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spatial statistics, in Iran, and promote communications and collaborations between
the researchers in this area and those from industry and other organizations. With
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of Spatio-Temporal Correlated Data at Tarbiat Modares University in Tehran, Iran.
On behalf of the organizing and scientific committees, we would like to express our
sincere appreciation to all our colleagues and students in the department of statis-
tics, and personnel of the University of Zanjan.
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Application of Multivariate Spatial Correlation Model in
Seismic Hazard Analysis Considering Anisotropy

Morteza Abbasnejad1∗, Morteza Bastami1, Afshin Fallah2

1International Institute of Earthquake Engineering and Seismology, Tehran, Iran.
2Imam Khomeini International University, Ghazvin, Iran.

Abstract:
Spatial correlation and cross-correlation of earthquake intensity measures (IMs)

is an important subject in seismic hazard and risk assessment of spatially distributed
lifeline systems. Spatial statistic proposes effective methods to investigate the spa-
tial correlations of earthquake IMs. Among the different problems in this subject,
current study focuses on spatial correlations of multiple earthquake IMs considering
anisotropy. In this regard, latent dimension method is implemented in this study to
construct valid cross-covariance matrix considering three different earthquake IMs
: peak ground acceleration, peak ground velocity, and peak ground displacement.
Data of three earthquake events occurred in Japan are used and results are presented.

Keywords: Spatial correlations, Earthquake, Latent dimensions, Anisotropy.
Mathematics Subject Classification (2010): 62P30, 62N01, 62H11.

1 Introduction
Spatially distributed lifeline network systems such as electrical power transmission
system, water distribution network, gas distribution system, urban road network
are critical systems which their operation is crucial for communities. Earthquake is
one of the catastrophic events which treat the operation of the lifeline systems and
safety of communities. Each of above mentioned networks composed of elements
that are vulnerable to earthquake event and consequently distribution of vulnerable

∗Speaker: m.abbasnejad@iiees.ac.ir
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elements across the network cause vulnerability of network system.
In an engineering perspective, vulnerability of civil and structural elements relates
to earthquake intensity measures (IM) like peak ground acceleration (PGA), peak
ground velocity (PGV) and peak ground displacement (PGD). Earthquake engi-
neers use ground motion prediction equations (GMPE) to predict earthquake IMs
in locations of interested. GMPEs (see equation (1.1)) which are statistical mod-
els based on previously recorded IMs in past earthquake events are used to predict
earthquake IMs as dependent variables considering independent variables like mag-
nitude of earthquake event (M ), closest distance between point of interest and fault
rupture plan (Rrup), soil properties of point of interest (Vs30), etc.

lnpYi,jq “ lnpȲi,jq ` δi,j (1.1)

In equation (1.1), Y is earthquake intensity measure at location i given the earth-
quake event j, lnpȲi,jq presents predicted value of interested earthquake IM (as
defined in equation (1.2)) and δi,j is residual term (as defined in equation (1.3)).

lnpȲi,jq “ fpM,Rrup, Vs30, ...q (1.2)

δi,j “ ηj ` εi,j (1.3)

In equation (1.3) ηj known as inter-event residual which represents event to event
variability and is equal for all points in an earthquake event j. Moreover, εi,j known
as intra-event residual in point i given the event j which represents within event vari-
ability.Considering n spatially distributed points, Jayaram and Baker (2008) showed
that the vector of intra-event residuals of εj “ pε1j, ε2j, ..., εnjq follows multivariate
normal distribution with zero mean and covariance matrix of Ce. More detail can be
found in (Jayaram and Baker, 2009). Consequently, knowing covariance matrix of εj

one can simulate correlated values of intra-event residuals at n spatially distributed
points in earthquake event j.

Geostatistical tools are widely used in previous research works to define valid
covariance matrix of intra-event residuals. In the case of univariate random field
where one of different earthquake are of interest, semivariogram function is imple-
mented in different research work and different predictive models are proposed based
on recorded data in past earthquake events (Boore et al., 2003; Wang and Takada,
2005; Goda and Hong, 2008; Goda and Atkinson, 2009; Jayaram and Baker, 2009;
Esposito and Iervolino, 2011). In these research work exponential model of equation
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(1.4) is fitted on empirical semivariogram values of intra-event residuals of earth-
quake IMs and consequent range values (b) are reported.

γphq “ a

„

1 ´ exp
ˆ

´
3h
b

˙ȷ

(1.4)

In equation (1.4), γphq is fitted semivariogram function, a is known as sill and b
is known as range (the distance beyond which the values can be considered uncor-
related). Typical form of equation (1.4) is presented in Figure 1.

Figure 1: Sample of fitted exponential semivariogram form of equation (1.4)

Defining valid covariance matrix in the case of multivariate random fields is not
as straightforward as univariate random fields. This is because that defined covari-
ance matrix should be non-negative definite (Genton and Kleiber, 2015) while using
above-mentioned method does not guarantees the covariance matrix of multivari-
ate randomfield to be in valid form (Wang and Du, 2013). Considering multiple
earthquake IMs, previous research works used statistical tools like Linear Model of
Coregionalization (LMC) (Loth and Baker, 2013; Wang and Du, 2013) or Principal
Component Analysis (PCA) (Markhvida et al., 2018).

All above mentioned researches are based on assumption of isotropy. Garaka-
ninezhad and Bastami (2017) using statistical test of Bowman and Crujeiras (2013)
showed that assumption of isotropy of intra-event residuals of earthquake IMs is not
valid in general. Consequently, it is important to consider anisotropy in spatial corre-
lation and cross-correlation of earthquake IMs. The matter of spatial correlation of
multivariate random fields is challenging issue in statistic and using above mentioned
methods (LMC or PCA) will not lead us to construct valid cross-covariance matrixes
for an anisotropic multivariate random field. For this reason, current study imple-
ments Latent Dimensions Method introduced by Apanasovich and Genton (2010)
to construct valid cross-covariance functions for multivariate random field of PGA,
PGV and PGD.
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2 Spatial correlations in multivariate random fields

Considering
␣

ε1psq “ rε1
1psq, ..., ε1

kpsqs
1

nˆk : s P R2
(

is second-ordered stationary mul-
tivariate random process, with 0nˆk mean matrix and a marginal-variogram of:

2γααph)=E
”

pε1
αps ` hq ´ ε1

αpsqq
2
ı

, α “ 1, ..., k (2.1)

then the cross-variogram can be defined as (Cressie, 1993):

2γαβph)=E rpε1
αps ` hq ´ ε1

αpsqq , pε1
βps ` hq ´ ε1

βpsqqs , α, β “ 1, ..., k. (2.2)

In equations (2.1) and (2.2), h is separation vector. Moreover, the cross-covariance
can be defined as:

Cαβphq “ Cov(ε1
α(sq, ε1

β(s ` hqq

=E rpε1
α(sq ´ E rε1

αsq pε1
β(s ` hq ´ E rε1

βsqs , α, β “ 1, ..., k. (2.3)

Empirical estimator of cross-covariance is as (Genton and Kleiber, 2015):

Ĉαβphq “
1

|Nphq|

ÿ

Nphq

!´

ε1
αpsiq ´ ε̄1

α

¯´

ε1
βpsiq ´ ε̄1

β

¯)

(2.4)

where Nphq ” tpi, jq : si ´ sj “ hu and |Nphq| is the number of distinct elements of
Nphq and ε̄1

k “ 1
n

řn
i“1 ε̄

1
kpsiq

3 Latent dimensions method for construction of
valid cross-covariance functions

As it is discussed in previous section, considering anisotropy make it impossible to
use models that are introduced in previous studies (Loth and Baker, 2013; Wang and
Du, 2013; Markhvida et al., 2018) for construction of valid cross-covariance matrix of
function. Apanasovich and Genton (2010) proposed an innovative approach based on
latent dimensions method based on exiting covariance models of univariate random
fields to define closed form cross-covariance function. The key idea is to represent
a vectors components as points in k dimensional space and converting multivariate
problem to multidimensional univariate one. In this regard each component α of
multivariate random field ε1psq considered as a point of univariate random field in
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k dimensional space. Based on these latent dimensions, Cαβps1, s2q : s1, s2 P Rn

becomes as C pps1, ξαq , ps2, ξβqq, a covariance of a univariate random field which
its arguments are from Rn`k space instead of Rn. In the case of current study
n equals to 2 (because data have been recorded in 2 dimensional space) and k

considered as 1, so a 2-dimensional three-variate random field of normalized intra-
event residuals of PGA, PGV and PGD is represented as a 3-dimensional univariate
random field. Consequently using valid covariance models of univariate random
fields, the covariance matrix is guaranteed to be non-negative definite. In current
study, the cross covariance function form of equation (3.1) which is proposed by
Apanasovich and Genton (2010) based on latent dimension method is implemented.

Cαβphq “ Cph, υαβ ´ Γξhq “
σαβ

|υαβ ´ γωTh| ` 1
exp

#

´
a }h}

p|υαβ ´ γωTh| ` 1q
1{2

+

(3.1)

In equation (3.1) α, β “ 1, 2, 3 represent ε1
P GA, ε1

P GV and ε1
P GD, normalized

intra-event residuals of PGA, PGV and PGD respectively which are the components
of multivariate random field in original space, ḩ “ si ´ sj is relative position vector
of points i and j, σαβ is variance parameter and ωT “ tω1, ω2u

T is a 2-dimensional
vector such that ωTω “ 1. In this equation, arctanpω2{ω1q shows the anisotropy
direction and γ ě 0 defines anisotropy ratio.
Normalized intra-events residuals are defined as (3.2) assuming that the standard
deviation of intra-event residuals are independent of location (Jayaram and Baker,
2009; Du and Wang, 2013; Garakaninezhad and Bastami, 2017) and consequently
they have unite standard deviation.

ε1
ij “

εij

σ
“

lnpYijq ´ lnpYijq

σ
(3.2)

Instead of using latent dimension,ξ1 “ tξ11, ξ12, ξ13u
T it is possible to treat with

latent distances υαβ “ ξ1α ´ ξ1β, α, β “ 1, 2, 3. The larger latent distance υαβ

indicates the smaller cross-correlation between components α and β. The vector
ω and the parameter γ determine anisotropy direction and anisotropy extend (ra-
tio) respectively. Moreover, latent distance parameter υ determine the amount of
correlation between different components (variable) so that larger value of υ shows
smaller amount of correlation. In this regard υ equals to 0 for marginal-covariance
models.
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Table 1: Information of earthquake events used in this study

Earthquake
Name Year Magnitude Location Number of Selected

Records
Fault

Mechanism
Chuetsu 2007 6.8 Japan 613 Reverse

Iwate 2008 6.9 Japan 367 Reverse
Tottori 2000 6.6 Japan 414 Strike-Slip

4 Application of latent dimensions method on earth-
quake data

In current study, the method proposed by Apanasovich and Genton (2010) is imple-
mented on normalized intra-event residuals of earthquake IMs PGA, PGV and PGD.
Recorded data of three earthquake events occurred in Japan are implemented in this
study. Selected earthquake events have been recorded in enough record stations so
that they are suitable for spatial analysis. Table 1 presents brief information of im-
plemented earthquake events. Intra-event residuals of earthquake IMs are calculated
using Campbell and Bozorgnia (2014) ground motion prediction equations for PGA
and PGV and Campbell and Bozorgnia (2008) ground motion prediction equation
for PGD. Calculated intra-event residuals are normalized using equation (3.2).

Non-linear least square method is implemented in current study to estimate pa-
rameters of model of equation (3.1). For this purpose, model of equation (3.1) is
fitted to estimated marginal and cross-covariance values of intra-event residuals of
PGA, PGV and PGD which is calculate for different lag distances and different di-
rections using equation (2.4). Contour plot of fitted marginal and cross-covariance
models to normalized intra-event residuals of PGA, PGV and PGD of selected earth-
quake events are presented in Figures 2, 3 and 4. Moreover,estimated parameter val-
ues of implemented model (equation (3.1)) are presented in Table 2 through Table
7.

Azimuth in Table 2 through Table 7 is clockwise angle between maximum range
direction (anisotropy angle) and north baseline and is calculated based on arctanpω1{ω2q.
Also the values in parentheses shows 95% confidence intervals. In these tables la-
tent distance (υ) is considered as 0 for marginal-covariance models. This value
is estimated using non-linear least square method for cross-covariance models of
PGA-PGV and PGV-PGD. υ value for cross-covariance models of PGA-PGD are
calculated based on estimated υ value of cross-covariance models of PGA-PGV and
PGV-PGD considering υ13 “ υ12 ` υ23 (Apanasovich and Genton, 2010). Larger
latent distance values indicates the smaller cross-correlation between components
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Figure 2: Contour plot of fitted marginal and cross-covariance models of the Chuetsu earthquake.
(values on horizontal and vertical axes are lag distance (h) in E-W and N-S directions) in km.

Figure 3: Contour plot of fitted marginal and cross-covariance models of the Iwate earthquake.
(values on horizontal and vertical axes are lag distance (h) in E-W and N-S directions) in km.

(Apanasovich and Genton, 2010) and considering υ values in mentioned tables it
can be concluded that PGA and PGD with average υ value of 1.128 has smaller
correlations than PGA-PGV with average υ value of 0.0.508 and PGV-PGD with
average υ value of 0.473.

Parameter α relates to maximum rang of correlations. Smaller α value shows
larger maximum rang and larger α value shows smaller maximum correlation rang.
Table 8 presents average value of parameter α in different marginal and cross-
covariance models. As can be seen in this table, cross-covariance models has gener-
ally lower maximum correlation rang than marginal-covariance models. It should be
noted that more earthquake events analysis are needed to conclude more accurately.
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Figure 4: Contour plot of fitted marginal and cross-covariance models of the Tottori earthquake.
(values on horizontal and vertical axes are lag distance (h) in E-W and N-S directions)in km.

Table 2: Parameter estimation of marginal-covariance model of intra-event residuals
of PGA

Earthquake
Name υ α γ σ Azimutha R2 RMSE

Chuetsu 0
0.021

(0.019,0.023)b
0.012

(0.004, 0.019)
1.00

(0.96, 1.04) 165.1 0.92 0.079

Iwate 0
0.015

(0.009, 0.020)
0.029

(0.011, 0.047)
0.95

(0.89, 1.01) 154.2 0.83 0.109

Tottori 0
0.021

(0.016, 0.027)
0.085

(0.008, 0.016)
0.98

(0.94, 1.01) 109.7 0.95 0.062
a Azimuth is calculated based on arctanpω1{ω2q
b Values in parentheses indicates 95% confidence interval

Table 3: Parameter estimation of marginal-covariance model of intra-event residuals
of PGV

Earthquake
Name υ α γ σ Azimuth R2 RMSE

Chuetsu 0
0.021

(0.017, 0.024)
0.010

(0.001, 0.019)
1.00

(0.93, 1.06) 0.0 0.84 0.110

Iwate 0
0.017

(0.010, 0.024)
0.062

(0.034, 0.089)
1.05

(0.99, 1.11) 164.6 0.90 0.104

Tottori 0
0.020

(0.018, 0.023)
0.039

(0.028, 0.050)
0.99

(0.95, 1.03) 58.0 0.94 0.065

Anisotropy direction is another matter that can be investigated using implemented
method. Taking into consideration of Figures 2, 3 and 4, it can be concluded that dif-
ferent marginal and cross-covariance models has almost same direction of anisotropy,
albeit assessed earthquake events have different amount of anisotropy which can be
inferred by parameter γ.
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Table 4: Parameter estimation of marginal-covariance model of intra-event residuals
of PGD

Earthquake
Name υ α γ σ Azimuth R2 RMSE

Chuetsu 0
0.018

(0.016, 0.020)
0.013

(0.006, 0.020)
1.14

(1.08, 1.19) 0.0 0.93 0.084

Iwate 0
0.034

(0.023, 0.046)
0.090

(0.049, 0.131)
0.95

(0.89, 1.01) 128.7 0.87 0.099

Tottori 0
0.020

(0.018, 0.022)
0.019

(0.010, 0.0268)
1.00

(0.95, 1.04) 55.2 0.95 0.068

Table 5: Parameter estimation of cross-covariance model of intra-event residuals of
PGA and PGV

Earthquake
Name υ α γ σ Azimuth R2 RMSE

Chuetsu 0.376
0.029

(0.023, 0.034)
0.037

(0.014, 0.060)
1.07

(0.87, 1.27) 8.1 0.94 0.091

Iwate 0.569
0.033

(0.026, 0.040)
0.015

(-0.003, 0.033)
0.83

(0.63, 1.03) 163.8 0.79 0.075

Tottori 0.58
0.029

(0.024, 0.034)
0.017

(0.003, 0.031)
0.95

(0.85, 1.05) 53.1 0.73 0.113

Table 6: Parameter estimation of cross-covariance model of intra-event residuals of
PGV and PGD

Earthquake
Name υ α γ σ Azimuth R2 RMSE

Chuetsu 0.490
0.031

(0.027, 0.034)
0.029

(0.021, 0.037)
0.68

(0.44, 0.91) 8.1 0.97 0.044

Iwate 0.230
0.026

(0.019, 0.033)
0.049

(0.021, 0.077)
0.83

(0.73, 0.92) 157.5 0.85 0.089

Tottori 0.699
0.031

(-0.016, 0.078)
0.006

(-0.021, 0.033)
0.98

(-2.03,3.98) 53.1 0.70 0.115

Table 7: Parameter estimation of cross-covariance model of intra-event residuals of
PGA and PGD

Earthquake
Name υ α γ σ Azimuth R2 RMSE

Chuetsu 0.866
0.026

(0.021, 0.030)
0.066

(0.054, 0.077)
1.4

(1.31, 1.49) 0.0 0.95 0.096

Iwate 1.24
0.062

(0.047, 0.076)
0.059

(0.007, 0.1.09)
1.28

(1.11, 1.45) 171.9 0.70 0.123

Tottori 1.279
0.021

(0.016, 0.025)
0.025

(0.013, 0.036)
0.92

(0.80,1.03) 0.0 0.70 0.105

Conclusion
Spatial correlation of earthquake intensity measures (IMs) are of interest especially
when spatially distributed life-line systems of portfolio of buildings is considered.
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Table 8: Average value of parameter α in different marginal and cross-covariance
models

PGA PGV PGD PGA-PGV PGV-PGD PGA-PGD
0.019 0.019 0.024 0.031 0.029 0.036

Different models for marginal and cross-correlation of earthquake IMs have been
proposed in previous studies. All of this models are based on assumption of isotropy.
Recent studies show that the assumption of isotropy is not valid in general and
consequently appropriate models should be implemented in this regard. On the
other hand spatial correlations of multivariate random fields is a challenging issue
in statistics especially when anisotropy is to be involved. Latent dimensions method
which is proposed by Apanasovich and Genton (2010) presents an effective way to
overcome this challenge and to construct valid covariance matrix. This method is
implemented in current study to investigate spatial correlations of multiple earth-
quake IMs considering anisotropy. Recorded data of three earthquake events in
Japan are implemented in current study and marginal and cross-covariance models
are fitted to considered data. Conducted investigations confirms that the assump-
tion of isotropy is not valid generally. Moreover, anisotropy properties of marginal
and cross-covariance models including anisotropy direction and maximum rang of
correlations have been studied in current study.
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Abstract:
In this paper, the max-stable process is used to model the spatial dependence of

the probabilities of exceedance for different damage states. Also, the extreme value
theory is used to select the extreme scenarios for seismic hazard assessment of the
transportation network of Tehran. The probabilities of different damage states are
investigated. The extremal coefficient function of Brown-Resnick model is adopted
to model the spatial dependence of extreme value of damage probabilities. The
results showed that the probabilities of exceedance for different damage states are
spatially dependent and it should be considered to assess the performance of lifeline
network.

Keywords: Max-stable process, Brown-Resnick model, Spatial dependence, Ex-
treme values, Damage probabilities.
Mathematics Subject Classification (2010): 86A32, 60G70, 62H11.

1 Introduction
In the seismic hazard assessment of lifeline networks, the Monte Carlo method is
used to simulate the input seismic scenarios. Since A large part of simulated sce-
narios is not important due to the small values of their intensities at intended sites
the produced scenarios cause high computational costs. Hence the scenarios that
cause large intensities are more important than other scenarios. These scenarios
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are so-called extreme scenarios that have large return period and a small probabil-
ity of occurrence. Since extreme scenarios are such that their occurrence will have
irreparable consequences, analysis of lifeline networks based on these scenarios is
recommended. For this reason, the extreme value theory is proposed to select ex-
treme scenarios. In extreme value theory two common extreme distributions are
used to model the extreme and rare events; generalized extreme value distribution
for block maxima and generalized Pareto distribution for peaks over thresholds. In
this study, the seismic analysis of selected lifeline network has been done using the
extreme scenarios. The ground motion intensity measures of each scenario have been
calculated by a ground motion model. In the next step, the intensity measures have
deduced the probabilities of exceedance for different damage states using fragility
curves. Due to the wide dimension of lifeline networks, the deterministic and proba-
bilistic seismic hazard assessment methods are not applicable. It is suggested to use
the methods that consider the spatial dependence of response values of a network
in important nodes of it. Since the damage probabilities are deduced from extreme
scenarios, it would be possible to use the dependent models based on the extreme
value theory to analyze the seismic performance of lifeline network. In this paper,
the max-stable process has been identified and used to model the spatial extreme
values. In the second section, the max-stable models have been detailed. In the
third section, a part of the transportation network of Tehran has been investigated
using the Brown-Resnick model. In the last section, the discussion and results have
been presented.

2 Max-stable model

The main purpose of modeling the spatial extreme values is the risk estimation in
spatial cases. Max-stable models are used to model multivariate extreme values.
For example, using the precipitation values,y(x), in a catchment area, χ Ă R2 the
probabilities of exceedance of precipitation for the selected catchment area is

Pr
␣

ż

χ

Y pxqdx ą zcrit

(

, (2.1)

where zcrit is an extreme level. It is clear that estimating the above probability is
more difficult than estimating in a univariate or multivariate model, as it requires
the knowledge of examining the distribution of the random variable ypxqxPχ which
are spatially correlated. If Z1, Z2, ... is an independent sequence of a random process
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tZpxq : x P χu and there are an ą 0andbn P R for n ě 1 such that

maxi“1,...,nZi ´ bn

an

d
“ Z, (2.2)

and tZpxq : x P χu is the max-stable process (Ribatet , 2013). Investigating the
distribution of multivariate extreme values with max-stable models is one of the
issues under consideration in the technical literature that is still under development.

2.1 Max-stable process models

The first model of the max-stable family is the Smith model (Smith , 1990). In this
model the maximum value in each x P χ is selected as:

Zpxq “ max
iě1

ζiφpx ´ Ui; 0,
ÿ

q x P χ, (2.3)

where tpζi, Uiq : i ě 1u are points of Poisson process on p0,8q ˆ Rd with intensity
measure ζ´2dζdu and φp., 0,

ř

q denotes the multivariate Normal distribution with
mean 0 and the covariance matrix Σ. This process is rarely used due to the lack of
flexibility in modeling. The second model of the max-stable process was presented by
Schlather (2002). This process is sometimes referred to as the maximum Gaussian
process

Zpxq “
?

2πmax
iě1

ζi max t0,Wipxqu x P χ, (2.4)

where tWipxq : x P χu are independent replicates of a standard Gaussian process
with correlation function ρ. It is notable that the scale factor

?
2π is required to

?
2πErmax t0,Wipxqus “ 1, x P χ . The third model of this process is Brown-

Resnick. This model is

Zpxq “ max
iě1

ζi exp tWipxq ´ γpxqu , x P χ, (2.5)

where tWipxq : x P χu are independent replicates of a Gaussian process having sta-
tionary increments and variogram γphq “ V ar tW px ` hq ´ W pxqu {2 (Brown and
Resnick , 1977). The last model of this section is known as the extremal-t2 that
generalizes the Schlather model. It is presented firstly in multivariate topics by
Nikoloulopoulos et al. , (2009) and statistical modeling of spatial extreme by Davi-
son et al. , (2012) and Ribatet and Sedki , (2013). Finally, Opitz , (2012) presents
the spectrum properties of this process as

Zpxq “ cυmax
iě1

ζi max t0,Wipxqu
υ, x P χ, (2.6)
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Figure 1: different models of the max-stable process. Left to right: Smith model, Schlather
model, Brown-Resnick model, extremal-t2 model (Ribatet , 2013).

where υ ě 1 and tWipxq : x P χu are independent replicates of a standard Gaussian
process with correlation function ρ and cυ “

?
π2´pυ´2q{2Γpυ`1

2 q
´1 where Γ is Gamma

function. As can be seen in mentioned models, the Schlather model is a special form
of extremal-t2 model with υ “ 1. In Figure 1 the defined max-stable models are
presented. As expected, the Smith process has provided synthetic surfaces that have
created its inflexibility as previously mentioned. Other processes produce sample
surfaces with wavy contours. As it is shown in figure 1 the Schlather model offers a
larger area of high value areas than other models. Although the max-stable theory
has been well developed until decades, no specific application of this process has
been seen in modeling spatial values. The main reason was the lack of closed-form
solution for likelihood functions of this process.

3 Spatial dependence of extreme values using the
max-stable process

In geostatistics, the variogram is calculated using

γpx1 ´ x2q “
1
2
ErtZpx1q ´ Zpx2qu

2
s x1, x2 P χ, (3.1)

to define the spatial dependence of normal random variables. Since the high-order
moments of extreme values (such as variance and even mean) might not even exist,
in spatial analysis of extreme values this model of variogram is not applicable. One
convenient way to summarize the dependence structure of the max-stable process is
through its extremal coefficient function (Schlather and Tawn , 2003).

PrrZpx1q ď z, Zpx2q ď zs “ PrrZpx1q ď zs
θpx1´x2q , (3.2)
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where θ is extremal coefficient function and a measure of spatial dependence as
θ “ 1 shows complete dependence and θ “ 2 shows independence (Ribatet , 2013).
The extremal coefficient function of different models of the max-stable process is
presented in Table 1.

Table 1: Different models of extremal coefficient function.

θpx1´x2q “ 2Φ
"?

px1´x2qT Σ´1px1´x2q

2

*

Smith model

θpx1´x2q “ 1 `

b

1´ρpx1´x2q

2 Schalter model

θpx1´x2q “ 2Φ
b

σ2t1´ρpx1´x2qu
2 extremal-t2 model

θpx1´x2q “ 2Φ
ˆ

b

γpx1´x2q

2

˙

Brown-Resnick model

4 Spatial dependence in the lifeline network

In this paper, a part of Tehran transportation system which includes 26 bridges
is modeled. In order to simulate seismic scenarios, the Mosha, Niavaran, Tehran
north, Ray north, Ray south, Kahrizak, Ghamsar and Pishva faults are consid-
ered. In the first step, 10000 seismic scenarios are simulated using the Monte Carlo
method. Using the extreme value theory and return level of Generalized Pareto dis-
tribution, 33 extreme scenarios are adopted. The seismic analysis of network using
these 33 seismic scenarios is done. In the next step, the ground motion intensity
measures of extreme scenarios are obtained using ground motion prediction equa-
tions. exceedance of damage probabilities and the combined discrete damage states
probabilities are calculated using the fragility curves. The fragility curve states the
relation between seismic intensity and structure functionality. The fragility curve of
bridge k indicates the exceedance probability of damage for different damage states.
The form of fragility curve is

P pDSi ě ds|IMq “ ϕ
` lnpIMq ´ lnpIMiq

βi

˘

, (4.1)

where ϕ is the normal cumulative distribution function, IMi is the median value of
ground motion in damage state i and βi is dispersion factor (lognormal standard
deviation). Accordingly, damage probabilities of five damage states including, no
damage, slight damage, moderate damage, extensive damage, complete damage, is
calculated using ground motion intensities and fragility curves. The Brown-Resnick
model is used to investigate the spatial dependence. By calculating the extremal
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Figure 2: Extremal coefficient function plot for different damage levels for first extreme scenario,
(a) no damage, (b) slight damage, (c) moderate damage, (d) extensive damage, (e) complete
damage.

coefficient function, the plot of θ´h is presented for different scenarios and different
damage states. As it can be seen in Figure 2, the extremal coefficient function values
are near to 1; consequently the probabilities of different damage states are depen-
dent. Also, in lower damage states, damage probabilities are more dependent. The
range of the dependence is more than the furthest distance between sites of network.
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Consequently, in order to model the dependence of damage probabilities, a spatial
extreme model should be used. This model helps to consider the extreme probabil-
ities of the extreme scenarios and it is useful to estimate the risk and functionality
of lifeline network under extreme seismic scenarios.

Conclusion
A part of the transportation network of Tehran and their damage probabilities for
different damage states is studied. Due to the wide dimension of this network, the
necessity of considering the spatial dependence is investigated. In this paper, to
model the spatial dependence of extreme values, the max-stable theory is used. The
dependency of damage probabilities is investigated using the extremal coefficient
function of Brown-Resnick model. The results show that in the selected network,
the probabilities of damage for five damage states are dependent. Hence considering
the dependency of damage probabilities is necessary for seismic analyzing of lifeline
network. Moreover, the results indicate in lower damage states, the dependency is
higher than other damage states.
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Abstract:
In this paper, we consider estimation and inference procedures in spatial linear

models when some of the covariates are measured with errors. It is assumed that the
additive error distributed according to the law belonging to the class of elliptically
contoured distributions. The development of the corrected score function with the
family of elliptical distributions is the basis for derivation of the estimators. For sen-
sivity analysis, the local influence approach is used for assessing influence of small
perturbations on the parameter estimates. A simulation study is presented illus-
trating the good performance of the proposed approach, including the robustness
property for the heavier tail models.

Keywords: Geostatistic,Global influence, Spatial variability, Elliptical distribution,
Measurement error.
Mathematics Subject Classification (2010): 62H11, 62J20, 62F99.

1 Introduction
Sensitivity analyses and diagnostic techniques for the ordinary linear regressions
model have received a great deal of attention in statistical literature since the seminal
work of Cook (1977) and others including Cook and Weisberg (1982) and Poon and
Poon (1999). In spatial linear regression models, diagnostic results are quite rare;
among them Uribe-Opazo et al (2012) applied diagnostic techniques to assess the
sensitivity of the maximum likelihood estimators, covariance functions and linear
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predictor to small perturbations in the Gaussian spatial linear model assumptions.
De Bastiani et al (2015) use the local influence methodology to assess the sensitivity
of the maximum likelihood estimators to small perturbations in the elliptical spatial
linear model. Lachos et al (2017) developed local and global influence measures on
the basis of the conditional expectation of the complete-data loglikelihood function in
spatial linear regression models when censoring is present. Recently De Bastiani et al
(2018) presented global diagnostics techniques to assess the influence of observations
on spatial linear mixed models.

However these researchers in their study assumed that all the observation are cor-
rectly observed. But this assumption can be violated, and the measurement errors
may crept into and the usual statistical tools tend to loose their validity, see Fuller
(1987). Fields, such as agriculture, medicine, engineering, psychology, education,

and finance are some disciplines presenting situations where covariates are contami-
nated by measurement errors. For this reason there has been extensive research in
the measurement error problem. So, when the problem of measurement error occur
in the model data, then the main subject is how to obtain the consistent estimates
of regression parameters. In spatial linear measurement error models solving such
problems are quite rare and no results are so far available in the literature. So in
this paper we fill this gap with a more general assumption. In general, most of
the researchers assumed that the covariate matrix of the measurement error mod-
els is normally distributed. However, such assumptions may not be valid in many
practical situations. It happens particularly if the covariate distribution has heavier
tails. Since the elliptical distribution contains a lot of distributions, defining biased
estimators for the elliptical error distribution in such models would be a valuable
asset for the researchers of this topic. By employing the corrected score function
of Nakamura (1990) we concentrate on spatial linear regression models and de-
rive the corrected maximum likelihood estimator of the parameters by relaxing the
assumption of normality of errors of covariates.

The paper unfolds as follows: In section 2 we explain the spatial linear mea-
surement error model. In section 3 the maximum corrected likelihood estimation of
parameters is described. Section 4 reviews concepts of the local influence approach.
Section 5 contains a simulation study, to illustrate the methodology developed in
this paper.
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2 The model description

Consider a Gaussian stochastic process tY psq, s P Du, where D is a subset of Rd,
the d´dimensional Euclidean space. It supposes that data Y ps1q, . . . , Y psnq of this
process are collected at known sites (locations) si, for i “ 1, . . . , n where si is a
d-dimensional vector of spatial site coordinates, and generated from the model,

Y psiq “ µpsiq ` ϵpsiq

with the deterministic and stochastic terms, ϵpsiq and µpsiq respectively, may depend
on the spatial location at where Y psiq is collected. The Gaussian stochastic errors
have zero mean, Epϵpsiqq “ 0 and the variation between spatial points is determined
by a covariance function Cpsi, sjq “ covpϵpsiq, ϵpsjqq. It assumed each family of
covariance functions Cpsi, sjq, is fully specified by a q-dimensional parameter vector
ϕ “ pϕ1, . . . , ϕqqJ. For example, with q “ 3, the Matern is a covariance function
particulary attractive given by

Cpdijq “

$

&

%

ϕ2
2k´1Γpkq

pdij{ϕ3qkKkpd{ϕ3q dij ą 0

ϕ1 ` ϕ2 dij “ 0

where dij “ }si ´ sj} being the Euclidean distance between the points si and sj,
ϕj ą 0, j “ 1, 2, 3 and Kkpuq “

ş8

0 xk´1eupx`x´1qdx is the modified Bessel function
of the third kind of order k, with k ą 0 fixed.

In linear spatial models for some known functions of si, x1psiq, . . . , xppsiq the
mean of stochastic process is

µpsiq “

p
ÿ

j“1
Xjpsiqβj “ XJ

i β

where Xi “ px1psiq, . . . , xppsiqq and β1 . . . βp are unknown parameters to be esti-
mated. In this paper we consider the case where the covariateXi is measured with ad-
ditive errors, i.e., we cannot observe Xi but we can observe Wi “ pw1psiq, . . . , wppsiqq

with
Wi “ Xi ` δi

where the spatial measurement errors δi “ pδ1psiq, . . . , δppsiqq are i.i.d from Elpp0,Λq

with Λ a p ˆ p known matrix. δi’s are independent of Xi and ϵ “ pϵps1q, . . . , ϵpsnqq.
When Wi is identically equal to a null vector, implying that Λ “ 0 and consequently
that Xi is fixed and is measured without any measurement error, we get the classical
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spatial linear regression model. Equivalently a matrix spatial linear measurement
error model model can be written as

Y “ Xβ ` ϵ

W “ X ` δ δ “ pδ1, . . . , δnqJ
(2.1)

where matrices X, W and δ are the n ˆ p full rank matrices with ith row XJ
i , WJ

i

and δJ
i respectively. In this notation, Epϵq “ 0 and the covariance matrix of ϵ is

Σϕ “ rpσijqs, where σij is proportional to Cpsi, sjq. A particular parametric form
for the non-singular covariance matrix Σϕ is

Σϕ “ ϕ1In ` ϕ2R (2.2)

where ϕ1 is a measurement error variance or a nugget effect, ϕ2 is defined as sill, In

is the nˆ n identity matrix and R “ Rpϕ3q “ rpriuqs, is an nˆ n symmetric matrix
with diagonal elements rii “ 1, for i “ 1, . . . , n and ϕ3 is a function of the range
of the model. This parametric form occurs for several isotropic processes, where
Cpsi, sjq is defined via the function Cpdijq “ ϕ2rij. In the covariance functions
Cpdijq, the variance of the stochastic process ϵ is Cp0q “ ϕ1 ` ϕ2 and the variogram
can be defined as γpdq “ Cp0q ´ Cpdq.

3 Maximum Corrected Likelihood Estimation (CLE)

For our model (2.1) it is easily seen that the loglikelihood is

Lpθ; X, Y q “
´1
2
log|Σϕ| ´

1
2

pY ´ XβqJΣ´1
ϕ pY ´ Xβq (3.1)

with θ “ pβJ, ϕJqJ, ϕ “ pϕ1, ϕ2, ϕ3q and Σϕ “ ϕ1In ` ϕ2R as in (2.2). In cases that
measurement error is negligible, we replace X by W in (3.1) so that

Upθ; W, Y q “
B

Bθ
Lpθ; W, Y q

which is typically called naive score function. Hence, the expectations of Upθ; W, Y q

with respect to Y evaluated at the true parameter value θ0, typically, are not equal
to zero. Furthermore, in general, estimators obtained using naive score functions
are not consistent ( Nakamura , 1990).
The approach developed to obtain the corrected score functions corresponds to find
a score function whose expectation with respect to the distribution of W coincides
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with the unobserved score (a function of X). Denote by E˚ the conditional ex-
pectation (with respect to the distribution of W) given X, and Y . The corrected
log-likelihood function for our model, denoted by L˚pθ; W, Y q, should satisfy the
condition in

E˚pU˚pθ; W, Y qq “ Upθ; X, Y q (3.2)

where U˚pθ; W, Y q “ B
Bθ

L˚pθ; W, Y q. Hence, under the conditions for the model
defined by (2.1) and using property 3.1 in Riquelmea et al (2015 ), we have that

E˚pWJΣ´1
ϕ Wq “ XJΣ´1

ϕ X ´ 2φp0q1trpΣ´1
ϕ qΛ (3.3)

Given the matrix Λ, it follows from (3.2) and (3.3), that the unique corrected log-
likelihood function for the model defined in (9) and (10), is given by

L˚pθ; W, Y q “
´1
2
log|Σϕ| ´

1
2

ˆ

py ´ WβqJΣ´1
ϕ py ´ Wβq ` 2φp0q1trpΣ´1

ϕ qβJΛβ
˙

(3.4)
Making use of the corrected log-likelihood functions given in (3.4) it is possible to
obtain the corresponding corrected scores as:

U˚pβ; W, Y q “
B

Bβ
L˚pθ; W, Y q “ WJΣ´1

ϕ pY ´ Wβq ´ 2φp0q1trpΣ´1
ϕ qΛβ (3.5)

and
U˚pϕ; W, Y q “

B

Bϕ
L˚pϕ; W, Y q with (3.6)

B

Bϕj

L˚pϕ; W, Y q “ ´
1
2
trpΣ´1

ϕ
9Σϕjq `

1
2

pY ´ WβqJΣ´1
ϕ

9ΣϕjΣ´1
ϕ pY ´ Wβq

`φp0q1trpΣ´1
ϕ

9ΣϕjΣ´1
ϕ qβJΛβ

(3.7)

where 9Σϕj “ BΣ
Bϕj

. From (3.5)-(3.7), we can verify that the corrected score functions
satisfy the conditions given in (3.2). Let θ0 be the true parameter value and E`

denote the expectation respect to random vector Y and E “ E`E˚ denote global
expectation then

EpU˚pβ0; W, Y qq “ E`E˚pU˚pβ0; W, Y qq “ E`

ˆ

XJΣ´1
ϕ pY ´ Xβq

˙

“ 0

and

EpU˚pϕ0j; W, Y qq “ E`E˚pU˚pϕ0j; W, Y qq “ ´
1
2
trpΣ´1

ϕ
9Σϕjq`

1
2
E`

ˆ

ϵJΣ´1
ϕ

9ΣϕjΣ´1
ϕ ϵ

˙

“ 0
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This indicates that the corrected score functions are unbiased. The corrected ob-
served information matrix is

I˚pθ; W, Y q “ ´
B2

BθBθJ
Lpθ; W, Y q “

˜

:Lββ
:Lβϕ

:LJ
βϕ

:Lϕϕ

¸

where

:Lββ “ WJΣ´1
ϕ W ` 2φp0q1trpΣ´1

ϕ qΛ
:Lβϕj

“ WJΣ´1
ϕ

9ΣϕjΣ´1
ϕ pY ´ Wβq ´ 2φp0q1trpΣ´1

ϕ
9ΣϕjΣ´1

ϕ qΛβ

:Lϕiϕj
“ ´

1
2
trpΣ´1

ϕ
9ΣϕiΣ´1

ϕ
9Σϕj ´ Σ´1

ϕ
:Σϕijq `

1
2
αJΣ´1

ϕ MΣ´1
ϕ α

`φp0q1trpΣ´1
ϕ MΣ´1

ϕ qβJΛβ

with α “ Y ´ Wβ and M “ 9ΣϕiΣ´1
ϕ

9Σϕj ´ :Σϕij ` 9ΣϕjΣ´1
ϕ

9Σϕi. The corrected fisher
information matrix is

Ipθ; W, Y q “ E`E˚pI˚pθ; W, Y q “

˜

XJΣ´1
ϕ X 0

0J ´1
2trpΣ

´1
ϕ

9ΣϕiΣ´1
ϕ

9Σϕj ´ Σ´1
ϕ

:Σϕijq

¸

3.1 Corrected score estimators

Since, the equation U˚pϕ; W, Y q “ 0 does not lead to an explicit solution for ϕ a
common practice is to maximize the concentrated log-likelihood obtained as follows.
From (3.4), given Σϕ the corrected estimator for β is

β̂ “ pWJΣ´1
ϕ W ` 2φp0q1trpΣϕqΛq´1WJΣ´1

ϕ Y (3.8)

By substituting (3.8) into the corrected log-likelihood function, we obtain a concen-
trated corrected log-likelihood

Lcpθ,W, Y q “
´1
2
log|Σϕ| ´

1
2

ˆ

py ´ Wβ̂qJΣ´1
ϕ py ´ Wβ̂q ` 2φp0q1trpΣ´1

ϕ qβ̂JΛβ̂
˙

which must be maximized numerically with respect to ϕj’s. Given the CLE of ϕ, ϕ̂
say, the CLE of β is

β̂ “ pWJΣ̂´1
ϕ W ` 2φp0q1trpΣ̂ϕqΛq´1WJΣ̂´1

ϕ Y

where Σ̂ϕ “ Σϕ̂. Let ξk be a p-vector with 1 at the kth position and zero elsewhere,
then β̂k “ ξkβ̂ has the standard error sk and t- value tk “ β̂k{sk, where s2

k “
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ξJ
k pWJΣ̂´1

ϕ W ` 2φp0q1trpΣ̂ϕqΛq´1ξk.

4 Local influence diagnostics

Local influence is a method of sensitivity analysis for assessing the influence of small
perturbations in a general statistical model. The general idea is to give every individ-
ual its own weight in the calculation of the parameter estimates and to investigate
how these estimates depend on the weights, locally around the equal-weight case,
which is the ordinary maximum likelihood case. Let Lpθ|ωq denote any perturbed
version of Lpθq, depending on an r dimensional vector ω of weights, which is as-
sumed to belong to an open subset Ω of Rr, and such that the original log-likelihood
Lpθq is obtained for ω “ ω0. Let θ̂ω and θ̂ denote the maximum likelihood estimates
under the model defined by Lpθq and Lpθ|ωq, respectively, and assume that there is
an ω0 P Ω representing no perturbation, such that Lpθq “ Lpθ|ωq for all θ. Cook
(1977) proposed to measure the distance between θ̂ω and θ̂ by the so-called likelihood
displacement, defined by

LDpωq “ 2rLpθ̂q ´ Lpθ̂|ωqs

From this perspective, a graph of LDpωq versus ω contains essential information on
the influence of case weight perturbations. Because evaluation of LDpωq for all ω is
practically unfeasible, Cook (1977) proposed to study the local behavior ofLDpωq

around ω0, which can be performed by evaluating the normal curvature Cl of LDpωq

at ω0 in the direction of some unit vector h.The normal curvature in the direction
h takes the form,

Ch “ 2|hJ :Fh| (4.1)

where :F “ ∆JI˚´1∆ and ∆ “
BL˚pθq

BθBωJ are both evaluated at θ “ θ̂ and ω “ ω0. There
are several ways in which (4.1) can be used to study the influence graph, each corre-
sponding to a specific choice of the unit vector h. One evident choice corresponds to
the perturbation of the ith weight only (case-weight perturbation). This is obtained
by taking h equal to the vector hi which contains zeros everywhere except on the ith
position, where there is a one. Another important direction is determined by hmax,
which corresponds to the maximal normal curvature Cmax. The most influential el-
ements of the data may be identified by looking the components of the vector hmax,
which is relatively large. Furthermore, hmax is just the eigenvector corresponding
to the largest eigenvalue, (Cmax), of :F. Although Cook’s method works well for
a lot of statistical models, several shortcomings remain to be resolved. Therefore,
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Poon and Poon (1999) proposed the invariant conformal normal curvature. This
curvature provides a measure of local influence ranging from 0 to 1, with objective
bench-marks to judge largeness. According to the arguments of Poon and Poon
(1999), the corresponding conformal normal curvatures of Ch for our considered

model may be expressed as:

Bh “
hJ :Fh

b

trp:Fq2
“

hJ∆JI˚´1∆h
a

trp∆JI˚´1∆q2

4.1 Case-weight perturbation

For case weight perturbation we assign an arbitrary weighting vector ω “ pω1, . . . , ωnqJ

with 0 ď ωi ď 1 to the individual corrected likelihood function, that is

L˚pθ|ωq “

n
ÿ

i“1
ωiL˚

i pθq

“
´1
2
log|Σϕ| ´

1
2

ˆ

py ´ WβqJPωΣ´1
ϕ py ´ Wβq ` 2φp0q1trpPωΣ´1

ϕ qβJΛβ
˙

(4.2)

where Pω “ diagpω1, . . . , ωnq. By taking ωi “ 0 and ωj “ 1 for j ‰ i that the infor-
mation for the ith individual is excluded from the corrected log-likelihood function so
that the non-perturbation vector will be ω0 “ 1n “ p1, . . . , 1qJ P Rn. Differentiating
L˚pθ|ωq given in (4.2), we obtain

∆β “
L˚pθ|ωq

BβBωJ
|θ“θ̂,ω“ω0

“ WJdiagpΣ´1
ϕ̂
êq ´ 2φp0q1Λβ1J

ndiagpΣ´1
ϕ̂

q

and

∆ϕj “
L˚pθ|ωq

BϕjBωJ
|θ“θ̂,ω“ω0

“
1
2
êJdiagpΣ´1

ϕ̂
9Σϕ̂jΣ

´1
ϕ̂
êq ` φp0q1β̂JΛβ̂1J

ndiagpΣ´1
ϕ̂

9Σϕ̂jΣ
´1
ϕ̂

q

Thus we have

∆ “

¨

˚

˚

˚

˚

˝

WJdiagpΣ´1
ϕ̂
êq ´ 2φp0q1Λβ1J

ndiagpΣ´1
ϕ̂

q

1
2 ê

JdiagpΣ´1
ϕ̂

9Σϕ̂1Σ
´1
ϕ̂
êq ` φp0q1β̂JΛβ̂1J

ndiagpΣ´1
ϕ̂

9Σϕ̂1Σ
´1
ϕ̂

q

...
1
2 ê

JdiagpΣ´1
ϕ̂

9Σϕ̂qΣ
´1
ϕ̂
êq ` φp0q1β̂JΛβ̂1J

ndiagpΣ´1
ϕ̂

9Σϕ̂qΣ
´1
ϕ̂

q

˛

‹

‹

‹

‹

‚
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Table 1: The sample performance of the corrected estimators for two cases with
different distributions of measurement error. The results of naive estimators are in
the parentheses.

Distribution t5p0,Λq t25p0,Λq Np0,Λq

Case I II I II I II
mean

β̂1 1.969(1.873) 1.901(1.429) 2.002(1.916) 2.007(1.546) 1.988(1.943) 2.089(1.585)
β̂2 2.986(2.805) 2.723(2.246) 3.001(2.894) 3.045(2.281) 2.999(2.897) 3.014(2.359)
ϕ̂1 4.900(4.799) 4.902(4.541) 4.899(4.812) 4.901(4.791) 4.990(4.900) 4.920(4.814)
ϕ̂2 9.799(9.736) 9.799(9.493) 9.830(9.790) 9.801(9.501) 9.899(9.800) 9.861(9.672)
ϕ̂3 14.899(14.802) 14.900(14.685) 14.990(14.870) 14.901(14.650) 14.996(14.842) 14.957(14.799)
mse

β̂1 0.071(0.081) 0.140(0.383) 0.065(0.080) 0.122(0.271) 0.063(0.082) 0.118(0.237)
β̂2 0.073(0.098) 0.198(0.629) 0.064(0.075) 0.124(0.578) 0.065(0.073) 0.111(0.472)
ϕ̂1 0.010(0.092) 0.010(0.104) 0.010(0.022) 0.015(0.0310) 0.010(0.021) 0.011(0.091)
ϕ̂2 0.040(0.096) 0.049(0.116) 0.040(0.064) 0.055(0.092) 0.040(0.058) 0.051(0.088)
ϕ̂3 0.010(0.087) 0.019(0.091) 0.0104(0.031) 0.013(0.066) 0.010(0.019) 0.011(0.057)

5 Simulation Study

Here to demonstrate the performance of estimators we carry out an simulation study.
The data are generated from model (2.1) with si „ Up0, 100q, n “ 100, β “ p2, 3q,
the ith column of X are from„ Np0, 1q, i “ 1, 2, ϵ „ Np0,Σϕq where Σϕ is assumed
to be Gaussian spatial covariance matrix with ϕ “ p5, 10, 15q which is given by

Cpdijq “

$

&

%

ϕ2expp´pdij{ϕ3q2q dij ą 0

ϕ1 ` ϕ2 dij “ 0

The rows of measurement error matrix δ are generated from t2p0,Λq. For spatial
covariance matrix Λ two case are considered. Case (I): Λ “ diagp0.22, 0.22q and
Case (II): Λ “ diagp0.52, 0.52q. We investigate the corrected score estimator vector
of θ “ pβ, ϕq and it’s usual naive estimators ignoring measurement error in W. The
simulation study was conducted using the R software with 105 repetition. Table 1
represent the corrected score and naive estimators of θ for different diagonal values of
matrix Λ. It can be seen that with increasing measurement errors variances (diagonal
elements of Λ), the naive estimators become more biased and the corrected score
estimators have better performance than the naive estimators. Another conclusion
is that heavier tail model have significant more impact on the bias of the naive
estimators of θ than lighter tail models. To evaluate the effectiveness of the local
influence measures derived in this paper, we consider three models of the above
simulated data set correspond to 3 distribution of the measurement error with two
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outliers and a leverage point forced in each models. Before we proceeded, we changed
the responses at spatial response points 2 and 62 by adding `2sdpY psiqq for these
points. To have high leverage for spatial response 2 we also changed the 2th row of W
to vector (3 , 5). Figure 1 gives the case weight perturbation for three models.Cases
2 and 60 are found to be influential on estimate θ and case 2 is more influential
in each models. In all three situation the outlier screening in Fig.1 is successful in
identifying both outliers.
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Figure 1: Plot of hmax under case- weight perturbation assuming (a) t5, (b) t25 and
(c) normal distribution for measurement error

Conclusion
It is not unusual to have measurement error in spatial linear models. We have use
the idea of the corrected likelihood method of Nakamura (1990) with to obtain
a better estimators for the model parameters in spatial linear measurement error
model. We assumed a general assumption for the covariates of the model, which
is distributed according to the law belonging to the class of elliptically contoured
distributions. The simulation study showed that the proposed estimators are also
performing better than the naive estimators (ignoring measurement error). Here we
assumed the Λ is known and if it is unknown extending our diagnostics is an area
of future research.
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A Spatial Heterogeneity Mixed Model with Skew-Elliptical
Distributions
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Abstract:
In the analysis of most spatial heterogeneity processes in econometrics studies,

observations present skewed distributions. Usually, a single transformation of the
data is used to approximate normality and to model the transformed data with
normal assumption. However, such an assumption may not be appropriate as panel
data do often have non-normality feature in these studies. This work relaxes the nor-
mality assumption of a spatial mixed model which allows for spatial heterogeneity.
The inference procedure is performed under a Bayesian mixed modeling approach
based mixed-effects model with a multivariate skew-elliptical distribution, which in-
cludes the skew-t, skew-normal, t-student, and normal distributions as special cases.
We fit our models to yearly non-life insurance consumption observed between 1998
and 2002 located in a spatial panel of 103 Italian provinces in order to assess its
determinants, in the light of the empirical literature. Different model comparison
criteria and analysis of the posterior distribution of some parameters suggest that
the proposed model outperforms standard ones used in the literature.

Keywords: Panel data, Linear mixed model, Spatial heterogeneity, Multivariate
skew-elliptical distributions, Bayesian hierarchical approach, MCMC.
Mathematics Subject Classification (2010): 62H11, 91B72.

1 Introduction
Panel data are observations aggregated on a cross section over several time periods.
In the case of cross sections of spatial units (such as regions, provinces or countries),
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panel data are referred to as spatial panels. The spatial panel data analysis has
received a great deal of attention mostly in spatial econometrics studies.

Analysis of economic data that explicitly incorporate spatial information can be
approached from spatial heterogeneity structure. Spatial heterogeneity might arise
due to differences among different spaces or among different time points. Funda-
mentally, spatial heterogeneity is introduced by allowing the model to have hetero-
geneous effects in space and time. Chesson (1985) discussed the distinctions between
three types of variations in these models. They are between pure spatial variation,
which is constant from one time period to another, pure temporal variation, which is
constant across space, and pure spatio-temporal variation, for which spatial and tem-
poral variation can occur together. Note that the first two types consider spatial and
temporal perspectives separately and hence ignore the possibility of spatio-temporal
variation in spatial heterogeneity literature.

This paper studies the impacts of spatial heterogeneity that involves spatial-
temporal variations. This is achieved by incorporating spatial sampling units (space-
specific effects) into the structure of models. In such a setting, four types of space-
specific effects as presented by Zheng et al. (2008) are considered. The models
underlying the different specifications of the space-specific effects are referred to as
(i) Homogeneous model (homogeneous), (ii) Heterogeneous model (heterogeneous),
(iii) Fixed-effects model (fixed), and (iv) Random-effects model (random). The
explanation of these models is given in Section 2.1.

Spatial panel data usually show features like skewness in practice. The most
routinely adopted strategy in empirical econometric models is that the response and
the explanatory variables are transformed so that classical models that are based on
the normality assumption can be applied. Although using a transformation to han-
dle the departure from normality may lead to reasonable empirical results, this work
is often inappropriate and restrictive. Frequently, a suitable alternative theoretical
model (that can directly handle skewness) can perform better than data transforma-
tion. Moreover, there are several limitations of using data transformation, including
reduced information, no guarantee of joint normality, difficulty in interpreting the
transformed variables, and no general transformation (i.e. transforms used for one
particular data may not be suitable for a different data). In view of this, we pro-
pose new spatial heterogeneity panel models that provide greater flexibility in the
distributional assumption for error terms to reduce the impact of the unrealistic
normality assumption.

The multivariate skew-elliptical distributions are gaining popularity as useful
tools for analyzing a variety of datasets that exhibit non-normal features. These
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distributions provide flexible alternatives to traditional normal and t-student mod-
els with additional features such as asymmetry and heavy tails. The connections
between the various multivariate skew-t distributions are analogues to those be-
tween the skew-normal distributions discussed in many studies (see, for example,
the papers by Azzalini, 2005, Arellano-Valle and Genton, 2005, Arellano-Valle and
Azzalini, 2006 and the recent monograph by Lee and McLachlan, 2013 and Azzalini,
2014).

In the statistical literature, several extensions of standard linear mixed models
have been proposed based on replacing the normality assumption for the errors.
Further, mixed models provide a convenient framework to model the spatial het-
erogeneity using space-specific effects. To the best of our knowledge, under the
framework of using various mixed-effects models, there has been little work done
on discussing the simultaneous impacts induced by spatial heterogeneity and non-
normality, which are inherent features of spatial panel data.

Dealing with panel analyses on sets of spaces, the spatial heterogeneity perspec-
tive should always be considered for, as further methodological issues arise with
respect to panels of spaces, where the relevant markets in spaces are well delimited
by heterogeneity structure affecting panels studies. In this way, insurance market
is widely believed to be important for the sound economic development of a coun-
try. Here, we analyze the consumption of non-life insurance, measured as premiums
per capita, across Italys 103 provinces in the period 1998-2002. In order that, we
approach the empirical investigation of insurance consumption from a new perspec-
tive, an intermediate one between existing panel studies and dataset analyses on
household income, wealth and consumption surveys. Note that, data availability for
Italian insurance premiums limits the analysis to the provincial aggregation level.

Overall, the objective of this paper is to estimate symmetric and asymmetric
models parameters. In order that, we follow the Bayesian hierarchical approach
described in Jara et al. (2008), in which all of the inferences were carried out
through Markov chain Monte Carlo (MCMC) algorithm for drawing inferences in
spatial heterogeneity panel model with multivariate skew-elliptical distributions for
error terms. An important advantage of this modeling alternative is that the models
can be easily fitted in freely available software R under OpenBUGS (Lunn et al.,
2009) and that the computational effort is equivalent to the one necessary to fit the
normal version of the model. The rest of the paper is organized as follow. Section 2
presents the spatial heterogeneity panel model and Section 3 explains multivariate
skew-elliptical distributions. In Section 4, we discuss about model selection criteria
that may be used to evaluate the performance of our models. Bayesian analysis of
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non-life insurance data set is presented in Section 5. The main goal of the paper is
to investigate the determinants of the development of the non-life insurance market
for Italy. Finally, Section 6 includes concluding remarks.

2 The Model

We begin by defining a regression model for the panel data that can be expressed
as,

yit “ xitβ ` λit ` ϵit, (2.1)

for i “ 1, ..., N space units, and t “ 1, ..., T time periods. In the above, we let yit

denote the response variable at space i and time t, xit is a known 1 ˆ K vector
of explanatory variables, and β is a K ˆ 1 vector of fixed but unknown regression
parameters. The variable ϵit denotes an independently and identically distributed
(iid) error term for space i and time t with zero mean and variance σ2. Depending on
the application, there are several commonly used assumptions for λit. One commonly
adopted assumption is λit “ αi which is used for models with unobserved space-
specific effects only.

Using (2.1), we can specify the simple model on panel data in matrix form as
follows,

yt “ Xtβ ` ut, (2.2)

where yt “ py1t, ..., yNtq
1 and Xt “ px1t, ...,xNtq

1, respectively, denote the vector
of the response variables and the matrix of the explanatory variables in all spaces
at time t. Thus, ut “ pu1t, ..., uNtq

1 is the model error component involving the
sum of two disturbances. One of these disturbances is the N ˆ 1 vector of αt for
which, with appropriate specifications, we can obtain the four types of spatial panel
models described in Zhang et al. (2008) (refered to as homogeneous, heterogeneous,
fixed and random). This allows the model to account for differences among different
spaces which is refered to as spatial heterogeneity structure. The other disturbance
in ut is the vector of the remainder disturbances ϵt “ pϵ1t, ..., ϵNtq

1 in each period.
Let y “ py1

1, ...,y
1
T q1 and X “ pX 1

1, ...,X
1
T q1 be a concatenated form of yt and

Xt, respectively, such that they denote the response and explanatory variables,
respectively, where y denotes an NT ˆ 1 vector of the response variable and X is
a NT ˆ K matrix of the non-stochastic exogenous regressors. In a similar manner,
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the (concatenated form of the) disturbance vector can be written as

u “ α` ϵ, (2.3)

where α “ pιT b IN qαt, (ιp is a p ˆ 1 vector of ones, Ip is a p ˆ p identity matrix
and the symbol b denotes the Kronecker product) and ϵ “ pϵ1

1, ..., ϵ
1
T q1 denotes the

NT ˆ 1 idiosyncratic error vector.
As pointed out before, the common assumption for the spatial panel models is

a normal distribution for u. As the normality assumption may be unrealistic when
the responses are skewed, it will be valuable to explore multivariate skew-elliptical
distributions as an alternative to the normal distribution to account for skewness in
the data. Here, for the homogeneous, heterogeneous, fixed and random space-specific
effects, we consider the skew-elliptical distributions for the remainder error term.

To implement the Bayesian inference for the aforementioned models, we need to
specify the prior distribution for all unknown parameters in the model (2.2) in order
to obtain the posterior distributions of the model parameters. A popular choice
is to consider proper conditionally non-informative conjugate priors as suggested
by Gelman and Hill (2006). Here we assign conjugate weakly-informative priors
to obtain well defined and proper posteriors as in Jara et al. (2008) methodology.
Note that, a family of prior distributions ppφq is conditionally conjugate for φ if the
conditional posterior distribution ppφ|yq is also in that class. In addition to these
parameters, we also need to specify the prior distribution and derive the posterior
distribution for different specifications of unobserved effects αt.

In methodological papers and also when applying spatial models to real datasets,
one needs to decide whether the unobserved space-specific effect αi is to be treated
as a random effect or a fixed effect. Traditionally, αi is called a random effect when it
is treated as a random variable and a fixed effect when it is treated as a parameter
to be estimated for each cross-sectional observation i. When αi is referred to an
unobserved random effect, it is often assumed that they are uncorrelated with the
xit; that is, it is assumed that Epαi|xi1, ...,xiT q “ 0.

2.1 Spatial Heterogeneity Structure

In this paper, we suppose that the αi are unobserved effects and that they can
be the same or vary with spatial and temporal variation depending on the chosen
specifications. We will consider all four spatial-temporal type models as specified in
Zheng et al. (2008). The technical details are given in the following sections.
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2.1.1 Homogeneous Model

In the case of the homogeneous model, the unobserved space-specific effects at time
t are assumed to be space-homogeneous and time-homogeneous with αt “ αιN ,
where α is an overall mean. The prior distribution for αt can be specified as follows,

α „ Npα0, γα0q, (2.4)

Thus the full conditional distribution of α is,

α|yt,β, σ
2
ϵ , δϵ „ NpA´1

α aα, A
´1
α q, (2.5)

where Aα “ pNT {σ2
ε ` 1{γα0q´1 and aα “

řT
t“1 ι

1
N pyt ´Xtβq{σ2

ϵ ` α0{γα0 .

2.1.2 Heterogeneous Model

In the heterogeneous model, the unobserved space-specific effects are assumed to be
space-homogeneous but time-inhomogeneous with αt “ αtιN , where αt is a mean
across spaces at time t. Suppose that α “ pα1, ...,αT q1 denotes the vector of the
means over time. In addition, we assume that

α „ NNT pα0,Γα0q, (2.6)

with Γα0 “ γα0INT , and thus the full conditional distribution of α is given by,

α|y,β, σ2
ϵ „ NNT pA´1

α aα,A
´1
α q, (2.7)

where Aα “ Γ´1
α0 ` σ2

ϵA and aα “ Γ´1
α0α0 ` σ2

ϵB, such that A is a T ˆ T diagonal
matrix with diagonal elements Apt, tq “ ιNι

1
N and B is a T dimensional vector with

the tth element Bptq “ ι1
N pyt ´ X̃tβq where X̃t “ ιt bXt.

2.1.3 Fixed-effects Model

In this model, the unobserved space-specific effects are assumed to be time invariant
and thus we can set αt “ α̃ with no time subscript. Note that, however, this vector
is assumed to be time-homogeneous but space-inhomogeneous, that is, αt “ α̃ “

pα1, ..., αN q1 in which αi is a mean over time for space i. We use the following prior
distribution for α̃,

α̃ „ NN pα0,Γα0q, (2.8)
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with Γα0 “ γα0IN . Thus the full conditional distribution of α̃ is,

α̃|yt,β, σ
2
ϵ „ NN pA´1

α̃ aα̃,A
´1
α̃ q, (2.9)

where Aα̃ “ Γ´1
α0 ` T {σ2

ϵIN and aα̃ “ Γ´1
α0α0 `

řT
t“1pyt ´Xtβq{σ2

ϵ ιN .

2.1.4 Random-effects Model

In this case, the unobserved space-specific effects vector are assumed to be time-
homogeneous but space-inhomogeneous with αt “ α̃ “ pα1, ..., αN q1, where the
αi’s are iid random variables with Npα‹, σ2

αq distribution. Thus the full conditional
distribution of α̃ is,

α̃|y,β, σ2
ϵ , σ

2
α, α

‹ „ NN pA´1
α̃ aα̃,A

´1
α̃ q, (2.10)

where Aα̃ “ p1{σ2
α ` T {σ2

ϵ qIN and aα̃ “ α‹ιN {σ2
α `

řT
t“1pyt ´Xtβq{σ2

ϵ ιN . We use
the following prior distributions for α‹ and σ2

α,

α‹ „ Npα‹
0, γ

‹
α0q, σ2

α „ IGpσ2
α0 , γα0q. (2.11)

The full conditional distribution of α‹ is then,

α‹|α̃, σ2
α „ Npα‹

n, γ
‹
αn

q, (2.12)

where α‹
n “ γ‹

αn
pα‹

0{γ‹
α0 ` ι1

Nα̃{σ2
αq and γ‹

αn
“ p1{γ‹

α0 ` N{σ2
αq´1. Also, the full

conditional distribution of σ2
α is,

σ2
α|α̃, α‹ „ IGpσ2

α0 ` N{2, γα0 ` pα̃´ α‹ιN q1pα̃´ α‹ιN q{2q. (2.13)

By allowing for skewness in the error components, it provides great flexibility over
the traditional spatial panel data model. The proposed panel model incorporates all
types of spatial heterogenity mentioned above and is referred to as a skew-elliptical
spatial heterogenity mixed model which can be fitted using the Bayesian estimation
approach described in Jara et al. (2008).

3 Multivariate Skew-elliptical Distributions
In the following, we give the formal definition of the unrestricted multivariate skew-
normal (uMSN) and unrestricted multivariate skew-t (uMST) distributions accord-
ing to Lee and McLachlan (2013) formulations as special cases of the class of skew-
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elliptical distributions by Arellano-Valle and Genton (2005). This type of multivari-
ate skew-normal distribution was studied in Sahu et al. (2003). Suppose z0 and z1

are jointly normally distributed as
«

z0

z1

ff

„ N2np

«

0

0

ff

,

«

In 0

0 Σ

ff

q. (3.1)

Let z denote a n-dimensional random vector. Then z “ µ` ∆|z0| ` z1 defines
the convolution- type stochastic representation of the unrestricted multivariate skew-
normal distribution, and its density is given by

fpz;µ,Σ,∆q “ 2nϕnpz;µ,Σq ˆ Φnp∆1Ω´1pz ´ µq;0,Λq (3.2)

where Ω “ Σ`∆∆1 and Λ “ In ´∆1Ω´1∆ “ pIn `∆1Σ´1∆q´1. In the above, µ
is a nˆ 1 vector of location parameter, Σ is a nˆ n diagonal positive definite scale
matrix and ∆ is a nˆn diagonal matrix of skewness parameters. Further, ϕnp¨;µ,Σq

and Φnp¨;µ,Σq, respectively, denote the probability density function (pdf) and the
cumulative distribution function (cdf) of a Nnpµ,Σq random variable. Note that
when µ “ 0 and Σ “ In; ϕnp¨;µ,Σq and Φnp¨;µ,Σq will be denoted by ϕnp¨q and
Φnp¨q respectively.

We shall follow the terminology of Lee and McLachlan (2013) and adopt the
notation z „ uSNnpµ,Σ,∆q if z has the uMSN density. It is noted that if ∆ “ 0,
the second part of (3.2) evaluates to 2´n, and we again recover the multivariate
normal density ϕnpz;µ,Σq. Then the density of z reduces to the usual symmetric
multivariate density, Nnpµ,Σq.

Following Sahu et al.(2003), the uMSN distribution admits a convenient hier-
achial representation. Let w “ |z0|, the hierarchical representation of (3.2) is given
by

z|w „Nnpµ` ∆w,Σq,

w „HNnp0, IN q, (3.3)

where HNnp0,Σq represents the n-dimensional half-normal distribution with mean
0 and scale matrix Σ.

Analogous to the skew-normal case, the uMST distribution has a similar stochas-
tic representation to the uMSN distribution. Specifically, z “ µ ` ∆|z0| ` z1 has
the uMST distribution, where conditional on the gamma variable r,
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It follows that the density of z is given by

fpz;µ,Σ,∆, τq “ 2ntnpz;µ,Ω, τqTnpcpyq

c

τ ` n

ν ` dpzq
;0,Λ, τ ` nq, (3.5)

where cpzq “ ∆1Ω´1pz ´ µq and dpzq “ pz ´ µqTΩ´1pz ´ µq. This density is
expressed as the product of a multivariate t-student pdf and a multivariate t- student
cdf. In fact, Tnp.;µ,Σ, τq, is the cdf of tnp.;µ,Σ, τq. Here, the notation z „

uSTnpµ,Σ,∆, νq will be used. In the latter case, ν corresponds to the degrees of
freedom parameters. When ν Ñ 8, the multivariate skew-t distribution approaches
the multivariate skew-normal distribution and reduces to the multivariate normal
distribution when ∆ “ 0.

Similar to the uMSN version, the uMST admits a convenient hierarchical repre-
sentation,

z|w „Nnpµ` ∆w,
1
r
Σq,

w|r „HNnp0,
1
r
IN q,

r „gammap
τ

2
,
τ

2
q. (3.6)

The MCMC computations for the skew-elliptical panel model will be derived
based on the above spatial hierarchical Bayes models in expressions (3.3) and (3.6).
These representations are important for obtaining the parameter estimates and will
facilitate easy implementations in commonly used softwares such as R and Open-
BUGS. Note that, for convenience, we use the simple stochastic representation of
the skew-elliptical distributions when their means are not being modelled.

4 Model Selection

From a frequentist point of view, model assessment is based on the log likelihood
. For Bayesian model selection, the Akaike Information Criterion (AIC) (Akaike,
1974), the Bayesian Information Criterion (BIC) (Schwarz, 1978) and the Hannan
Quinn Criterion (HQC) (Hannan and Quinn, 1979) are used to assess the perfor-
mance of asymmetric models and compare it to the symmetric models. They are
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defined by AIC“ pD ` 2P , BIC“ pD ` PlogpNq, and HQC“ pD ` 2PlogplogpNqq, re-
spectively, where pD is ´2 times log likelihood evaluated at the maximum likelihood
estimate, P is the number of parameters, and N is the sample size. It should be
noted that a model with a smaller value of AIC, BIC, and HQC is preferred when
comparing different fitted results.

5 Application

In this section, we illustrate the proposed spatial panel models by applying them to a
dataset derived from records of insurance activities in Italy. Insurance is important
for the economic development of a country and is usually classified into life and
non-life. The life and non-life insurance consumption corresponds to different needs,
so they usually are analyzed separately. Here, we focus on non-life insurance.

The economic rationale for purchasing non-life insurance is to get a (financial)
protection for future losses by paying a premium, today, thus transferring future
wealth from an indefinite to a definite state. According to economic theory, this
branch of the insurance market is plays an important role in fostering the welfare
and growth of the insurance industry and this is realized by protecting families and
firms from the financial hardships caused by unexpected/unusual events such as fire,
theft, disease, and accidents.

We analyze the consumption of non-life insurance across 103 Italian provinces in
1998-2002 in order to assess its determinants. The records include: real per-capita
GDP† (rgdp), real per-capita bank deposits (bank), inhabitants density per square
Km (den), real interest rate on lending to families and small enterprises (rirs), density
of insurance agencies per 1000 inhabitants (agen), share of people with second grade
schooling or more (school), share of value added, agriculture sector (vaagr), average
number of family members (fam), judicial inefficiency index: average years to settle
first degree of civil case (inef), survey result to the question ”do you trust others?”
(trust), real non-life insurance premiums per capita (ppcd), the province code (code)
and the year of observation (year), reported in Millo and Carmeci (2010). These
data are publicly available from splm package in R (Millo and Piras, 2012).

As outlined by Millo and Carmeci (2010), these data are challenging to analyze.
In particular, it is difficult to estimate the determinants of the development of the
nonlife insurance market for Italy and hence good proxies are needed. There is also
a high spatial differentiation across the Italian provinces as well as a high degree
of spatial correlation in insurance density. For this illustration, the explanatory

†Gross Domestic Product
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variables are rgdp, bank, den, rirs, agen, school, vaagr, fam, inef and trust and the
response variable is ppcd. For a discussion of the determinants of insurance, see the
papers by Browne et al. (2000), Beck and Webb (2003), and Esho et al. (2004).

Let us consider the simple panel regression model (2.1) for the total number of
non-life insurance premiums years in Italian provinces. The main objective here is
to investigate the link between non-life insurance premiums and some determinants
of insurance consumption in the model. The panel results can be affected by some
observable (income, wealth, etc) and unobserved effects (capital stock, attitudes
towards litigation and etc) on non-life insurance premiums as will be discussed below.

Data availability for Italian insurance premiums limits the analysis to the provin-
cial level. Due to this, we expect some heterogeneity at the provincial level. Alterna-
tively, one may choose to eliminate that part of the heterogeneity that is associated
with differences between provinces. The unobserved space-specific effects are cap-
tured by the αi terms. Therefore, following the arguments in Section 2.1, we consider
different specifications for the unobserved vector α and then assess the spatial panel
models based on the estimation results.

In the homogeneous model the provincial unobserved effects are the same across
both time and provinces, such that α can be defined as

α1 “ pα ¨ ¨ ¨α ¨ ¨ ¨ ¨ ¨ ¨α ¨ ¨ ¨αq, (5.1)

which is a 515 ˆ 1 vector. In the heterogeneous model the provincial unobserved
effects are the same across the provinces but are different over time. In this case, α
has the following structure,

α1 “ pα1 ¨ ¨ ¨α1 ¨ ¨ ¨ ¨ ¨ ¨α5 ¨ ¨ ¨α5q. (5.2)

On the other hand, in the fixed model and random model, the provincial unobserved
effects are assumed to be the same over time but are different across provinces.
Hence, in these cases, α is defined as follows

α1 “ pα1 ¨ ¨ ¨α103 ¨ ¨ ¨ ¨ ¨ ¨α1 ¨ ¨ ¨α103q “ pα̃ ¨ ¨ ¨ ¨ ¨ ¨ α̃q, (5.3)

where, in the random setting, α follows a specified distribution. For our model, mul-
tivariate skew-elliptical distributions are used for the αi terms. The above-mentioned
structures provide four different ways to introduce unobserved space-specific hetero-
geneity in the constant terms or random variables of the panel data model. We
employ the approach described in Jara and et al. (2008) for the estimation of model
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parameters. In fact, we follow the Bayesian methodology to perform the inference
procedure. For t “ 1, ..., T , we assume ϵt follow an iid uSNN p0, σ2

ϵIN , δϵIN q and
uSTN p0, σ2

ϵIN , δϵIN , νq distributions corresponding to normal and t-student distri-
butions. These models allow us to account for the spatial heterogeneity among
different spaces with skew-elliptical distributions. We assign independent prior dis-
tributions for β, σ2

ϵ and δϵ and obtain samples from the posterior distribution of the
parameters using MCMC methods.

In Millo and Carmeci (2010) the log transformation of the data is used to approx-
imate normality, and then the normal process is applied to model the transformed
data. However, it can be observed from the histogram of log-transformed data in
Figure 1(a) that the data do not appear normal even after log transformation. The
histogram of the raw insurance consumption data in Figure 1(b) also shows that the
data look asymmetric. This indicates that the normality assumption is not satisfied
and that fitting a skew model to the data set seems more appropriate. Furthermore,
we note that the skewness index for the raw non-life insurance premiums is 0.47.

(a)

(b)

Figure 1: (a) Histogram and Q-Q plot of Italian insurance premiums with log-transformed non-
life insurance data. (b) Histogram and Q-Q plot of Italian insurance premiums with raw non-life
insurance data.

The histograms in Figure 2 display the distribution of the residuals obtained
after fitting the four types of spatial panel models with normal assumption. Clearly,
the distributions of the residuals seem to be positively skewed and heavy tailed.
Since we use the proposed spatial heterogenity panel models for the skewed data, it
does not require the use of data transformation.
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Figure 2: Non-life insurance consumption in Italy data. Histogram of the residuals, for each
space-specific effect type, obtained after fitting the multivariate normal distribution.

Table 1: The posterior mean (standard deviation) and equitailed 95% credible intervals for the
parameters in the normal spatial-temporal models fitted to the Italian non-life insurance data.

par. homogeneous heterogeneous fixed random
rgdp 1.216e-2(9.224e-4) 1.128e-2(9.328e-4) 1.231e-2(9.929e-4) 1.217e-2(8.437e-4)

(1.038e-2,0.01402 ) (9.490e-3,1.315e-2) (1.044e-2,1.426e-2) (1.052e-2,0.01379)
bank 9.259e-3(9.931e-4) 9.495e-3(9.478e-4) 8.984e-3(1.069e-3) 9.165e-3(1.023e-3)

(7.248e-3,0.01109) (7.592e-3,1.132e-2) (6.788e-3,1.101e-2) (7.153e-3,0.01112)
den 2.228e-2(5.869e-3) 1.841e-2(5.343e-3) 2.302e-2(5.437e-3) 2.248e-2(5.732e-3)

(1.080e-2,0.03381) (7.505e-3,2.830e-2) (1.232e-2,3.375e-2) (1.043e-2,0.03369)
rirs -9.458(2.004) -1.111e+1(1.916) -9.197(1.783) -9.596(2.052)

(-1.341e+1,-5.457) (-1.506e+1,-7.56) (-1.256e+1,-5.756) (-1.375e+1,-5.657)
agen 8.688(9.109) 7.390(9.144) 8.669(9.129) 9.058(9.450)

(-9.843,25.89) (-1.095e+1,2.443e+1) (-8.363,2.601e+1) (-1.001e+1,27.29)
school -4.492e-1(3.880e-1) 1.655e-2 (3.781e-1) -4.911e-1(4.002e-1) -4.773e-1(3.752e-1)

(-1.189,0.2806) (-6.878e-1,7.835e-1) (-1.314,2.935e-1) (-1.170,0.2391)
vaagr -3.738e-2(7.839e-1) -4.606e-1(7.468e-1) -9.179e-2(7.895e-1) -5.056e-2(7.647e-1)

(-1.539,1.514) (-1.953, 9.897e-1) (-1.662,1.345) (-1.499,1.575)
fam -3.253e+1(6.856) -2.359e+1(6.146) -3.246e+1(6.212) -3.213e+1(6.155)

(-4.509e+1,-18.62) (-3.639e+1,-1.182e+1) (-4.474e+1,-2.048e+1) (-4.437e+1,-19.62)
inef -3.889(1.380) -3.733(1.406) -4.106(1.491) -3.977(1.517)

(-6.742,-1.262) (-6.384,-9.338e-1) (-7.082,-1.065) (-6.957,-0.815)
trust 1.773e+1(7.057) 1.245e+1(5.902) 1.841e+1(7.025) 1.859e+1(6.464)

(5.151,33.6) (1.309, 2.375e+1) (4.572,3.252e+1) (6.102,31.4)
σ2

ϵ 1.295e+3(7.969e+1) 1.141e+3(7.465e+1) 1.277e+3(8.410e+1) 1.298e+3(8.121e+1)
(1.150e+3,1454) (1.006e+3,1.296e+3) (1.116e+3,1.449e+3) (1.151e+3,1470)

- loglike 2576 2537 2564 2569.5
AIC 5170 5102 5156 5173
BIC 5102.18 5102.18 5156.18 5173.218
HQC 5150.507 5082.507 5136.507 5149.329

For the spatial heterogeneity panel models, details of implementation of the
Gibbs sampler algorithm are as follows. For the skew-elliptical proposal distribu-
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Table 2: The posterior mean (standard deviation) and equitailed 95% credible intervals for the
parameters in the skew-normal spatial-temporal models fitted to the Italian non-life insurance
data.

par. homogeneous heterogeneous fixed random
rgdp 1.192e-2(7.428e-4) 1.215e-2(7.926e-4) 1.196e-2(6.936e-4) 1.197e-2(6.525e-4)

(1.051e-2,1.332e-2) (1.077e-2,1.372e-2) (1.071e-2,1.341e-2) (1.075e-2,0.01329)
bank 9.031e-3(7.732e-4) 8.912e-3(8.199e-4) 8.840e-3(7.374e-4) 8.899e-3(7.837e-4)

(7.509e-3,1.054e-2) (7.292e-3,1.047e-2) (7.344e-3,1.027e-2) (7.356e-3,0.01042)
den 1.285e-2(4.298e-3) 1.255e-2(4.500e-3) 1.294e-2(4.426e-3) 1.327e-2(4.276e-3)

(4.518e-3,2.075e-2) (3.798e-3,2.095e-2) (4.143e-3,2.142e-2) (4.705e-3,0.02175)
rirs -1.048e+1(1.722) -1.017e+1(1.847) -1.064e+1(1.684) -1.005e+1(1.628)

(-1.432e+1,-7.298) (-1.346e+1,-6.624) (-1.409e+1,-7.497) (-1.307e+1,-6.854)
agen -1.058(8.997) -1.341(8.999) -7.905e-2(8.897) -1.002e-1(9.506)

(-1.744e+1,1.646e+1) (-1.880e+1,1.662e+1) (-1.771e+1,1.723e+1) (-1.903e+1,18.31)
school -8.819e-1(3.084e-1) -8.851e-1(4.017e-1) -1.015(3.222e-1) -9.644e-1(3.598e-1)

(-1.515,-2.959e-1) (-1.710,-1.255e-1) (-1.692,-4.504e-1) (-1.756,-0.271)
vaagr 4.866e-1(7.126e-1) 4.478e-1(6.807e-1) 3.935e-1(7.337e-1) 3.719e-1(6.696e-1)

(-8.814e-1,1.903) (-9.469e-1,1.848) ( -1.064,1.788) (-9.959e-1,1.685)
fam -2.685e+1(5.192) -2.586e+1(6.149) -2.749e+1(6.645) -2.807e+1(6.277)

(-3.692e+1,-1.616e+1) (-3.737e+1,-1.413e+1) (-3.988e+1,-1.586e+1) (-4.011e+1,-15.81)
inef -4.360(1.280) -4.305(1.244) -4.453(1.315) -4.515(1.321)

(-6.911,-1.99) (-6.678,-1.871) (-7.088,-1.680) (-6.987,-1.865)
trust 1.400e+1(4.970) 1.080e+1(5.834) 1.573e+1(7.128) 1.454e+1(6.204)

(4.548,2.407e+1) (8.468e-1,2.354e+1) (3.061,3.143e+1) (6.891e-1,25.47)
σ2

ϵ 3.074e+2(5.867e+1) 3.027e+2(5.861e+1) 2.845e+2(5.638e+1) 2.945e+2(6.045e+1)
(2.093e+2,4.436e+2) (2.071e+2,4.326e+2) (1.900e+2,4.127e+2) (1.845e+2,422.2)

δϵ 4.812e+1(2.507) 4.788e+1(2.473) 4.804e+1(2.584) 4.795e+1(2.647)
(4.313e+1,5.286e+1) (4.307e+1,5.273e+1) (4.302e+1,5.299e+1) (4.249e+1,53.17)

- loglike. 2383.5 2378 2359.5 2366
AIC 4797 4786 4749 4768
BIC 4797.19 4786.19 4749.19 4768.23
HQC 4766.11 4765.11 4728.11 4742.94

tions, to proceed with Bayesian inference, we ran the Gibbs sampler algorithm with
20,000 iterations, discarded the 20,000 initial iterates and stored every 20th itera-
tion. Our findings in Table 1 to 4 are rather diverse, with coefficients often changing
sign and numerical values, which can be seen as evidence in favour of the need to
investigate on skewness and unobserved heterogeneity in panel studies. Based on
the AIC, BIC, and HQC, the results indicate that skew-t model may be the best fit-
ting model and skew-normal model is next, supporting the contention of a departure
from normality.

The population posterior mean, the corresponding standard deviation, and 95%
credible interval for fixed-effects parameters, variance component of error and skew-
ness component of error are presented in Table 1 to 4. We found that the parameter
estimates among the four models are different from those obtained with symmetric
and asymmetric distributions. The estimated results for the most model coefficients,
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Table 3: The posterior mean (standard deviation) and equitailed 95% credible intervals for the
parameters in the t-student spatial-temporal models fitted to the Italian non-life insurance data.

par. homogeneous heterogeneous fixed random
rgdp 1.156e-2(7.548e-4) 1.105e-2(8.107e-4) 1.189e-2(6.992e-4) 1.188e-2(7.747e-4)

(1.017e-2,1.306e-2) (9.548e-3,1.264e-2) (1.050e-2,1.317e-2) (1.035e-2,1.335e-2)
bank 1.087e-2(8.571e-4) 1.086e-2(9.448e-4) 9.652e-3(8.392e-4) 9.908e-3(9.333e-4)

(9.282e-3,1.259e-2) (8.996e-3,1.275e-2) (7.965e-3,1.132e-2) (8.023e-3,1.183e-2)
den 1.670e-2 (5.091e-3) 1.410e-2(5.190e-3) 1.948e-2(5.083e-3) 1.865e-2(5.618e-3)

(7.462e-3,2.851e-2) (5.160e-3,2.504e-2) (1.087e-2,3.095e-2) (8.682e-3,3.164e-2)
rirs -7.928(1.701) -8.645(1.735) -7.982(1.511) -8.052(1.806)

(-1.104e+1,-4.233) (-1.224e+1,-5.131) (-1.090e+1,-5.120) (-1.188e+1,-4.347)
agen -1.774e+1(1.801e+1) -1.037e+1(1.348e+1) -7.459(1.255e+1) -9.404(1.337e+1)

(-6.177e+1,8.238) (-4.328e+1,1.219e+1) (-3.880e+1,1.341e+1) (-4.036e+1,1.164e+1)
school -2.783e-1(3.035e-1) -2.748e-1(3.020e-1) -8.653e-1(2.631e-1) -7.456e-1(2.757e-1)

(-8.609e-1,3.277e-1) (-8.655e-1,3.286e-1) (-1.426,-3.891e-1) (-1.313,-2.443e-1)
vaagr 1.333(6.189e-1) 5.356e-1(6.331e-1) 1.050(6.503e-1) 1.174(6.483e-1)

(1.630e-1,2.556) (-6.978e-1,1.783) (-2.175e-1,2.355) (-5.735e-2,2.433)
fam -4.129e+1(9.229) -3.265e+1(7.146) -5.223e+1(7.596) -4.886e+1(8.200)

(-6.039e+1,-2.412e+1) (-4.654e+1,-1.904e+1) (-6.591e+1,-3.788e+1) (-6.436e+1,-3.578e+1)
inef -7.605e-1(1.066) -5.303e-1(1.011) -1.325(1.115) -1.266(1.049)

(-2.896,1.344) (-2.527,1.494) ( -3.395,9.217e-1) (-3.325,7.607e-1)
trust 2.680e+1(1.165e+1) 1.202e+1(7.515) 3.349e+1(8.819) 2.875e+1(9.178)

(8.301,5.363e+1) (-1.515,3.166e+1) (1.318e+1,5.008e+1) (1.469e+1,4.687e+1)
σ2

ϵ 4.076e+2(3.987e+1) 3.969e+2(3.889e+1) 3.548e+2(3.747e+1) 3.697e+2(4.233e+1)
(3.331e+2,4.902e+2) (3.251e+2,4.814e+2) (2.821e+2,4.337e+2) (2.958e+2,4.607e+2)

- loglike 2518.5 2501.5 2463.5 2479.5
AIC 506 5031 4955 4993
BIC 5065.18 5031.18 4955.18 4989.19
HQC 5045.51 5011.51 4935.51 4969.33

show that the 95% credible intervals of these posterior means do not include zero,
indicating that these estimates are significantly different from zero, but estimates
appear quite different. Moreover, the parameters estimated for each of the two
spatial panel models with skew-normal and skew-t error terms can be summarized
as follows: (i) The 95% equal-tail credible intervals means associated with each
parameter fitted values from the symmetric models are wider than that of the cor-
responding asymmetric models; (ii) for the skew models, the parameters estimated
have a smaller standard deviation compared to that for the symmetric models; (iii)
the estimate of the variance component of error is smaller in the class of skew models
compared to the symmetric ones, which is expected because skew-normal and skew-t
models take into account skewness of the data; (iv) the estimated 95% equal-tail
credible intervals of δϵ do not include zero. This finding suggests that there is a sig-
nificantly positive skewness in the data and confirms the fact that the distribution
of the original insurance data is skewed. These results indicate that consideration
of departures from normality can lead to an improvement in model fit. According
to the above findings, skew-t is the favored (best) model.
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Table 4: The posterior mean (standard deviation) and equitailed 95% credible intervals for the
parameters in the skew-t spatial-temporal models fitted to the Italian non-life insurance data.

par. homogeneous heterogeneous fixed random
rgdp 0.01216(5.897e-4) 1.090e-2(6.665e-4) 1.180e-2(7.757e-4) 1.179e-2(6.352e-4)

(1.085e-2,0.01315) (9.740e-3,0.01237) (1.046e-2.0.01321) (1.050e-2,0.01304)
bank 0.00988(6.161e-4 ) 9.916e-3(7.078e-4) 9.416e-3(6.760e-4) 9.965e-3(5.393e-4)

(8.647e-3,0.01103) (8.340e-3,0.01115) (8.012e-3,0.01067) ( 8.859e-3,0.01102)
den 0.01541(3.392e-3) 1.231e-2(3.200e-3) 1.706e-2(3.554e-3) 1.451e-2(3.223e-3)

(8.595e-3,0.02194) (5.708e-3,0.01846) (1.017e-2,0.02391) (7.833e-3,0.0206)
rirs -7.034(1.522) -9.835(1.902) -7.572(1.593) -7.577(1.423)

(-9.768,-3.906) (-1.355e+1,-6.491) (-9.986,-3.383) (-1.032e+1,-4.819)
agen -38.07(1.977e+1) -2.093e+1(1.725e+1) -2.004e+1(1.747e+1) -3.148e+1(1.969e+1)

(-7.496e+1,-1.522) (-6.536e+1, 6.566) (-5.844e+1,4.77) (-7.172e+1,1.646)
school -0.5176(2.415e-1) -4.010e-1(2.533e-1) -7.730e-1(2.864e-1) -3.615e-1(1.976e-1)

(-9.452e-1,-0.03139) (-9.241e-1,0.05182) (-1.392,-0.2414) (-7.985e-1,-0.02606)
vaagr 0.6778(5.550e-1) 2.663e-2(5.453e-1) 4.791e-1(5.950e-1) 5.487e-1(5.580e-1)

(-4.967e-1,1.726) (-1.018,1.138) (-6.809e-1,1.661) (-5.228e-1,1.687)
fam -46.81(5.183) -2.870e+1(7.510) -5.136e+1(5.045) -4.262e+1(4.768)

(-5.667e+1,-36.08) (-4.441e+1,-14.41) (-6.219e+1,-41.9) (-5.065e+1,-32.54)
inef -3.022(9.671e-1) -3.689(1.08) -3.007(1.094) -3.435(1.159)

(-4.708, -0.971) (-5.598,-1.455) (-5.147,-0.8216) (-5.615,-0.993)
trust 18.82(5.752) 1.286e+1(5.426) 2.816e+1(4.893) 1.577e+1(4.967)

(8.165,28.43) (4.427,24.180) (1.890e+1,37.03) (6.391,25.16)
σ2

ϵ 73.04(2.586e+1) 7.536e+1(2.548e+1) 7.284e+1(2.645e+1) 6.371e+1(2.126)
(3.445e+1,134.3) (3.662e+1,139.3) (3.074e+1,134.3) (3.031e+1,107.9)

δϵ 38.99(3.273) 3.742e+1(3.005) 3.644e+1(3.26) 3.995e+1(3.012)
(3.253e+1,45.34) (3.114e+1,42.65) (2.990e+1,42.49) (3.409e+1,46.1)

- loglike. 2244.5 2259 2244 2202
AIC 4519 4546 4516 4436
BIC 4519.19 4546.18 4516.18 4436.21
HQC 4498.11 4526.51 4496.51 4413.72

Most authors (e.g., Beenstock et al., 1988, Outreville, 1990, Enz, 2000, Esho
et al. 2004 and Millo and Carmeci, 2010) have commented on the elasticity of
insurance consumption with respect to income and wealth. Elasticity estimates are
frequently used as one of the basic indicators as they are unit-free, easily interpreted,
and comparable across studies. In econometrics models with log-transformed data,
elasticity values are estimated as the coefficients of the independent variables when
the features of the dependent variable, estimation technique, and model structure
are determined. Although there are only minor differences among the coefficient
estimates and elasticites.

In a wider economic sense, the elasticity value of insurance consumption to in-
come is an interesting subject for research. According to Millo and Carmeci (2010),
model specifications and real GDP per capita account for both income and the gen-
eral level of economic activity, and real bank deposits per capita, as an instrument
for the stock of wealth. A negative value for income elasticity is considered consis-
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tent with the hypothesis of insurance as an inferior good (Millo and Carmeci, 2010).
In empirical studies, it is discussed whether insurance is a superior or a normal good.
If income elasticity is positive and smaller than one, then insurance is considered
as a normal good. On the contrary, if elasticity is greater than one, insurance is a
superior good.

The results of the different regression coefficients estimates (posterior means) in
Tables 1 to 4 are reasonable given the observable insurance determinantes. In this
research, the elasticity of insurance consumption with respect to income and wealth,
which is important in spatial econometrics applications areas, is computed. The
posterior means for skew panel models with unobserved space-specific heterogeneity
in the constant terms are largely consistent with each other despite some numerical
differences. Concentrating on the results of the random model with skew-t distri-
bution in Table 4, the elasticity of insurance consumption with respect to income
(1.049) turns out to be statistically positive and greater than one, thus asserting the
view of non-life insurance as a superior good. The elasticity of wealth is positive but
lower than one (0.440), suggesting that the tendency to insure is actually decreasing
with wealth. Inhabitants density proves negative and significant, supporting the
claim that it is not a good agent for risk conditions. The effect of interest rates is
significantly negatively related with insurance consumption. The density of agencies
turns out as a positive exciter, consistently with the view that insurance is a compli-
cated good with a substantial cost of searching for an appropriate contract. Family
numerousity plays a weak role with a negative but significant coefficient, and so
does schooling; person capital does not seem to apply an impression on the non-life
insurance market. The share of agriculture has a significant and positive coefficient.
Judicial system ineficiency has a meaningfully negative impact on insurance. This
confirms with the argument that bad implementation of property laws negatively
affects peoples willingness to insure. For probably similar reasons as in Guiso et al.
(2004), trust is an important positive determinant of insurance. These findings are
important for analyzing the economic development of the non-life insurance market
for Italy.

The Markov chain history and density for some parameters under random skew-t
spatial panel model is presented in Figures 3 and 4, respectively. Note that conver-
gence of the MCMC is confirmed with the following plots.
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Figure 3: Markov chain history for parameters under random model of the Italian
non-life insurance data.

Figure 4: Markov chain density for parameters under random model of the Italian
non-life insurance data.

6 Conclusion

In previous studies, the application of spatial heterogeneity, or the variation in rela-
tionships across spaces, in spatial panel data model rarely examined the behaviour
of the error terms. In this paper, we have considered multivariate skew-elliptical
distributions for the remainder error components of the spatial panel data model.
Specifically, our methodology is suitable for modelling data that exhibit skewness.
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It provides a direct approach to model these data without the need to apply trans-
formations. The approach of allowing for skewness in the error terms of the econo-
metrics is new and differs from the procedures used by other studies to calculate
other econometrics parameters estimates methods. Parameter estimation for our
model was carried out using the Bayesian hierarchical approach. The model fitting
results for each of the sub models of our skew-elliptical spatial heterogeneity models
were investigated by applying several criteria. To demonstrate the usefulness of our
proposed methodology, we conducted a simulation study and applied our models to
a real datasets, namely the insurance consumption data sets. The results from these
analyses demonstrated that it is very important to take into account the skewness in
the data. Adopting a skew-elliptical spatial panel data model for the response mod-
els can achieve more reliable results in the estimation of econometrics parameters.
To achieve this, we implemented the MCMC sampling scheme using the R software.
The non-life insurance consumption data set is analyzed to demonstrate the pro-
posed methodologies and the analysis results are reported. We have also discussed
the elasticity of insurance consumption with respect to income and wealth. The use
of non-normal remainder error components in the panel models not only provides
much improved results, but also avoided the need to perform transformation or to
work with the unrealistic normality assumption.
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Abstract:
Spatial correlation the intra-event residuals of ground motion intensity measures

(IMs)has an important effect on seismic hazard analysis of spatially-distributed struc-
tures such as lifeline networks. Modeling of correlated domain is strongly affected
by the assumption variogram, especially whether or not the isotropic assumption is
valid. In the first part of the present study, a nonparametric test is applied to resid-
uals of IMs and then the effect of anisotropic assumption on seismic hazard analysis
of lifeline networks is investigated. The anisotropic domain is modeled using two
main parameters, namely, anisotropic ratio and anisotropic angle. The results show
that anisotropy may increase the estimated intensity measure of ground motion, es-
pecially, in rare events.

Keywords: Earthquake hazards, Earthquake ground motions, Spatial analysis, Sta-
tistical methods.
Mathematics Subject Classification (2010): 60Gxx, 60Hxx, 60Bxx.

1 Introduction

Quantifying the spatial correlation of ground-motion intensity measures (IMs) is nec-
essary for assessing the seismic risk of lifeline networks (for example; transportation,
electricity, gas, telecommunications, water supply) and building portfolios. Ground
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motion prediction equations (GMPEs) estimate the IMs, such as peak ground accel-
eration (PGA), peak ground velocity (PGV), peak ground displacement (PGD) and
spectral accelerations (SAs) for a single site. GMPEs can account for the effects of
spatial variation, but to do this, the database and the regression method used are
very important.

The partially nonergodic GMPE models developed by ???? an account for
spatial variability for distinct regions.? presented a fully nonergodic ground motion
model for California records with coefficients that vary continuously on a spatial
scale. Most old GMPEs, however, cannot model the spatial correlation of IMs at
different sites because of limitations in the regression methods or database used. In
other hands, it has been shown that ignoring or overestimating the spatial correlation
of IMs can cause the overestimation of frequent losses and underestimation of rare
losses (?Bastami , 2007; ?).Hence, to consider spatial correlation of IMs among sites
in a region, it is required to apply models for spatial correlation with these GMPEs.

Several spatial correlation models for IMs have been introduced. ? used 1994
Northridge earthquake observations to develop a spatial correlation model for PGA.
? computed the spatial correlation of PGV using several earthquakes in Japan and
the 1999 Chi-Chi earthquake. ? and ? developed spatial correlation models based
on the 1999 Chi-Chi earthquake and well-recorded earthquakes in California. ? used
only earthquakes in California. In these studies, the models were proposed using
well-recorded individual earthquakes, such as the 1994 Northridge earthquake. In
these studies, the correlation range of each earthquake was investigated separately,
then a model based on the obtained ranges was proposed.

In other approaches, spatial correlation was investigated by gathering data from
a group of earthquakes. ? proposed models based on comprehensive databases
accumulated in Japan. ? and ? used the Italian accelerometric archive and the
European strong-motion database. ? used Vrancea (Romania) intermediate-depth
earthquakes. ? proposed models for vertical and horizontal components using north-
ern Iran seismic events. ? presented a model for vertical component of response
spectral accelerations using ten earthquake events. Most of aforementioed studies
consider residuals of IMs as an isotropic domain. Recently,? examined the isotropic
assumption of spectral acceleration and proposed a model for seismic hazard analysis
of spatially-distributed networks considering anisotropy of IMs.



53 A. Garakaninezhad, M. Bastami

2 Statistical Tests of Isotropy

A domain is isotropic when the dependence between any two observations relies
only on the length of the separation distance and not on its direction vector. It
is called anisotropy if the relative orientation between two observations affects the
semivariogram. Anisotropy can be either geometric or zonal. Geometric anisotropy
exists if the ranges of the semivariogram change in different directions but the sill
remains the same. Zonal anisotropy occurs when the sill of a semivariogram changes
as the direction changes. Anisotropy can be checked using graphical tests such as
directional semivariograms and rose diagrams (Cressie 1993).

A directional semivariogram can be obtained by computing semivariogram values
from data pairs falling within the prescribed directional bands as well as within a
specific bin distance. The azimuth of the direction vector, angular tolerance and
bandwidth can be found in Figure 1 (a) and are used to compute the directional
semivariogram values ?. For example, for the region illustrated in Figure 1(b), the
semivariogram values at azimuth θ and angular tolerance δ θ can be obtained as
follows. First, select an arbitrary site A and determine all sites which are in region
[θ-δ θ/2,θ+δ θ/2] and categorize them according to the considered bin distances.
This procedure should be repeated for all sites. The experimental semivariograms
for the considered azimuth can be obtained as described previously. A rose diagram
can be obtained by plotting the ranges of the semivariograms in different directions.
In the case of geometric anisotropy, the correlation in one direction will be stronger
than in the other directions. These ranges in a 2D diagram will fall on the edge
of an ellipse. The major and minor axes of the ellipse correspond to the largest
and shortest directional semivariogram ranges (Cressie 1993). The problems with
graphical methods such as these are that the assessment of the results can be difficult,
are subject to personal interpretation and can be misleading because they do not
generally contain a measure of uncertainty. Statistical nonparametric test developed
using spatial statistics is used in the current study to verify these test results.

2.1 Isotropy of Intra-Event Residuals

The isotropic assumption for each IM is examined using the sm package for the
R statistical computing environment. The validity of the isotropic assumption is
determined using the p-value from the sm test. For instance, Figure 2 shows the
smoothed variogram of PGA residuals for the Chi-Chi earthquake. The smoothed
variogram is a function of distance and angle and the variogram value is color coded.
The variogram is calculated by soothing matrix (S1) which is obtained based on
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Figure 1: (a) Parameters in directional semivariogram; (b) sampling points of an arbitrary region.

vector h considering distance and angle. The color coded value for each point in
this figure indicates variogram value for sites whose distance and orientation deter-
mined by the vector between origin and the considered site. For each angle, the
variogram is shown by the coded values along the given radius. For instance, the
smoothed directional variogram along y axis, which shows north-south direction,
is presented as the values in this direction. Although the separated vector has no
sign associated with it, it is useful to show the smoothed variogram value over (0,
2Π] by reflection. The contours show the distance, in unit of standard error, be-
tween the variogram obtained as a function of angle and distance and the variogram
as a function of only distance. In this example, p = 0.0125, which implies that
the isotropic assumption for PGA residuals of the Chi-Chi event is not valid. The
slower increasing rate near the origin shows the direction of anisotropy, which, in
this example, the anisotropy direction is aligned at north-south direction. Figure 3
shows the smoothed variograms for the other IMs. In an anisotropic domain, the
anisotropy ratio and angle are required to determine the spatial correlation between
sites. These parameters are generally calculated using directional semivariograms
estimated for four azimuths (0˝, 45˝, 90˝, and 135˝). In this study, the directional
semivariograms were estimated by considering a bin separation distance of 4-6 km,
an angle tolerance of 22.5˝ and a bandwidth of 10 km.

3 Seismic Hazard Analysis Considering Anisotropy

The following example illustrates the importance of anisotropy in seismic hazard
analysis. Consider a region 30 ˆ 30 km in size which is divided into 900 square cells.
The Vs30 values follow a normal distribution with a mean value of 380 m/s and a
standard deviation of 120 m/s. Assume a fault with reverse mechanism is located in
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Figure 2: Smoothed variogram for PGA residuals for Chi-Chi earthquake obtained from sm
package.

N-S direction near to the region. In this study, we generate an earthquake scenario
using the empirical relationship between source dimensions and magnitude proposed
by Wells and Coppersmith (1994) . Assuming surface rupture length of 40 km, a
magnitude 7 earthquake scenario with epicenter near the origin of the region and
corresponding annual rate of exceedance of λ = 1/500 is considered.

The median predicted PGA at each site location is calculated as suggested by
Campbell and Bozorgnia (2014). The model proposed by ? is used to obtain an
anisotropy ratio and is equal to 2.84 for the PGA. The annual rate of exceedance
of PGA is estimated applying the Monte Carlo simulation (MCS) to generate 10000
realizations of anisotropic spatially-correlated PGA values over the region. Given
a specified value of PGA (PGA˚) and its exceedance area ratio (AR˚) which is
defined as the ratio of the area in which PGA values exceed the considered PGA*
value against the total area of the region, the annual rate of exceedance can be
estimated as

λ “ λm ¨ P pPGA ą PGA˚ and AR ą AR˚q (3.1)

In this example, the exceedance area ratio is assumed equal to 5. The annual rate
of exceedance is computed by MCS for two cases in which the isotropic assumption
is valid or is not valid. For purposes of comparison, this procedure is carried out
for three ranges of semivariogram at 5, 10 and 20 km. Figure 3 shows two Monte
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Carlo realizations of PGA residuals for tow ranges of 5 km and 20 km with and with-
out isotropy assumption. In anisotropy events Figures 3(b) and 3(d) show a more
uniform spatial distribution of PGA residuals in the assumed anisotropy direction
(N-S). Figure 4 shows the annual exceedance curve for PGA and indicates that the
effect of anisotropy for different correlation ranges. It is clear that the hazard level
for cases with a lower correlation range will be underestimated because anisotropy
has not been considered.

Figure 3: Two realizations of PGA residuals (a) and (b) correlation range of 5 km, with and
without isotropy assumption, respectively and (c) and (d) correlation range of 20 km, with and
without isotropy assumption, respectively.

4 Conclusion
Seismic hazard analysis of lifeline networks is influenced by spatial correlation among
earthquake ground-motion intensity measures. The structure of the residual vari-
ogram has strongly effect on correlated domain. However, it is assumed that the
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Figure 4: Annual rate of exceedance for PGA for different correlation ranges as 5 km, 10 km and
20 km.

residuals are isotropic and the variogram is independent of directions. In the present
study, a nonparametric test is applied to investigate the isotropic assumption. The
results showed that this assumption for som IMs is not valid. In addition, the effect
of anisotropy was investigated on seismic hazard analysis of lifeline networks. The
results depicted that ignoring anisotropy may lead increase IMs, especially for rare
events.
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Abstract:
Images, as the source of data, can be analyzed using some tools from spatial

analysis. The key to do this task is Hidden Markov Random Field (HMRF). In this
paper, we combine the HMRF with Latent Block Model (LBM) to both summarize
large array of data sets in the images and to cluster the hyperspectral images. We
show how spatial spectrum information can be invoked to shorten statistical infer-
ence on high dimensional images without confining to estimate a large numbers of
parameters. This is provided by LBM framework on finding homogeneous blocks
and then segmentation map among images. The outcome of such segmentation map
is used in the spectral-spatial classification stage. To reduce data volume, a feature
selection based on either Kullback-Libler divergence or a principal component trans-
formation are also employed. We illustrate the application of our proposed model on
real-life data and show its superiority in compare with standard multivariate tools.

Keywords: Spatial analysis, Image segmentation, Hidden Markov Random Field,
Latent block model, Clustering.
Mathematics Subject Classification (2010): 62H86, 62H30.

1 Introduction
The topic of high dimensional data is frequently used among researchers. A com-
mon example in this context is the images. One is statistically interested in either
cluster or classify images based on various features or spectral properties. There are
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numerous examples in which these two multivariate techniques have been invoked
in analyzing hyperspectral images. To name some, we can mention urban planning,
precision agriculture, and environmental monitoring. See, e.g. Aykroyd (2015) for
more examples.

To cluster the images, one can simply consider the spectral feature while taking
the spatial information into account in the learning process. To improve the ultimate
clustering accuracies in various applications, Ghamisi, et al. (2014), Sun, et al.
(2015), Golipour, et al. (2016) and Wang, et al. (2017), among others, proposed
different tricks. One of the simple trick to take the spatial information into account
is to perform image segmentation. Recently, Tarabalka, et al. (2009) proposed a
method to utilize this along with spectral information by combing together the
clustering and classification steps. Note that the clustering technique is applied
to the relevant features to find some segmentation on the image. This trick seeks
an adaptive spatial partition of pixels and helps to smoothly classify images by,
simultaneously, integrating the spectral and spatial information.

It is known, see for example Cressie (1993), that one of the key concept in
spatial statistics is the Markov Random Field (MRF). One can utilize it through
exploiting spatial information inherited in an image via considering a neighborhood
dependency among pixels. It is known that an unobservable random variable, pos-
sessing Markovian property, is usually modeled by a Hidden Markov Random Field
(HMRF). This technique considers a particular structure of the Hidden Markov
Model (HMM); the underlying stochastic process is a MRF rather than a Markov
chain. So, the HMRFs can be applied in two-dimensional spatial problems such
as image processing. Recently Ghamisi, et al. (2014) used an HMRF model for
segmentation of hyperspectral images based on spatial features. In particular, they
applied a segmentation method to get non-overlapping homogeneous regions aim-
ing on classification of hyperspectral images. This segmentation map is achieved
by a clustering method based on EM algorithm on the first principal component of
spectral. But, this method only works on a single spectrum image.

We utilize the Latent Block Model (LBM), which is a powerful tool to summarize
a vast array of data sets. In particular, we are going to, properly, combine LBM
with HMRF to benefit the capabilities of both models. This merged tool is called
LBMHMRF throughout this paper. The purpose of this method is to seek homo-
geneous blocks in image and to include more information given by neighborhood
dependencies among pixels. It is expected that one can then utilize more spectral
information in analyzing high dimensional images. The main purpose of this new
model is twofold. To ease the complexity of statistical inference via reduce the
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number of parameters to estimate and to shorten the computational cost through
terminating some unnecessary tasks.

The reminder of this paper is organized as follows. An overview of clustering
hyperspectral images based on the HMRF combined with the LB model is provide in
section 2. An application of the proposed method in a real-life example is reported
in section 3. The paper ends with some general conclusions.

2 Spatial Clustering of Hyperspectral Images
Let us assume Y “ ryijs for i “ 1, ..., n, j “ 1, ..., N represents a matrix, where N is
the number of pixels and n is the number of input bands. This matrix is essentially
constructed using, say I, bands with n elements and spectrums of, say J, pixels
with N elements. It worths to mention that these typical notations are common in
image analysis. See, e.g. Jensen and Lulla (1987) for more details. Then, clustering
images using the LB model corresponds to partitioning Y into block matrices, say
Z and X, respectively constructed with the inputs being the sets of all possible row
label z of I into g clusters and column label x of J into L clusters. More details are
given below.

The most common procedure to cluster the objects is the model-based clustering
(Vapnik, 1998). To accommodate it into our problem, let us assume that i-th row
(input band) of data matrix, say yi for i “ 1, . . . , n, is an i.i.d sample from a
probability distribution function (pdf) with the density

fpyi; θq “
ÿ

lPL

πplqflpyi; θlq (2.1)

where, for l P L, πplq, is the probability of those pixels being in l-th cluster, flp . q

is pdf for classes with the label l, and L is the set of all possible labels. Following
Govaert and Nadif (2003), pdf for yi given θ, say fpyi; θq, can then be written as
fpyi; θq “

ř

xPX

wpxqfpyi|x; θq, where wpxq is the probability of the observation having

the label x.
Following Lomet, et al. (2012), the LB is simply a generalization of the mixture

models. Particularly, a variable modelled by the LB can be considered as a mixture
of block components including the latent row and column classes. Hence, we can
write

fpyi; θq “
ÿ

pz,xqPZˆX

ppz, x|πqfpyi|z, x; θq.

Note that, the row labels are assumed to be i.i.d, i.e. ppzq “
ś

i
ppziq “

ś

i,k

πzik
k . Such
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assumption also holds for column labels if one intends to follow the LBM.

Let us consider the common mixture model for y, i.e. fpy; θq “
ř

uPU

gpuqfpy|u, θq,

where U represents possible simultaneous partitions on the set of rows and columns,
say the set IˆJ. If assigning the labels for the row is independent of that for column,
then we can write gpuq “ πpzqπpxq; so

fpy; θq “
ÿ

pz,xqPZˆX

πpzqπpxqfpy|z, x; θq. (2.2)

where fpy|z, x; θq “
ś

i,j,k,l

fpyij;αklq
zikxjl , with αkls indicating the relevant parame-

ters in the model. Note that we used the principle of local independency to write
conditional pdf in (2.2).

Here we can augment our spatial information into modeling rows and columns.
For simplicity, let us assume X is a MRF. Then, the Gibbs distribution for four-
neighborhoods system can be expressed as

P pxq “
1
A
e´Upxq “

1
A
e

´
ř

cPC

Vcpxq

“
1
A

exp
`

´
ÿ

ti,juPC

Vcpxi, xjq
˘

“
1
A

expp´
ÿ

jPs

ÿ

iPNj

Vcpxi, xjqq

“
1
A

N
ź

j“1
expp´

ÿ

iPNj

V pxi, xjqq “
1
A

N
ź

j“1

L
ź

l“1

´

expp´
ÿ

iPNj

V pxi, lqq

¯xjl

“
ź

j,l

1
A1
P pl|xNj

qxjl ,

where ρjl “ P pl|xNi
q is the conditional probability of class l for pixel j, with known

classes of her neighborhoods and A1 is the normalizing constant for the function
appeared in the corresponding expression. If the neighborhoods systems is different
from that considered above, i.e. four-neighborhoods, one then can apply correspond-
ing approximation of the Gibbs distribution, proposed by Besag (1986).

To follow the same procedure for Z and then plug the components into (2.2),
leads to

fpy; θq “
ÿ

pz,xqPZˆX

ź

i,k
πzik

k

1
A1

ź

j,l
ρ

xjl

jl

ź

i,j,k,l

fpyij;αklq
zikxjl . (2.3)

Now assume one is going to make statistical inference on the parameters based on
the pdf given in (2.3). Apart from common maximum likelihood procedure, she
should recall the EM algorithm here because of encountering with the latent labels
in this model. However, to employ this algorithm is not tractable for our model due
to typical spatial dependency among pixels. To circumvent this problem, Govaert
and Nadif (2003) proposed a variational procedure to estimate the parameters and
to predict the latent variables appeared in the LB model. We provide a criterion
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based on this variational procedure to make the implementation and interpretation
of the EM algorithm straightforward.

The variational procedure provides a simple trick to make statistical inference
on the parameters. Precisely, rather than directly maximizing the likelihood, one
should maximize

Gpc, t, θq “ LCpc, t, θq ` HpPzq ` HpPxq “ LCpc, t, θq ` Hpcq ` Hptq (2.4)

where c “ pcikq, t “ ptjlq such that cik “ Pzpzik “ 1|y, θq, and, similarly, tjl “

Pxpxjl “ 1|y, θq and H is the entropy function. Moreover,

LCpc, t, θq “
ÿ

i,k

c
ik

logpπkq `
ÿ

j,l

tjl logpρjlq `
ÿ

i,j,k,l

c
ik
tjl log fklpyij;αklq ´ logpA1q.

The optimization of criterion (2.4) can be done with two alternated steps defined
as follows:
I) Implement a HMRF model on columns. We call it HMRF-EM algorithm.
II) Fit a mixture model on rows. We call it FM-EM algorithm.
More details on this and other relevant topics are discussed in Fatemi, et al. (2018)

Note that to achieve the LB model, these two algorithm should be called in
turn. Utilizing each algorithm, parameters of blocks (αkl) are updated and the
observations are clustered as blocks in both rows and columns. Meanwhile, three
necessary steps should be repeated to estimate parameters of the LBMHMRF model.
They are as follows:

Step I) Find class label of pixels through MAP estimation derivation.

Step II) Compute the conditional probability tjl
pc`1q with θpcq being fixed (E-step).

Step III) Derive the maximum likelihood estimates of the parameters for each
block (M-step).

One should note that the Step II induces the insertion of the spatial infor-
mation into building the LBM and so will be effective in clustering the pixels
and then constructing the segmentation map.

3 Real Application
One of the popular examples to analysis in the area of image analysis is the Pavia
University data set. We are going to implement models proposed in this paper as
well as other traditional methods on this example. Following Ghamisi, et al. (2014),
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to invoke the HMRF model, we applied it only on the first principle components.
Also, we used SVM, as nonlinear classifier, in the classification map stage. To have
more comparison option, a multivariate distribution (MultiHMRF) for each class is
also considered.

Since there are too many features in the images, we need to first reduce them
on the bands using standard statistical methods. As pointed out by Martinez, et
al. (2007), we utilize a method based on a hierarchical clustering technique to col-
lect bands together to minimize and maximize the inter-cluster and intra-cluster
variances, respectively. To do this, we can consider the criteria based on informa-
tion measures, such as distances based on mutual information or Kullback-Leibler
divergence. Here, we use a symmetric version of later criterion as a dissimilarity
measure. Moreover, to select the most effective informative features, we utilize the
transformation arising from principal component analysis. Also, we apply methods
described in this paper using %5 of labeled data for each class as training samples.
Specific sample sizes for both training and test data for each scenario are reported
in table 1.

Note that the accuracy measures used in this analysis refer to correct assigning
of classes in the clustering procedure. Hence, Overall Accuracy (OA) shows the
percentage of accurate clustering throughout the image. Average Accuracy (AA)
is defined accordingly and Kappa is well-known clustering criterion. Whenever we
combined the SVM with other methods, we add a plus sign between them to show
this.

As expected, the more PCs the more improvement is seen in applying any method
to analysis the data. However, this might not be the case for our example due to
spatial dependency among bands. We are not going in more details on this challenge
here. Instead, our aim is to compare the performance of various models applied on
our current example. However, we observed (results not shown here) that there is
not a monotone change on accuracies when the numbers of PCs are increasing. As an
example, SVM+HMRF had no more improvement in the accuracy of classification
after adding PCs.

We used Kullback-Leibler divergence to select appropriate bands. Moreover, the
numbers of bands to evaluate the performance of the model were set on 5, 7 and 10.
We then derived the relevant accuracy measures for each scenario. The results for
all combinations are reported in table 1. As seen, there is significant improvement
on accuracies when the bands are increased. In particular, moving from five to seven
bands turned to gain more information used in modeling and then led to achieve
higher accuracy. It indicates that inclusion of spatial information in the model can
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be very effective with no extra cost on computational time.

Table 1: Classification accuracies, in percent, gained using the selected bands with
specific number of training and test samples while invoking different models.

Sample #Bands=5 #Bands=7 #Bands=10
Class #Train #Test SVM SVM+

HMRF
SVM+
LBMHMRF

SVM+
MultiHMRF

SVM+
LBMHMRF

SVM+
MultiHMRF

SVM+
LBMHMRF

SVM+
MultiHMRF

Asphalt 331 6300 93.55 92.58 91.07 98.09 97.59 98.72 96.50 96.04
Meadows 932 17717 97.99 97.57 99.78 99.81 99.84 99.13 99.50 99.71
Gravel 104 1995 76.73 79.91 78.47 86.71 77.56 88.33 79.98 82.61
Trees 153 2911 93.84 78.02 93.9 91.42 87.64 91.92 79.87 91.61
Meta sheets 67 1278 99.31 86.60 90.59 99.77 90.55 99.86 79.55 99.92
Bare soil 251 4778 83.51 94.07 95.18 92.68 95.79 93.2 92.93 94.48
Bitumen 66 1264 82.98 92.97 97.40 99.66 96.70 97.57 98.99 98.21
Bricks 184 3498 88.63 97.70 95.95 88.20 97.89 96.92 97.19 96.67
Shadows 47 900 99.86 99.88 100 99.79 99.93 99.79 99.88 98.71
OA - - 93.07 93.69 95.73 96.45 96.49 97.12 95.07 96.78
AA - - 90.71 91.03 93.59 95.12 93.72 96.16 91.60 95.33
Kappa - - 90.75 91.60 94.30 95.27 95.32 96.17 93.40 95.72
Time(Sec) - - - - 149.6674 1090.7 187.0494 1436.1 148.4568 1426.7

It might be of interest to evaluate the performance of the proposed model in
retrieving the original (real) map of the example, i.e. Pavia university map. We
have done this using the LBMHMRF model. Figure 1 is a visual representation of
classification maps for our example using two PCs. As seen, our model did manage
to provide somehow more clear view of the map than its noisy version.

Figure 1: Sample classification maps for paviaU data set.

Conclusion

We proposed a modified version of spectral-spatial clustering and classification for
the hyperspectral images. The idea comes from combining the LB with HMRF
models to enable us for considering the spatial information inherited in the images.
It was shown that, unlike traditional methods, the combined model helps one to
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retrieve the image with small numbers of bands. Moreover, reducing the numbers
of parameters to estimate and then saving computational time is noticeable while
invoking the LBMHMRF.

The implementation of the LBMHMRF has been done with 1 ˆ L blocks. The
accuracy might be increased if one use g ˆ L blocks where g ď n. This can be
considered as a possibility for future work.
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Abstract:
In many practical situations, spatial correlation is intrinsically existed and should

be intervened in the analysis. Spatial models have been widely used in statistical
analysis of epidemiology and health issues when the spatial correlation exist and
basic assumptions are satisfied. However, in official statistics issues there is no
attention to this crucial aspect. There are different areas that spatial issue should
be mentioned in existence of spatial correlation, from sampling scheme to parameter
estimation, and neglecting this important aspect leads to misleading results. In
practice we do encounter some situations that there exists a sample frame without
any information about spatially correlated interested variables. In this paper we
are going to review concept of Moran I correlation and investigate that how an
existing variable in the sampling frame, which is correlated to the interest variable,
can be used to grab the desired spatial structure. Intensive simulation studies with
different values of Pearson correlation and distinct sample sizes were done to evaluate
the accuracy of the proposed approach as well. Parameter estimation is done using
the MLE method. As an application, the data available from Household Income
and Expenditure Survey in Tehran city is considered.
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1 Introduction

Spatial models have been widely used in statistical analysis of epidemiology and
health issues when the spatial correlation exist and basic assumptions are satisfied.
However, in official statistics issues there is no attention to this crucial aspect. There
are different areas that spatial issue should be mentioned in existence of spatial
correlation, from sampling scheme to parameter estimation. One of the most crucial
aspects of sample designs is sampling frame that has significant effects on cost and
quality of any survey. It is worth to note that faulty sampling frames are a common
source of nonsampling error, particularly under-coverage of important population
sub-groups. Ideally, of course, a frame should be current in order for it to fulfil
the other two properties of completeness and accuracy. An obsolete frame obviously
contains inaccuracies and is likely to be incomplete. Especially in household surveys,
the quite important deficiency of a frame is being out of date since it is based on the
population census that is several years old. The old census will not accurately reflect
new construction or demolition of dwellings, in- or out-migrants in dwelling units,
births or deaths. These deficiencies violate the criterion of a probability sample
that each member of the target population must have a known chance of selection
(Turner, 2003). Another aspect which is not mentioned in construction of sampling
frame is geographical information of sampling units, which would be used to find
out spatial correlation of sampling units. Spatial correlation provides us a useful
tool to capture the existence of global heterogeneity. Spatial autocorrelation is a
measure of spatial dependence between values of random variables over geographic
locations. So if the geographic information of dwellings is included into the frame, it
can be used to assess the spatial heterogeneity and interfered it while selecting the
sample. In result, the sample will be distributed in a way to cover dwellings with
different characteristics. To a certain extent, samples that are close to each other
are more likely to be similar (Dale, 1999) . There are different statistics to evaluate
spatial correlation, the most often used and cited one is Morans I (1948). Moran I
is a single test statistic that indicates two types of spatial autocorrelation, positive
autocorrelation and negative autocorrelation. A positive autocorrelation captures
the existence of both high-value clustering and low-value clustering, while a negative
autocorrelation captures the existence of high-values next to low-values (Anselin et
al., (2000); Haining (1990); Lawson and Denison (2000)). Imagine a situation that
we aim to gather information about a variable which is spatially correlated, while
the available sampling frame contains no information about the spatially correlated
variable of interest. How this deficiency can be encountered if there is no way to
correct the frame, for instance it is based on the last census. In this paper we
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will aim to show that a correlated variable from the frame can be used to grab the
spatial structure of the variable of interest. In Section two, we will talk about the
methodology and simulation scheme. Section 3 is devoted to present results of the
simulation study. In Section 4, application of the proposed approach on a real data
set of HIES is proposed, and the paper is end up by discussions and conclusions.

2 Methodology

Spatial autocorrelation is a measure of spatial dependence between values of a ran-
dom variable over geographic locations. Morans I is one of the oldest statistics used
to examine spatial autocorrelation. This global statistic was first proposed by Moran
(1948) and Moran (1950). Later, Cliff (1973) and Cliff and Ord (1981) present a

comprehensive work on spatial autocorrelation and suggested a formula to calculate
the I as bellow, which is now used in most textbooks and soft wares

I “
n

W

řn
i“1

řn
j“1 wijzizj

řn
i“1 zi

2

where n is number of observations, W is the sum of the weights wij for all pairs
in the system, The weight matrix can be specified in many ways, for instance the
weight for any two different locations is a constant, all observations within a spec-
ified distance have a fixed weight, K nearest neighbours have a fixed weight, and
all others are zero, and weight is proportional to inverse distance, inverse distance
squared, or inverse distance up to a specified distance. zi “ xi ´ x̄ where x is the
value of the variable at location i, and x̄ is the mean value of the variable of interest.
Computation of Morans I is achieved by division of the spatial covariation by the to-
tal variation. Resulted values are in the range from approximately -1 to 1. Positive
sign represents positive spatial autocorrelation, while the converse is true for nega-
tive sign, and there is no spatial autocorrelation when Moran I equals to zero. When
no statistically significant spatial autocorrelation exists, the pattern of spatial distri-
bution is considered random (Chou , 1997). On the other hand, Pearsons correlation
coefficient is another measure of correlation between two variables, but nothing is
reflected about interactions based on spatial connection. We are aim to understand
whether the measure of Pearson correlation between two variables has any clue about
the similarity of spatial correlation structure of the two or not. Assume that based
on prior knowledge we know that one variable is following a spatial structure, but
we do not have access to the current values of this desired variable. However, we
have access to the information about another variable which is correlated to the
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variable of interest due to the Pearson correlation coefficient. Can we use the in-
formation from the available correlated variable to find out the spatial structure of
the other variable? In order to find a solution, we go through a simulation study
with different measures of Pearson correlation and different lattice size to check their
effects as well. The spatial correlation structure of the response variable is incorpo-
rated into the model by adding a random component to the mean model. Suppose
y “ pyps1q, . . . , ypsnqqJ are realizations of random variables Y “ pY ps1q, . . . , Y psnqqJ

at n distinct locations s1, . . . , sn. For simplicity assume yi and Yi denote the ypsiq

and Ypsiq respectively, in the following parts. Let y “ py1, y2, . . . , ynq are Gaussian
distributed response such that y | β, σ2, τ „ Npµ,Σq . Also suppose that the ran-
dom vector τpsq “ pτps1q, . . . , τpsnqq denote a Gaussian Random Field (GRF). For
the sake of brevity we will show τpsiq by τi , i “ 1, . . . , n in the following parts.
Therefore, we define the spatial regression model with random effect as bellow

Model 1: µi “ βxi ` τi, i “ 1, . . . , n,

where xi “ pxi0, . . . , xipp´1qq and β “ pβ0, β1, . . . , βpp´1qq
J are vectors of non-stochastic

regressors and regression parameters respectively. To have both positive and neg-
ative regression coefficients, the considered values for the model parameters are
β “ pβ0, β1, β2q=(1,-2,3) and the covariates are simulated from the uniform distri-
bution U(0, 1) .Let the spatial effects τi be realizations of a zero mean Gaussian
random field with covariance matrix Στ , and components of the matrix define as a
function of the distance between geographical sites (Wang and Wall, 2003). Assume
si denotes the geographical coordination of the ith sample unit. There are different
possibilities for the covariance matrix, assume that σ2

kl “ γexpp´ | sk ´ sℓ | {ϕq,
which is the exponential covariogram, is the spatial variance, ϕ is the range and
| sk ´ sl | is the distance between geographical coordinates of sample units k and ℓ.
The likelihood function for Model 1 is as follow

Lpβ, ϕ, γ | yq “

ż n
ź

i“1
fpyi | x, β, ϕ, γqfpx | ϕ, γqdx

For generating values of the random effect τi, as noted before τis are from a zero mean
Gaussian random field, that is τ “ pτ1, . . . , τnq „ Np0,Στ q and the ijth component
of Στ is pΣτ qij “ γexpp´ | si ´ sj | {ϕq. Required parameters are set as γ=0.5, ϕ=5.
Data are generated on coordinates of 10ˆ 10, 20ˆ20 and 30ˆ 30 squares lattice.
After generating the y “ py1, y2, . . . , ynq for each value of n=100,400, 900 respectively,
we imply the Cholesky decomposition to generate another set of data which in
correlated to the first generated data set. For each sample size different values of
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Pearson correlation are considered in order to evaluate the effect of correlation value
as well. Results of simulation study are presented in the next section.

3 Simulation Study
As shown in Model 1, mean of the response variable arise from two distinct elements.
The First one is a fixed structure and the second element is a random component,
which reflecting the stochastic spatial process. Therefore, in the process of simula-
tion study, estimation of spatial parameters was done after detrending the response
variable. In the first step a regression model is fitted to the generated response
variable to obtain the residuals. In the second step, the exponential variogram is
fitted on the residuals to estimate the spatial parameters. In our simulation study
we generate N=100 data sets from the proposed structure for n=100,400, 900. We
computed the relative bias (RelBias) and the square root of MSE (RMSE) for each
parameter over the 100 simulated samples. They are defined as

RelBiaspθq “
1

100

100
ÿ

i“1
p
θ̂i

θi

´ 1q, RMSEpθq “ t
1

100

100
ÿ

i“1
pθ̂i ´ θiq

2u
1
2

Where θ “ pγ, ϕq and θ̂i is the estimate of θi for the ith sample. The results of
parameter estimation are presented in Table 1. Considering the estimated values of

Table 1: Summary Results of Model1 Based on 100 Simulated data sets

Detrend Response Detrend Correlated Variable

Pearson Corr. n Real Est. R.Bias Rmse Est. R.Bias Rmse

0.55

100
0.5 4.46 8.91 18.28 22.13 43.26 99.21
5 66.95 12.39 260.34 167.87 35.57 601.99

400 0.5 2.4 3.8 7.12 10.18 19.36 85.18
5 65.63 12.13 202.90 107.25 20.45 856.16

900
0.5 0.55 0.09 0.3 0.83 0.66 1.755
5 5.72 0.14 4.1 9.27 0.85 14.13

0.65

100
0.5 4.66 7.32 17.18 12.64 24.28 45.13
5 67.19 12.44 250.7 171.24 33.25 596.65

400 0.5 2.38 3.76 5.16 2.20 3.41 14.46
5 52.35 9.47 114.29 27.80 4.56 195.53

900
0.5 0.56 0.12 0.25 0.57 0.35 1.04
5 6.14 0.23 3.62 6.89 0.55 8.43

0.85

100
0.5 3.21 5.41 7.06 11.87 22.74 39.43
5 17.91 2.58 46.82 183.97 35.79 571.47

400 0.5 2.16 3.33 5 1.16 1.32 3.72
5 39.63 6.93 105.75 14.1 1.82 49.79

900
0.5 0.51 0.03 0.24 0.23 -0.18 0.3
5 5.56 0.11 3.21 5.47 0.29 4.46

the parameters for various sample sizes and correlations, it is obvious that for sample
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sizes of lower than 900, nor the estimated value from Detrend Response neither the
Detrend Correlated Variable are not efficient due to the high values of R.Bias and
Rmse. But when the sample size is increasing to 900, parameter estimation for
both sources are satisfactory. In result we can conclude that if the sample size is
big enough, which contains valuable amount of information, we can implement a
correlated variable to capture the spatial structure of the data even in cases when
the value of Pearson correlation coefficient is around 0.5, which is a moderate value.

4 Application

As an application we consider the information available from Household Income
and Expenditure Survey (HIES) of Iran. The HIES aims to provide estimates of
the average income and expenditure for urban and rural households at provincial
and country levels. The HIES has a three stage cluster sampling method which
conducts annually with a 0-3 rotating panel design and its target population in-
cludes all private and collective settled households in urban and rural areas. There
is comprehensive questionnaire which contain a large amount of information about
different groups of expenditure and income. Among the favourite variables of HIES
data, household income, total expenditure and non-food expenditure have spatial
correlation, due to the significant Moran I value. Obviously we have to design the
sampling scheme in a way to capture the spatial structure of main variables. The
obstacle we have to encounter with is, in the available frame there is no access to the
information about income to use for construction of a sample design. Considering
the approach presented in this paper, finding a variable which is correlated to these
mentioned variables can be solve this problem. After examining candidate variables
whose information was available, rent of housing unit is selected as a suitable vari-
able. In this application study we focus on income, but the method is the same for
other main variables.
Since income is one of the main output of HIES, it is necessary to produce the sam-
pling design by interfering its spatial structure. Fortunately, we have access to the
rent of housing unit from other resources. In conclusion, in order to evaluate the
relationship between income and rent, for the sake of grabbing spatial structure of
income using another variable, we choose rent. The Pearson correlation coefficient
between income and rent is around 0.4. Figure 1, represent the bubble chart of
income and rent variables. Since too many bubbles can make the chart hard to
read and bubble charts have a limited data size capacity, some points are chosen
randomly to make the bubble charts. The sizes of the bubbles in Figure 1 (a) and
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(b) are determined by the values of income and rent respectively. Although the two
bubble chart are not exactly the same, but it is clear that they are following the
same pattern.

  

(a) (b)

Figure 1: Bubble plot of (a) Income and (b)Rent

The sample households are distributed over geographical areas known as blocks,
each block contains some sampling units but their size are not the same. Geographi-
cal information about households are available in block level. Therefore, in order to
evaluate the spatial structure of income we calculate the average values of household
income in block level. The Moran I value showed the significant spatial correlation.
We fit different kinds of known variograms, such as Gaussian, Spherical, Matern,
Exponential and Power, to the income data using gstat and sp packages in R. Pa-
rameters are estimated by use of MLE method. The exponential variogram is the
best fitted one and sum of squared errors of the fitted model (SSErr) is equal to 0.1.
The fitted variogram is shown in Figure 2.

The nugget effect, sill and range are 0.06, 0.23 and 22.6 respectively. The Pearson
correlation coefficient between income and rent is around 0.4, we try to capture the
spatial structure of rent by fitting different kinds of variograms. In preliminary
study we found that Area of Housing Unit is an effective variable on the rent value.
Hence in the first step a regression model is fitted to remove the covariate effect.
Then variogram fitting was done on the residuals of the regression model. At last
the exponential variogram is the best fitted one as for the income variable. The
SSErr, nugget effect, sill and range are 0.12, 0.17,0.4 and 13.75 respectively. So in
the absence of information about income we can implement the rent information
to capture the spatial structure. Although the estimated parameters values are not
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Figure 2: Variogram of Income.

exactly the same for income and rent variogram, but the spatial covariance structure
of both of them are follow the exponential pattern. So in the absence of information
about income we can implement the rent information to capture the spatial structure,
which is not exactly the same as spatial structure of the income but reflect it in a
reasonable manner.

5 Discussion and Conclusion
When spatial dependence is existed, finding ways to distinguish its structure and
take it to account is essential. Morans I statistic provide information about value and
statistical significance of the existence value. In practice we counter some situations
where we need to gather information about a spatially correlated variable when there
is no information available in the frame. Our intensive simulations for different
values of sample sizes and correlations showed that a correlated variable to the
spatial interested variable can be used to capture the spatial structure. It is worth
to note that even moderate values of Pearson correlation in enough to capture the
spatial structure in a reasonable manner. it should be emphasized that Pearson
correlation in not the only criteria for decision making and it should be used with
care. In conclusion, we recommend to assess and implement correlated variable to
grab the spatial structure when required information about the variable of interest
is not available. This can be an applicable tool for construction of sampling schemes
when there is lack of information in the sampling frame. Obviously achieving to
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the spatial structure of variable of interest is not the final step and we have to
implement it in designing the sampling scheme. There are different approaches to
do spatial sampling and the best one will be selected by experts based on the goals
and available requirements.
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Approximate Composite Marginal Likelihood Inference in
SGLM Models with Skew Normal Latent Variabless
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Abstract:
Non-Gaussian spatial responses are usually modeled using spatial generalized

linear mixed model. In this model, it is a standard assumption that the latent
spatial variables have normal distribution, but it is unclear whether the Gaussian
assumption holds. The first purpose of this paper is to use a multivariate closed
skew normal distribution for the latent variables, which is greater class than the
class of multivariate normal. Since the likelihood function of this model cannot
usually be given in a closed form, thus maximum likelihood approach is very chal-
lenging. The second purpose of this paper is to propose a new approximate pairwise
maximum likelihood method for the inference and spatial prediction of the spatial
generalized linear mixed models with skew normal latent variables. This approxi-
mate inference method is fast and deterministic, using no sampling based strategies.
The performance of the proposed model and method are illustrated through a sim-
ulation study.
Keywords: Spatial Generalized Linear Mixed Model, Latent Variable, Pairwise
Likelihood, Approximate Inference.
Mathematics Subject Classification (2010): 91B72, 62J12.

1 Introduction
Spatial generalized linear mixed models (SGLMM) are commonly used for count or
proportion data acquired over a continuous spatial domain, see e.g. Diggle et al.
(1998). Spatial correlation of the data is usually modelled by latent variables. The
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most common assumption for the latent random field is to use a Gaussian random
field. Inference of the model parameters and spatial prediction has been studied
intensely for this Gaussian assumption, see e.g. Breslow and Clayton (1993), Zhang
(2002) , Varin et al. (2005), Baghishani et al. (2012), Baghishani et al. (2011)
Hosseini (2016). Erroneous normal assumptions have influence on the estimation of
the model parameters and the accuracy of spatial prediction.
In this paper we will consider a Closed Skew Normal (CSN) distribution for the spa-
tial latent variable. This distribution is fully parametric, and contain several closed
form solutions, facilitating efficient inference of the model parameters and predic-
tion of the latent process. Hosseini and Karimi (2019) proposed an approximate
likelihood approach for SGLMM with Normal latent variables. For the resulting
SGLMM with CSN latent variable, we introduce the new approximate likelihood
inference methods similar to Hosseini and Karimi (2019). The main contribution of
the current work is to use a CSN approximation for the conditional distribution of
the latent variables, and to show that this allows us to perform fast approximate in-
ference and prediction, see e.g. Hosseini et al. (2011), Hosseini and Mohammadzadeh
(2012) and Hosseini and Karimi (2019). The inference step is done in a manner
similar to the Laplace approximation (Tierney and Kadane (1986), Rue and Mar-
tino (2007), Rue et al. (2009) and Eidsvik et al. (2009)), but based on the CSN
approximation instead of the usual normal approximation, Hosseini et al. (2011)
and Hosseini and Karimi (2019).
This paper is organized as follows: In Section 2 the closed skew normal (Dominguez-
Molina et al. (2003)) and the Spatial GLMM with Closed Skew Normal Latent
Variables (Hosseini and Karimi (2019)) are presented. The proposed method are
described in Section 3. Section 4 shows results on a simulation study. Closing
remarks are given in Section 5.

2 SGLMM with Closed Skew Normal Latent Vari-
ables

In this section we define the CSN distributions and present the SGLMM with CSN
as the distribution for the spatial latent variables.

2.1 Closed Skew Normal Distribution

The CSN distribution is a class of statistical distribution, which includes the SN and
normal distributions as a special cases. In order to the CSN distribution extends the
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SN by allowing more flexibility on the skewness directions. The CSN distribution
has some very desirable properties, similar to those of the normal distribution. For
instance, the CSN distribution is closed under marginalization, conditioning, and
linear transformations (full column or row rank), see Dominguez-Molina et al. (2003).
A n-dimensional random vector x follows a multivariate CSN distribution, with
parameters µ, Σ, D, ν, and ∆, if its density function is given by
fn,qpx|µ,Σ, D,ν,∆q “ rΦqp0;ν,∆ ` DΣD1

qs´1 ϕnpx;µ,Σq ΦqpDpx´ µq;ν,∆q.(2.1)
In short we denote this distribution by CSNn,qpµ,Σ, D,ν,∆q, where the length n

vector µ is a location parameter, the positive definite nˆn matrix Σ is a scale matrix,
the elements of q ˆ n matrix D are skewness parameters and Φqp¨;ν,∆q is the q-
dimensional normal cumulative distribution function with mean ν and covariance
matrix ∆. For q “ 1, ν “ 0, ∆ “ 1 and D “ λJΣ´ 1

2 , the CSN density reduces
to that of the skew normal distribution. When D is a zero matrix, the density in
equation (2.1) reduces to the density of a multivariate normal distribution. The first
moment of the CSN distribution is

EpXq “ µ` ΣDJψ, (2.2)
where ψ “ Φ˚

q pr,ν,∆ ` DΣDJq{Φqpr,ν,∆ ` DΣDJq|r“0 , and for any positive
definite matrix Ω, Φ˚

q pr;ν,Ωq “ r∇rΦqpr;ν,ΩqsJ with gradient operator ∇r “

pB{Br1, ¨ ¨ ¨ , B{BrqqJ. The variance of X is
V pXq “ Σ ` ΣDJξDΣ ´ ΣDJψψJDΣ

where ξ “ Φ˚˚
q pr,ν,∆ ` DΣDJq{Φqpr,ν,∆ ` DΣDJq|r“0 and Φ˚˚

q pr;ν,Ωq “

r∇r∇J
r Φqpr;ν,ΩqsJ. The CSN distribution has some desirable properties, similar to

those of the normal distribution. For instance, the CSN distribution is closed under
marginalization and linear conditioning, see Dominguez-Molina et al. (2003). The
CSN distributions has some favorable properties similar to those of the multivariate
normal distribution. It is for example closed under marginalization, partition x into
x “ px1

T ,x2
T qT , where the dimension of x1 is k and the dimension of x2 is n ´ k.

Marginally,
x1 „ CSNk,qpµ1,Σ11, D

˚,ν,∆˚q, (2.3)
where D˚ “ D1`D2Σ21Σ´1

11 , ∆˚ “ ∆`D2Σ22¨1D
1
2, Σ22¨1 “ Σ22´Σ21Σ´1

11 Σ12, with µ1,

Σ11, Σ22, Σ12, Σ21, D1 and D2 obtained by appropriate partitioning µ “

˜

µ1

µ2

¸

,

Σ “

˜

Σ11 Σ12

Σ21 Σ22

¸

and D “ pD1, D2q. The CSN distribution is closed under

conditioning; with the previous partitioning, the conditional distribution of x2 given
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x1 is
px2|x1q „ CSNn´k,qpµ2 ` Σ21Σ´1

11 px1 ´ µ1q,Σ22¨1, D2,ν ´ D˚px1 ´ µ1q,∆q. (2.4)
Karimi et al. (2010) and Karimi and Mohammadzadeh (2011) define a type of closed
skew Gaussian random field as following:
Let W psq “ µpsq ` E1psq, s P R2, where µpsq is a real valued function and E1psq is
a spatial Gaussian random field with covariance function

Σθps1, s2q “ CovpE1ps1q, E1ps2qq, (2.5)
where θ is the vector of covariance parameters. Let the random vector E2 “

pE21, . . . , E2qqJ, q ě 1 be independent ofE1 “ pE1ps1q, . . . , E1psnqqJ and distributed
as Nqp0,∆q, where ∆ is a positive definite matrix. Define V “ pV1, . . . , VqqJ with
jth element given by

Vj “ ´νj `

n
ÿ

i“1
djpsiqE1psiq ` E2j, j “ 1, . . . , q, (2.6)

where νj P R and each djp¨q is a real valued function. According to Preposition
3.1 in Karimi and Mohammadzadeh (2011), Xpsq “ rW psq|V ě 0s is a discrete
form of the CSG random field. Then according to properties of random field, if
xpsq “ pxps1q, ¨ ¨ ¨ , xpsnqq be a realization of the stationary random field Xpsq, xpsq

has a CSN distribution as CSNn,qpµ,Σθ, D,∆,νq, where the elements of matrix D
and vector ν are νj and dj in (2.6).

2.2 Model

Let x “ px1, ¨ ¨ ¨ , xnq1 with density CSNn,1pHβ,Σθ,λ
1Σθ

´1
2 ,0, Iq be a realization of

a CSG random field at n sites ts1, ¨ ¨ ¨ , snu in a domain χ Ď Rn. Here, the location
parameter Hβ consists of n ˆ pp ` 1q matrix H of covariates, and p ` 1 regression
parameters β “ pβ0, ¨ ¨ ¨ , βpq1. I is a n ˆ n identity matrix. The spatial interaction
matrix Σθ is a positive definite n ˆ n matrix, with two dimensional parameter θ “

pσ, ϕq indicative of the scale and spatial ’correlation’ length, respectively. In this
paper we use an isotropic exponential ’correlation’ structure for the entries in this
matrix. This entails that Σθpi, jq “ σ2 expp´ ∥ si ´ sj ∥ {ϕq, where ∥ si ´ sj ∥ is the
Euclidean distance between sites si and sj. We assume, the skewness parameter λ “

λ01 is a length n vector, with one free parameter λ0 for maintaining a parsimonious
model. We define η “ pβ1,θ, λ0q. From equation (2.1) we have

fpx|ηq “
2

p2πqn{2|Σθ|1{2 exp
ˆ

´
1
2

px´ Hβq1Σθ
´1px´ Hβq

˙

¨ Φpλ1Σ´ 1
2

θ px´ Hβqq.

Let y1 “ py1, ¨ ¨ ¨ , ykq represent the discrete spatial response variables at the obser-
vation sites ts1, ¨ ¨ ¨ , sku. We assume that the measurements are conditionally in-
dependent with likelihood fpy|xq of an exponential family (McCullagh and Nelder



Approximate Composite Marginal Likelihood Inference 82

(1989)). For each observation site si, i “ 1, . . . , k, this can be written fpyi|xiq “

exptyixi ´ bpxiq ` cpyiqu, where bpxiq is the cumulant function. The mean Epyi|xiq

and xi are in general related by Epyi|xiq “ g´1pxiq, where gp¨q is a known link
function. To summarize, the model has the following components:
fpy,x,ηq “ fpy|xqfpx|ηq

“
2

p2πqn{2|Σθ|1{2 exp

˜

k
ÿ

i“1
ryixi ´ bpxiq ` cpyiqs ´

1
2

px´ Hβq1Σθ
´1px´ Hβq

¸

ˆΦpλ1Σ´ 1
2

θ px´ Hβqq. (2.7)

3 Approximate Pairwise Likelihood Inference
In this section an approximate algorithm is proposed to obtain estimates of model
parameters based on the EM algorithm and pairwise likelihood approach when the
latent variables have a CSN distribution. Pairwise likelihood is a special case of
a more generalized class of pseudo likelihoods called composite likelihood by the
term pairwise likelihood is used by instead. Let x “ px1, ¨ ¨ ¨ , xnqJ with density
NnpHβ,Σθq and fpyi|xiq “ exppyixi ´ bpxiq ` cpyiqq, the likelihood function is

Lpβ,θ|yq “

ż

#

k
ź

i“1
fpyi|xiq

+

fpx|β,θqdx, (3.1)

which cannot usually be given in a closed form, and that is because the integration
dimension in (3.1) is equal to the number of latent variables, and consequently it
is intractable to find the MLE by directly maximizing L. Pairwise likelihood is the
product of the bivariate likelihood as follows

PLpβ,θ|yq “
ź

pℓ,ℓ1qPℵ
Lpβ,θ|yℓ, yℓ1q

“
ź

pℓ,ℓ1qPℵ

ż ż

fpyℓ|xℓqfpyℓ1 |xℓ1qfpxℓ, xℓ1 |β,θqdxℓdxℓ1 ,

where, ℵ is a subset of pairwise neighbors. A moving neighborhood method is used
by excluding far apart pairs that have little spatial correlation.

Theorem 3.1. (Hosseini et al. (2011)) Let x|η „ CSNn,1pHβ,Σθ,λ
1Σ´ 1

2 ,0, Iq,
fpyi|xiq “ exptyixi ´ bpxiqu. By linearizing the likelihood part of p2.7q at a fixed
value of x, then

px|y,ηq « CSNn,1pµ̂x|y,η, Σ̂x|y,η, D̂x|y,η, ν̂x|y,η, 1q, (3.2)
where µ̂x|y,η “ Hβ ` ΣθA

1R´1pzpy,xobsq ´ AHβq, and zipyi, xiq “ ryi ´ b1pxiq `

xib
2pxiqs{b2pxiq, i “ 1, . . . , k, is a linearization of the exponential family likelihood

part of equation (2.7) at a fixed value of x. Moreover, R “ AΣθA
1`P and P “ P pxq

is a diagonal matrix with entries element P pi, iq “ 1{b2pxiq, i “ 1, ¨ ¨ ¨ , k. Finally,
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Σ̂x|y,η “ Σθ ´ ΣθA
1R´1AΣθ, D̂x|y,η “ λ1Σ´ 1

2
θ , and ν̂x|y,η “ λ1Σ´ 1

2
θ pHβ ´ µx|y,ηq. See

Appendix Hosseini et al(2011) for further explanation.

For fitting a CSN approximation, we choose a starting value xp0q. For instance
set xp0q “ Epx|ηq. Set m “ 0. Then, calculate

f̂px|y,ηq “ CSNn,1pµ̂x|y,ηpxpmqq, Σ̂x|y,ηpxpmqq, Dx|y,η, ν̂x|y,ηpxpmqq, 1q

and let
xpm`1q “ Êpx|y,ηq “ µ̂x|y,ηpxpmqq ` Σ̂x|y,ηpxpmqqD1

x|y,ηψ̂,

ψ̂ “ ψp0, Σ̂x|y,ηpxpmqq, Dx|y,η, ν̂x|y,ηpxpmqq, 1q.

Finally we set m “ m ` 1 and update f̂px|y,ηq using the theorem above. Conver-
gence is obtained after a few iterations. The CSN-APEM algorithm is as follows:
1) Choose a starting value ηp0q, such that PLpηp0q|yq ą 0 and set m “ 0.
2) Approximation step: choose a starting value xp0q. For instance set xp0q to be the
mode of fpxℓ, xℓ1 |ηpmqq. Set d “ 0.
(a) Calculate f̂pxℓ, xℓ1 |yℓ, yℓ1 ,ηpmqq from Theorem 3.1.
(b) Let xpdq to be mode of f̂pxℓ, xℓ1 |yℓ, yℓ1 ,ηpmqq. Set d “ d ` 1. Go to (a) until
convergence is reacheds. 3) Expectation step: evaluate

Qpη|ηpmqq “
ÿ

pℓ,ℓ1qPℵ
Eplogtfpxℓ, xℓ1 , yℓ, yℓ1 |ηqu|yℓ, yℓ1 ,ηpmqq

“
ÿ

pℓ,ℓ1qPℵ

ż ż

logtfpxℓ, xℓ1 , yℓ, yℓ1 |ηqu

ˆf̂pxℓ, xℓ1 |yℓ, yℓ1 ,ηpmqqdxℓdxℓ1 . (3.3)
4) Maximization step: choose ηpm`1q such that ηpm`1q “ argmaxηQ̂pη|ηpmqq. Set
m “ m ` 1 and go to step (2) until convergence is reached.

4 simulation
First, n “ 200 random locations are generated inside an irregular grid of France
region. Then, we fix parameters of the CSN distribution and draw latent vari-
ables from fpx|ηq “ CSN200,1p0,Σθ, λ01

1Σθ
´ 1

2 , 0, 1q, We set parameters λ0 “ 2
and θJ “ pσ2 “ 1, ϕ “ 3q, Conditional on the latent variables, binomial re-
sponses yj, j “ 1, ¨ ¨ ¨ , 200 were generated according to yj „ Binpuj, pjq, where
uj “ 5, 50, 100, 150, pj “

exppxjq

1`exppxjq
. One realization of simulated data is shown in Fig-

ure 1. For each observation, a neighborhood of radius 3 is used to construct pairs
using 12 neighbors randomly sampled without replacement. We used two Spatial
GLM models, with normal spatial latent variables and CSN. To obtain ML esti-
mates of the parameters, we run CSN-APEM algorithm for CSN model and APEM
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Figure 1: Realization from the spatial Binomial model; Normal QQ plot (top-left); histogram
(top-right); map of the simulated latent variables (below).

algorithm in Hosseini and Karimi (2019) for normal model. Keeping the spatial
design fixed, the above data generation scheme is carried out for 1000 data set. The
constructed results after convergence of the algorithms are summarized in Table 1.
The simulation results in Table 1 show that for all parameters the averages of the
MSE, estimates and standard deviations are smaller for CSN than for normal model.

Conclusion
In this article we used the closed skew normal distribution to model spatial la-
tent variables and proposed an approximate pairwise maximum likelihood method.
A new algorithm was introduced to obtain maximum likelihood estimates of the
model parameters. We extended the approach of Hosseini and Karimi (2019) to
the spatial generalized linear mixed models with the CSN latent variables. In the
simulation study, we used the APEM algorithm (Hosseini and Karimi (2019)) and
the proposed algorithm to obtain the maximum likelihood estimates of the normal
and the closed skew normal models, respectively. Estimation accuracy of two mod-
els were compared and showed wrong normal assumption for latent variables can be
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Table 1: Simulation results from 1000 data set: Averages of Estimate, sd and MSE
of the estimates

CSN Normal
Par. R. val. unit Ave. Es. Ave. Std. Ave. MSE Ave. Es. Ave. Std. Ave. MSE

σ2 1 5 1.1029 0.0416 0.0816 1.5941 0.4460 0.3098
50 1.2319 0.0414 0.1103 1.4117 0.0472 0.1895
100 1.2218 0.0296 0.1011 1.3674 0.0364 0.1219
150 1.1763 0.0264 0.0858 1.2554 0.0317 0.1139

ϕ 3 5 5.5718 0.2913 1.7036 6.3225 0.4189 2.2812
50 4.0832 0.2094 1.4427 4.5631 0.2194 1.9961
100 3.4844 0.1495 1.1756 3.7021 0.1703 1.9306
150 3.1967 0.1337 0.9180 3.5149 0.1619 1.4249

λ0 2 5 2.8584 0.2287 0.9688 - - -
50 2.7938 0.2241 0.8619 - - -
100 2.5645 0.2165 0.8178 - - -
150 2.2918 0.2276 0.9417 - - -

effect on accuracy of parameters and predictions.
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Abstract:
Many researchers are dealing with spatially dependent data in various sciences

such as meteorology, ecology, geology and epidemiology in which there is often a
notable amount of missing values. Because spatial data are often collected in non-
laboratory environments, some of the factors affecting measurement, such as environ-
mental and atmospheric conditions, sample units locations, or the time of collecting
observations, make missing data inevitable. For spatial data, due to dependency
between observations, missing values that are located at the spatial or temporal
neighbourhoods of the observations can include useful information that the retrieval
of this lost data can increase the accuracy of data analysis. In this paper, the joint
modeling of the spatial measurement process and the missing process is proposed
using the shared parameter model technique. To model data and missingness pro-
cess, spatial generalized linear mixed model is used, and to make inference, Bayesian
approach and integrated nested Laplace approximation is used. Next a computa-
tionally effective approach is given by stochastic partial differential equation which
consists in performing computation using a Gaussian Random Field thus allowing
us to adopt the integrated nested Laplace approximation approach. Then, the pre-
sented models, are evaluated and numerically compared in a simulation study, and
their application in real data example is showed.
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1 Introduction

In this paper we develop methods for dealing with missing data in a spatial response
variable when estimating model parameters. Missing outcome data is a problem in a
number of applications. Definitions for the missing outcome data mechanisms were
originally introduced by Rubin (1976). Missing data are classified into three types:
missing completely at random (MCAR), missing at random (MAR) and missing not
at random (MNAR). Let mi be an indicator variable that is 1 if the outcome yi

is observed and 0 otherwise, and let xi be a vector of covariates observed for each
individual i. Then the data is said to be MCAR if Prpmi|yi; xiq “ Prpmiq. In fact
MCAR occurs when missing process does not depend on observed and unobserved
data. MAR is a less strong assumption in which missing process depends only on the
observed data, i.e. Prpmi|yi; xiq “ Prpmi|xiq. Here the missing data mechanism
does not depend on the outcome conditionally on the observed covariates xi. If
interest lies in the regression of yi on xi, the estimated parameters in a complete case
analysis are unbiased under MAR, since we adjust for xi. Under MCAR or MAR
the missingness mechanism is said to be ignorable and many standard statistical
techniques are valid (Molenberghs et al., 2015). Estimating model parameters based
on the complete cases will yield unbiased estimates under MAR. Likelihood based
techniques are also valid as long as the distribution of yi is correctly specified. In
these two cases missing data is said to be ignorable so that the usual Bayesian and
likelihood inferences based on the observed data are valid (Little and Rubin, 2002).

When neither MCAR nor MAR hold the data are MNAR, the missing data
mechanism is called non-ignorable, or alternatively the data is called missing not at
random (MNAR). In this case the common methods that are effective at ignorable
case introduce bias inferences and other methods of inference need to be considered.
Therefore a ’statistically principled’ approach is to build a joint model and undertake
sensitivity analysis, so that it combines information in the observed data with as-
sumptions about the missing value mechanism. One framework for jointly modelling
the measurement process and missing process is Shared Parameter Model (SPM).
A common random coefficients is introduced in both the missing model and the
measurement model (Steinsland et al., 2014). Karimi and Mohammadzadeh (2011)
proposed a spatial regression model which captures skewness in response variable
and also model and predict the missing observations by a Bayesian approach.

In this paper we consider spatial data and assume that they are MNAR, it
means that missingness is probably influenced by some latent random fields. Using
a spatial generalized linear mixed (SGLM) model (Breslow and Clyton, 1993; Diggle
and Tawn, 1998) measurement process and the missing process will be modeled
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and in each model, a spatial latent random field describes the association between
response and explanatory variables. In order to account for missing values, we define
a spatial joint model and employ the SPM approach. So a common spatial latent
random field in the model of each process is considered as a shared parameter. For
the spatial latent random field, we use a Gaussian prior. Traditionally Markov chain
Monte Carlo (MCMC) methods have been used making inference for Bayesian latent
Gaussian models. Rue and Martino (2007) introduced an approximated Bayesian
approach via Integrated Nested Laplace Approximation (INLA) for latent Gaussian
Markov random field (GMRF) models and proved that it is faster than MCMC while
the results are equivalent. INLA has successfully been applied in various setting
and the approximations are shown to have high accuracy (Rue and Martino, 2007;
Eidsvik et al., 2009; Holand et al., 2010). In order to overcome the computational
costs of linear algebra operation required for model fitting, estimations and spatial
predictions that arise when facing with large spatial data set we consider an approach
which consists in representing a Gaussian Random fields (GRF) that is continuously
indexed as a GMRF that is a discretely indexed random process. This approach
is provided trough stochastic partial differential equations (SPDE) (Lindgren et al.,
2011). So in Bayesian inference for a GMRF it is possible to use INLA algorithm
as an alternative to MCMC methods.

In Section 2, the SGLM and joint model formulations and some computational
issues and moderating with the SPDE approach are discussed. In Section 3, a
simulation study has been implemented in order to show the efficiency of the joint
modeling in MNAR case. In Section 4, the surface water temperature data set for
lake Vanern in the south of Sweden has been modeled and the results are reported.

2 Generalized Linear Mixed Model

The response variable ypsq at location s P D Ď R2 can be written as
ypsq “ Hβ ` xpsq ` εpsq,

where xpsq is a spatial Gaussian random field with covariance matrix Σθ “ pCθpsi, sjqq,
where θ is the vector of spatial dependence parameters, H is an n ˆ pp ` 1q matrix
of covariates (design matrix), β “ pβ1, . . . , βpq is the vector of relevant coefficients
and εpsq is an error term with distribution Np0, σ2

εq. Let η “ pβ, θ, σ2
εq denotes

the vector of model parameters and pyps1q, . . . , ypsnqq and pxps1q, . . . , xpsnqq are
the vectors of response observations and realizations of the random field xpsq at
n locations ts1, . . . , snu, respectively. For simplicity we denote these vectors with
y “ py1, . . . , ynq “ pyps1q, . . . , ypsnqq and x “ px1, . . . , xnq “ pxps1q, . . . , xpsnqq. Un-
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der the conditional independence assumption of ypsq on the latent random field
xpsq, πpy|xq is in a class of exponential family with the general form πpyi|xiq “

exptyixi ´ bpxiq ` cpyiqu, where bp¨q and cp¨q are known functions. Bayesian hier-
archical models requires a likelihood model for response y and determining prior
distributions for the spatial latent random field x and the hyper parameters. Then
marginal posterior distributions of the model parameters η “ pβ, θ, σ2

εq and x are
desired. By assuming independence priors, the joint posterior distribution is given
by

πpx, β, θ, σ2
ε |yq9πpy|x, β, θ, σ2

εqπpx|θqπpβqπpθqπpσ2
εq. (2.1)

Calculation of this posterior distribution using MCMC methods, is time-consuming,
so an approximate Bayesian method using INLA has been suggested.

3 Joint Modelling Formulation

Let m “ pm1, . . . ,mnq be a vector of missing data indicators defined by

mi “

#

0 yi is observed
1 yi is missing

where mi|πi „ Binp1, πiq. In presence of non-ignorable missing data, by use of this
vector the missing process can be modelled (Little and Rubin, 2002). The probability
of missingness for each individual, πi, can be modelled by use of generalized linear
model and logit link function as

logitpπiq “ α0 ` α1xi.

Note that other latent variables and covariates could be added to the model. Then
assuming independence of observations y and missing process m conditioned on x,
the joint density will be factorized as

πpy,m|x, η, ϕq “ πpy|x, ηqπpm|x, ϕq, (3.1)
here x is the common part of two models and ϕ “ pα0, α1q. In presence of missing
data, the association between y and m (measurement process and missing process)
will be included in the spatial latent random field x. In the modeling of πi, parameter
α1 denotes the severity of dependence between missingness and x, indeed it describes
the association between y and m. In order to complete Bayesian modeling, it is
needed to specify the priors for the hyper-parameters α0 and α1. Now we have an
SGLM model with two responses y and m. The efficiency of this model will discuss in
the next Section by a simulation study. We use INLA for a joint model formulation
as introduced in Steinsland et al. (2014) to avoid time-consuming calculations of
full conditional and marginal posterior distributions. Its Bayesian inference can be
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carried out within a fraction of the computation time of MCMC algorithms. Here
we use INLA along with the SPDE-approach to spatial modeling introduced by
Lindgren et al. (2011). There are two main advantages to the SPDE approach. Fast
computations are enabled through a Markovian approximation and sparse matrix
techniques, and flexible spatial models can also be constructed from its formulation.
It completely bypasses the step of explicitly specifying a covariance function, which
for many complex models can be a difficult task. Markov approximation of the
spatial field enables efficient matrix operations due to the sparse structures of the
precision matrix. The link between GRF and GMRF is the SPDE and a finite
element representation of its elements. This approach addresses the challenges like
inverting a dense nˆn matrix with large n with finite element approximation (FEM),
which is a numerical approximation for the solution of partial differential equations
(Brenner and Scott, 2008).

4 Simulation Study

A simulation study is carried out to explore the importance of considering the miss-
ing process in the modeling. In this simulation study we sample from a SGLM model
on the form

ypsq “ β0 ` β1u ` xpsq ` ε; s P R2, (4.1)
where xpsq is a stationary Matérn GRF with parameters κ and τ , β0 is a fixed
effect and ε „ Np0, σ2

εq is white noise. The parameter β1 is a linear fixed effect of
a covariate u, which could be e.g latitude or distance from the coast. This gives
ypsq „ Npηpsq, σ2

eq with ηpsq “ β0 ` β1u ` xpsq. We simulate from ypsq at n
locations, s1, . . . , sn. Further, missing values are created according to a Binomial
model such that the probability that an observation at location si is missing, is given
by πi “ P pmi “ 1|ϕq with

logitpπiq “ α1xpsiq, (4.2)
where ϕ is the parameter vector of the missing process, in this case ϕ “ pκ, τ, α1q.

For a Bayesian approach the following priors are used for the parameters:
β0 „ Np0,8q β1 „ Np0, 0.001´1q

α1 „ Np0, 0.001´1q logpσ´2
ε q „ logGammap1, 5 ˆ 10´5q.

These priors are simply the default priors in the R package R-INLA. For the Matérn
parameters κ and τ , the prior suggested in Fuglstad et al. (2015) is used. This is a
joint prior to the spatial range r and the marginal variance σ2. In order to use this
prior, the Matérn GRF is reparametrized by r and σ2, and two priors are specified
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by
Ppr ă r0q “ pr, Ppσ ą σ0q “ pσ, (4.3)

where r0, σ0, pr and pσ are quantiles and probabilities determined by the user. A
set of 300 simulated datasets is created from the suggested SGLM model. For each
dataset, the data are simulated at n “ 800 locations shown in Figure 1, and data
were removed according to the model (4). To compare the joint model and the MAR
model, we compare the posterior estimates of the model parameters in terms of bias
and coverage of a 95 % prediction interval. The posterior mean is used as the point
estimate. In particular, the estimates of the parameters β0 and σ2 is of interest.
The intercept β0 provides information about the mean value of the process under
study, while σ2 provides information about the spatial variability. The mean and
the variance are important signatures of a spatial process, and we are interested in
exploring if the MAR model and the joint model are able to capture these properties
properly. Parameter estimation was performed for various amount of missingness
by considering three different values of α1 in the simulations: α1 P p0, 0.3, 0.8q. Note
that α1 “ 0 corresponds to the MAR case and the probability of being missed is
the same for each position in the spatial domain. Further, we also consider three
different values of the marginal standard deviation, σ P p2, 4, 6, 7q. The remaining
parameters were set to β0 “ 15, β1 “ ´0.08, σ2

ε “ 1 and r = 200. For r and σ, the
informative prior in (5) is used with r0 “ 50, σ0 “ 10 and pr=pσ “ 0.1.

To compare the prediction accuracy of the joint model and the MAR model,
n “ 300 new datasets were made with one set of parameters, pβ0, β1, α1, σ, σ

2
ε , rq “

p15,´0.01, 0.8, 7, 200q. Out of n “ 800 locations, nt “ 100 random locations were
drawn for each dataset and left out as a testing set. The remaining observations
were used to predict the values at these locations, and the predictive performance
of each dataset was evaluated by the Root-mean-square error given by

RMSE “ r
1
nt

nt
ÿ

i“1
pypsiq ´ ŷpsiqq2s

1
2 ,

where ypsiq is the simulated value at location si and ŷpsiq is the corresponding
prediction, here given by the posterior mean.

Figure 2 shows the average bias in the parameter estimates for β0 and σ2 for
the joint model and the MAR model for α1 P p0, 0.3, 0.8q and σ P p2, 4, 6, 7q. When
α1 “ 0 the biases are approximately equal for joint and the MAR models. This
result is as expected as α1 “ 0 means that there is no association between the
missing process and the spatial process under study. When α1 “ 0.3, the biases are
slightly larger when we apply the MAR model compared to the joint model. This is
the case for all values of σ2. Also, note that both σ2 and β0 are underestimated when
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Figure 1: Mesh for the simulated data, Points denote the n=800 simulated locations projected
on the mesh

α1 “ 0 α1 “ 0.3 α1 “ 0.8

Figure 2: The variations of averaged bias in 300 iterations for β0 (top) and σ2

(below)

Table 1: Estimation for Joint and MAR models for simulated data with MNAR

Model
Joint MAR

Par True Mean Sd 0.25 0.5 0.975 Mean Sd 0.025 0.5 0.975
β0 15 15.240 1.812 11.687 15.214 18.948 13.403 1.851 9.735 13.395 17.119
β1 ´0.01 ´0.009 0.0006 ´0.011 ´0.009 ´0.008 ´0.010 0.003 ´0.016 ´0.010 ´0.004
α1 0.8 0.828 0.076 0.683 0.826 0.982 ´ ´ ´ ´ ´
1

σ2
e

1 1.068 0.145 0.811 1.059 1.378 1.012 0.145 0.755 1.003 1.325
σ2 6 6.364 0.869 4.934 6.263 8.332 4.598 0.490 3.752 4.555 5.674
r 200 215.950 37.092 156.947 210.975 301.733 155.459 25.683 113.570 152.383 214.025
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assuming MAR. This is reasonable when α1 ą 0. The largest values of the response
have a larger probability of being missing. The MAR model is not able to capture
the peaks in ypsq and gives a posterior estimate of the variance σ2 that is smaller
than the actual value used for simulation. The intercept β0 is also underestimated
as the largest values tend to be missing. The biases are considerably larger for MAR
compared to the joint model. Again, the MAR model systematically underestimates
the true parameter values. For α1 we also include the mean posterior estimates of all
model parameters. These are presented in Table 1. The results show that the joint
model is able to identify all parameters, while the MAR underestimates the intercept
β0, the marginal variance σ2 and the range r. In addition to estimating the model
parameters, the two models are compared in terms of predictive performance. The
MAR model gave an average RMSE=46.22 when the response at 100 locations was
predicted for 300 simulated data sets. The joint model gave an average RMSE=22.56.
Thus, the joint model outperforms the MAR model both in terms of parameter
estimation and predictive performance.

The results from the simulation study demonstrate that it is important to con-
sider the missing process in the modeling to avoid biases for the estimated model
parameters. Also, predictions of the response at missing locations can be improved
by taking the missing process into account. Furthermore, assuming MNAR for a
process that actually is MAR does not affect the results negatively as the joint model
and the MAR model perform equally well for α1 “ 0.

5 Analyzing Missing Values of LSWT Data

In this section, we consider data from the ARC-Lake. ARC-Lake is a European
space agency (ESA) funded project (www.geos.ed.ac.uk/arclake), that aim to used
satellite observations to derive observations of LSWT for major lakes globally. Here
we consider measurements for lake Vanern, the largest lake in Sweden. Monthly
measurements of LSWT are available on a grid of 20 ˆ 35 grid cells covering the
lake, from 1995 to 2012. The data give mean LSWT temperature for the grid cells
at the time of observation. Let pyps1q, . . . , ypsnqq be the vector of observations at
spatial locations ts1, . . . , snu in a region D Ď R2. An index for the day is suppressed
as days will be analyzed separately. In this paper we study LSWT for June 1, 2008,
September 1, 2008, November 1, 2008, and December 1, 2008. For a considerable
amount of the lake pixels, LSWT is missing. The number of missing pixels for the
four days we study are 21%, 43%, 25% and 27%, respectively. The observed SWLT
for the four days together with the indication of missing data are given in Figure



Analysis of Spatial Data with Non-Ignorable Missingnesss 96

Table 2: Estimates of Joint and MAR models for the first day of four different
months

Model
Joint MAR

Month par Mean Sd 0.025 0.5 0.975 Mean Sd 0.025 0.5 0.975
β0 18.555 0.139 18.297 18.549 18.844 17.189 0.534 16.150 17.171 18.344

Jun. α1 1.706 0.223 1.270 1.705 2.149 ´ ´ ´ ´ ´
1

σ2
e

3.599 0.687 2.434 3.536 5.130 2.873 0.467 2.061 2.837 3.892
σ 1.955 0.318 1.427 1.921 2.673 1.442 0.265 1.026 1.404 2.064
r 28.752 6.692 18.402 27.770 44.487 31.341 9.403 18.265 29.495 54.626

β0 14.317 0.074 14.175 14.316 14.468 13.935 0.896 11.945 13.945 15.862
Sept. α1 1.746 0.229 1.297 1.745 2.198 ´ ´ ´ ´ ´

1
σ2

e
69.770 12.023 49.306 68.696 96.341 70.080 11.516 50.103 69.173 95.311

σ 0.703 0.184 0.438 0.798 1.712 0.751 0.292 0.394 0.679 1.504
r 70.701 22.193 40.303 66.215 125.765 93.415 44.527 43.033 81.708 210.243

β0 6.152 0.339 5.357 6.200 6.687 7.181 3.396 ´0.513 7.279 14.210
Nov. α1 ´0.679 0.123 ´0.924 ´0.678 ´0.438 ´ ´ ´ ´ ´

1
σ2

e
103.695 26.191 62.016 100.376 164.364 87.488 17.923 57.180 85.841 127.400

σ 1.663 0.480 0.999 1.567 2.855 1.915 0.902 0.916 1.672 4.288
r 107.086 34.502 61.198 99.698 193.851 138.537 72.914 61.466 118.264 331.152

β0 2.495 0.279 2.510 1.494 3.003 3.185 1.126 0.544 3.285 5.106
Dec. α1 ´0.670 0.069 ´0.798 ´0.674 ´0.524 ´ ´ ´ ´ ´

1
σ2

e
17182.127 0.1772 866.854 11747.693 64632.838 13.651 0.1584 363.60 8350.608 55948.08

σ 4.641 1.178 3.108 4.354 7.680 3.080 0.6797 2.130 2.943 4.760
r 50.476 14.030 32.590 46.970 86.883 35.111 8.963 22.933 33.203 57.531

3. From this visual inspection one can find that there is spatial dependency in both
LSWT and missing process (Hook et al., 2012; Maccallum and Merchant, 2012).

The joint model is utilized to make inference about LSWT at lake Vanern for the
first day of June, September, November and December 2008. As for the simulation
study, the joint model is compared to a model where we assume that the data are
MAR. In order to assess predictive performance of the joint model and the MAR
model prediction has been done to reconstruct LSWT both for observed and missing
locations for the first day of December 2008 and also cross validation is implemented
in the prediction of observed values

In order to investigate the association between the response ypsq and the missing
process m at lake Vanern, we assume that the true LSWT at location si is given by

ηpsiq “ β0 ` xpsiq,

where β0 is an intercept and xpsiq is a Matern Gaussian Random Field with zero
mean, range r and marginal variance σ2. The true LSWT is observed with normally
distributed noise, ypsiq „ Npηpsiq, σ

2
εq, where σ2

ε is the variance of the noise. Fur-
thermore, we consider a binary missing process m|π „ Binp1, πq and the probability
that data at location si is missing has been modeled as logitpπiq “ α1xpsiq. We use
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Figure 3: Image of LSWT for four different months 2008 and location of observed and missing
values.

the same priors here as for the simulation study.
Relevant posterior estimates are reported for both the joint and the MAR model

in Table 2. For real data, it is in particular interesting to study the parameter
α1 which indicates whether there is an association between the response and the
missing process. Table 2 shows that for June and September α1 “ 1.70 and α1 “

1.75 respectively, while for November and December α1 “ ´0.68 and α1 “ ´0.67.
These are relatively high values indicating a clear association between the missing
process and the LSWT. The α1 is positive for the two warm months, indicating
that high values of LSWT have a larger probability of being missing during summer.
Conversely, for the two winter months, α1 is negative, and small values of LSWT
tend to be missing. It is not clear what kind of factors that lead to missingness in
our dataset. During the summer it could be that the air is unclear when the LSWT
is higher because of evaporation. For cooler months, missingness could be a result
of some phenomena like storms, ice cover or clouds.

The parameter β0 is also interesting to study as it gives the mean LSWT for the
Vanern lake. Thus, β0 gives an interpretable indication of the difference between
the joint model and the MAR model. Table 2 shows that the differences in the
mean LSWT between the joint model and the MAR model are 1.35, 0.382, -1.029
and -0.69 for June, September, November, and December respectively. These are
relatively large differences, showing that the chosen model has a large impact on the
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Figure 4: The location of observation (black points) and missing (red points) at Vanern

(a) (b)

Figure 5: Posterior standard deviation in prediction of response y for a- Joint and
b- MAR models

results of the analysis. The difference between the MAR and the joint model is also
large for the other model parameters.

The joint model and the MAR model were also utilized for predictions in order
to reconstruct LSWT at all locations. In Figure 4 locations of observed and missing
values inside the mesh for the first day of December 2008, are displayed. The
posterior standard deviations in the prediction of response for two models are shown
in Figure 5. We note that the posterior standard deviation of the predictions from
the joint model, in general, is lower than the standard deviation of the predictions
from the MAR model. Also, leave-one-out cross validation in the prediction of
just observed values is implemented and mean square prediction error (MSPE) is
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computed for each model as

MSPE “
1
nobs

nobs
ÿ

i“1
pyi ´ ŷ´iq

2,

where nobs is the number of observed values, yi is the ith observed value and ŷ´i

is the predicted value computed after deleting the ith observed value. The MSPEs
for joint and MAR model is equal to 0.645 and 1.762, respectively. These values
approve the better performance of the joint model too.

Conclusion

In this paper, the joint model idea for spatial data was implemented and through
simulation studies, it was revealed that joint modeling of measurement and missing
processes work well in both ignorable and non-ignorable missingness. Simulation
studies approved the claim that if we apply the information include in missing data
when the missingness is not at random via joint modeling idea the results are more
reliable.
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Abstract:
In some applications, the clustered survival data are arranged spatially such as

clinical centers or geographical regions. Competing risks in survival data concern a
situation where there is more than one cause of failure, but only the occurrence of
the first one is observable. In this paper, we considered a Bayesian hierarchical sur-
vival model in the setting of competing risks for the spatially clustered HIV/AIDS
data. In this model, a Weibull parametric distribution with the spatial random ef-
fects in the form of the county-failure type-level was used. A multivariate intrinsic
conditional autoregressive distribution was employed to model the areal spatial ran-
dom effects. We illustrated the gains of our model through the simulation studies
and application to the HIV/AIDS data.

Keywords: Survival data, Clustered data, Spatial HIV/AIDS.
Mathematics Subject Classification (2010): 62H11, 62N01.

1 Introduction
In biomedical studies it is common to have time to event data so that the event of
interest is usually death, giving rise to the survival analysis. In the survival analysis,
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in many situations, there are some potential risk factors that are immeasurable or
unobservable. For solving this problem, Vaupel et al. introduced a model with the
univariate random effect that corresponds to a health status of the stratum Vaupel,
Manton and Stallard (1979). But, in some situations, the survival data are depen-
dent such as when a sample of individuals was grouped into clusters such as clinical
centers, geographic regions, and so on. If individuals come from different regions,
there will be a spatial correlation between survival data because the geographically
closer regions usually are the same or similar in terms of the environmental and
social factors. Ignoring this spatial correlation results in biased estimates and mis-
leading inferences. Moreover, the spatial survival analysis by mapping the spatial
distribution could identify some of the geographical inequalities that exist in sur-
vival. In the latter paper, Banerjee et al. also compared the geostatistical and
areal approaches and showed that the geostatistical frailty model is time-consuming
and it produces results that differ little from the areal frailty model. The survival
model for capturing spatiotemporal variation in the survival data was investigated
by Banerjee and Carlin Banerjee, Wall and Carlin (2003) and Hanson et al Hanson,
Jara and Zhao (2012).Pan et al. proposed a spatial Bayesian semiparametric model
to analyze interval-censored survival data Pan, Cai. et al. (2014). More recently,
Cramb et al. proposed a spatial flexible parametric relative survival model Cramb,
Mengersen, Lambert and et (2016), and Zhou and Hanson applied a spatial semi-
parametric survival model to arbitrarily censored survival data Zhou and Hanson
(2018). In the survival data, there is also a situation where the time from the start-
ing point to an interesting event may not be observable, because of the incidence
of another, so-called competing event. Thus, in competing risks data, there is more
than one cause of failure, but only the occurrence of the first one is observable. To
the best of our knowledge, no survival model for the spatially correlated survival
data in the presence of competing risks setting has been applied. Thus, the new
aspect of this paper is the extension of survival model from the single failure type
to the competing risks in the spatially clustered HIV/AIDS data.

2 The HIV/AIDS Data

The data were from a retrospective cohort study, which was conducted in Hamadan
Province, the central-western part of Iran, from 1997 to 2011. All 585 HIV-positive
people were included in this study. The explanatory variables included were as fol-
lows: age, sex, marital status, method of transmission, co-infection with tuberculosis
and patients county of residence. Also, date of HIV diagnosis, date of progression
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to AIDS and date of death were collected. The main outcome in this study was the
time interval, between HIV diagnosis and AIDS progression, so the event of interest
was AIDS progression. However, some of the HIV infected patients die before AIDS
progression. Thus, death before AIDS was considered as competing risk because it
prevents AIDS progression.

3 Model fFormulation

In this section, we suppose n individuals under study are from K counties. The
number of individuals in a sample in each county is nk where k “ 1, ..., K and
K
ř

k“1
nk “ n. Also, let Cik “ pTik, δikq be the competing risks data for the i-th

individual living in the k-th county, i “ 1, ..., nk, where Tik denotes the time to an
event which may be right censored time. In the setting of competing risks, each
individual could experience one of the G possible failure types during follow-up
or could be right censored. Hence, failure type indicator or δik takes value from
t0, 1, ..., Gu.

3.1 Survival Model with Random Effects

To estimate hazards for each failure type, we postulate the cause-specific propor-
tional hazards model:
hg

ikpt |Xik q “ lim
dtÑ0

P pt ď Tik ă t ` dt, δik “ g |Tik ě t, Xikq

dt
“ h0ptqg exppXT

ikβ
gq,

where h0ptqg is an unspecified baseline risk function and βg is a pˆ1 vector of regres-
sion parameters associated to a pˆ 1 vector of observed explanatory covariates Xik

this model, to estimate the hazard of each failure type, other competing risks are
assumed as censored in addition to those who are censored from loss to follow-up.
But, sometimes those who experience competing risks events are censored informa-
tively. To avoid biased results, we include the random effects Vik “ pV 1

ik, ..., V
G

ik q
T ,

to account for the association between times of dierent failure types.
hg

ikpt |Xik , V
g

ikq “ h0ptqg exppXT
ikβ

g ` V g
ikq, (3.1)

On the other hand, since subjects coming from different counties, we consider a
survival model with the spatial random effects. Let W g

K , denotes the spatial effects
of latent risk factors for the g-th type of failure, nested within the k-th county. We
introduce again, these random effects through 3.1, as

hg
ikpt |Xik , V

g
ik,W

g
Kq “ h0ptqg exppXT

ikβ
g ` V g

ik ` W g
Kq,
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Alternatively, for the baseline hazard function, we assume a cause-specific Weibull
function.

3.2 Spatial Random Effects

In this paper, we use the multivariate intrinsic conditionally autoregressive (MCAR)
distribution for the spatial random effects in the HIV/AIDS data. Let In this paper,
we use the MCAR distribution for the spatial random effects in the HIV/AIDS data.
Let Wk “ pW 1

k , ...,W
G
K q

T being a G-dimensional vector of the spatial random effects
collection for the G possible failure types within the k-th county. Following Mardia
(1988) Mardia (1988), the joint distributions for W take the form

W „ Np0, pΣ b Λq
´1,

where Σ “ pD´αBwq is a K ˆK matrix and therefor Σ b Λ is a KGˆKG matrix.

3.3 Likelihood

We assume for V g
ik; i “ 1, ..., nk, k “ 1, ..., K, g “ 1, ..., G a multivariate normal

distribution, that is, Vik „ Np0,Λq where Λ is a G ˆ G variance-covariance matrix.
Thus, in our model, we are using the same Λ to model the MCAR and failure type
random effects distributions. Let pCik, Xik; i “ 1, ..., nk, k “ 1, ..., Kq represents the
observed data; therefore, the likelihood function for this model is as follows

K
ź

k“1

nk
ź

i“1

G
ź

g“1

“

rρgtρ
g´1 exppXT

ikβ
g ` V g

ik ` W g
K qs

Ipδik“gq

ˆ expr´

ż tik

0
ρgtρ

g´1 exppXT
iKβ

g ` V g
ik ` W g

k q dtss

3.4 Bayesian Approach

The standard non-informative prior distributions for the parameters were consid-
ered as follows: for the regression coecients, βg, and the Weibull shape parameters,
ρg; g “ 1, ..., G a multivariate normal, Np0,

ř

βq, and a gamma, ςpa1, b1q, priors were
taken respectively. Concerning the spatial random effects, we used the MCAR prior
distribution, W „ MCARp1,Λq. For the variance-covariance matrix, Λ, an inverse
Wishart, jW pR, kq, was used.

4 Simulation Study
We generated a total of 100 simulated datasets with three levels of sample size in
each county (nk “ 50, nk “ 100 and nk “ 200) and under three levels of censoring
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rate (low, 20%, medium, 40%, and high, 60%). For each dataset, the neighborhood
structure was based on the nine counties in Hamadan, Iran. We used a continuous co-
variate (X1) and a binary categorical covariate (X2). For each dataset, we simulated
two competing risks, risk 1 and 2, from the cause-specic exponential model. The
event time was generated by the overall hazard rate that at each time point is the
sum of the cause-specic hazard rates for two types of event, λikptq “ λ1

ikptq ` λ2
ikptq.

Then the type of event was determined by a Bernoulli experiment with the prob-
ability P1 “ λ1{λ for the event of type 1 and P2 “ λ2{λ for the event of type 2.
Finally, for assignment of the event type, a random number R generated from a
continuous Uniform distribution on r0, 1s and the event of type 1 was assigned, if
R ă P1 , and the event of type 2, else. The random effects were generated from a
multivariate normal with a mean 0 and a 2 ˆ 2 covariance matrix Λ , that Λ11 “ 0.1,
Λ22 “ 0.1 and Λ12 “ 0.05, and then were centered around its mean. Also, the spatial
random effects W were generated from the MCAR distribution. The corresponding
regression coefficients were set β1

1 “ 1, β1
2 “ 1 for risk 1 and β2

1 “ 1, β2
2 “ 1 for

risk 2. The data above a threshold were right censored which were selected as the
p1 ´ αq-quantile of the sample survival times, such that 100α% of the observations
were censored.

4.1 Simulation Results

The results of the first simulation study from nine scenarios are reported in Table 1.
While estimation of the regression coefficients in the total scenario were close to the
truth value 1, but estimation of the covariance matrix Υ had a consistently small
bias for the large sample size (nk “ 200) and with censoring rate 20% and 40%.
Also, all parameters had the coverage probabilities close to the nominal level of 0.95
under all the scenarios. The MSE criterion for all parameters was close together
and as sample size increases, the estimation accuracy of parameters increases.

5 Analysis of the HIV/AIDS Data
We analyzed the HIV/AIDS data using proposed model. The summary measures
of all parameters of the fourth model were presented in Table 2. We also mapped
the summaries of our results. Figure 1 shows 2 maps that represent the posterior
spatial relative risk in nine counties of Hamadan Province for the relative risk of
AIDS progression and or the relative risk of mortality post-HIV infection. The
posterior estimates of county-specific random effects were recorded based on the
quintile of their distribution for showing the spatial inequalities on the map. As



Modeling of Spatially Clustered Survival HIV/AIDS Data 106

Figure 1: Maps of the spatial relative hazard for ADS progression (left) and mortality
post-HIV infection (right) based on the mode.

shown in Figure 1, for the risk of AIDS progression, one cluster of counties was
identified with higher risk in the south, southeast, and southwest regions and one
cluster with lower risk in the north, northeast, and northwest regions was identified.
Also, for the risk of mortality post-HIV infection, the high-risk cluster consists of
the northwest, west, and southwest regions and the low-risk cluster consists of the
northeast, east, and southeast regions. Furthermore, the values of spatial random
effects for the risks of AIDS progression and mortality post-HIV infection were in
ranges (-0.093, 0.048) and (-0.017, 0.028), respectively. Such small values of the
spatial random effects suggest that regional differences had a small effect.

Table 1: Estimation results for the simulation study

nk “ 50, n “ 450 nk “ 100, n “ 900 nk “ 200, n “ 1800
Rate Par. Estimate Bias MSE CP Estimate Bias MSE CP Estimate Bias MSE CP

β1
1 “ 1 1.028 0.028 0.018 96 0.995 -0.004 0.006 96 0.995 -0.004 0.003 97
β2

1 “ 1 0.997 -0.002 0.018 93 0.992 -0.007 0.007 97 0.985 -0.014 0.005 95
β1

2 “ 1 0.962 -0.037 0.022 93 0.938 -0.061 0.015 97 0.983 -0.016 0.005 98
20% β2

2 “ 1 1.019 0.019 0.028 93 0.959 -0.040 0.013 97 0.975 -0.024 0.005 97
Λ11 “ 0.1 0.082 -0.017 0.001 98 0.087 -0.012 0.002 98 0.109 0.009 0.002 100
Λ22 “ 0.1 0.084 -0.015 0.003 97 0.0844 -0.015 0.001 96 0.091 -0.008 0.001 100
Λ12 “ 0.05 0.024 -0.026 0.002 96 0.033 -0.017 0.0009 98 0.055 0.005 0.0007 98
β1

1 “ 1 1.036 0.036 0.024 95 0.988 -0.011 0.009 96 0.995 -0.004 0.003 96
β2

1 “ 1 1.005 0.005 0.018 98 0.991 -0.008 0.009 95 0.988 -0.011 0.004 96
β1

2 “ 1 0.977 -0.022 0.028 99 0.932 -0.067 0.021 94 1.045 0.045 0.008 96
40% β2

2 “ 1 1.044 0.044 0.046 93 0.974 -0.025 0.017 98 1.021 0.021 0.009 92
Λ11 “ 0.1 0.082 -0.017 0.001 98 0.090 -0.009 0.002 99 0.102 0.002 0.002 100
Λ22 “ 0.1 0.084 -0.015 0.001 100 0.085 -0.014 0.002 99 0.088 -0.011 0.001 98
Λ12 “ 0.05 0.023 -0.027 0.002 94 0.033 -0.017 0.001 95 0.048 -0.002 0.001 99
β1

1 “ 1 1.042 0.042 0.030 95 0.985 -0.014 0.013 95 0.993 -0.006 0.005 98
β2

1 “ 1 1.002 0.002 0.025 97 0.996 -0.003 0.015 92 0.983 -0.016 0.006 93
β1

2 “ 1 0.967 -0.032 0.055 97 0.938 -0.061 0.026 96 1.005 0.005 0.012 96
60% β2

2 “ 1 1.049 0.049 0.071 93 0.969 -0.030 0.030 96 0.995 -0.004 0.015 90
Λ11 “ 0.1 0.081 -0.018 0.002 97 0.098 -0.001 0.002 99 0.087 -0.012 0.002 100
Λ22 “ 0.1 0.088 -0.011 0.002 95 0.086 -0.013 0.002 99 0.073 -0.026 0.001 100
Λ12 “ 0.05 0.023 -0.027 0.002 94 0.026 -0.024 0.001 96 0.030 -0.020 0.001 90
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Table 2: Posterior estimation results of model

AIDS progression Mortality post-HIV infection

Variable Category Number (%) Mean (SD) Hazard ratio
(95% credible interval) Mean (SD) Hazard ratio

(95% credible interval)
Intercept -3.872(0.35) 0.022 (0.009, 0.039) -3.336(0.30) 0.037 (0.018, 0.062)

Gender Male 521 (89.05) Reference Reference
Female 64 (10.94) 0.054 (0.39) 1.14 (0.496, 2.291) -1.759 (0.94) 0.253 (0.021, 0.844)

Marital Status Single 268 (45.81) Reference Reference
Married 223 (38.11) 0.052 (0.21) 1.079 (0.689, 1.610) 0.256 (0.20) 1.318 (0.872, 1.914)
Divorced 75 (12.82) 0.293 (0.27) 1.394 (0.769, 2.275) 0.285 (0.28) 1.384 (0.748, 2.265)
Widowed 19 (3.24) 0.762 (0.44) 2.357 (0.845, 4.817) 0.028 (0.64) 1.246 (0.247, 3.139)

Age 1-24 70 (11.96) Reference Reference
25-44 457 (78.11) 0.329 (0.34) 1.478 (0.741, 2.894) 0.049 (0.29) 1.099 (0.599 , 1.912)
45-74 57 (9.74) 0.824 (0.44) 2.517 (0.967, 5.554) 0.775 (0.37) 2.331 (1.050, 4.555)

Tuberculosis No 564 (96.41) Reference Reference
Yes 21 (3.58) 1.705 (0.28) 5.723 (3.077, 9.338) -0.789 (0.81) 0.601 (0.074 , 1.696)

Transmission Injection 475 (81.19) Reference Reference
Sexual 72 (12.30) 0.256 (0.36) 1.382 (0.614, 2.58) -0.584 (0.56) 0.645 (0.167, 1.496)
Mother 9 (1.53) 2.037(0.60) 9.214 (2.296, 25.06) ND˚ ND
Injection 26 (4.44) 0.637 (0.36) 2.022 (0.886, 3.74) -1.121 (0.80) 0.428 (0.052, 1.217)
use/sexual

ρ1 “ ρ2 1.35 (0. 065)
Λ11 0.029 (0.035)
Λ22 0.024 (0.019)

Corr “ Λ12

N

?
Λ11

?
Λ22 0.041 (0. 038)

˚ND: No Data

6 Discussion

In this paper, we proposed a model for the spatially clustered survival HIV/AIDS
data in the presence of competing risks setting. The data were from Hamadan
Province, Iran, from 1997 to 2011. For these data, we used a parametric proportional
hazard model in a Bayesian setting. In the field of HIV/AIDS disease, understanding
of the geographic variation of the risks of AIDS progression and mortality post-
HIV infection provides greater opportunity to identify high-burden areas, since they
reect both diagnostic and patient management. From the results of the present
study, the low-risk cluster in risk of AIDS progression contained counties with lowest
population density and the high-risk cluster in risk of AIDS progression consists of
some counties with the highest rate of population density. Also, the low-risk cluster
was in the remote areas and with much distance from the most populous counties in
Hamadan Province. It is worth mentioning that by fitting our proposed model in the
HIV/AIDS data the spatial random effects were small values, but the length of 95%
credible interval for the covariates was decreased compared to the other models (not
shown). Also, our results showed a small positive correlation between the hazards
of AIDS progression and mortality post-HIV infection.
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Abstract:
Considering a Gaussian random field for the spatial random effects in survival

analysis sometimes may not correspond to reality. In this paper, by considering a
Spatial Skew Gaussian process for random effects we propose a new class of spatial
survival models. In a simulation study, we have shown that the deviation from
Gaussian assumption about the random effects have an undesirable effect on the
estimation of model parameters, whereas the use of spatial skew Gaussian random
effects provides more accurate models.
Mathematics Subject Classification (2010): 62H11, 62N01, 62N86.

1 Introduction
In survival models, it is usually assumed that the failure times of the subjects are
independent. However, in many cases and applications, this assumption is not re-
alistic, and failure times are spatially correlated. Random effects are usually latent
components of survival data, that can be determined by recognizing the spatial
correlation and considered through a spatial survival model. Most spatial survival
models introduced by researchers are suitable for lattice data in which the spatial
correlation exists between the areas containing survival data. But in geostatistical
cases, the analysis of survival models involves complicated parameter estimation.
Motarjem et al. (2017) introduced a spatial survival model for analyzing geostatis-
tical survival data, where a Gaussian random field is used for considering the spatial
random effects. This paper is organized as follows. In Section 2, the multivariate
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skew normal distribution and the SSG random fields are introduced. In Section 3,
we first recall the basic framework of spatial statistics and then present the Spatial
Skew Gaussian (SSG) processes. In Section 4, Using simulation study the Cox pro-
portional hazards, frailty, and spatial survival model are discussed and a new class
of spatial survival model with SSG random effect is proposed. Finally, results are
discussed in the last section.

2 Multivariate Skew Normal Distribution

Multivariate skew-normal distributions are based on the normal distribution, but
skewness is added to extend the applicability of the normal distribution while trying
to keep most of the interesting properties of the Gaussian distribution. In a Gaussian
framework, spatial data are analyzed using the skew normal distribution Kim and
Mallick (2002), but without a precise definition of skew normal spatial process,
will be shown in Section 3, this model leads to a very small amount of skewness
and therefore is not very useful in practice. In this work, we use the multivariate
closed skew-normal distribution Dominguez et al. (2007), Gonzalez et al. (2004).
It stems from the classical skew-normal distribution introduced by Azzalini and its
co-authors. A drawback is that notations can become cumbersome. It has the
advantages of being more general and having more properties similar to the normal
distribution than any other skew-normal distributions

An n-dimensional random vector Y has a multivariate closed skew Normal distri-
bution was introduced by Gonzalez et al. (2004), denoted by CSNn,mpµ,Σ, D, γ,∆q,
if it has the density function as

fpy;µ,Σ, γ,∆, Dq “ CmϕnpY ;µ,ΣqΦmpDT pY ´ µq; γ,∆q (2.1)
C´1

m “ Φmp0, γ,∆ ` DT ΣDq

where µ P Rn, γ P Rm, Σ P Rnˆn and ∆ P Rmˆm are both covariance matrices,
D P Rnˆm is skewness matrix, ϕpY ;µ,Σq and ΦnpY ;µ,Σq are the n-dimensional
normal pdf and cdf with mean µ and covariance matrix Σ. In the multivariate
closed skew Normal distribution with the density function (2.1), if D “ 0, it reduces
to the multivariate normal and for m “ 1, it is equal to Azzalini’s density Azzalini
and Dalla Valle (1996). The CSNn,mpµ,Σ, D, γ,∆q distribution that defined by
(2.1) is generated from the following bivariate vector

˜

U

Z

¸

„ Nm`n

˜˜

γ

0

¸

,

˜

∆ ` DT ΣD ´DT Σ
´ΣD Σ

¸¸

, (2.2)

where U and Z are the Gaussian vectors of dimensions m and n, respectively. The
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multivariate closed skew Normal distribution is obtained by combining two random
bivariate vectors. Given the combination above, it is easy to show that, condition
on U ď 0 the random vector µ ` rZ|U ď 0s is distributed as (2.1). Note that
the inequality U ď 0 corresponds to Ui ď 0 for all i “ 1, . . . ,m. Also, it is well
known that the conditional random vector rZ|U s is also a Gaussian vector with the
distribution

rZ|U s „ Nnp´ΣDp∆ ` DT ΣDq´1pU ´ νq,Σ ´ ΣDp∆ ` DT ΣDq´1DT Σq. (2.3)
This property provides a two-step algorithm for simulating a CSN vector Z: (i)
generate samples of the Gaussian vector U d

“ NmpN,∆ ` DT ΣDq such that U ď 0;
(ii) generate samples of the Gaussian vector rZ|U s according to (2.3). Note that
generating a vector U provided that U ď 0 is not straightforward. In particular
direct sequential simulation procedures can not be implemented. MCMC methods
must be used instead. In this paper, we choose a Gibbs sampling approach to
simulate the vector rU |U ď 0s.

3 Spatial Skew Gaussian Process

Let Zpsq with s P R2 be a spatial, stationary, zero-mean Gaussian random field with
variogram

2γZphq “ V arpZps ` hq ´ Zpsqq; h P R2,

where V arpZpsqq “ σ2, for more details on the variogram, refer to Cressie (1993).
The covariance matrix of Z “ pZps1q, . . . , ZpsnqqT is conducted from CZphq “

σ2 ´ γZphq and is denoted by Σ. For linking this structure with the skew Normal
distribution (2.2), the CSN random field Y psq is defined as

Y psq
d
“ µ ` rZpsq|U ď 0s, (3.1)

where for each n-dimension vector Z “ pZps1q, . . . , ZpsnqqT , we have
Y

d
“ µ ` rZ|U ď 0s,

in which U „ Nmp0,∆ ` DT ΣDq and Z has the distribution given in (2.2).
In practice, observations from pY ps1q, . . . , Y psnqqT , U and Z are not available,

but Y can be obtained from two independent random variables U and V as

Y “

˜

U

V

¸

„ Nm`n

˜˜

0
0

¸

,

˜

∆ ` DT ΣD 0
0 In

¸¸

,

where In is an n-dimensional identity matrix. This way, we can rewrite Z as Z “

´FU `G
1
2V , where F “ ΣDp ∆ `DT ΣDq´1 and G “ Σ ´ ΣDp∆ `DT ΣDq´1DT Σ.

Alard and Navy Alard and Navy (2007) by considering (3.1) and the independency
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of U and V , it has been shown that
Y

d
“ µ ´ F rU |U ď 0s ` G

1
2V. (3.2)

To avoid complexity and heavy computation, a simple case is simulated from a
Spatial Skew Gaussian random field. To increase the amount of skewness in the
process Y p.q with choosing proper values for m, D and ∆ will have a great impact
on the volume of these calculations. To generate data from the proposed random
field in (3.2), we put D “ δA, where the constant δ shows skewness and A is a
non-zero matrix with independent components from δ. In this case, (3.2) can be
written as

Y
d
“ µ ´ δΣAp∆ ` δ2AT ΣAq´1rU |U ď 0s

`pΣ ´ δ2ΣAp∆ ` δ2AT ΣAq´1AT Σq
1
2V. (3.3)

It is clear that when δ “ 0, Y is independent from U and consequently Y is a
Gaussian vector with mean µ and covariance matrix Σ. By seting AT ΣA “ Σm,

Y
d
“ µ ´

δ

1 ` δ2 ΣAΣ´1
m rU |U ď 0s ` pI ´

δ2

1 ` δ2 ΣAΣ´1
m AT Σq

1
2V. (3.4)

we consequently opt to set m “ n that is called homotopic case. For n “ m and
A “ In, we have

Y
d
“ µ ´

δ

1 ` δ2 rU |U ď 0s `
1

?
1 ` δ2

Σ
1
2V

Y
d
“ µ `

δ

1 ` δ2 rU |U ě 0s `
1

?
1 ` δ2

Σ
1
2V (3.5)

since rU |U ď 0s “ ´rU |U ě 0s The vector Y is the sum of a sample of a stationary
process with covariance function Cphq

p1`δ2q
and a vector U conditional on rU ě 0s. Figure

1 displays the histogram and variogram computed from 100 realizations of model
(3.5), with n = 100 and an exponential covariance functionCphq “ expp´

||h||

a
q, with

a= 0.1. The experimental variogram is the arithmetic average of 0.5rY pxiq´Y pxjqs2

across the realizations. Two series of simulations were performed corresponding to
the different amount of skewness. These graphs indicate the model (3.5) generates
sufficient skewness if the parameter δ is large enough. When δ “ 1, there is a limited
amount of skewness; when δ “ 4, the histogram is skewed towards the positive values;
there are very few negative values. Note that the experimental variograms show in
both cases a spatial structure with a range close to the parameter but the variance
illustrated by the sill of the variograms decreases as δ increases.

In the following section, after a brief introduction of the survival models, by using
(3.5) we introduce a new model for survival analysis with an SSG random field for
random effects that offers more efficiency and flexibility compared to existing models.
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Figure 1: Histogram and experimental variogram of simulated homotopic model.

4 Survival Models

Survival analysis is generally defined as a set of methods for analyzing data where
the outcome variable is the time until the occurrence of an event of interest. The
event can be death, the occurrence of a disease, marriage, divorce, etc. The time
to event or survival time can be measured in days, weeks, years, etc. For example,
if the event of interest is a heart attack, then the survival time can be the time
in years until a person develops a heart attack. Several models are available to
analyze the relationship between a set of predictor variables with the survival time.
Methods include parametric, nonparametric and semi-parametric approaches. The
most important of these models is the Cox proportional hazards model.

If the values of survival data are dependent on their location, neither cox and
frailty models can not provide an accurate analysis of such data. But in some
applications, the location of each item can cause an unknown risk factor where
each survival time depends locally on the other survival times. Besides, the close
observations are more correlated than those farther ones. But in real data, this
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spatial effect might not be either measurable or observable. Thus, according to
spatial correlation in a survival time data set a class of frailty models is presented
that is called spatial survival models. Typically, a random field is added to the model
to consider the spatial correlation of these data. So the spatial hazard function
Motarjem et al. (2017) is defined as

hpt|X,Zq “ h0ptq exppβ1X ` Zpsqq, (4.1)
where h0p¨q is baseline hazard function, β is the regression parameter vector, Zp¨q

is a Gaussian random field and s denotes the location of spatial survival data in
D Ď R2. The spatial covariance or covariogram between two different items, at
different locations si and sj is defined by

CovpZpsiq, Zpsjqq “ Cphq; h “ ||si ´ sj||

where || ¨ || is ordinary Euclidean distance norm.
As we said earlier, due to the existence of skewness in survival data, the Gaussian

assumption for random effects may not be realistic. in the following , by considering
a Spatial Skew random fields for random effects, a new model for skew spatial
random effects is proposed. The spatial survival model with SSG random effects is
a generalized version of the model (4.1) in this model the SSG random process Y p¨q

represents the spatial random effects as follows
hpt|X,Y q “ h0ptq exppβ1X ` Y psqq. (4.2)

where h0p¨q is baseline hazard function, β is the regression parameter vector, and
Y psq is the realization of an SSG random process that generated by (3.5).

For parameters estimation of spatial survival model with skew-Gaussian random
effects By generalizing the spatial survival model we can find the rank likelihood
function of the survival times as

Lpβ, ηq “

ż

¨ ¨ ¨

ż n
ź

i“1
t

exppβ1Xi ` Yiq
ř

i1 ξi1ptiq exppβ1Xi1 ` Yi1q
uδidF pY1, . . . , Ynq, (4.3)

where η “ pa, σ2q is the vector of spatial parameters, Yi “ Y psiq and

ξi1ptiq “

#

1, ti1 ě ti

0, ti1 ă ti

is an indicator function. The estimator of the cumulative baseline hazard function
Ĥ0ptq is completely the same as the Cox model. So we have

Ĥ0ptiq “
ÿ

tj;tjďtiu

δj
ř

kPRptkq e
β1Xk

,

where Rptkq is the set of all subjects at risk. The regression coefficients and spatial
parameters should be estimated by maximizing the rank likelihood function, that
does not have not a closed form. So, numerical methods such as MCMC algorithm
are usually used.
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Since Y1, . . . , Yn are correlated we are not able to calculate the integrate (4.3) to
obtain Lpβ, ηq. The main idea is transforming dF pY1, . . . .Ynq to

śn
i“1 dFipuiq and

a solution is using Cholesky decomposition to calculate this term. The Cholesky
decomposition of covariance matrix Q “ CovpY q where Y “ pY1, . . . , Ynq, results a
lower triangular matrix A such that Q “ AA1. Then by generating u “ pu1, . . . , unq

from a standard Normal distribution we can generate the random vector, ν “

pν1, . . . , νnq, where ν “ Au. Since
Epνq “ AEpuq “ 0,
V arpνq “ A V arpuqA1 “ AA1 “ Q,

The random vector ν is equally distributed with Y . Thus we can rewrite (4.3) as

Lpβ, ηq“

ż

. . .

ż n
ź

i“1
r

exppβ1Xi `
ři

k“1 Aikpηqukq
ř

i1 ξi1ptiq exppβ1Xi1 `
řj

k“1 Ajkpηqukq
sδi

n
ź

i“1
dΦpuiq, (4.4)

where Φp¨q is the cumulative standard Normal distribution and Aik is an element of
matrix A. Now, we generate vector u “ pu1, . . . , unq for M times. Then (4.4) can
be approximated by

L̂pβ, ηq “
1
M

M
ÿ

b“1

n
ź

i“1
r

exppβ1Xi `
ři

k“1 Aikpηqu
pbq

k q
ř

i1 ξi1ptiq exppβ1Xi1 `
řj

k“1 Ajkpηqu
pbq

k q
sδi . (4.5)

By maximizing (4.5), the estimate of parameters can be achieved. Obviously, in-
creasing M gives more precise estimates.

5 Simulation Study

In this section spatial survival and proposed model for geostatistical survival data
are evaluated and numerically compared. For this purpose, a spatial survival data
set with SSG random field should be generated. A simulation method for generating
survival data was proposed by ?. Here this method is modified to generate spatial
survival data by using an SSG random field.
Assume that, the baseline hazard function, h0p¨q, in the survival model has a known
parametric form. According to the spatial survival model with SSG random effect
we have

Spt|Xq “ expp´H0ptq exppβ1X ` Y psqqq,

where H0ptq “
şt

0 h0puqdu is the cumulative hazard function, β is the regression
parameter vector, Y psq is a SSG random field and Sp.q is the survival function. as
we know, the survival function is defined as

Spt|Xq “ 1 ´ F pt|Xq
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where F is the cumulative distribution function of T . based on spatial survival
model with SSG random effect we can generate a spatial survival data set. For
instance, for a exponential baseline hazard function with scale parameter λ ą 0, we
have

T “ ´r
logU

λ exppβ1X ` Y psq
s. (5.1)

By generating Y p¨q from (3.5) and inserting in (5.1) and specifying the values of λ,
β and U , the spatial survival data with SSG random effects can be simulated.

Based on the above, a total of 400 spatial survival data are generated in a
regular 20ˆ20 grid for simulating spatial survival data with SSG random effects.
To simulate the data, the baseline hazard function with exponential distribution
and scale parameter λ “ 1 is used, the vector of explanatory variables is derived
from the standard Normal distribution and β “ 1 is the regression coefficient. In
addition Y psq is a realization of SSG random field with the exponential covariogram,
Cphq “ σ2 expp´

||h||

a
q, where h is the spatial lag, σ2 “ 1, a “ 1 and δ “ 5, are

the variance, range and skewness of the random field, respectively. According to
the importance of censoring survival times and different types of censoring, in this
study, right censored data is used for 20% and 80% levels. Using the R programming
environment, datasets of spatial survival data with size n “400 and also 100 and 500
times iteration are generated. Next, the Cox, frailty, spatial survival and proposed
models fitted to these data. Note that when δ “ 0 the spatial survival data with
Gaussian random effects will be produced.

Table 1: Parameter estimation of spatial survival model with Gaussian random
effects.

Percentage M=100 M=500
Censor Paramter Estimate MAPB MSE Estimate MAPB MSE

β 0.96 3.21 0.012 0.98 1.98 0.007
20% a 0.95 5.32 0.008 0.97 3.21 0.004

σ2 1.97 2.13 0.004 1.98 1.19 0.001
β 0.92 7.12 0.016 0.94 5.19 0.009

80% a 0.90 9.18 0.015 0.93 6.12 0.001
σ2 1.91 7.11 0.011 1.95 4.14 0.009

The mean square error (MSE) and the mean absolute percentage bias (MAPB)
is defined by

MAPB “
1
M

M
ÿ

i“1
|
θ̂i ´ θ

θ
| ˆ 100

are used for evaluation of parameter estimations, where θ “ pσ2, a, β, δq is the model
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Table 2: Parameter estimation of spatial survival model with SSG random effects.

Percentage M=100 M=500
Censor Parameter Estimate MAPB MSE Estimate MAPB MSE

β 0.85 14.38 0.032 0.88 12.78 0.025
20% a 0.81 19.64 0.019 0.83 16.92 0.016

σ2 1.71 29.16 0.039 1.77 23.16 0.023
β 0.79 21.13 0.043 0.83 17.23 0.031

80% a 0.77 24.16 0.039 0.81 19.64 0.024
σ2 1.65 35.18 0.055 1.69 29.12 0.042

parameters and M denotes the number of iterations.

The results are reported in Tables 1 through 4.

Table 3: Parameter estimation of proposed model with Gaussian random effects.

Percentage M=100 M=500
Censor Parameter Estimate MAPB MSE Estimate MAPB MSE

β 0.95 3.27 0.014 0.97 2.09 0.008
20% a 0.96 5.24 0.007 0.96 3.39 0.006

σ2 1.94 2.18 0.007 1.96 1.27 0.003
δ 0.000 0.000 0.000 0.000 0.000 0.000
β 0.91 7.69 0.021 0.95 5.11 0.007

80% a 0.93 9.04 0.012 0.90 6.24 0.003
σ2 1.84 8.68 0.019 1.93 4.93 0.015
δ 0.000 0.000 0.000 0.000 0.000 0.000

As Table 1 shows, fitting spatial survival model to spatial survival data with
Gaussian random effects has good results. But the comparison of the results of the
Tables 1 and 2 show that the spatial survival model in the presence of SSG random
effects does not provide proper results. By considering the results of Tables 3 and 4
and comparing with Table 1 and 2, we find that the proposed model in the presence
of SSG random effect gives much better fit to the data than the competing models.
However, in the case of Gaussian random effects, it has the same performance as
the other model. Nonetheless, the proposed model can be used to analyze spatial
survival data. The MAPB criterion in Table 1 through 4, show that by increasing M,
the biases of estimates are reduced.The simulation results show that the proposed
model is more efficient in the presence of the skewness and has the equal efficiency
of the spatial survival model for the non-skewed cases.
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Table 4: Parameter estimation of proposed model with SSG random effects.

Percentage M=100 M=500
Censor Parameter Estimate MAPB MSE Estimate MAPB MSE

β 0.94 4.11 0.013 0.96 3.76 0.008
20% a 0.93 6.38 0.011 0.95 4.39 0.009

σ2 1.92 5.11 0.009 1.94 4.18 0.007
δ 4.96 2.11 0.013 4.94 1.96 0.005
β 0.90 8.72 0.021 0.92 5.13 0.014

80% a 0.89 8.11 0.016 0.91 6.12 0.013
σ2 1.89 9.12 0.013 1.91 7.01 0.012
δ 4.89 6.17 0.018 4.94 5.019 0.011

6 Discussion and Results

In this paper, a method for generating spatial survival data with SSG random effect
is introduced and a simulation study is performed for analyzing the efficiency of
different survival models in fitting spatially correlated survival times. The simulation
study showed that increasing the censoring percentage generally caused imprecise
estimate parameters while this inaccuracy in the proposed model is less than other
models for estimating regression parameters. The discussion on such properties the
isotropy and stability of random fields seem to be a good subject for future studies.
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