke et al.(2001), using some examples claimed that, this result occurs
because the alternative hypothesis is not considered in significance test. The most important
conclusion achieved is the p-value should not be used directly and has to be calibrated. In
this regard, Sellke er al. (2001) offered a calibration for p-value,p, given by

α(p) = [1 + [−eplog(p)]−1]−1, p < 1/e. (4.1)

In fact, they suggest (−eplog(p)) as an approximation value for lower bound of Bayes
factor for H0 to H1. When π0 = 1/2, α(p) given in (8) can be considered as prior distribution
on the alternative hypothesis.
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Figure 1: Comparison between the lower bound of posterior probability and
corresponding p-value.

From the result given in section 3, the proposed calibration can be used for higher
dimension (Table 1-3). From these tables one can see that the calibration seems to maintain
very close to lower bound on GUS.

The difference between α(p) and P (H0|x,GUS) shows that, using calibrated p-value in
significance testing and using the reasonable classes of priors for Bayesian testing may leads
to an agreements between two approaches in multivariate normal distribution.
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