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On the lifetime comparison of series systems with random
number of components

Abbasi, S. 1 and Alamatsaz, M. 2

1 Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan,

Iran
2 Department of Statistics, University of Isfahan, Isfahan, Iran

Abstract

In this paper, we stochastically compare Harris family distributions having ran-
dom tilt parameter with Harris family distributions having fixed tilt parameter. In
reliability context, this applies to stochastic comparison of lifetime of a series system
with random number of components with another similar but mixed system. Our
comparison tools are various types of orderings. In addition, we obtain an upper
bound for maximum error in evaluating the reliability function. We also present two
bounds for a Harris family survival function conditioned on its random tilt parameter,
which are useful in distinguishing failure probability of a component after a time t.
Several previous findings, regarding Marshall-Olkin family follow as spacial cases of
our results.

Keywords: Harris family distribution , Marshall-Olkin distribution, Shifted pro-
portional stochastic ordering, Reliability function.

1 Introduction

To cover a wide range of data such as those with a high degree of skewness and kurtosis,
Marshall and Olkin (1997) and Aly and Benkherouf (2012) introduced two families of
distributions. In their approaches, they considered a baseline distribution and extended
it to a new and more flexible distribution. The resulting classes are called Marshall-Olkin

1s abbasi 29@yahoo.com
2alamatho@sci.ui.ac.ir
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and Harris family of distributions, respectively. Both classes of such distributions are, in
particular, useful in reliability theory. Aly and Benkherouf (2011) generated the Harris
family of survival functions H̄ as

H̄(x; θ, k) =
( θF̄ k(x)

1− θ̄F̄ k(x)

)1/k
, k > 0, 0 < θ <∞, θ̄ = 1− θ. (1)

The df F in Equation (Eq) (1-1) is called the baseline df and θ is called the tilt parameter.
In the Harris family distribution, there is no theoretical basis for choosing the baseline
distribution and the distribution of tilt parameter; when tilt parameter is a rv. Therefore,
it is important to see how a Harris family rv responds to the change of the baseline dis-
tribution and tilt parameter. This paper, mainly investigates how the relations between
tilt parameters effect in stochastic orders (see; Shaked and Shanthikumar (2007)) between
two Harris family distributions with fix and rv tilt parameters. Considering the utility
desired, we are able to select a fix or rv tilt parameter.
We also obtain an upper bound for the maximum error in evaluating the reliability func-
tion. In many practical problems, using a sample data set, we are able to obtain some life
information such as the mean and variance of a life distribution. But the exact value of the
reliability function can not be easily obtained. However, it is still helpful to derive some
bounds for a reliability function based on the known information. These bounds can tell
us the scope of the reliability of products and provide a basis for further improvements.
In addition, we obtain two bounds for survival functions conditioned on the tilt random
parameter, which are useful in distinguishing the failure probability of a component after
a time t when the tilt parameter is unobservable.

2 Stochastic comparison under mixtures

In Eq (1.1), let the parameter Θ be an absolutely continuous rv with df G(.) and pdf g(.).
Then, its corresponding unconditional Harris sf is given by

H̄(x; k) =

∫ ∞
0

H̄(x; θ, k)g(θ)dθ = E[
Θ

1− Θ̄F̄ k(x)
]

1
k F̄ (x).

We denote the corresponding rv by X∗. Our results enfold Nanda and Das (2012)’s findings
in this connection.

Theorem 1. Let X and X∗ be two rv’s with sf ’s H̄(.; ν, k) and H̄(.; k), respectively. Then,
X ≤lr (≥lr)X∗ if P (Θ ≥ ν) = 1 (P (0 < Θ ≤ ν) = 1).

In the following theorem we compare the ageing intensity ordering between a Harris
family and its mixture. First, we give the following lemma. Let X be a rv with sf H̄(.; ν, k)
and X∗ be a rv with sf H̄(.; k) and hazard rate rH(.; k). Then, if P (0 < Θ ≤ 1) = 1,
rH(x;k)
rH(x;ν,k) is decreasing in x.

Theorem 2. Let X and X∗ be two rv’s with sf ’s H̄(.; ν, k) and H̄(.; k), respectively. Then,
if P (0 < Θ ≤ 1) = 1 we have X ≤AI X∗.

Theorem 3. Let X and X∗ be two continuous and non-negative rv’s corresponding to
sf ’s H̄(.; ν, k) and H̄(.; k), respectively. Also, let Θ ≥ 1 (0 < Θ ≤ 1) with probability 1 and
0 < ν ≤ 1 (ν ≥ 1). Then
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(a) X ≤plr↑ (≥plr↑)X∗ if X ∈ UIPLR,

(b) X ≤plr (≥plr)X∗ if X ∈ IPLR,

(c) X ≤lr↑ (≥lr↑)X∗ if X ∈ ILR.

Theorem 4. Let X and X∗ be two continuous and non-negative rv’s corresponding to
sf ’s H̄(.; ν, k) and H̄(.; k), respectively. Also, let Θ ≥ 1 (0 < Θ ≤ 1) with probability 1 and
0 < ν ≤ 1 (ν ≥ 1). Then

(a) X ≤plr↓ (≥plr↓)X∗ if X ∈ DIPLR,

(b) X ≤lr↓ (≥lr↓)X∗ if X ∈ DLR.

Theorem 5. Let X and X∗ be two continuous and non-negative rv’s corresponding to
sf ’s H̄(.; ν, k) and H̄(.; k), respectively. Also, let Θ ≥ 1 (0 < Θ ≤ 1) with probability 1 and
0 < ν ≤ 1 (ν ≥ 1). Then

(a) X ≤phr↑ (≥phr↑)X∗ if X ∈ UIPHR,

(b) X ≤phr (≥phr)X∗ if X ∈ IPHR,

(c) X ≤hr↑ (≥hr↑)X∗ if X ∈ IHR.

Theorem 6. Let X and X∗ be two continuous and non-negative rv’s corresponding to
sf ’s H̄(.; ν, k) and H̄(.; k), respectively. Also, let Θ ≥ 1 (0 < Θ ≤ 1) with probability 1 and
0 < ν ≤ 1 (ν ≥ 1). Then

(a) X ≤phr↓ (≥phr↓)X∗ if X ∈ DIPHR,

(a) X ≤hr↓ (≥hr↓)X∗ if X ∈ DHR.

3 Bounds for survival function

We now obtain some useful bounds concerning a tilt-mixture Harris family distribution.
First, we note that for any x, t > 0 and k ≥ 1, ( t

1−(1−t)F̄k(x)
)

1
k is a concave function of t.

Thus, using Jensen’s inequality, where µ = E(Θ), we have

H̄(x; k) = F̄ (x)E(
Θ

1− Θ̄F̄ k(x)
)

1
k ≤ F̄ (x)(

µ

1− (1− µ)F̄ k(x)
)

1
k .

For a non-negative baseline rv X, we have E(Θ)
1
k ≤ H̄(x;k)

F̄ (x)
≤ 1, P (0 < Θ < 1) = 1

1 ≤ H̄(x;k)
F̄ (x)

≤ E(Θ)
1
k , P (Θ ≥ 1) = 1

In the following theorem we obtain an upper bound for the maximum error in evaluating
the reliability function.

Theorem 7. Let baseline rv X be non-negative and H̄0(x; k) = e
− x
µ0E( Θ

1−Θ̄F̄k(x)
)

1
k , where

µ0 = E(X). If the baseline distribution has DMRL property, then

supx≥0 | H̄(x; k)− H̄0(x; k) |≤
{
E(Θ)

1
k (1− e−1)(1− γ2

0), P (Θ ≥ 1) = 1
(1− e−1)(1− γ2

0), P (0 < Θ < 1) = 1

where γ0 is the coefficient of variation of the baseline distribution.
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In the following theorem we obtain an upper bound for the failure probability of a
component after a time t.

Theorem 8. Let tilt parameter Θ have NBU(2) property and k ≥ 1. For non-negative rv
X,

(a) Provided that P (0 ≤ Θ ≤ 1) = 1, we have

P (X∗ ≥ t | Θ > ϑ) ≤ min{F̄ (t) + (
F̄ k(t)ϑ

1− (1− ϑ)F̄ k(t)
)

1
k , 1}.

(b) Provided that P (Θ ≥ 1) = 1, we have

P (X∗ ≥ t | Θ > ϑ) ≤ min{F̄ (t)E(Θ
1
k ) + (

F̄ k(t)ϑ

1− (1− ϑ)F̄ k(t)
)

1
k , 1}.
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Economic and Economic Statistical Design of X−Control
Charts Under a Bathtub-shaped Shock Model

Khadem, Y. 1 and Pasha, M. A. 2 and Moghadam, M. B. 3 and Fani, Sh. 4

1,2,3,4 Department of Statistics, Allameh Tabatabai University, Beheshti-Ghasir Ave.,

Tehran-1513615411, Iran

Abstract

The optimal design parameters of the economic and economic statistical designs
of control charts depend mainly on the reliability of the system that can be regarded
as the process failure mechanism, shock model of the system, lifetime distribution of
the process, or the assignable cause occurence time. In this paper, we presented a cost
model under a bathtub-shaped (U-shaped) failure rate lifetime distribution that starts
at optimum burn-in time at the beginning of a product cycle and then remarkably
decreases in the early stage toward an approximately constant hazard rate during the
useful life stage. Afterwards, the failure rate starts to increase with the onset of wear
out. The generalized cost model of Rahim and Banerjee (1993) is applied to achieve
the optimal design parameters under both uniform and nonuniform sampling schemes.

Keywords: Economic Design, Economic Statistical Design, Process Failure Mech-
anism, Bathtub Failure Rate, Integrated Hazard over sampling interval.

1 Introduction

Control chart technique, originally introduced by Shewhart in 1924, is one of the basic
tools in statistical process control. The purpose of control charts is to differentiate between

1khadem.yasin@yahoo.com
2mojtaba.a.pasha@gmail.com
3bamenimoghadam@atu.ac.ir
4fani.shabnam@gmail.com
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the inevitable random causes and the assignable causes in the process. Correspondingly,
the necessary corrective action may be taken before a large number of nonconforming
products are manufactured.

The control limits of an X−control chart which is the most popular charts in the
literature to control normal process means are set at ±L standard deviations of the target
mean, i.e. µ ± L σ√

n
where the standard deviation assumes fix along time. A sample of

size n is taken from the output of the process at time intervals of hj hours for j = 1, 2, ...
and then X is plotted on the chart. Observing of sample means outside the control limits
of the chart is a signal that is regarded as an indication that the process is out of control.
Design of control charts is the determination of the parameters n, L, and hj that can
be obtained economically and statistically optimal applying economic statistical design
procedure.

The key assumption for an economic design or economic statistical design is that the in-
control time of the process obeys a lifetime distribution as the process failure mechanism.
Duncan (1956) and Lorenzen and Vance (1986) assumed that the occurrence time of an
assignable cause follows an exponential distribution which has identified by memoryless
property and constant hazard rate. This assumption has been adopted widely by many
subsequent researchers. For systems with increasing failure rate, Banerjee and Rahim
(1988) extended Duncan’s model to the Weibull shock model using non-uniform sampling
scheme in which the frequency of sampling increases with the age of the system. Rahim
and Banerjee (1993) developed their previous work to a general shock model that is flexible
enough to be applied for any sampling scheme.

It is now widely believed that many products, particularly electronic items such as
silicon integrated circuits, exhibit a bathtub (U-shaped) failure rate function. This be-
lief that the bathtub model plays an important role in reliability is supported by much
experience and extensive data collection in many industries. Consider a system in which
the operators are beginners, so the hazard rate decreases with increasing skills, then while
almost constant and finally increases in depreciation components.

2 The Model Construction

A generalized economic model for any lifetime distribution function F and any sampling
scheme is presented in Rahim and Banerjee (1993). Random samples of size n are drawing

at time ωj for j = 1, 2, ...,m; provided that ωj =
j∑
i=1

hi and lim
m→∞

F (ωm) = 1. In addition,

pj is defined as the conditional probability that the process shifts to the out-of-control
state during the time interval (ωj−1, ωj) given that the process was at the in-control state

at time ωj−1. i.e. pj =
ωj∫

ωj−1

f(t)dt/
∞∫

ωj−1

f(t)dt. Define p0 = 0. Therefore, the jth sampling

interval will be corresponded by a pair (hj , pj) for j = 1, 2, ...,m. They proved the following
expressions are satisfied:

E (T ) =

∞∑
j=1

hj

j−1∏
i=1

(1− pi) + αZ0

∞∑
j=1

j∏
i=1

(1− pi)

+β
∞∑
j=1

pj

j−1∏
i=0

(1− pi)
∞∑

i=j+1

hiβ
i−j−1 + Z1
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and

E (C) = D0

∞∑
j=1

hj

j−1∏
i=1

(1− pi) + αY
∞∑
j=1

j∏
i=1

(1− pi) + (D0 −D1)τ

+ (D1 −D0)
∞∑
j=1

ωjpj

j−1∏
i=0

(1− pi) +D1β
∞∑
j=1

pj

j−1∏
i=0

(1− pi)
∞∑

i=j+1

hiβ
i−j−1

+(a+ bn)[
β

1− β
+
∞∑
i=0

i∏
j=1

(1− pj)] +W

where Z0 = Expected assignable cause search time for a false alarm, Z1 = Expected time
to identify the assignable cause and repair the process, a = Fixed cost per sample, b =
Variable cost per sample, D0 = Hourly cost due to nonconformities produced while in
control, D1 = Hourly cost due to nonconformities produced while out of control, Y =
Cost per false alarm, W = Cost for locating and repairing the assignable cause, and τ =
the expected in-control duration.

Furthermore, since normality of output characteristic, α = Pr(exceeding control limits|process
in control) = 2Φ(−L), β = Pr(not exceeding control limits|process out of control) =
Φ(L− δ

√
n)− Φ(−L− δ

√
n) which Φ is the standard normal distribution function.

Now assume that

R(t) = 1− F (t) =
exp(−kt2/2)

(1 + νt)θ/ν
; t ≥ 0, k > 0, ν > 0, θ > 0

For 0 < k < θν, the above lifetime distribution has a bathtub-shaped failure rate.
This corresponds to the three distinct phases of a system, that is, early life, useful life,
and wear-out. Combinations of different parameters of this distribution is applied for
numerical investigation of the cost model.

3 Numerical Illustrations

In this section, the following numerical study is conducted to illustrate the performance
of the model for determining the optimal design parameters. Assume Z0 = 0.25, Z1 = 1,
a = 4, b = 1.2, D0 = 50, D1 = 950, Y = 500, W = 1100. The results are presented in
table 1 and table 2 to compare economic and economic statistical design parameters under
uniform and nonuniform sampling schemes.

Table 1. Economic Design Parameters

Distribution Parameters Nonuniform Sampling Scheme Uniform Sampling Scheme

θ ν k n h1 L α 1− β ECT n h L α 1− β ECT
0.5 0.1 0.01 36 0.591 1.999 0.046 0.841 509.6 35 0.657 2.002 0.045 0.830 509.1
0.9 0.1 0.01 32 0.521 1.875 0.061 0.829 651.1 32 0.561 1.879 0.060 0.829 650.4
0.1 0.1 0.001 41 0.961 2.164 0.030 0.850 206.6 41 1.384 2.167 0.030 0.849 206.4
0.4 0.1 0.001 38 0.585 2.047 0.041 0.849 435.8 37 0.733 2.052 0.040 0.839 435.0

Table 2. Economic Statistical Design Parameters

Distribution Parameters Nonuniform Sampling Scheme Uniform Sampling Scheme

θ ν k n h1 L α 1− β ECT n h L α 1− β ECT
0.5 0.1 0.01 42 0.668 1.960 0.050 0.900 510.7 42 0.747 1.960 0.050 0.900 510.4
0.9 0.1 0.01 42 0.588 1.960 0.050 0.900 653.0 42 0.637 1.960 0.050 0.900 652.6
0.1 0.1 0.001 47 1.065 2.133 0.033 0.902 207.1 47 1.543 2.134 0.031 0.902 207.0
0.4 0.1 0.001 43 0.655 2.006 0.045 0.900 436.7 43 0.830 2.005 0.045 0.900 436.2
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Confidence Intervals for Quantiles based on Progressive
First-Failure Censored Data from Exponential Distribution

Ahmadi, Mohammad Vali 1
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Abstract

Confidence intervals of the quantiles provide useful information on the plausible
range of them. In this paper, the shortest possible confidence interval based on the
progressive first-failure censored data coming from two-parameter exponential distri-
bution within a class of two-sided confidence intervals is constructed. This shortest
confidence interval is always shorter than the corresponding equal-tail confidence in-
terval.

Keywords: Confidence Interval , Quantiles, Progressive First-Failure Censoring Scheme,
Exponential Distribution, Pivotal Quantity

1 Introduction

Censoring schemes are used to reduce the costs of experiments and to accelerate the
performing of the design. There are various types of censoring schemes in the analysis of
lifetime experiments where one of them is the first-failure censoring scheme, introduced in
[4] and further illustrated in [2]. A generalization of first-failure censoring is progressive
first-failure censoring proposed by Wu and Kus [9], which allows for units to be removed
from the test at points other than the final termination point. The description of the
progressive first-failure censoring is as follows. Suppose that n disjoint groups with k
units within each group are put on a test at time zero. As soon as the occurrence of the
i failure, Ri (for i = 1, . . . ,m − 1) groups randomly selected and the group in which the
first failure is observed are removed from the test. When the m-th failure occurs, all of
the remaining groups are removed from the test.

1mv.ahmadi@ub.ac.ir
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The two-parameter exponential distribution is one of the applied distributions for
modeling lifetime data. For an excellent survey on the exponential distribution we refer
the reader to the book by Balakrishnan and Basu [1]. Suppose that unit lifetimes follow
the two-parameter exponential distribution, denoted by Exp(µ, σ), with PDF and CDF,
respectively

fθ(x) =
1

σ
exp

(
−
{
x− µ
σ

})
, x > µ, µ ∈ R, σ > 0, (1)

and

Fθ(x) = 1− exp

(
−
{
x− µ
σ

})
, x > µ, µ ∈ R, σ > 0, (2)

where θ = (µ, σ). For a given p ∈ (0, 1), the p-th quantile of this distribution Q :=

Q(µ, σ, p) is defined by the equation
∫ Q
−∞ fθ(x) dx = p and is given by Q = µ−σln(1− p).

This paper considers the construction of confidence intervals for Q based on the pro-
gressive first-failure censored data. The problem of inferences on the two-parameter ex-
ponential model has been considered by several researchers. See, for example, Roy and
Mathew [7], Fernandez [3], Krishnamoorthy and Mathew [6] and Hayter [4].

The rest of this paper has been organized as follows. Section 2 contains some pertinent
distributional results and Section 3 illustrates the construction of one-sided and two-sided
confidence intervals for Q, including the equal-tail and shortest confidence intervals.

2 Some Distributional Results

LetX1 < X2 < · · · < Xm be the progressive first-failure censored sample from a continuous
population with PDF and CDF fθ(·) and Fθ(·), respectively. Following [9], the associated
likelihood function of the observed data x = (x1, x2, . . . , xm) reads

L(θ ; x) = C km
m∏
i=1

fθ(xi)[1− Fθ(xi)]k(Ri+1)−1, x1 < · · · < xm <∞ (3)

where C = n(n−R1 − 1)(n−R1 −R2 − 2) · · · (n−
∑m−1

i=1 Ri −m+ 1).
Upon substituting (1) and (2) into (3), the likelihood function becomes as

L(θ ; x) = C

(
k

σ

)m
exp

(
−k
σ

m∑
i=1

(Ri + 1)(xi − µ)

)
, (4)

where µ < x1 < · · · < xm and θ = (µ, σ). The maximum likelihood estimates of µ and σ
is readily derived from (4) as µ̂ = X1 and σ̂ = k

∑m
i=1 (Ri + 1) (Xi −X1)/m.

Let

U1 = nW1,

U2 = (n−R1 − 1)(W2 −W1),

...

Um = (n−R1 − · · · −Rm−1 −m+ 1)(Wm −Wm−1), (5)

where Wi = k(Xi − µ)/σ for i = 1, . . . ,m.
Thomas and Wilson [8] shown that the spacings U1, . . . , Um, as defined in (5), are

independent and identically distributed as Exp(0, 1). Hence, 2N(µ̂ − µ)/σ = 2U1 ∼ χ2
2
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and 2mσ̂/σ = 2
∑m

i=2 Ui ∼ χ2
2m−2 where χ2

a denotes the chi-square distribution with a
degrees of freedom and N = n× k. Moreover, it is clear µ̂ and σ̂ are independent. From
these results, it follows that Z := (µ̂ − Q)/(2mσ̂) is a pivotal quantity and its CDF is
given by

Gθ(z) =

{
1− rN

(2Nz+1)m−1 , z ≥ 0,

P (m− 1, sz )− rN

(2Nz+1)m−1P (m− 1, sz +N ln(r)) , z < 0.

where r = 1 − p, s = ln(r)/2 and P (a, x) =
∫ x

0 t
a−1e−t dx/Γ(a) with Γ(·) being the

complete gamma function.

3 Confidence Intervals for Q

In this section, a class of confidence intervals for Q is generated, and then special cases
within this class are considered.

If zα be the α-th quantile of Z, which satisfies Gθ(zα) = α, from the definition of Z,
it follows that

1− α1 − α2 = P(zα1 ≤ Z ≤ z1−α2)

= P(µ̂− 2mσ̂z1−α2 ≤ Q ≤ µ̂− 2mσ̂zα1)

for any α1 ≥ 0 and α2 ≥ 0 satisfying α1 + α2 < 1. Consequently, a 100(1 − α1 − α2)%
confidence interval for Q is

[µ̂− 2mσ̂z1−α2 , µ̂− 2mσ̂zα1 ]. (6)

Different choices of α1 and α2 generate a class of confidence intervals for Q of this form.

3.1 One-sided Confidence Intervals for Q

Putting α1 = 0 (and hence zα1 = −∞) and α2 = α in (6), a 100(1−α)% lower confidence
bound for Q as [µ̂ − 2mσ̂zα,∞) is obtained. Similarly, Putting α1 = α and α2 = 0 (and
hence z1−α2 =∞) in (6), a 100(1−α)% upper confidence bound for Q as (−∞, µ̂−2mσ̂zα]
is obtained.

3.2 An Equal-tail Two-sided Confidence Interval for Q

Putting α1 = α2 = α/2 in (6), a 100(1−α)% equal-tail two-sided confindence interval for
Q is obtained as [µ̂− 2mσ̂z1−α/2, µ̂− 2mσ̂zα/2].

3.3 The Shortest Two-sided Confidence Interval for Q Within the class

It is clear that [µ̂− 2mσ̂z1−α∗ , µ̂− 2mσ̂zα−α∗ ] is a 100(1− α)% confidence interval for Q
for any α∗ ∈ (0, α). The length of this confidence interval is 2mσ̂(z1−α∗ − zα−α∗). The
value α∗ is selected such that minimizes this length. For this purpose the PDF of Z will
be equal at z1−α∗ and zα−α∗ . Moreover, the skewness of the distribution of Z enables this
confidence interval to be shorter than the equal-tail confidence interval.
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Stochastic orders based on quantile function in reversed
time
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Abstract

In this note, two new stochastic orders are defined based on quantile function in
reversed time. We define reverse hazard quantile order and reverse mean residual
quantile order and derive some relationship between this orders and some other orders
of distribution. Also, a characterization of decreasing reverse hazard quantile class is
presented.

Keywords: DRHR class, Quantile function, Reversed hazard quantile order, Re-
versed mean residual quantile order.

1 Introduction

Quantile-based reliability analysis is to make use of quantile functions as models in life-
time data analysis. In the literature, most of the aging concept were defined in terms
of measures based on distribution function. Quantile-based definitions is essential when
we use quantile model for analysis of lifetime data. Generalized-Lambda distribution [9],
Lambda-Tukey distribution [2], Power-Pareto distribution [3, 4], a new model proposed
by Van Staden and Loots [11] and the Govindarajulu distribution [8] are identified dis-
tribution that is used for quantile-based lifetime analysis. A special properties of these
families is that their distribution functions are not available in closed forms to enable the
distribution-based analysis. Importance of different Lambda families for modeling failure

1mjrezaei@birjand.ac.ir
2mahboobe akbari@birjand.ac.ir
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data are demonstrated by Karian and Dudewic [5].
Let X be a nonnegative random variable with distribution function F (x), satisfying
F (0) = 0, F (x) is continuous and strictly increasing and quantile function Q(u) =
inf{x, F (x) ≥ u}. The random variable X(t) = (t − X|X ≤ t) is called the inactivity
time or reversed residual life of X. In reliability theory, stochastic orders are employed
to compare of two distributions in terms of their characteristics. Vineshkumar et al [12]
studied stochastic order using quantile-based reliability measures are introduced by Nair
and Sankaran [6] . In this context, we define two new ordering of random variable X(t) in
terms of quantile function and study some connection of this stochastic order with some
others well-known stochastic order. Decreasing reversed hazard quantile function (DRHQ)
class of distribution has been studied by Nair et al. [7]. we get a characterization of this
class.

We recall definition of reversed hazard quantile function of X and reversed mean
residual quantile function as follow, respectively,

AX(u) = (uqX(u))−1,

and

RX(u) = u−1

∫ u

0
t qX(t)dt = u−1

∫ u

0
(QX(u)−QX(t))dt,

where QX(u) is quantile function of X and qX(u) = Q′X(u) is quantile density function.
Also, according to [10], we have the following partial orders to be used throughout the
paper.

• X is smaller than Y in the right spread (excess wealth order) order (X ≤RS Y ) if∫ 1
u (1 − p)qX(p) dp ≤

∫ 1
u (1 − p)qY (p)dp for u ∈ (0, 1) or equivalently

∫ 1
u (QX(p) −

QX(u)) dp ≤
∫ 1
u (QY (p)−QY (u).

• X is smaller than Y in the Laplace transform order (X ≤Lt Y ) if
∫ 1

0 (1−p)e−sQX(p) ≤∫ 1
0 (1− p)e−sQY (p)

2 Main results

Definition 1. Let X and Y be two nonnegative random variable. We say that X is smaller
than Y in reversed hazard quantile function order(denoted by X ≤RHQ Y ) if

AX(u) ≤ AY (u), for all u ∈ (0, 1)

Note that, in general, neither the stochastic orders reversed hazard rate (≤RHR) (cf.
[10]) and ≤RHQ are equivalent nor one implied the other. From corollary 4 in [1], a
necessary and sufficient condition to equivalence two orders ≤RHR and ≤RHQ is that F
or G is IRHR and DRHR.

Theorem 1. If X ≤RHQ Y then X ≥st Y .

Proof. Let X ≤RHQ Y then qX(u) ≥ qY (u). By integration, we have QX(u) ≥ QY (u)
that follows the result.
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In general case, the converse is not true. Under the condition, QY (u)
QX(u) is decreasing in

u we have X ≤RHQ Y ⇔ X ≥st Y . It is easy to show that if X ≤RHQ Y then X ≥RS Y .
Also if X ≤RHQ Y , according to 1 we have X ≥st Y i.e. Qx(t) ≥ QY (t) that implied
X ≤Lt Y .

Similarly we can define reversed mean residual quantile order as the following.

Definition 2. Let X and Y be two nonnegative random variable. We say that X is smaller
than Y in reversed mean residual quantile order(denoted by X ≤RMQ Y ) if

RX(u) ≥ RY (u), for all u ∈ (0, 1)

Straightforwardly, the reversed hazard quantile order implied the reversed mean quan-
tile order, but the converse is not necessarily true. The next result, gives a condition under
which X ≤RMQ Y ⇔ X ≤RHQ Y .

Theorem 2. Let X and Y be two nonnegative continuous random variable with differen-
tiable RMQ function RX and RY , respectively. Suppose that RY (u)−RX(u) be increasing
in u. Then

X ≤RMQ Y ⇔ X ≤RHQ Y.

Proof. Let X and Y have reversed hazard quantile function AX(u) = (uqX(u))−1 and
AY (u) = (uqY (u))−1, respectively. From the relationship between reversed hazard quantile
function and reversed mean residual quantile function, we have

(AX(u))−1 = RX(u) + uR′X(u),

where R′X denotes the derivative of R. Similarly,

(AY (u))−1 = RY (u) + uR′Y (u).

Using the increasing property of RY (u)−RX(u) implies that

(AX(u))−1 = RX(u) + uR′X(u) ≤ RY (u) + uR′Y (u) = (AY (u))−1

that is, X ≤RHQ Y.

The next result characterize DRHQ class of distribution.

Theorem 3. If X(t1) ≤ X(t2) for t1 ≤ t2 then distribution is belong to DRHQ class.

Proof. Quantile function of random variable X(t) is Q(u) − Q(u0(1 − u)) where Q(.) is
quantile function X and Q(u0) = t. By the assumption X(t1) ≤ X(t2) we have

Q(u1)−Q(u1(1− u))

u1u2u
≤ Q(u2)−Q(u2(1− u))

u1u2u

for u1 = Q−1
X (t1) ≤ u2 = Q−1

X (t2). Then by limiting

u1q(u1) ≤ u2q(u2).

Therefore the theorem is proved.
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Stochastic comparisons of redundancy allocation at
component level versus systems level
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Abstract

In this paper, we consider a coherent system of n components and n active spares.
Then, we investigate stochastic comparisons of the lifetimes of series-parallel systems
and discuss that component redundancy offer greater reliability than the system re-
dundancy with respect to the hazard rate order and the reversed hazard rate order
for two scenarios, matching spares and non-matching spares.

Keywords: Stochastic orders; Coherent systems; System redundancy; Active re-
dundancy.

1 Introduction

In some applications, one way of improving the reliability of a system is the allocation
of an active redundancy. On the other words, the allocation of an active redundancy is
the efficient method to add redundancy components to a system. To allocate the spare
components (component) to the system reliability, one natural question that arises in this
direction is that, is it better to allocate the spare components (component) in parallel or
series with the weakest components (component) of the system?. In general, there are two
commonly used types of redundancies called active redundancy and standby redundancy
commonly used in reliability engineering and system security. For active redundancy,
available spares are put in parallel to components of the system and these spares start
functioning simultaneously as original components. For standby redundancy, spares are
attached to components of the system in a way that a spare starts functioning right after
the component to which it is attached failed. In two cases, for the measurement of the
performance of different allocations to the system reliability, we use the various types
of the stochastic orders. For some recent results on stochastic comparisons in system
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reliabilities with active redundancy and standby redundancy, one can refer to Boland et
al. (1992), Singh and Misra (1994), da Costa Bueno and do Carmo (2007), Zhao, Chan,
and Ng (2012) and Laniado and Lillo (2014) and the references therein.

Boland and El-Neweihi (1995) concluded that, in the sense of the usual stochastic
order, redundancy at component level is better than redundancy at system level for se-
ries systems, while the reverse is true for parallel systems. Consider a system with two
components and two active spares with the random lifetimes X1, X2 and Y1, Y2, respec-
tively. Consider the lifetimes of two coherent systems as U1 = min{max{X1, Y1}, X2}
and U2 = min{X1,max{X2, Y1}}, in which is observed that there is one spare alloca-
tion. Maybe for the first time ( in our knowledge), Boland et al. (1992) showed that if
X2 ≥st X1 then U1 ≥st U2, which reveals that, it is better to allocate the spare component
in parallel with the weakest component, where ≥st denotes the usual stochastic order ( for
its formal definition please see Shaked and Shanthikumar (2007), Page 3). Then, Valdés
and Zequeira (2003) extended the result in Boland et al. (1992) for the likelihood rate
order ( for its formal definition please see Shaked and Shanthikumar (2007), Page 16) to
compare the lifetimes U1 = min{max{X1, Y1}, X2} and U2 = min{X1,max{X2, Y2}}, in
which is observed that there are two spare allocations, Y1 and Y2. After that for two spare
allocations, Valdés and Zequeira (2006) gave conditions under which the allocation of the
strongest spare with the weakest component is optimal in the sense of the hazard rate
order.

Consider a general coherent systems φ with n components having independent lifetimes
X1, . . . , Xn and n active spares having independent lifetimes Y1, . . . , Yn. Suppose that
X1, . . . , Xn and Y1, . . . , Yn are statistically independent. Recall that a system is said to
be coherent system if it has no irrelevant components and the structure function of the
system is monotone in each argument (that is, an improvement of a component cannot
lead to a deterioration in system performance).

In this paper, we consider two scenario, matching spares and non-matching spares. In a
matching spares problem, Xi =st Yi for all i = 1, . . . , n where =st stands that the random
variables have the same distribution, and in a non-matching spares problem Xi 6=st Yi
for all i = 1, . . . , n. Denote τ(X) = τ(X1, . . . , Xn) the lifetime of the coherent system
φ. When all components and spares lifetimes are independent and identically distributed,
Boland and El-Neweihi (1995) proved, for general coherent systems, under some mild
conditions, that τ(X ∨Y) ≥hr τ(X) ∨ τ(Y).wherethesymbols‘∧’ and ‘∨’ mean min and
max, respectively. Noting that, they said that (1) can not be applied to the general
k-out-of-n systems but they showed the result is true for the special case of 2-out-of-n
system. After that, Singh and Singh (1997) extend (1) to a stronger result in the sense of
the likelihood ratio order ( for its formal definition please see Shaked and Shanthikumar
(2007), Page 42) for the general k-out-of-n system. Gupta and Nanda (2001) obtained a
similar result for the reversed hazard rate ordering. Also, there remains an open problem
that whether this result still holds for the matching spares problem. Also, Misra, Dhariyal,
and Gupta (2009) consider the non-matching problem and obtained some new results in
this direction. Recently Zaho et al. (2015) studied stochastic comparisons of series systems
at component level and system level with n exponential components under the set-up of
matching spares problem.

In this paper, we focus our attention to the matching spares and non-matching spares
and obtained some interesting results to compare the coherent systems with n exponential
components and with n proportional reversed hazard rate (PRHR) components that
redundancies as active spares at the system level is better than the system level in terms
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of the hazard rate order and the reversed hazard rate order.

2 Main results

In this section, we discuss matching spares and non-matching spares, respectively. We
obtain some results under which component redundancy to be superior to the system
redundancy with respect to the hazard rate order and the reversed hazard rate order, for
any n-component series system. Before presenting our main results, let us first introduce
the PRHR model. Independent random variablesX1, . . . , Xn are said to follow the PRHR
model if for i = 1, . . . , n, the distribution function of Xi can be expressed as,

Fi(x) = F λi(x), λi > 0,

where F is the distribution function of the base line distribution and λi is the parameter
of the model.

Theorem 1. Let X1, . . . , Xn be independent random variables following the PRHR model
with distribution functions F λ1 , . . . , F λn, respectively. Let Y1, . . . , Yn be another indepen-
dent random variables following the PRHR model with parameters F λ1 , . . . , F λn, respec-
tively. Then

∧{X1 ∨ Y1, . . . , Xn ∨ Yn} ≥hr {∧(X1, . . . , Xn)} ∨ {∧(Y1, . . . , Yn)}.

Theorem 2. Let X1, . . . , Xn be independent random variables following the PRHR model
with common distribution function F λ. Let Y1, . . . , Yn be another independent random
variables following the PRHR model with common distribution function F β. Then

∧{X1 ∨ Y1, . . . , Xn ∨ Yn} ≥rh {∧(X1, . . . , Xn)} ∨ {∧(Y1, . . . , Yn)},

where ≥rh is the reversed hazard rate order ( for its formal definition please see Shaked
and Shanthikumar (2007), Page 36).

Theorem 3. Let X1, . . . , Xn be independent random variables following the exponential
distribution with common parameter λ. Let Y1, . . . , Yn be another independent random
variables following the exponential distribution with common parameter β. Then

∧{X1 ∨ Y1, . . . , Xn ∨ Yn} ≥hr {∧(X1, . . . , Xn)} ∨ {∧(Y1, . . . , Yn)}.
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Abstract

In this paper, we discuss maximum likelihood prediction of record values from
the Topp-Leone distribution based on observed hybrid censored data. We also derive
Bayes predictors for the future records under the squared error loss (SEL) function.
A simulation study is presented for comparing the classical and Bayes methods in the
end.

Keywords: hybrid censoring, maximum likelihood prediction, records.

1 Introduction

In many lifetime experiments, we encounter samples with censored units. [3] introduced
Type I hybrid censoring scheme which can be described as follows: Consider a sample
of n units with lifetimes X1, · · · , Xn placed on a life-test at time 0 and suppose that
X1:n < . . . < Xn:n denote the ordered lifetimes. Then, the experiment will be ended at
T0 = min{Xr:n, T} where T is a pre-specified time. Thus the hybrid censored sample may
be denoted as X = (X1:n, · · · , Xd:n), where Xd:n ≤ T0, d ≤ r and Xd+1:n ≥ T0. For a
random sample X1, · · · , Xn coming from a distribution with probability density function
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(pdf) f(x) and cumulative distribution function (cdf) F (x), the joint pdf of the hybrid
censored sample is given by (see for example [2])

fX1:n,··· ,Xd:n(x1, · · · , xd) = C[1− F (T0)]n−d
d∏
i=1

f(xi), (1)

where x1 < · · · < xd and C is the normalizing constant.

Records are widely used in many real life applications like lifetime experiments. Let
f(x) and F (x) be the pdf and cdf of X1, respectively, then the pdf of the mth lower record
value, denoted by Um, is (see [1])

fUm(u) =
[− logF (u)]m−1

(m− 1)!
f(u). (2)

Assume that the underlying distribution is the Topp-Leone (TL) distribution with pdf

f(x; θ) = 2θ(1− x)(2x− x2)θ−1, 0 < x < 1, θ > 0. (3)

Let X = (X1:n, · · · , Xd:n) be a hybrid censored sample from the TL distribution with
pdf (3) and Um be the mth lower record extracted from a future sequence of random
variables coming from the same distribution which is assumed to be independent from X.
The aim of this paper is to predict Um based on the observed hybrid censored sample,
x = (x1, · · · , xd). Main results as well as a simulation study are presented in the next
section.

2 Main results

First, we investigate how to find the maximum likelihood predictor (MLP) of Um. The
predictive likelihood function (PLF) approach was first applied by [4]. From (1) and (2),
the joint pdf of Um and X1:n, · · · , Xd:n is obtained to be

fUm,X1:n,··· ,Xd:n(u, x1, · · · , xd; θ) =
2Cθm+d

(m− 1)!
[1− (2T0 − T 2

0 )θ]n−d[−ξ(u)]m−1

× (1− u)e(θ−1)[ξ(u)+
∑d
i=1 ξ(xi)]

d∏
i=1

(2− 2xi),

where ξ(x) = log(2x− x2). Denote the log-likelihood by `, then we obtain (ignoring the
constant)

` ∝ (d+m) log θ + (n− d) log[1− (2T0 − T 2
0 )θ] + (m− 1) log[−ξ(u)]

+ log(1− u) + (θ − 1)

[
ξ(u) +

d∑
i=1

ξ(xi)

]
+

d∑
i=1

log(2− 2xi).

Hence, the predictive likelihood equations are as follows

∂`

∂θ
=

d+m

θ
− (n− d)(2T0 − T 2

0 )θξ(T0)

1− (2T0 − T 2
0 )θ

+ ξ(u) +

d∑
i=1

ξ(xi) = 0,

∂`

∂u
=

1

u− 1
− (m− 1)(2− 2u)

(2u− u2)ξ(u)
+ (θ − 1)

2− 2u

2u− u2
= 0.
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We used the function optim in R 3.1.2 to find the MLP in our simulation study. Now, let
us consider the gamma distribution as the prior distribution for the shape parameter θ

π(θ) ∝ θα−1 exp{−βθ}, α, β, θ > 0. (4)

From (1) and (2.3), the posterior distribution of θ given the hybrid censored sample,
x = (x1, · · · , xd), is found to be

π(θ|x) =
1

C0
[1− (2T0 − T 2

0 )θ]n−dθα+d−1 exp

{
−θ

(
β −

d∑
i=1

ξ(xi)

)}
,

where C0 =
∫∞

0 [1− (2T0 − T 2
0 )θ]n−dθα+d−1e−θ[β−

∑d
i=1 ξ(xi)]dθ.

Therefore, by using the binomial expansion and after some algebra, the Bayes predic-
tive density function of Um is obtained to be

f∗Um(u|x) =

∫ ∞
0

fUm(u|θ)π(θ|x)dθ =
2(1− u)[−ξ(u)]m−1

C0(m− 1)!(2u− u2)

×
n−d∑
k=0

(
n−d
k

)
(−1)kΓ(m+ α+ d)[

β − ξ(u)−
∑d
i=1 ξ(xi)− kξ(T0)

]m+α+d
.

Under the SEL function, the BPP of the Um, denoted as ÛBm , will be the mean of the
predictive density i.e.

ÛBm =

∫ 1

0

uf∗Um(u|x)du =
2Γ(m+ α+ d)

C0(m− 1)!

n−d∑
k=0

(
n− d
k

)
(−1)k

×
∫ 1

0

u(1− u)[−ξ(u)]m−1

(2u− u2)
[
β − ξ(u)−

∑d
i=1 ξ(xi)− kξ(T0)

]m+α+d
du.

We applied the function integrate in R 3.1.2 to evaluate the above integral in our
simulation study.

2.1 A simulation study

Here, first we generate 5 record values from the TL distribution with θ = 2, and assume
these simulated values are the records which must be predicted. These records are

0.66591273, 0.24130283, 0.13715531, 0.07468685, 0.04588906.

Let us consider three cases for the prior distribution. Case I: Jeffreys’ non-informative
prior with α = β = 0. Case II: Informative prior with prior information E(θ) = 2 =true
value, and V ar(θ) = 2 and from (2.3), we obtain α = 2 and β = 1. Case III: Informative
prior with prior information E(θ) = 2 and V ar(θ) = 0.5 and consequently from (2.3), we
have α = 8 and β = 4. Consider the following algorithm:
1. Generate n = 20 i.i.d random variables X1, · · · , Xn from TL distribution with θ = 2.
2. Sort the the random sample generated in Step 1 and for r = 17 and T = 6, find the
values d and T0.
3. Based on the values (X1:n, · · · , Xd:n) = (x1, · · · , xd), obtain the MLP and BPP of the
mth record for m = 1, · · · , 5.
4. Repeat Steps 1–3 N = 10000 times and obtain the estimated mean squared prediction

errors (EMSPEs) of ÛMm and ÛBm for m = 1, · · · , 5.
The EMSPEs can be obtained from the following formulae:

EMSPE(ÛMm ) =
1

N

N∑
i=1

(ûMm (i)− um)2 & EMSPE(ÛBm) =
1

N

N∑
i=1

(ûBm(i)− um)2,
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where ûMm (i) and ûBm(i) are the obtained MLP and BPP of Um from Step 3 at time
i, respectively, and um is the assumed real value of the mth record. From Table 1, we

Table 1: The EMSPEs of the predictors.
m MLP BPP Case I BPP Case II BPP Case III
1 0.066862331 0.042062992 0.041827132 0.041318827
2 0.015685658 0.003292021 0.002863069 0.002120252
3 0.009661575 0.003118115 0.002726269 0.002057912
4 0.003888659 0.002813793 0.002488697 0.001942897
5 0.001741999 0.001783184 0.001546211 0.001156455

observe that the EMSPEs of the Bayes predictors are smaller than the EMSPEs of the
corresponding MLPs (except for one case) revealing the superiority of Bayes method. We
also see that the EMSPEs are decreasing with respect to m. Moreover, Case III contains
the smallest EMSPEs which is reasonable as Case III has the smallest prior variance and
is the most informative case.
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Abstract

In this paper, we consider a three-state network that is subject to shocks. We
assume that these shocks occur according to a counting process and in each shock,
more than one link may fail. Under some assumptions, we introduce a new variant
of two-dimensional signature that is called two-dimensional t-signature. A mixture
representation is provided for the joint reliability function of the states lifetimes of the
network. Also, some stochastic and dependent properties of the states lifetimes of the
network are investigated.

Keywords: Counting process, two-dimensional t-signature, positively quadrant de-
pendent, upper orthant order.

1 Introduction

The analysis of network reliability has been extensively studied in the last decades. In
many situations of real life, more than two states are considered for the network and is
named multi-state network. Recently, the reliability of such networks has been investigated
by many researchers; see for example [2] and [3]. In this paper, we consider a three-state
network consisting of n links. The states of the network are up state (K = 2), partial
performance (K = 1) and down state (K = 0). Further, we assume that the links are
subject to failure and nodes are completely reliable. The random variables T1 and T ,
respectively, denote the times that the network enters into state K = 1 and K = 0.
Gertsbakh and Shpungin [1] considered a three-state network and under the assumption
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that at each time instant at most one link may fail, gave a mixture representation for the
reliability function of T1 and T . In the proposed representation, the mixing probabilities
are the elements of signature matrix. However, there are situations in which at each time
instant more than one link may fail. Zrezadeh et. al. [4] studied this case for the two-state
networks.

In this paper, we assume that a three-state network is subject to shocks such that in
each shock more than one link may fail. We introduce a new concept ”two-dimensional
t-signature” that is a combinatorial property of the network. Then, we obtain a mixture
representation for the joint reliability function of T1 and T . Some stochastic and dependent
properties of T1 and T are explored.

Before giving the main results of the paper, we need the following concepts which will
be used throughout the paper.

Definition 1.(a) Let X and Y be two random vectors with survival functions F̄ and Ḡ,
respectively. X is said to be smaller than Y in the upper orthant order (denoted by
X ≤uo Y) if F̄ (x) ≤ Ḡ(x) for all x ∈ Rn.

(b) The nonnegative function f(x1, x2) is called totally positive of order 2 (TP2) if for all
x1 < y1, x2 < y2

f(x1, x2)f(y1, y2) ≥ f(x1, y2)f(y1, x2).

(c) The random vector (X,Y ) is said to be positively quadrant dependent (PQD) if F̄ (x, y) ≥
F̄ (x)F̄ (y).

2 Main Results

In this paper, we consider a three-state network that is subject to shocks that appear
according to a counting process. In such a situation, this is possible that more than
one link fail in each shock. In general, there are many real life situations in which more
than one link may fail at each time instant i.e. there may be ties between the lifetimes
of the components. Let X1, ..., Xn be i.i.d. random variables that show the lifetimes of
the links of a three-state network. Gertsbakh and Spungin [1] defined the notion of two-
dimensional signature under the assumption that there are not ties between X1, ..., Xn i.e.
P (Xi = Xj) = 0 for every i 6= j. Suppose that in each shock may exist more than one link
failure. In such a situation, we extend the notion of two-dimensional signature as follows.

Definition 2. Consider a three-state network with n links. Assume that all permutations
of the links failures are equally likely. Suppose that the random variables M1, M2 and
M3 are the minimum number of links that their failures cause the state of the network
changes, respectively, from K = 2 to K = 1, from K = 1 to K = 0 and from K = 2 to
K = 0. The two dimensional t-signature of the network is defined as the matrix Sτ = (sτi,j)
where the non-zero elements are defined as

sτi,j =
ni,j
n∗

, 1 ≤ i < j ≤ n, sτi,i =
ni
n∗
, i = 1, ..., n,

where n∗ is the number of ways that the links fail in the network, ni,j is the number of
ways of links failures in which M1 = i and M2 = j and ni is the number of ways of links
failures in which M3 = i.

Note the value of n∗ is computed in Lemma 1 of [4]. Also, two-dimensional t-signature
depends only on the structure of the network and does not depend on the links lifetimes.
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Example 1. Consider the network pictured in Figure 1 with three terminals a, b and d.
We define three states for the network. It is in state K = 2, if all terminals are connected,
K = 1, if just two terminals are connected, and K = 0 if all terminals are disconnected.
Using Lemma 1 of [4], it can be shown that n∗ = 75. One can also verify that the nonzero
elements of Sτ are given as sτ2,3 = 33

75 , s
τ
2,4 = 20

75 , s
τ
3,4 = 8

75 , s
τ
3,3 = 13

75 , s
τ
4,4 = 1

75 .

[node distance = 3 cm] LabelStyle/.style = semithick,fill= white,scale=0.8, text=black
[scale=0.9,semithick,shape = circle,draw, fill= black, text= white, inner sep =1.3pt,

outer sep= 0pt, minimum size= 3 pt](A) at (0,0) a; [scale=0.8,semithick,shape =
circle,draw, fill= black, text= white, inner sep =1.3pt, outer sep= 0pt, minimum size= 3

pt](B) at (1,1) b; [scale=0.9,semithick,shape = circle,draw, fill= white, text= black,
inner sep =1.3pt, outer sep= 0pt, minimum size= 3 pt](C) at (1,-1) c;

[scale=0.8,semithick,shape = circle,draw, fill= black, text= white, inner sep =1.3pt,
outer sep= 0pt, minimum size= 3 pt](D) at (2,0) d; [semithick] (A) to node[LabelStyle]1
(B); [semithick] (A) to node[LabelStyle]2 (C); [semithick] (B) to node[LabelStyle]3 (D);

[semithick] (C) to node[LabelStyle]4 (D);

Figure 1: Network with 4 nodes and 4 links.

In the following, we consider a three-state network that is subject to shocks. Suppose
that shocks appear according to a counting process, denoted by {ξ(t), t > 0}, at random
time instants ϑ1, ϑ2, . . . . Let random variable Wi, i = 1, 2, . . . , denotes the number of
links that fail at the ith shock and Hk,l(x, y) denote the joint distribution function of

r.v.‘s
∑k

i=0Wi and
∑l

i=0Wi.
Suppose that βk,l =

∑n
i=1

∑n
j=i s

τ
i,jHk,l(i−1, j−1) and bk,l = βk−1,l−1−βk,l−1−βk−1,l+

βk,l. Under the assumption that the process of occurrence of the shocks is independent of
the number of failed links, and the fact that the total number of components that fail up
to time t is independent of the two-dimensional t-signature, we obtain the joint reliability
function of T1 and T as

P (T1 > t1, T > t) =

∞∑
k=0

∞∑
l=k

bk,lP (ϑk > t1, ϑl > t), t1 < t.

In the following theorem, we compare two networks based on their structures.

Theorem 1. Consider two networks each consists of n links having t-signature matrices
Sτ1 and Sτ2 , respectively. Let the links of ith network are subject to shocks that appear
according to counting process {ξi(t), t ≥ 0}, i = 1, 2 with epoch times ϑi,1, ϑi,2, .... Suppose
that Wi,j, i = 1, 2, j = 1, 2, . . . shows the number of failed links of ith network at jth shocks.

If (ϑ1,i, ϑ1,j) ≤uo (ϑ2,i, ϑ2,j) for 1 ≤ i < j ≤ n, Sτ1 ≤uo Sτ2 and (
∑k

i=1W1,i,
∑l

i=1W1,i) ≥uo
(
∑k

i=1W2,i,
∑l

i=1W2,i) for all k ≤ l then (T
(1)
1 , T (1)) ≤uo (T

(2)
1 , T (2)).

In the following theorem, positive dependence relationship between T1 and T is ex-
plored. Before it, denote S̄τi,j =

∑n−1
k=i+1

∑n−1
j=max{k,j+1} s

τ
k,l.

Theorem 2. Let T1 be the lifetime of a network in state K = 2 and T be the lifetime of the
network. Let the network is subject to shocks that appear according to a counting processes
{ξ(t), t ≥ 0} with epoch times ϑ1, ϑ2, . . . . If ϑ1, ϑ2, . . . form a markov chain with TP2

transition probability densities, Hk,l(i−1, j−1) ≥ Hk(i−1)Hl(j−1) and S̄τi,j ≥ S̄
(1)τ
i S̄

(2)τ
j

for each k ≤ l and 1 ≤ i ≤ j ≤ n then T1 and T are PQD.
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The mean residual life and its connection to information
measures
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Abstract

The mean residual life (MRL) of a nonnegative random variable X plays an im-
portant role in reliability theory, survival analysis and other branches of probability
and statistics. In this talk, we address the connection between the MRL and some un-
certainty measures. First, we show that the MRL has a close relation to the variance
of X and as an application, it is shown that the exponential distribution has maxi-
mum cumulative residual entropy (CRE) among the distributions with given standard
deviation. Then, we define a Tsallis entropy version of the CRE and show that it is
closely connected to the concept of MRL. Several properties and applications of the
proposed measure in reliability engineering will be also discussed.

Keywords: Hazard rate, Gini’s coefficient, Residual entropy, Maximum entropy,
Tsallis entropy. Coherent systems.
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Abstract

In this paper, we study the Bayesian estimation problem for the Marshall-Olkin
extended exponential distribution under Type-II progressive censoring scheme with
binomial removals. In the end, a simulation study is presented to illustrate the pro-
posed procedures.

Keywords: Gibbs sampling, Bayes estimator, binomial removals.

1 Introduction

The Marshall-Olkin extended exponential (MOEE) distribution was first introduced by
[3], whose probability density function (pdf) is

f(x|θ) = θe−x[1− (1− θ)e−x]−2, x > 0, θ > 0. (1)

In what follows, we focus on Bayesian estimation for this model under Type-II progressive
censoring with binomial removals (Type-II PCBR).

1esmaeelazizi1369@yahoo.com
2m.mirmostafaee@umz.ac.ir

30



Azizi, E. , MirMostafaee, S.M.T.K. 31

2 Main results

Let X = (X1:m:n, X2:m:n, ..., Xm:m:n) be a progressively Type-II right censored sample of
size m extracted from a sample of size n, where lifetimes have an MOEE distribution with
pdf given in (1). At the i-th failure, Ri, i = 1, ...,m− 1 units are removed randomly from

the experiment and when the m-th failure is observed, the remaining n −m −
∑m−1

j=1 Rj
units are all removed. Suppose that Ri’s are discrete random variables such that R1

follows Bin(n − m, p) and Ri|R1 = r1, ..., Ri−1 = ri−1 follows Bin(n − m −
∑i−1

j=1 rj , p)

for i = 2, ...,m− 1, where Bin(n, p) denotes the binomial distribution with parameters n
and p. Assume R = (R1, ..., Rm−1) and X are independent. Then the likelihood function
given X = x and R = r is (see for example [2])

L(θ, p) =
C(r)(n−m)!e−

∑m
i=1 xi(1+ri)p

∑m−1
i=1 ri(1− p)(m−1)(n−m)−

∑m−1
i=1 (m−i)ri

θ−n
∏m
i=1[1− (1− θ) exp{−xi}]ri+2

∏m−1
i=1 ri!(n−m−

∑m−1
i=1 ri)!

,

where C(r) = n(n − r1 − 1) · · · (n − r1 − r2 − · · · − rm−1 − m + 1) and rm = n −
m −

∑m−1
j=1 rj . It can be easily found out that the MLE of p, denoted as p̂M , is p̂M =∑m−1

i=1 ri

(m−1)(n−m)−
∑m−1
i=1 (m−i−1)ri

, and the MLE of θ, denoted as θ̂M , is the solution of the fol-

lowing equation

n

θ
−

m∑
i=1

(ri + 2)e−xi

1− (1− θ)e−xi
= 0.

For Bayesian estimation, we propose independent priors for the parameters θ and p as
π1(θ) ∝ θa−1e−bθ, and π2(p) ∝ pc−1(1 − p)d−1, respectively, where θ > 0, 0 < p < 1 and
a, b, c and d are positive hyperparameters. Thus the joint prior distribution for θ and p is

π(θ, p) ∝ θa−1e−bθpc−1(1− p)d−1.

The joint posterior distribution of θ and p is then obtained as

π(θ, p|x, r) =
pα−1(1− p)β−1

B(α, β)C0
θn+a−1e−bθ

m∏
i=1

[1− (1− θ)e−xi ]−(ri+2),

where α = c+
∑m−1

i=1 ri, β = (m−1)(n−m)+d−
∑m−1

i=1 (m−i)ri and C0 =
∫∞

0 θn+a−1e−bθ
∏m
i=1[1−

(1− θ)e−xi ]−(ri+2)dθ. Therefore the marginal posterior (MP) pdf of θ is

π∗(θ|x, r) =
1

C0
θn+a−1e−bθ

m∏
i=1

[1− (1− θ)e−xi ]−(ri+2)

and the MP pdf of p is beta distribution with parameters α and β. The Bayes estimate
of θ under SEL function based on a Type-II PCBR sample, denoted as θ̂S , is the mean of
the posterior density, i.e.

θ̂S =
1

C0

∫ ∞
0

θn+ae−bθ
m∏
i=1

[1− (1− θ)e−xi ]−(ri+2)dθ (2)

and the Bayes estimator of p under the SEL function is p̂S = α
α+β . The SEL function may

not be appropriate in situations that overestimation and underestimation have different
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consequences as it is symmetric. Here, we consider the general entropy loss (GEL) function,
defined as

L2(θ, θ̂) = (θ̂/θ)q − q ln(θ̂/θ)− 1

The GEL function is asymmetric and positive values of q indicate that the overestimation
is more serious than underestimation and vice versa. The Bayes estimate of θ under GEL

function based on a Type-II PCBR sample, denoted as θ̂G, is θ̂G = [E(θ−q|x, r)]
− 1
q , where

E(θ−q|x, r) =
1

C0

∫ ∞
0

θn+a−1−qe−bθ
m∏
i=1

[1− (1− θ)e−xi ]−(ri+2)dθ, (3)

and the Bayes estimator of p under the GEL function is p̂G = [Γ(α+β)Γ(α−q)
Γ(α)Γ(α+β−q) ]−1/q.

The integrals given in (2) and (3) may not be expressed in closed forms. Therefore,
we apply the Markov chain Monte Carlo (MCMC) method and the Gibbs sampler to sim-
ulate samples from the posterior density and then approximate the Bayes estimators of
θ. The posterior density function of θ can be rewritten as π∗(θ|x, r) ∝ g∗(θ|x, r)h∗(θ),
where g∗(θ|x, r) is the gamma density function with parameters n+ a and b and h∗(θ) =∏m
i=1[1 − (1 − θ)e−xi ]−(ri+2). Now, consider the following algorithm to approximate the

Bayes estimators
Step 1: Generate θ1 from g∗(θ|x, r).
Step 2: Repeat Step 1, N times to obtain θ1, · · · , θN .
Step 3: The approximate values for θ̂S and θ̂G are θ̂MS =

∑N
i=1 θiwi and θ̂MG =(∑N

i=1 θ
−q
i wi

)− 1
q
, respectively, where wi = h∗(θi)∑N

j=1 h
∗(θj)

.

2.1 A simulation study

In this section, we performed a simulation to illustrate the proposed procedures. The
following algorithm can be used to generate Type-II PCBR samples from the MOEE dis-
tribution.
Step 1: Fix the values of θ, p, n and m.
Step 2: Generate a random number, R1, from Bin(n−m, p) and Ri|R1 = r1, ..., Ri−1 =
ri−1 from Bin(n−m−

∑i−1
j=1 rj , p) for i = 2, ...,m− 1 and set rm = n−m−

∑m−1
k=1 rk.

Step 3: Given R = r, generate a progressively Type-II censored sample from the
standard uniform distribution using the algorithm given in [1], page 32. Then the de-
sired Type-II PCBR sample, (X1:m:n, · · · , Xm:m:n), can be obtained by setting Xi:m:n =
log ([1− (1− θ)Ui:m:n]/[1− Ui:m:n]) for i = 1, · · · ,m.

We took n = 20, 30 with different values of m(≤ n) in this simulation. We randomly
generated M = 10000 Type-II PCBR censored data from the MOEE distribution with
θ = 4 and p = 0.5. We then obtained MLEs in each iteration. For Bayesian estimation,
we considered the prior with a = 32 and b = 8 for θ and the uniform prior with c = d = 1
for p. The approximate Bayes estimators of θ under SEL and GEL (for q = −0.5, 0.5)
functions, which are denoted by θ̂MS(i) and θ̂MG(i), in the i-th iteration, respectively, were
obtained using the MCMC sampling procedure with N = 1000. The estimated risks (ERs)
of the estimators were calculated using the relations ERS(θ̂MS) = 1

M

∑M
i=1[θ̂MS(i)− α]2,

and ERG(θ̂MG) = 1
M

∑M
i=1[( θ̂MG(i)

θ )q−q ln( θ̂MG(i)
θ )−1]. Actually, we computed the ERs of

each Bayes estimator according to its own loss function. For the MLEs, we computed both
ERs. Similarly, we computed the ERs of the Bayes and maximum likelihood estimators



Azizi, E. , MirMostafaee, S.M.T.K. 33

of p. From Table 1, we observe that the Bayes estimators are superior to the MLEs.
Moreover, when n is fixed, the ERs of estimators of θ are decreasing with respect to m
but the ERs of estimators of p are increasing with respect to m.

Table 1: The results of the simulation.
ERs of the estimators of θ ERs of the estimators of p

(n,m) ERS ERG ERS ERG
q = −0.5 q = 0.5 q = −0.5 q = 0.5

(20,10) MLE >1000 0.04830 32.9368 0.01435 0.00628 0.00638
Bayes 0.23454 0.00154 0.00150 0.01135 0.00528 0.00550

(20,15) MLE 4.04444 0.02359 0.02353 0.03052 0.01177 0.01222
Bayes 0.23380 0.00152 0.00149 0.01848 0.00834 0.00899

(30,15) MLE >1000 0.02489 4.20776 0.00907 0.00416 0.00420
Bayes 1.42751 0.00796 0.00863 0.00781 0.00370 0.00380

(30,20) MLE 2.80609 0.01809 0.01788 0.01382 0.00595 0.00608
Bayes 1.42170 0.00794 0.00861 0.01092 0.00499 0.00521

(30,25) MLE 2.26150 0.01492 0.01482 0.03008 0.01185 0.01223
Bayes 1.40676 0.00786 0.00853 0.01834 0.00845 0.00910
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Abstract

In this work, we consider the statistical analysis for step-stress accelerated life test
in the presence of competing risks, where a product or an item is exposed to multiple
risks and a failure can be caused by one of the multiple risks. Due to cost consideration
or environmental restrictions, the cause of failure for an item is not exactly known.
Then, masked cause of failure might occur in the collected data. The competing risks
distribution is assumed to follow the Weibull distribution with common shape param-
eter. Interval cencoring is allowed and tampered failure rate model is hold. We apply
the maximum likelihood approach via the expectation-maximization algorithm and
use the parametric bootstrap method for constructing confidence interval of the un-
known parameters. Finally, the precision of the estimates is assessed through Monte
Carlo simulations and bootstrap confidence intervals are derived.

Keywords: Accelerated Life Tests, Expectation-Maximization Algorithm, Interval
Censoring, Masked Data, Tampered Failure Rate.

1 Introduction

Today’s the modern products are designed to operate without failure for years, decades
or longer. Thus, traditional life tests are not suitable to collect information for estimating
the failure time distribution. In such situations, Accelerate Life Tests(ALTs) are widely
used to shorten the failure time of products by running them at higher than normal level
of stress. The accelereted tests may be performed using constant stress or increasing stress
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levels. A special class of the ALT is called the step-stress testing. Generally, information
from step-stress test is extrapolated to obtain the estimates of the failure time distribution
at normal condition through a model such as Tampered Failure Rate(TFR) model [1]. This
model describs the effect of changing the stress on the failure rate. In this work, we consider
a simple step-stress model in the presence of competing risks and interval censoring. We
assumed that TFR is hold and the competing risks follow the Weibull distribution with
common shape parameter. We also assumed that for some items, the cause of failure is
known only to belong to a subset of the set of all possible causes. The cause is reported as
masked. We apply the maximum likelihood approach via the expectation-maximization
algorithm and use the parametric bootstrap method for constructing confidence interval
of the unknown parameters. Some ralated work in the literature in ALT with masked data
are [2], [3], [5] and [4].

2 Assumptions and model

Consider a simple step-stress ALT in which an item is subjected to the stress s1 untill a
fixed time τ1. If it does not fail, the stress is increased to s2 at time τ1 and held constant
till specified time τ2. TFR model is defined as

λ(t) =

{
λ1(t) if 0 < t ≤ τ1

αλ1(t) if τ1 < t ≤ τ2.

Then the CDF of the test unit is expressed as

F (t) =

{
F1(t) if 0 < t ≤ τ1

1− (1− F1(τ1))1−α(1− F1(t))α if τ1 < t ≤ τ2.

Let Tj , j = 1, 2, ..., s be the latent failure time corresponding to j-th cause of failure for a
test unit and T = min(T1, T2, ..., Ts) be the failure time of a test unit. From the assuption
that the model is TFR, the CDF of Tj is given by

Fj(t) =

{
1− e−λjtδ if 0 < t ≤ τ1

1− e−λjτ1δ−αjλj(tδ−τ1δ) if τ1 < t ≤ τ2.

Setting θj = αjλj and

C =



1, T = T1

2, T = T2

. .

. .

. .
s, T = Ts,

the joint CDF of T and C are given by

FT,C(t, j) =

{
λj
λ? (1− e−λ?tδ) if 0 < t ≤ τ1

θj
θ? (1− e−λ?τ1δ−θ?(tδ−τ1δ)) if τ1 < t ≤ τ2,

(5)
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where λ? = Σs
j=1λj and θ? = Σs

j=1θj . As a result of masking, in addition to the model
parameters λj , θj and δ, one must consider the masking probabilities for k = 1, 2 and
i = 1, 2, ..., nk as

Pj(mik) = P (Mik = mik|τk−1 < Ti ≤ τk, Ci = j), jεmik,

that is the probability when item i fails in the interval (τk−1 < t ≤ τk], due to cause j but
it is masked by mik. Note that

∑
mik:jεmik

Pj(mik) = 1. For simplicity we consider the
special case that the only possible masking set is {1, 2, ..., s}. Assuming time-independent
masking probabilities, we have

P (Mik = mik|Ci = j) =


pj if mik = {j}

1− pj if mik = {1, 2, ..., s}
0 otherwise,

(6)

where Pj = P (mik = {j} |Ci = j) for all j = 1, 2, ..., s.

3 Maximum Likelihood Estimation and EM Algorithm

Let Mk and njk denote the set of items failed and masked in the interval (τk−1, τk] and the
number of items failed in this interval due to cause j where τ0 = 0. Then the log-likelihood
function under compelet data is

lC ∝
I∑
j=1

{( 2∑
k=1

njk

)
logpj +

( 2∑
k=1

∑
iεMk

Iijk

)
log(1− pj)

+

(
nj1 +

∑
iεM1

Iij1

)(
log

λj
λ?

+ log(1− eλ∗τδ1 )

)
+

(
nj2 +

∑
iεM2

Iij2

)(
log

θj
θ?

+ log(1− eθ∗(τδ2−τδ1 ))− λ∗τ δ1
)}

− (r1 + r2)λ∗τ δ1 − r2θ
∗(τ δ2 − τ δ1 ). (7)

where

Iijk =

{
1 if item i fails in the interval (τk−1, τk] due to cause j
0 if otherwise,

for all j = 1, 2, ..., s , k = 1, 2 , i = 1, 2, ..., nk. The use of EM to maximize (7) is recom-
mended since the log-likelihood contains the missing data {Iijk, iεMk, k = 1, 2, j = 1, 2, ..., s}.
Let λ = (λ1, λ2, ....λs), θ = (θ1, θ2, ..., θs), p = (p1, p2, ..., ps) . For each iεMk, we have

E(Iijk|λ.θ, p, δ) =


(1− pj)λj

Σj′εMi1
(1− pj′)λj′

if Mi1 = {1, 2, ..., s}

0 otherwise,
(9)

and for each iεM2, we have
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E(Iijk|λ.θ, p, δ) =


(1− pj)θj

Σj′εMi2
(1− pj′)θj′

if Mi2 = {1, 2, ..., s}

0 otherwise,
(10)

To obtain the maximum likelihood estimators of λ, θ, p and δ, we maximize (7) in which
the missing Iijk are substituted by (9) and (10).
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Abstract

The proportional reversed hazard rate model (PRHRM) has been extensively used
in the literature to model failure time data. This paper deals with the estimation
of R = P [X < Y ] when X and Y are two independent the PRHRM with different
parameters. The maximum likelihood estimator of R is proposed. Assuming that
the common scale parameter is known, the maximum likelihood estimator, uniformly
minimum variance unbiased estimator, Bayes estimation and confidence interval of R
are obtained. Finally, Analysis of a real data set has also been presented for illustrative
purposes.

Keywords: Proportional reversed hazard rate model, Maximum likelihood esti-
mator, Bayes estimator, Generalized logistic distribution.

1 Introduction

The problem of making inference about R = P [X < Y ] has received considerable attention
in literature. This problem arises naturally in the context of mechanical reliability of a
system with stress X and strength Y . The system fails, if at any time the applied stress
is greater than its strength.

Various versions of this problem have been discussed in literature.
The concept of hazard rate is very well known in the reliability literature. To motivate

the concept of reverse hazard rate, suppose the lifetime of a unit has reversed hazard rate
r(t) = (d/dt)lnF (t), where F (t) is the distribution function.Then r(t) dt is the conditional
probability that the unit failed in an infinitesimal interval of width dt preceding t, given
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that it failed before t. In forensic science and in actuarial science, the time elapsed since
failure is a quantity of interest in order to predict the actual time of failure. In this case
r(t)dt provides the probability of failing in (t− dt, t), when a unit is found failed at time
t.

Definition 1. Let X is an absolutely continuous random variable with distribution func-
tion F (.) and reversed hazard function r(.). The family of random variables with reversed
hazard function of the form {αr(.) : α > 0} is called the proportional reversed hazard rate
family and the distribution function F (.) is called the baseline distribution function of that
family.

Therefore, a one-dimensional PRHRM is a parametric family of the distribution func-
tion:

FPRHRM (x;α, σ) = (F (x;σ))α; x ∈ SX . (1)

with parameters α > 0, and θ and baseline distribution function F (.;σ). The probability
density function corresponding to the (1) is

fPRHM (x;α, σ) = α(F (x;σ))α−1f(x;σ); x ∈ SX .

Several members of the PRHRM have been found to be practical and flexible for an-
alyzing real data, specially in the presence of censoring. Examples of such distributions
contain generalized Logistic type I family, exponentiated Weibull family, generalized ex-
ponential family, the power normal family, exponentiated Rayleigh family and generalized
exponential geometric family.

2 Maximum likelihood estimator of R with common scale
parameter

In this section, we investigate the properties of R, when the common scale parameter σ,
is the same.

Let X ∼ PRHRM(α, σ) and Y ∼ PRHRM(β, σ), where X and Y are independent
random variables. Therefore,

R = P (X < Y ) =
β

α+ β

So, in order to obtain the MLE of R, we need to compute the MLE of α and β. Suppose
X1, X2, ..., Xn is a random sample from PRHRM(α, σ) and Y1, Y2, ..., Ym is also a random
sample from PRHRM(β, σ). Therefore, the log-likelihood function of the observed sample
is

L(α, β, σ) =n lnα+m lnβ − (n+m) lnσ +

n∑
i=1

ln f(
xi
σ

) +

m∑
i=1

ln f(
yi
σ

)

+ (α− 1)
n∑
i=1

lnF (
xi
σ

) + (β − 1)
m∑
i=1

lnF (
yi
σ

). (2)
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The MLE’s of α and β say α̂ and β̂ respectively, can be achived as follow:

α̂ =
−n

n∑
i=1

lnF (Xiσ̂ )

(3)

β̂ =
−m

m∑
i=1

lnF (Yiσ̂ )

(4)

where σ̂ can be found by using an iterative scheme as follows:

h(σ(j)) = σ(j+1),

where

h(σ) =− (n+m)−1[

n∑
i=1

xif
′(xiσ )

f(xiσ )
+

m∑
i=1

yif
′(yiσ )

f(yiσ )
+ (

−n
n∑
i=1

lnF (xiσ )

− 1)

n∑
i=1

xif(xiσ )

F (xiσ )

+ (
−m

m∑
i=1

lnF (yiσ )

− 1)
m∑
i=1

yif(yiσ )

F (yiσ )
]. (5)

Since ML estimators are invariant, so the MLE of R becomes

R̂ =
β̂

α̂+ β̂
(6)

3 Estimation of R if σ is known

The real data sets.

Data Set I (x) Data Set II (y)
1.901 2.132 2.203 2.228 2.257 2.350 2.361 1.312 1.314 1.479 1.552 1.700 1.803 1.861
2.396 2.397 2.445 2.454 2.474 2.518 2.522 1.865 1.944 1.958 1.966 1.997 2.006 2.021
2.525 2.532 2.575 2.614 2.616 2.618 2.624 2.027 2.055 2.063 2.098 2.140 2.179 2.224
2.659 2.675 2.738 2.740 2.856 2.917 2.928 2.240 2.253 2.270 2.272 2.274 2.301 2.301
2.937 2.937 2.977 2.996 3.030 3.125 3.139 2.359 2.382 2.382 2.426 2.434 2.435 2.478
3.145 3.220 3.223 3.235 3.243 3.264 3.272 2.490 2.511 2.514 2.535 2.554 2.566 2.570
3.294 3.332 3.346 3.377 3.408 3.435 3.493 2.586 2.629 2.633 2.642 2.648 2.684 2.697
3.501 3.537 3.554 3.562 3.628 3.852 3.871 2.726 2.770 2.773 2.800 2.809 2.818 2.821
3.886 3.971 4.024 4.027 4.225 4.395 5.020 2.848 2.880 2.954 3.012 3.067 3.084 3.090

3.096 3.128 3.233 3.433 3.585 3.585

Table 1: Sample Median, Scale Parameter, Shape Parameter, K-S and p value of the fitted
generalized logistic models to data sets.

Data Set Sample Median Scale Parameter Shape Parameter K-S p value

1 2.996 0.3643 1.1240 0.1135 0.3914
2 2.478 0.2745 0.9489 0.0492 0.9962

In this section the estimation of R when σ is known, is considered. Without loss of
generality, we assume that σ = 1.
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Table 2: Observed Frequencies, and Expected Frequencies for modified data set I when
fitting the generalized logistic model.

Intervals Observed Frequencies Expected Frequencies Chi-Square

< 2.5 12 10.5524 0.7401
2.5-3 20 18.5317
3-3.5 17 19.9094
3.5-4 9 9.7914
> 4 5 4.2151

Table 3: Observed Frequencies, and Expected Frequencies for modified data set II when
fitting the generalized logistic model.

Intervals Observed Frequencies Expected Frequencies Chi-Square

< 1.76 5 2.3900 0.6452
1.76-2.22 15 15.2904
2.22-2.68 27 26.9100
2.68-3.14 18 16.0011
> 3.14 4 5.4027

Table 4: MLE, Asymptotic Confidence Interval and Bootstrap Confidence Interval of R.

Data Set Scale Parameter Shape Parameter R̂ CIMLE CIBoot−p CIBoot−t
1 0.319 1.0404

0.4962 (0.411,0.582) (0.409,0.582) (0.412,0.580)
2 0.319 1.0562
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3.1 MLE of R

Suppose X1, X2, ..., Xn be a random sample from PRHRM(α, 1) and Y1, Y2, ..., Ym be a
random from PRHRM(β, 1). Based on Section 2, it is clear that the MLE of R will be

R̂ =
m
∑n

i=1 lnF (Xi)

n
∑m

i=1 lnF (Yi) +m
∑n

i=1 lnF (Xi)
. (7)

It is easy to show that the 100(1− γ)% confidence interval of R can be get as[
1

1 + ( 1
R̂
− 1)F2n,2m;1−γ/2

,
1

1 + ( 1
R̂
− 1)F2n,2m;γ/2

]
(8)

where F2n,2m;γ/2 and F2n,2m;1−γ/2 are the lower and upper γ
2 th percentile points of a F

distribution with 2n and 2m degrees of freedom.

3.2 UMV UE of R

Applying the results of Tong [3, 4], the UMV UE of R is resulted asefore applying the
results of Tong [3, 4], the R̃ is given by

R̃ =

{
1−

∑m−1
i=0 (−1)i (n−1)!(m−1)!

(m−i−1)!(n+i−1)!(
T1
T2

)i if T1 ≤ T2∑n−1
i=0 (−1)i (n−1)!(m−1)!

(m+i−1)!(n−i−1)!(
T2
T1

)i if T2 ≤ T1

(9)

where T1 = −
∑n

i=1 lnF (Xi) and T2 = −
∑m

i=1 lnF (Yi).

3.3 Bayes estimator of R

In this subsection, we attempt to find the Bayes estimator of R under the assumption that
the shape parameters α and β are random variables. It is assume that α and β have inde-
pendent gamma priors with the parameters α ∼ Gamma(a1, b1) and β ∼ Gamma(a2, b2).
Therefore,

π(α) =
ba1
1

Γ(a1)
αa1−1e−b1α; α > 0 (10)

and

π(β) =
ba2
2

Γ(a2)
βa2−1e−b2β; β > 0. (11)

Here a1, b1, a2, b2 > 0. The posterior PDF’s of α and β are as follows:

α|data ∼ Gamma(a1 + n, b1 + T1), (12)

β|data ∼ Gamma(a2 +m, b2 + T2), (13)

where T1 = −
∑n

i=1 lnF (Xi) and T2 = −
∑m

i=1 lnF (Yi). The Bayes estimate of R under
squared error loss function can not be obtained analytically. Alternatively, via the ap-
proximation of Lindley [2], it can be seen that the approximate Bayes estimate of R, say
R̂Bayes under the squared error loss function is

R̃ =
β̃

α̃+ β̃
, α̃ =

n+ a1 − 1

b1 + T1
and β̃ =

m+ a2 − 1

b2 + T2
.
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4 Date Analysis

In this section, a data analysis of the strength data reported by Badar & Priest [1] is
presented which are presented in the Table 3.
If we choose F (x) = 1

1+e−x in (1) then the generalized logistic distribution is obtained as
follows:

F (x;µ, σ, α) =
1

(1 + e−
x−µ
σ )α

, −∞ < x < +∞ (14)

The generalized logistic distribution models to the two data sets, are fitted separately. The
estimated scale and shape parameters are proposed assuming the location parameter to be
known as the sample median for both the data sets. We also obtain Kolmogrov-Smirnov
(K-S) distance between the empirical distribution functions, and the fitted distributions,
and corresponding p values. All the results have reported in Table 1. For comparison
purposes, we also compute the observed and the expected frequencies, the corresponding
chi-square values based on the fitted models in the Tables 2 and 3. It is clear that general-
ized logistic model fits quite well to both the data sets. Because the two scale parameters
are not very different, assuming the two parameters are equal, we are estimated the pa-
rameters and extracted the 95% confidence interval based on the asymptotic distribution
of R and 95% percentile bootstrap method and bootstrap-t method confidence intervals.
We reported the results in Table 4.
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Abstract

In this paper, the largest order statistics arising from independent heterogeneous
gamma random variables with respect to the likelihood ratio order are compared. Let
X1, . . . , Xn

(X∗1 , . . . , X
∗
n) be independent random variables where Xi (X∗i ) follows the gamma dis-

tribution with shape parameter α and scale parameter λi(λ
∗
i ), in which α > 0, λi > 0

(λ∗i > 0), i = 1, . . . , n. Denote by Xn:n and X∗n:n the corresponding largest order
statistics, respectively. It is shown that, Xn:n is stochastically larger than X∗n:n in
terms of the likelihood ratio order if max{λ1, . . . , λn} ≤ min{λ∗1, . . . , λ∗n}. The result
derived here strengthens and generalizes some known results in the literature.

Keywords: Gamma distribution, Likelihood ratio order, Parallel system, Order
statistics.

1 Introduction

Order statistics play important rules in statistical inference, reliability theory, life testing,
operations research and other related areas. Let X1:n ≤ . . . ≤ Xn:n denote the order
statistics arising from random variables X1, . . . , Xn. In reliability theory, the kth order
statistic coresponds to the lifetime of a (n−k+1)-out-of-n system. In particular, X1:n and
Xn:n correspond to the lifetimes of series and parallel systems, respectively. Order statistics
have been extensively investigated in the case when the observations are independent
and identically distributed (i.i.d.). In some practical situations, like in reliability theory,
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observations are not necessarily i.i.d. Because of the complicated nature of the problem in
the non-i.i.d. case, only limited works are found in the literature, for example, see [8, 3, 4].

However, [17] first compared order statistics from heterogeneous exponential samples,
many researchers followed them to consider order statistics from various samples, including
[18, 5, 13], [9], [10], [11, 12], [7, 14, 20, 28, 29], [22, 23, 24, 25, 26], [16, 1, 2, 27].

The gamma distribution is a flexible family of distributions commonly used in reliability
and life testing areas. This distribution is a member of the family of distributions with
decreasing, constant, and increasing failure rates in the cases 0 < α < 1, α = 1 and α > 1,
respectively. It is known that the standard form probability density function of gamma
distribution is

f(x;α, λ) =
λα

Γ(α)
xα−1e−λx, x > 0, α > 0, λ > 0,

where α and λ are the shape parameter and scale parameter, respectively.

In this article, we study the maximum order statistics arising from independent het-
erogeneous gamma observations.

Throughout this paper, the terms increasing and decreasing are used for monotone
non-decreasing and monotone non-increasing, respectively.

Let X and Y be two univariate random variables with distribution functions F and G,
density functions f and g, and survival functions F̄ = 1− F and Ḡ = 1−G, respectively.
Random variable X is said to be smaller than Y in the

(i) likelihood ratio order, denoted by X ≤lr Y , if g(x)/f(x) is increasing in x;

(ii) hazard rate order, denoted by X ≤hr Y , if Ḡ(x)
F̄ (x)

is increasing in x;

(iii) reversed hazard rate order, denoted by X ≤rh Y , if G(x)
F (x) is increasing in x;

(iv) stochastic order, denoted by X ≤st Y , if F̄ (x) ≤ Ḡ(x) for x.

For a comprehensive discussion on various stochastic orders, one can see [19].

It is well known that the notion of majorization is extremely useful and powerful in
establishing various inequalities. For preliminary notations and terminologies on majoriza-
tion theory, we refer the reader to [15]. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two
real vectors and x(1) ≤ . . . ≤ x(n) be the increasing arrangement of the components of the
vector x.

Definition 1. The vector x is

(i) weakly supermajorized by the vector y (denoted by x
w
�y) if

∑j
i=1 x(i) ≥

∑j
i=1 y(i) for all

j = 1, . . . , n,

(ii) majorized by the vector y (denoted by x
m
�y) if

∑n
i=1 xi =

∑n
i=1 yi and

∑j
i=1 x(i) ≥∑j

i=1 y(i), for j = 1, . . . , n− 1.

Clearly, x
m
�y implies x

w
�y.

Another interesting weaker order regarding to the majorization order introduced by
[6] is the p-larger order which is defined as follows:
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Definition 2. A vector x in Rn+ is said to be p-larger than another vector y in Rn+ (denoted

by x
p

�y) if
j∏
i=1

x(i) ≤
j∏
i=1

y(i), j = 1, . . . , n,

where Rn+ = {(x1, ..., xn)|xi ≥ 0, i = 1, ..., n}.

It is known that for any two non-negative vectors x and y,

x
m
�y =⇒ x

p

�y.

Let X1, . . . , Xn (X∗1 , . . . , X
∗
n) be independent random variables where Xi (Yi) follows

the gamma distribution with shape parameter α and scale parameter λi (λ∗i ), i = 1, . . . , n.
[20] showed that

(λ∗1, . . . , λ
∗
n)

m
�(λ1, . . . , λn) =⇒ X∗n:n ≤st Xn:n. (1)

[10] relaxed the condition by proving that under the p-larger order,

(λ∗1, . . . , λ
∗
n)

p

�(λ1, . . . , λn) =⇒ X∗n:n ≤st Xn:n. (2)

Afterward, [16] proved that

(λ∗1, . . . , λ
∗
n)

w
�(λ1, . . . , λn) =⇒ X∗n:n ≤rh Xn:n. (3)

Further suppose Y1, . . . , Yn (Z1, . . . , Zn) be independent gamma random variables with

shape parameter α and scale parameter λ̄ =
∑n
k=1 λk
n (λ̃ = (

∏n
k=1 λk)

1
n ). If 0 < α ≤ 1, [1]

established that
Zn:n ≤hr Xn:n.

Lately, [27] showed that if 0 < α ≤ 1, then

Yn:n ≤lr Xn:n. (4)

They also posed a question whether the result in (4) can be established for the case
when the shape parameter is larger than 1. In the current paper, we pose a general-
ization of this question and answer it; More precisely, we establish that for any α > 0,
max{λ1, . . . , λn} ≤ min{λ∗1, . . . , λ∗n} implies Xn:n ≥lr X∗n:n. Note the result extends and
sustains the corresponding result for the exponential case which is established in the lit-
erature.

2 Main result

First, we present the following lemma in order to prove our main result. [[21]] For α > 0
and y ∈ R+, in which R+ = [0,+∞), the function

f(x) = x+
yα−1e−xy∫ y

0 u
α−1e−xudu

is increasing in x ∈ R+.
Now, we state our main result. For comparing two parallel systems with independent

gamma components, we have the following result.
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Theorem 1. Let X1, . . . , Xn (X∗1 , . . . , X
∗
n) be independent random variables where Xi

(X∗i ) follows the gamma distribution with shape parameter α and scale parameter λi (λ∗i ),
α > 0, λi > 0 (λ∗i > 0), i = 1, . . . , n. Then, max{λ1, . . . , λn} ≤ min{λ∗1, . . . , λ∗n} implies
Xn:n ≥lr X∗n:n.

Proof. Let FXn:n(x;α,λ) denote the distribution function of Xn:n with corresponding den-
sity fXn:n(x;α,λ). We need to prove that the ratio of density functions

fXn:n(x;α,λ)

fX∗n:n
(x;α,λ∗)

=

∑n
i=1

e−λix∫ x
0 uα−1e−λiudu∑n

i=1
e−λ
∗
i
x∫ x

0 uα−1e−λ
∗
i
udu

FXn:n(x;α,λ)

FX∗n:n
(x;α,λ∗)

=: h(x)
FXn:n(x;α,λ)

FX∗n:n
(x;α,λ∗)

is increasing in x > 0. It follows from (1) that
FXn:n (x;α,λ)
FX∗n:n

(x;α,λ∗) is increasing in x > 0; So,

it suffices to show that h(x) is increasing in x. Let ϕ(x;α,λ) =
∑n

i=1
e−λix∫ x

0 uα−1e−λiudu
=:∑n

i=1 ψ(x, α, λi). Thus h(x) = ϕ(x;α,λ)
ϕ(x;α,λ∗) . Taking derivative with respect to x, we get

h′(x) =
ϕ′(x;α,λ)ϕ(x;α,λ∗)− ϕ′(x;α,λ∗)ϕ(x;α,λ)

[ϕ(x;α,λ∗)]2
sgn
=

( n∑
i=1

−λie−λix
∫ x

0 u
α−1e−λiudu− xα−1e−λixe−λix

[
∫ x

0 u
α−1e−λiudu]2

)
ϕ(x;α,λ∗)

−
( n∑
i=1

−λ∗i e−λ
∗
i x
∫ x

0 u
α−1e−λ

∗
i udu− xα−1e−λ

∗
i xe−λ

∗
i x

[
∫ x

0 u
α−1e−λ

∗
i udu]2

)
ϕ(x;α,λ) =

n∑
i=1

n∑
j=1

ψ(x, α, λ∗i )ψ(x, α, λj)

[
(λ∗i +

xα−1e−λ
∗
i x∫ x

0 u
α−1e−λ

∗
i udu

)− (λj +
xα−1e−λjx∫ x

0 u
α−1e−λjudu

)

]
.

According to Lemma 2, max{λ1, . . . , λn} ≤ min{λ∗1, . . . , λ∗n} implies (λ∗i+
xα−1e−λ

∗
i x∫ x

0 uα−1e−λ
∗
i
udu

) ≥

(λj + xα−1e−λjx∫ x
0 uα−1e−λjudu

). Thus
fXn:n (x;α,λ)
fX∗n:n

(x;α,λ∗) increases in x > 0. That is, Xn:n ≥lr X∗n:n.

Note that it is swimmingly seen that the result in Theorem 1, strengthens and gen-
eralizes the results in [9], [11] and [14] for the case of exponential distributions. The
above theorem immediately leads to the following corollary. Let X1, . . . , Xn be inde-
pendent gamma random variables where Xi follows the gamma distribution with shape
parameter α and scale parameter λi, i = 1, . . . , n, and Y1, . . . , Yn be a random sample of
size n from a gamma distribution with shape parameter α and common scale parameter
λ ≥ max{λ1, . . . , λn}(≤ min{λ1, . . . , λn}). Then, Xn:n ≥lr (≤lr)Yn:n.

3 Conclusions

In this paper, we answered a generalization of an open problem regarding to the largest
order statistics arising from independent heterogeneous gamma distributions with respect
to likelihood ratio order, posed by [27].
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Abstract

In this paper we propose a notion of cumulative residual entropy (ECRE) of a life-
time random variable extending the concept which was introduced by Psarrakos and
Navarro (2012). The proposed criterion is closely related to k-record values. We also
consider a dynamic version of ECRE based on residual lifetime and study its relation
to reliability measures.

Keywords:

extended cumulative residual entropy , failure rate, k-record values

1 Introduction

Shannon entropy, which was first proposed by Claude Shannon is an appropriate criterion
for measuring uncertainty of a random variable. For a continuous distribution F with
density f , the Shannon entropy, called also differential entropy, is given by

H(F ) = −
∫
f(x) log f(x)dx (1)

Rao et al.[4] proposed an alternative measure of uncertainty, called cumulative residual
entropy(CRE), by replacing the probability density function with the reliability function
F̄ = 1− F . This measure is as follows

ξ(X) = −
∫ ∞

0
F (t) logF (t)dt (2)
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Several properties of the CRE were established in Asadi and Zohrevand [1]. Recently
Psarrakos and Navarro [3] extended the concept of CRE by using mean time between record
values, and defined the generalized cumulative residual entropy (GCRE) of a continuous
random variable X as

ξn(X) =

∫ ∞
0

F (x)
[Λ(x)]n

n!
dx (3)

for n=1,2,..., where Λ(x) = − logF (x) is the cumulative hazard function.
In this paper, what Psarrakos and Navarro [3] had proposed in their work, will be examined
from another perspective. In fact, we develop the concept of cumulative residual entropy
by adding a new parameter to the measure of Psarrakos and Navarro (2012). It is shown
that the proposed measure is related to the difference between mean of k-record values.

2 Main Results

Before giving the main results of the paper, we give the definition of kth records.

Definition 1. Let Xi, i ≥ 1 be an iid sequence of r.v.’s with a continuous distribution
function F and probability density function f. For k ≥ 1,the r.v.’s L(k)(n) given by
L(k)(1) = 1,
L(k)(n+ 1) = min{j ≥ 1;Xj:j+k−1 > XL(k)(n):L(K)(n)+k−1}, n = 1, 2, ...
are called k-th record times and the quantities XL(k)(n):L(K)(n)+k−1 which are denoted by
XL(k)(n), n = 1, 2, ..., are termed k-th record values or k-records.

The reliability function of k-record, F k,n, k ≥ 1, is

F k,n(x) = [F (x)]k
n∑
j=0

1

j!
[kΛ(x)]j (4)

and the probability density function of k-record, fk,n is

fk,n(x) =
kn

(n− 1)!
[Λ(x)]n−1[F (x)]k−1f(x) (5)

Now we consider the mean value of Fk,n, µk,n =
∫∞

0 F k,n(x)dx,n, k ≥ 1

µk,n+1 − µk,n =

∫ ∞
0

[F (x)]k
[kΛ(x)]n

n!
(6)

Letting k = 1 in (6) yields (3), and k = 1, n = 1 we have (2). These facts inspire us to
define the extended cumulative residual entropy (ECRE) of X as

ξk,n =

∫ ∞
0

[F (x)]k
[kΛ(x)]n

n!

Notice from (6), the ECRE can be written as

ξk,n =

∫ ∞
0

[F (x)](k−1)f(x)
F (x)

f(x)

[kΛ(x)]n

n!
=

1

k
E(

1

λ(Xk,n+1)
) (7)

for n ≥ 0, k ≥ 1, where λ = f/F is the failure rate function of F and Xk,n+1 is a random
variable with reliability F k,n+1.
Using relationship between CRE and expectation of mean residual lifetime, which proved
in Asadi and Zohrevand [1], we can show following theorem.
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Theorem 1. If ξk,n is an ECRE based on the sequence of k-records then, for n=1, ξk,1 is
decreasing function in k.

Let Xk,n be a sequence of k-records, then

(i) Xk,n ≤lr Xk,n+1

(ii) Xk,n ≥lr Xk+1,n

where ≤lr denotes the likelihood ratio order. This lemma implies following theorem.

Theorem 2. If X is IFR(DFR), then

(i) ξk,n ≥ (≤)ξk,n+1

(ii) ξk,n ≤ (≥)ξk+1,n

In the following theorem we show that under what condition ,the ECREs can be
compared.

Theorem 3. If X ≤hr Y and either X or Y are DFR, then

ξk,n(X) ≤ ξk,n(Y )

where ≤hr denotes the hazard rate order.
Similarly we can also consider a dynamic version of DCRE, that is, the ECRE of the
residual lifetime Xt = (X − t|X > t). This is given by

ξk,n(X; t) = ξk,n(xt) =
1

n!

∫ ∞
t

[
F (x)

F (t)
]k[−k log

F (x)

F (t)
]ndx (8)

This function is called dynamic extended cumulative residual entropy (DECRE).
We can study monotony properties of DECRE by using following lemma. If X is abso-
lutely continuous, then

ξ
′
k,n(X; t) = kλ(t)[ξk,n(X; t)− ξk,n−1(X; t)]

for n ≥ 1, k ≥ 1.

Theorem 4. If X is IFR (DFR), then ξk,n(X; t) is decreasing (increasing) for n ≥ 0 and
k ≥ 1
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Abstract

In this paper, we provide an expression for the entropy of the residual lifetime of a
coherent system, especially an i-out-of-n system, when all components of the system
are alive at time t. Various properties of the proposed entropy are discussed. Some
partial ordering results among the system residual lifetimes in terms of their entropies
are also obtained.

Keywords: Entropy , Residual lifetime, Signature

1 Introduction

Consider an absolutely continuous non-negative random variable X with cumulative dis-
tribution function F (x) and density function f(x). Shannon entropy is defined as

H(f) = H(X) = E(− log f(X)) = −
∫ ∞

0
f(x) log f(x)dx,

where “ log ” means natural logarithm (see e.g. [3]). The measure H(f) gives expected
uncertainty contained in f(x) about the predictability of an outcome of X. Several prop-
erties, generalizations and applications of the mentioned measure can be found in [1]-[7],
[9], [10] and the references therein. The Shannon entropy is a useful criterion for mea-
suring the uncertainty of the system lifetime, but it is no longer useful for measuring the
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uncertainty of a used system. A more realistic measure which makes use of the age in
calculating the expected uncertainty contained in f(x), is given in [4]. Given that the unit
has survived up to time t (X > t), the entropy of the remaining lifetime of X, is given by

H(f ; t) = −
∫ ∞
t

f(x)

F̄ (t)
log

f(x)

F̄ (t)
dx

= 1− 1

F̄ (t)

∞∫
t

log(λ(x))f(x)dx, (1)

where λ(x) is the failure rate function of X. When the component lifetime has survived up
to time t, H(f ; t) measures the expected uncertainty contained in the conditional density
of X − t given X > t about the predictability of remaining lifetime of the unit.

Let T denote the lifetime of a coherent system consisting of n independent and iden-
tically distributed (i.i.d.) component lifetimes X1, . . . , Xn. In the present paper, under
the condition that at time t all components of the system are alive (X1:n > t), we are
interested in measuring the expected uncertainty contained in the conditional density of
T − t about the predictability of remaining lifetime of the system. For this purpose, at
first, we find an expression for the proposed entropy of an i-out-of-n system and then
extend the results to a coherent system by using the notion of system signature.

2 Main result

Let T 1,i,n
t = Xi:n− t|X1:n > t, i = 1, 2, · · · , n, denote the residual lifetime of an i-out-of-n

system consisting of n i.i.d. components with lifetimes X1, · · · , Xn having the common
cdf F in which, at time t, all components of the system are working. It follows that

F̄
T 1,i,n
t

(x) =

i−1∑
k=0

(
n

k

)(
1− F̄t(x)

)k (
F̄t(x)

)n−k
, x ≥ 0, (2)

where F̄t(x) = F̄ (x+t)
F̄ (t)

, t > 0. The probability integral transformation Wi = F̄t(T
1,i,n
t )

has the beta distribution with parameters n− i+ 1 and i and with the following density
function

gi(w) =
Γ(n+ 1)

Γ(i)Γ(n− i+ 1)
(1− w)i−1wn−i, 0 < w < 1, i = 1, · · · , n. (3)

Ebrahimi et al. [6] showed that the expression for the beta entropy is

H(Wi) = logB(i, n−i+1)−(n−i)[ψ(n−i+1)−ψ(n+1)]−(i−1)[ψ(i−1)−ψ(n+1)]. (4)

In the forthcoming theorem, we provide an expression for H(T 1,i,n
t ) by using the earlier

mentioned transform.

Theorem 1. Let T 1,i,n
t be the residual lifetime of an i-out-of-n system in which, at time

t, all components of the system are operating. It follows that

H(T 1,i,n
t ) = H(Wi)− E[log ft(T

1,i,n
t )] = H(Wi)− E[log ft(F̄

−1
t (Wi))]

= H(Wi) + log F̄ (t)− E[log f(F̄−1
t (Wi) + t)]. (5)
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Proof. By noting Wi = F̄t(T
1,i,n
t ) and using the entropy transformation formula in [5] the

proof can be obtained.

In the following theorem, we provide some bounds in terms of the entropy of the parent
residual lifetime distribution. The proof can be found from the results of [6].

Theorem 2. Consider T 1,i,n
t = Xi:n − t|X1:n > t, i = 1, 2, · · · , n. Then

H(T 1,i,n
t ) ≥ H(Wi) + gi(pi)[H(Xt) + I(A)],

H(T 1,i,n
t ) ≤ H(Wi) + gi(pi)[H(Xt) + I(Ā)],

where pi = n−i
n−1 is the mode of (3), Xt = X − t|X > t, A = {x : ft(x) ≤ 1}, Ā = {x :

ft(x) > 1} and I(A) =
∫
A ft(x) log ft(x)dx.

Using the concept of dispersive order and Theorem 3.B.25 of [12], we have the next
result. To see the other concepts of ageing notions and stochastic orders, we refer the
reader to [12].

Theorem 3. If X is IFR (DFR), then

H(T 1,i,n
t ) ≤ (≥)H(Xi:n),

for all t ≥ 0, where Xi:n denotes the ith order statistic.

Some properties of the proposed entropy are given in the next theorems. The next
theorem can be found by using Lemma 2.1 of [2].

Theorem 4. If H(f ; t) is decreasing in t, then H(T 1,n,n
t ) is decreasing in t.

Theorem 5. Let X1, . . . , Xn be a set of i.i.d. random variables from a DFR distribution
F .

a) H(TX,1,i,nt ) is increasing in i.

b) H(TX,1,1,nt ) is decreasing in n.

Proof. Using the results of [8] and [6], the proof can be found.

In the next theorems, we compare the system residual lifetimes in terms of their en-
tropies. Note that ≤disp and ≤`r denote the dispersive and likelihood ratio ordering,
respectively.

Theorem 6. Let TX,1,i,nt and T Y,1,i,nt denote the residual lifetimes of two systems con-
sisting of n i.i.d. components lifetimes of cdfs F and G, respectively. If X ≤disp Y , then

H(TX,1,i,nt ) ≤ H(T Y,1,i,nt ), for all t ≥ 0.

Theorem 7. Let X1, . . . , Xn be a random sample of size n from a continuous distribution
F and Y1, . . . , Ym be a random sample of size m from another continuous distribution G.
If either F or G is DFR and X ≤disp Y , then H(TX,1,i,nt ) ≤ H(T Y,1,j,mt ) for all t ≥ 0 and
i ≤ j, n− i ≥ m− j.

Theorem 8. Let X1, . . . , Xn be a random sample of size n from a continuous distribution
F and Y1, . . . , Ym be a random sample of size m from another continuous distribution G,
where n ≥ m. If either F or G is DFR and X ≤`r Y , then H(TX,1,1,nt ) ≤ H(T Y,1,1,mt ).
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By using the concept of system signature, we can extend the previous results to a
coherent system with an arbitrary structure. For more details on the concept of system
signature, see e.g. [4]. Let us consider a coherent system consisting of n i.i.d. component
lifetimes X1, . . . , Xn, with signature vector s = (s1, . . . , sn). Let T 1,n

t = T − t|X1:n > t
denote the residual lifetime of the system by knowing that at time t all of the components
are working. Then we have

H(Tt
1,n) = H(V )− E(log ft(Tt

1,n))

= H(V )−
n∑
i=1

siE(log ft(F̄
−1
t (Wi)))

= H(V )−
n∑
i=1

siH(Wi) +
n∑
i=1

siH(Tt
1,i,n), (6)

where H(Wi) is given in (4) and H(V ) denotes the entropy of a system the density function
gv(v) =

∑n
i=1 sigi(v), 0 < v < 1.

References

[1] Asadi, M. Ebrahimi, N. and Soofi, E. (2005). Dynamic generalized information mea-
sures, Statist. Probab. Lett. 71, pp. 89-98.

[2] Asadi, M. and Ebrahimi, N. (2000). Residual entropy and its characterizations in terms
of hazard function and mean residual life function. Statistics and Probability Letters,
49, 263-269.

[3] Cover, T. A. and Thomas, J. A.(2006). Elements of information theory, New Jersey:
Wiley and Sons, Inc.

[4] Ebrahimi, N. (1996). How to measure uncertainty in the residual lifetime distributions.
Sankhya A, 58, 48-57.

[5] Ebrahimi, N. Soofi, E.S. and Soyer, R. (2010). Information measures in perspective,
Int. Stat. Rev. 78, pp. 383-412.

[6] Ebrahimi, N. Soofi, E.S. and Zahedi, H. (2004). Information properties of order statis-
tics and spacings, IEEE T. Inform. Theory. 46, pp. 209-220.

[7] Ebrahimi, N. and Pellerey, F, (1995). New Partial Ordering of Survival Functions
Based on the Notion of Uncertainty. Journal of Applied Probability. 32, pp. 202-211.

[8] Kochar, S. C. (1996). Dispersive ordering of order statistics, Statistics and Probability
Letters. 27, pp. 271-274.

[9] Rao, M., Chen, Y., Vemuri, B. C. and Wang, F. (2004). Cumulative residual entropy:
A new measure of information, IEEE Transactions on Information Theory. 50, 1220-
1228.

[10] Toomaj, A. and Doostparast, M. (2014). A note on signature-based expressions for
the entropy of mixed r-out-of-n systems, Nav. Res. Log. 61, pp. 202-206.



Chahkandi, M., Toomaj, A. 57

[11] Samaniego, F. J. (2007). System Signatures and their Applications in Engineering
Reliability. Springer: New York,.

[12] Shaked, M. and Shanthikumar, J.G. (2007). Stochastic orders. Springer Verlag, New
York.



Dependence structure based guidelines for active
redundancy allocation problems in engineering systems

Jeddi, H. 1 and Doostparast, M. 2

1,2 Department of Statistics, Ferdowsi University of Mashhad, Mashhad , Iran

Abstract

In this paper, we consider the problem of allocation a spare component to exist-
ing components in order to improve a system reliability. Here, we assumed that the
component lifetimes are dependent and heterogeneous. Active redundancy scheme is
investigated for 2-component systems. When there is the (positive/negative) quadratic
dependence among the component lifetimes, the results are simplified.

Keywords: Copula, Quadratic Dependence, Redundancy, Reliability.

1 Introduction

Redundancy policies are usually used to increase the reliability of a given system. In
common, there are two schemes to allocate redundant components to the system, called
active and standby redundancy allocations. In the active redundancy policy, the redun-
dant components are put in parallel to the components of the system while under the
standby policy, the redundant components start functioning immediately after the failure
of a component.
There are many researches for deriving optimal redundancy allocation polices (if exists).
Among them, Boland, et al. [3] considered some stochastic orders for k-out-of-n sys-
tems, which the system work whenever at least k components work. Assuming that the
components are independent and identically distributed (i.i.d.), they proved that under
the active redundancy scheme for series systems, the optimal policy always allocates the
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spare to the weakest component. For standby redundancy and under the likelihood ra-
tio ordering, Boland et al. [3] gives also sufficient conditions in which for series systems,
allocation should be given to the weakest component while in parallel systems, it should
allocate the spare component to the strongest one. For recent results on the redundancy
allocation problem (RAP) for system with independent components, see, e.g., Valdes and
Zequeira [11], Romera et al. [9], Hu and Wang [4] and the references therein. In the
above-mentioned works, it is usually assumed that the component lifetimes are indepen-
dent. Recently, Belzunce et al. [1, 2], considered the RAP when component lifetimes are
dependent. For modelling the dependency between the component lifetimes and compar-
ison purpose, they used the concept of joint stochastic orders.
In this paper, we consider the RAP without any restriction to a special structure for de-
pendency among component lifetimes and the conditions are given in terms of the joint
distribution of the component lifetimes. Therefore, the rest of this paper is organized as
follows: In Section 2, the RAP is considered for 2-component systems under active policy.
Quadratic dependence orders among component lifetimes are used to derived the optimal
policy. Also, various examples are given in Section 2.

2 Main results

In this section, we consider series systems with two dependent components. First, we
provide a formal definition of (usual) statistical order.

Definition 1 (Shaked and Shantikumar, [10]). Let FX(t) = P (X ≤ t) and FY (t) = P (Y ≤
t), for t > 0, be distribution functions (DFs) of lifetime variables X and Y , respectively.
Then X is said to be smaller than Y in the usual stochastic order, denoted by X ≤st Y, if
FX(t) ≤ F Y (t), ∀t > 0, where FX(t) = 1− FX(t) and F Y (t) = 1− FY (t) are the survival
functions (SFs) of X and Y, respectively.

Let Xi(i = 1, 2) and S stand for the i − th component lifetime and spare component
lifetime, respectively. The component lifetimes X1, X2 and S are also dependent. This
assumption is naturally consistent since components are working under the same loading
and environment situations and etc; See, e.g. Nelsen [8].

2.1 RAP in series system

At first, we assume that series systems where the spare component is allocated under the
active redundancy scheme. Here, “∧{a, b}” and “∨{a, b}” stand for the minimum and the
maximum of real numbers a and b, respectively.

Theorem 1. Let T1 = ∧{∨{X1, S}, X2} and T2 = ∧{X1,∨{X2, S}}. Then T1 ≥st T2 if
and only if

P (X1 > a, S > a) ≤ P (X2 > a, S > a), ∀a > 0. (1)

Proof. By definition, F T1(a) = P (∨(X1, S) > a,X2 > a) for all a > 0. Since {∨(X1, S) >
a} = {X1 > a} ∪ {X1 < a, S > a}, we conclude that

F T1(a) = P (X1 > a,X2 > a) + P (X1 < a,X2 > a, S > a). (2)

Similarly

F T2(a) = P (X1 > a,X2 > a) + P (X1 > a,X2 < a, S > a).
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So T1 ≥st T2 if and only if, for all a > 0,

P (X1 < a,X2 > a, S > a) ≥ P (X1 > a,X2 < a, S > a). (3)

Notice that

P (X1 < a,X2 > a, S > a) = P (S > a,X2 > a)− P (X1 > a,X2 > a, S > a),

and

P (X1 > a,X2 < a, S > a) = P (S > a,X1 > a)− P (X1 > a,X2 > a, S > a).

Hence, F T1(a) ≥ F T2(a) if and only if P (S > a,X2 > a) ≥ P (S > a,X1 > a), for all a > 0
and the proof is complete.

From Equation (1), one can easy verify that, for i = 1, 2,

P (Xi > a, S > a) = 1− P (Xi ≤ a ∪ S ≤ a)

= 1− P (Xi ≤ a)− P (S ≤ a) + P (Xi ≤ a, S ≤ a)

= 1− FXi(a)− FS(a) + FXi,S(a, a)

= FXi(a)− FS(a) + FXi,S(a, a).

Under the assumption of Theorem 1, T1 ≥st T2 if and only if

FX2(a) + FX1,S(a, a) ≤ FX1(a) + FX2,S(a, a), ∀a > 0. (4)

Notice that in Theorem 1, the given condition in Equation (1) is defined on the basis
of pairwise dependences in random vectors (X1, S) and (X2, S) while the dependence in
(X1, X2) does not play any role.

Suppose that lifetime S is independent of (X1, X2). Then, T1 ≥st T2 if and only if
X1 ≤st X2.

Proof. It immediately follows by Theorem 1.

Theorem 1, Corollary 2.1 and Proposition 2.1 extend Lemma 2.2 of Boland et al.
(1992) where they assumed that, the lifetimes X1, X2 and S are independent. If
(X1|S = a) ≤st (X2|S = a) for all a > 0, then T1 ≥st T2.

Proof. By definition for all a > 0, we have

P (X1 > a, S > a) =

∫ ∞
a

P (X1 > a|S = s)dFS(s) ≤
∫ ∞
a

P (X2 > a|S = s)dFS(s)

= P (X2 > a, S > a). (5)

Then by Theorem 1, the proof is complete.

There are many engineering systems in which Condition (1) satisfies. A natural situa-
tion occurs when component lifetimes exhibit dependent behaviour due the same environ-
ment conditions such as loading, pressure and etc. In other words, since the components
are working under same circumstances, it is usually observed that there exists some de-
pendence behaviour among component lifetimes. Lehmann [6] introduced the notion of
positive (negative) quadrant dependent which is useful for modelling dependent random
variables.
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Definition 2 (Lehmann, [6]). The random variables X and Y are said positive quadrant
dependent (PQD) if for every y1, y2 ∈ R,

FY1,Y2(y1, y2) ≥ FY1(y1)FY2(y2), (6)

and negative quadrant dependent (NQD) if for every y1, y2 ∈ R,

FY1,Y2(y1, y2) ≤ FY1(y1)FY2(y2). (7)

If (X1, S) and (X2, S) be PQD and NQD, respectively, and X1 ≤st X2 then T1 ≥st T2.

Proof. Inequalities (6) and (7) are equivalent to F̄Y1,Y2(y1, y2) ≥ F̄Y1(y1)F̄Y2(y2) and
F̄Y1,Y2(y1, y2) ≤ F̄Y1(y1)F̄Y2(y2), respectively, where FX,Y (x, y) = P (X > x, Y > y) is
the joint survival function of X and Y . The proof is immediately concluded from Theo-
rem 1 and Definition 2.

Lehmann’s idea on PQD is used as a base for introducing some stochastic orders including
positive (negative) quadratic order in the literature.

Definition 3 (Shaked and Shantikumar, [10]). Let (U1, U2) and (V1, V2) be two random
vectors with joint DFs FU1,U2(., .) and FV1,V2(., .), respectively. Furthermore, FU1,U2 and
FV1,V2 have the same univariate marginals. If

FU1,U2(a, b) ≤ FV1,V2(a, b),∀a, b, (8)

then (U1, U2) is called smaller than (V1, V2) in the PQD order, denoted by (U1, U2) ≤PQD
(V1, V2).

Now, we provide sufficient conditions for (1) in terms of quadratic dependence structure.

If X1
D≡ X2 and (X1, S) ≤PQD (X2, S) then Condition (1) holds and hence T1 ≥st T2.

Now, we provide some illustrative examples.

Example 1. (FGM copula) Let (X1, X2, S) follows the tri-variate Farlie-Gumbel-Morgenstern
(FGM) distribution with the joint DF

FX1,X2,S(x1, x2, s) = FX1(x1)FX2(x2)FS(s)

× {1 + θ12FX1(x1)FX2(x2) + θ13FX1(x1)FS(s) + θ23FX2(x2)FS(s)}
(9)

for x1 > 0, x2 > 0, s > 0 and −1 < θ12 < 1,−1 < θ13 < 1, and −1 < θ23 < 1. Notice
that θ12, θ13 and θ23 are the parameters of the FGM distribution given by Equation (9)
to capture the dependency structure among the random variables X1, X2 and S. One
can easily verify that the parameters θij(i = 1, 2 j = 2, 3, i < j) in Equation (9) are the
correlation coefficients among X1, X2 and S. For a greater detail, see Nelsen [8]. From
Corollary 2.1 and Equation (9), T1 ≥st T2 if and only if

FX1(a)
(
1 + θ13FX1(a)FS(a)

)
≤ FX2(a)

(
1 + θ23FX2(a)FS(a)

)
, (10)

for all a > 0. Note that Equation (10) is free of θ12, the parameter dependency between
X1 and X2; See Remark 2.1. From Equation (10) we see that
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• If X1
D≡ X2, then θ23 ≥ θ13 if and only if T1 ≥st T2. Note that the sufficient condition is

also derived directly by Proposition 2.1.

• For −1 < θ12 < 1, and θ13 = θ23 = 0, then X1 ≤st X2 if and only if T1 ≥st T2. For
θ12 = 0 the result of Boland et al. [3] is obtained. This result can also be obtained also by
Proposition 2.1.

• If X1 ≤st X2 and θ13 ≤ 0 ≤ θ23 then T1 ≥st T2, since the FGM copula for θij ∈ [0, 1] is
PQD and for θij ∈ [−1, 0] is NQD (See, Nelsen ,[8], p.188). Then, Corollary 2.1 implies
the desired result.

�

Example 2. (Gumbel copula) Let

FX1,X2,S(x1, x2, s) = exp{−[(− lnFX1(x1))θ + (− lnFX2(x2))θ + (− lnFS(s))θ]}1/θ, (11)

for x1 > 0, x2 > 0, s > 0 and θ ≥ 1. By Corollary 2.1 and Equation (11), T1 ≥st T2 if and
only if, for all a > 0

exp {−[(− lnFX1(a))θ + (− lnFS(a)θ)]}1/θ − exp{−[(− lnFX1(a))]θ}1/θ

≤ exp{−[(− lnFX2(a))θ + (− lnFS(a)θ)]}1/θ − exp{−[(− lnFX2(a))]θ}1/θ. (12)

If X1 ≤st X2, Condition (12) holds for all a > 0, then T1 ≥st T2, for all θ ≥ 1. For special
case θ = 1, the lifetimes X1, X2 and S are independent.

�

Example 3. (Clayton copula) Let

FX1,X2,S(x1, x2, s) =
(
FX1(x1)−θ + FX2(x2)−θ + FS(s)−θ − 2

)1/θ
, (13)

for x1 > 0, x2 > 0, s > 0 and θ ≥ 0. Now from Corollary 2.1 and Equation (13), we
conclude that T1 ≥st T2 if and only if for all a > 0,

FX2(a)+(FX1(a)−θ+FS(a)−θ−1)1/θ ≤ FX1(a)+(FX2(a)−θ+FS(a)−θ−1)1/θ,∀a > 0. (14)

If X1 ≤st X2 and Equation (14) holds, then T1 ≥st T2 for all θ ≥ 0.

�

Example 4. (Mardia Tri-variate Pareto Distribution ) Let (X1, X2, S) follows the tri-
variate Mardia Pareto distribution with the joint SF

FX1,X2,S(x1, x2, s) =

(
x1

σ1
+
x2

σ2
+

s

σ3
− 2

)−α
, xi > σi, i = 1, 2, S > σ3, α > 0. (15)

Then Equation (4) simplifies to(
x1

σ1
− 2

)−α
+

(
x1

σ1
+
x3

σ3
− 2

)−α
≤
(
x2

σ2
− 2

)−α
+

(
x2

σ2
+
x3

σ3
− 2

)−α
. (16)

Hence for all α > 0, T1 ≥st T2 provided that X1 ≤st X2.
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�
If (X1, S) and (X2, S) have the same copula and X1 ≤st X2, then T1 ≥st T2.

Proof. According to Theorem 6.B.14 of Shaked and Shantikumar ([10], p. 272), we con-
clude (X1, S) ≤st (X2, S). Then Inequality (1) holds and therefore T1 ≥st T2.

In Examples (2)-(4), we saw that X1 ≤st X2 implies T1 ≥st T2. This result is also derived
by Proposition 2.1, since in these examples, (X1, S) and (X2, S) have the same copula.
For systems with n components see, Jeddi and Doostparast (2015)[5].
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Abstract

In this paper, we give some signature-based expressions for the conditional entropy,
joint entropy, Kullback-Leibler information, and mutual information of the lifetime of
three-state networks. It is shown that the Kullback-Leibler information, and mutual
information between the entrance times of the network into its states depend only on
the network structure. The results are examined using a numerical example.

Keywords: In this paper, we give some signature-based expressions for the con-
ditional entropy, joint entropy, Kullback-Leibler information, and mutual information
of the lifetime of three-state networks. It is shown that the Kullback-Leibler informa-
tion, and mutual information between the entrance times of the network into its states
depend only on the network structure. The results are examined using a numerical
example.

1 Introduction

In network reliability analysis, the stochastic properties of the networks lifetime have been
considered as an important problem. A network is defined as a collection of nodes and
links in which some particular nodes in the network are called terminals. The components
of the network (links or nodes) are subject to failure over time. The state of the network
may change due to the failure of the components.

Let a network consist of n components having independent and identically distributed
(i.i.d) lifetimes X1, . . . , Xn with common cumulative distribution function (cdf) FX and
probability density function (pdf) fX . Assume that T denotes the network lifetime. The

1sanaeftekhar@gmail.com
2s.zarezadeh@shirazu.ac.ir

64



Eftekhar, S., Zarezadeh, S. 65

information measure of T is equal to I(T ) = −H(T ) where H(T ) is called the Shannon
entropy of T and defined as

H(T ) = −
∫
fT (t) log fT (t)dt. (1)

The Kullback-Leibler (K-L) information divergence between fT and fX is another infor-
mation measure which is defined as

K(T : X) = K(fT : fX) =

∫
fT (t) log

fT (t)

fX(t)
dt ≥ 0. (2)

Notice that K(T : X) = 0 if and only if fT (t) = fX(t) almost everywhere. In fact K-L
information is a measure of the inefficiency of assuming that the distribution is fT when
the true distribution is fX . The entropy and K-L information of the k-out-of-n systems
and two-state systems have been studied in [1], [3], [4].

There are many cases in reality that several states are defined for the network. For
example, we may have a network with three states: up, partial performance, and down.
Let X1, . . . , Xn be i.i.d. random variables denoting the components lifetime and Xi:n be
the i-th ordered component lifetime. If T1 and T denote the entrance times into partial
performance and down state, respectively, then

P (T1 > t1, T > t) =
∑∑
1≤i<j≤n

sijP (Xi:n > t1, Xj:n > t), t1 > 0, t > 0,

where sij = P (T1 = Xi:n, T = Xj:n) is the (i, j)-th element of a two-dimensional matrix
S with size n× n called signature matrix; see [2].

This paper is an investigation on the information measures of three-state networks
lifetime based on the concept of signature matrix. Some representations for the conditional
entropy of T given T1 and the joint entropy of (T1, T ) are provided. It is also shown that
the K-L information and mutual information (as a dependency measure) between T and
T1 are free of the components lifetime and depend only on the network structure. The
results are examined using a numerical example.

2 Main results

Consider a network with three states: up state, partial performance, and down state. Let
the network have n components with i.i.d. lifetimes X1, . . . , Xn such that X1 has pdf
f and cdf F . Further, assume that T1 and T denote the times of entrance into partial
performance and down state, respectively. In this section, we would like to explore some
information measures on T1 and T .

2.1 Predictability of T given T1

For two random variables X and Y , the conditional entropy of Y given X, denoted by
H(Y |X), specifies the amount of information needed to predict the outcome of Y given
that the value of the X is known. The conditional entropy of Y given X is defined as

H(Y |X) =

∫
f(x)H(Y |x)dx, (3)

where H(Y |x) = −
∫
fY |X(y|x) log fY |X(y|x)dy is the Shannon entropy of Y conditioned

on the X taking a certain value x. The Shannon entropy of joint random variable (X,Y )
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is called joint entropy defined as H(X,Y ) = −
∫ ∫

fX,Y (x, y) log fX,Y (x, y)dxdy. With

s
(1)
i =

∑n
j=1 sij , i = 1, . . . , n, s

(2)
j =

∑n
i=1 sij , j = 1, . . . , n, we can show that

H(T |t1) =−
∫ 1

F (t1)

g(t1, v) log
(
f(F−1(v))g(t1, v)

)
dv,

where

g(t1, v) =

∑∑
1≤i<j≤n sij

Γ(n+1)
Γ(n−j+1)Γ(i)Γ(j−i)F

i−1(t1)[v − F (t1)]j−i−1(1− v)n−j∑n
i=1 s

(1)
i

1
B(i,n−i+1)F

i−1(t1)F̄n−i(t1)
,

in which Γ(.) andB(., .) are the gamma and beta functions, respectively. Let hα0,α1,α2(x1, x2)
denote the pdf of Dirichlet distribution with parameters (α0, α1, α2) given, for x1 ≥ 0,
x2 ≥ 0, 0 ≤ x1 + x2 ≤ 1, by

hα0,α1,α2
(x1, x2) =

Γ(
∑2
i=0 αi)∏2

i=0 Γ(αi)
(1−

2∑
i=1

xi)
α0−1

2∏
i=1

xαi−1
i , (4)

and ga,b(x) be the pdf of beta distribution defined as

ga,b(x) =
1

B(a, b)
xa−1(1− x)b−1, 0 < x < 1, a > 0, b > 0. (5)

From (3), it can be shown that

H(T |T1) = H(V1, V )−
n∑
j=1

s
(2)
j E[log f(F−1(Wj))]−H(V1),

where (V1, V ) has the joint pdf as
∑∑

1≤i<j≤n sijhn−j+1,i,j−i(v1, v) and Wj has pdf
gj,n−j+1(w).

Based on the properties of conditional entropy, H(T |T1) = 0 if and only if the value of
T is completely determined by the value of T1. H(T |T1) = H(T ) if and only if T and T1

are independent. Since H(T, T1) = H(T |T1) +H(T1), it can be written

H(T1, T ) =H(V1, V )−
n∑
i=1

s
(1)
i E[log f(F−1(Wi))]−

n∑
j=1

s
(2)
j E[log f(F−1(Wj))].

2.2 Dependency between T and T1

The K-L information divergence between T1 and T is obtained as

K(T : T1) =

∫ 1

0

n∑
j=1

s
(2)
j gj,n−j+1(v) log

∑n
j=1 s

(2)
j gj,n−j+1(v)∑n

i=1 s
(1)
i gi,n−i+1(v)

dv,

where ga,b(x) is as (5). As seen, K(T : T1), depends only on the network structure and is
free of the distribution of components lifetime.

The mutual information between two random variablesX and Y is defined byM(X,Y ) =
K(fX,Y : fXfY ) ≥ 0. M(X,Y ) = 0 if and only if two random variables X and Y are in-
dependent. Then mutual information may be used as a dependency measure in reliability.
It can be shown that for a three-state network,

M(T, T1) =

∫ 1

0

∫ v

0

∑∑
1≤i<j≤n

sijhn−j+1,i,j−i(v1, v − v1)

× log

∑∑
1≤i<j≤n sijhn−j+1,i,j−i(v1, v − v1)∑n

j=1 s
(2)
j gj,n−j+1(v)

∑n
i=1 s

(1)
i gi,n−i+1(v1)

dv1dv, (6)
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where h denotes the pdf of Drichlet distribution given in (4). As seen, M(T, T1) depends
only on the network structure and is free of the stochastic mechanism of components fail-
ure. That is, the reduction in the uncertainty of network lifetime, T , due to the knowledge
of the lifetime T1 depends only on the structure of the network.

Example. Consider a network with 10 links, 5 nodes, and 5 terminals depicted in Figure 2
of [2]. Let the links be subject to failure and the links lifetime be i.i.d. with standard expo-
nential distribution. Using the signature matrix of this network presented in [2], it can be
numerically seen that H(T1) = 0.5162952, H(T ) = 0.7517297, H(V1, V ) = −1.703062,
H(T |T1) = 0.1485781, H(T1, T ) = 0.6648733, K(T : T1) = 0.4120057, M(T, T1) =
0.603152.
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Abstract

In this paper we provide new results for the increasing concave average order and
the new worse than used in third order (NWU(3)) under the formation of parallel
systems with independent and identical (i.i.d) components.

Keywords: Residual lifetime, Class of life distribution, Stochastic order, Reliabil-
ity.

1 Introduction

One of the interesting problems in reliability theory is the study on aging properties of a
coherent system from aging properties of the components. Many authors have paid their
attention to investigate the reversed preservation of aging classes for coherent system,
specially series and parallel systems. Li and Yam [7] studied the reversed preservation of
negative aging classes and proved that when the lifetime of a parallel system belong to new
worse than used in second order (NWU(2)) class, the lifetime of its components are also
NWU(2). Reversed preservation properties of decreasing failure rate (DFR), increasing
mean residual lifetime (IMRL) and new worse than used in expectation (NWUE) class
under parallel system are investigated by Belzunce et al. [3]. Li and Yam [7] and Ahmad
et al. [1] showed that when the lifetime of series system is IMRL (DMRL), new worse
than used in convex order (NWUC) and new better than used in convex average order
(NWUCA) the lifetime of its components are also of the same class. In this regard, one
can refer to Li and Zuo [9], Ahmad et al. [2], Li and Qui [8], Kayid et al. [5] and Hazara
et al. [4].
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In this note, we will make a discussion on the reversed preservation property of NWU(3)
class, and it is proved that, if the life time of parallel system consisting of i.i.d components
is NWU(3), then its components lifetimes are also NWU(3).

2 Preliminaries

Let F and F̄ denote the cumulative distribution function and reliability function of a
non-negative random variable X, respectively. The residual lifetime of X at age t ≥ 0,
denoted by Xt = {X − t|X > t}, is the remaining life of X given survival at age t. The
reliability function of Xt, denoted by F̄t, is

F̄t(x) =
F̄ (x+ t)

F̄ (t)
.

In the following, we present some stochastic orders considered in this note. Shaked
and Shanthikumar [12] is comprehensive reference on these concepts and their properties.

Definition 1. Let X and Y be two non-negative random variables with distribution func-
tions F and G, and survival functions F̄ and Ḡ, respectively. X is said to be smaller than
Y in the

i) usual stochastic order, denoted by X ≤st Y , if for all x, F̄ (x) ≤ Ḡ(x);

ii) increasing concave average order, denoted by X ≤icva Y , if∫ ∞
0

∫ x

0
F̄ (u)dudx ≤

∫ ∞
0

∫ x

0
Ḡ(u)dudx.

Here, we present the definition of NWU(3) class (see Nofal [10]).

Definition 2. Let X be a non-negative random variable with distribution function F . F
is said to be new worse than used in third order, denoted by NWU(3), if and only if for
all t ≥ 0, ∫ ∞

0

∫ x

0
F̄ (u+ t)dudx ≥ F̄ (t)

∫ ∞
0

∫ x

0
F̄ (u)dudx,

or equivalently, Xt ≥icva X.

3 Main results

In this section we consider a parallel system consisting of n independent and identical
components with lifetimes X1, X2, ..., Xn, where Xi has absolutely continuous distribution
function F . The parallel system, consisting of n components, operates if and only if at
least a component operates. It is obvious that the lifetime of the system is

Xn:n = max{X1, X2, ..., Xn}.

The reliability function of Xn:n, denoted by F̄n:n(t), is given by

F̄n:n(t) = 1− Fn(t), for all t ≥ 0.
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For the proof of Theorem 1 and 2 we will need the following lemmas. (Pellerey and
Petakos [11]) For any positive integer n and t ≥ 0, it holds that

(max{X1, X2, ..., Xn})t ≤st max{(X1)t, (X2)t, ..., (Xn)t},

where X1, X2, ..., Xn are i.i.d, non-negative random variables.

We obtain the new result in the below lemma that is auxiliary result to prove the main
conclusions. Let W (x) be Lebesgue-Stieltjes measure not necessarily positive. If ∆(x) is
an non-negative decreasing function∫ ∞

0

∫ t

0
dW (x)dt ≥ 0,

and for all t ≥ 0, then ∫ ∞
0

∫ t

0
∆(x)dW (x)dt ≥ 0.

Now we have the following theorems.

Theorem 1. Let X1, X2, ..., Xn be n i.i.d random variables with absolutely continuous
distribution function F . If Xn:n is NWU(3) then X is also NWU(3).

Next we present the reversed preservation of the increasing concave average order for
the parallel system.

Theorem 2. Let X1, X2, ..., Xn be a set of n i.i.d random variable with distribution func-
tion F , and Y1, Y2, ..., Yn be another set of n i.i.d random variable with distribution function
G. If Xn:n ≤icva Yn:n, then Xi ≤icva Yi for i = 1, 2, ..., n.
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Abstract

Nanda (2010) characterized some distributions with the help of failure rate and
mean residual functions. In this paper, we generalize one of his results and character-
ize a few distributions by expectation of functions of some measures in the reliability.

Keywords: Characterization, Hazard rate, Mean residual life, Expected inactivity
time.

1 Introduction

Let X be a random variable having absolutely continuous distribution function F (t), sur-
vival function F (t) = 1 − F (t) and probability density function f(t). Then the hazard

rate function of X is defined as r(t) = − d

dt
logF (t) =

f(t)

F (t)
.

Besides, let the random variableX have finite moments of all orders with variance V ar(X) =
σ2 and mean E(X) = µ so that the coefficient of variation of X is c = σ

µ .
An useful reliability measure of X is mean residual life (MRL) which is defined as

expectation of the residual life random variable Xt = (X − t | X > t), given by

e(t) =
1

F (t)

∫ ∞
t

F (x)dx.
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The hazard rate and MRL function are related by

r(t) =
1 + e′(t)

e(t)
. (1)

It is well known that r(t) determines the distribution function uniquely and hence e(t)
also characterizes the distribution. In addition F (t) and r(t) are connected by

F (t) = exp

{
−
∫ t

0
r(x)dx

}
. (2)

Another measure of interest is the expected inactivity time (EIT). Suppose again that
the continuous random variable X denotes the lifetime of the system and assume that
the system has failed sometime before t. Then the conditional random variable X(t) =
(t−X|X < t) measures the time elapsed since the failure of X given that the system has
failed sometime before t. The expectation of X(t) which we denote by m(t) is called the
EIT of X and is defined as:

m(t) =
1

F (t)

{
−
∫ t

0
F (x)dx

}
. (3)

In recent years, authors have considered the approach of studying inequalities involving
expectations of various functions in reliability theory to characterize distributions. See,
for instance, Laurent[3] Nanda [5], Bhattacharjee et al. [1] and kundu and Ghosh 2014.

Here we characterize some distributions through expectation of the functions of failure
rate and mean residual life.

2 Main results

It is well known that E(r(X)) ≥ 1
µ , and the equality holds if and only if X is exponentially

distributed; see, [4]. Since, for a nonnegative random variable X, E(1/r(X)) is always the
mean, the result of Makino restated by Nanda [5] as E[ 1

r(X) ] ≥ 1
E(r(X)) , and the equality

holds if and only if X is exponentially distributed. This motivated Nanda to prove the
following result, see [5].

Theorem 1. For any nonnegative random variable X,

E

(
1

e(X)

)
≥ 1

E(e(X))
, (4)

the equality holds if and only if X is exponentially distributed.

Below we state the theorem of Nanda [5], that characterize exponential distribution in
terms of E(Xr(X)).

Theorem 2. For any nonnegative random variable X,

E(Xr(X)) ≥ 2

1 + c2
, (5)

the equality holds if and only if X is exponentially distributed.



Second Seminar on Reliability Theory and its Applications 74

We now generalize the above theorem and characterize the exponential distribution in
terms of E[Xkr(X)], where k > 0 is an integer. For any nonnegative random variable X,

E[Xkr(X)] ≥ k + 1

E(Xk+1)
(E(Xk))2, (6)

the equality holds if and only if X is exponentially distributed.

Proof. By the Cauchy-Schwarz inequality, we have

(E(Xk))2 ≤
[∫ ∞

0
xkF (x)dx

] [∫ ∞
0

xkf2(x)

F (x)
dx

]
. (7)

Since ∫ ∞
0

xkF (x)dx =
E(Xk+1)

k + 1
, (8)

and ∫ ∞
0

xkf2(x)

F (x)
dx = E[Xkr(X)],

(7) reduces to (6). The equality holds if and only if there exists some constant B(> 0)
such that, for all x ≥ 0, √

xkf2(x)

F (x)
= B

√
xkF (x)

This gives r(x) =constant, which holds if and only if X is exponentially distributed.

In the next theorem, we characterize a distribution in which mean residual life is
proportional to 1/x.

Theorem 3. Let X be an absolutely continuous nonnegative random variable with E[Xe(X)] <

∞ and E
[

1
Xe(X)

]
<∞, then

E

[
1

Xe(X)

]
≥ 1

E[Xe(X)]
, (9)

and the equality holds if and only if X follows the distribution with survival function

F (x) =
x

a
e−(x2−a2)/2θ, x > a, a > 0. (10)

Proof. By applying the cauchy-Schwarz inequality we obtain (9). The equality in (9) holds
if and only if there exists a constant A(> 0) such that

f(x)

xe(x)
= Axe(x)f(x),

which is equivalent to the fact that e(x) = θ/x. Lastly, applying (1) and (2), we get
(10).

Kundu and Ghosh (2014) showed that inequality (9) remain true when MRL is replaced
by EIT and equality characterizes the finite range distribution.
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Abstract

In this work, we proposed a partially accelerated life test planning in the presence
of competing risks for the products with linear degradation path. The competing
risks intensity was considered to be only depended on the degradation value and be-
long to a parametric family. In the proposed plan, no assumptions are made about
failure times distribution and a tampered failure rate model is hold. The maximum
likelihood estimation of competing risks intensity parameters as well as the observed
Fisher information matrix are derived. A simulation study is conducted to evaluate
the performance of the methods and the applicability of the proposed plan is shown
by using a real data set.

Keywords: Accelerated life testing, Competing risks, Degradation path , Intensity
function, Tempered failure rate model.

1 Introduction

Accelerated life testing (ALT), is commonly used to shorten product’s lifetime faster. In
such testing, products run at higher level of stress to collect more failure times in a limited
test time. Usually variables such as temperature, voltage, pressure, humidity or use rate
can be used as accelerating stress to accelerate product’s lifetime. Here, we consider an
ALT plan in the presence of competing risks when underlying degradation process is linear.
Our proposed plan is set as follows: for obtaining failure times in a short period of test a
partially ALT are planned and failure times and corresponding competing risk modes are
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recorded. These information are extrapolated to estimate the lifetime characteristics at
normal conditions through a tampered failure rate model. Tampered failure rate model
proposed by Battacharyya and Zanzawi (1989), relates the hazard rate of a unit at one
stress level to the hazard rate of that unit at the next stress level. The approach in
this modeling is based on the hazard acceleration which seems to have been ignored in
the treatment of step-stress ALT despite its wide applications. Using this model and
the assumption about linearity of degradation process, the intensities can be expressed in
term of degradation at each level of stress. The parameters are estimated by maximum
likelihood method and estimated survival function is obtained.

2 Model

We make the following assumptions:

1) Two stress levels S0 and S1 (S0 < S1) are used. S0 is normal stress.

2) In each level of stress the degradation path of unit, Z, is an increasing function of
time t, and follows a linear model Z(t) = t

A , where A is a random vector with distribution
function π, and depends on the nature of unit. Linear degradation model has been applied
to model the degradation of automobile tire, carbon film, flourescent light buble, plastic
substrate AMOLED, etc. See for example, Haghighi and Bae (2015).

3) Competing risks are possible and the failure times due to competing risks assumed
to be conditionally independent given A = a, and the intensity function corresponding to
kth competing risk denoted by λk, k = 1, ..., s, depends only on degradation level. This
is a reasonable assumption for failure due to wear, fatigue or mechanical damages. See,
Bagdonavicius et al. (2004).

4) A tampered failure rate model is hold to relating the intensities at high level of stress
to intensities at lower level of stress. This model is based on the intensity acceleration
which have wide use in the reliability as well as survival analysis.

The test is conducted as follows. All test units are initially placed on normal stress S0,
and run until time τ . Then, the stress is changed to high stress S1, and the test continues
until all remaining units fail. Failure time of a unit denotes by T = min(T 1, ..., T s), where
T k is the failure times corresponding to kth,k = 1, ..., s competing risk. From assumptions
3 and 4, we have

λk(z(t)) =

{
λk0( ta), t ≤ τ

,

λk1( ta) = αkλ
k
0( ta), t > τ.

(1)

where λkl , is the intensity function corresponding to kth competing risk under lth l = 1, 2
level of stress.
Denote by Rkl (.|A = a), the conditional reliability function corresponding to kth comprting
risk at lth level of stress. Then,

Rk0(t|A = a) = P{T k > t|A = a, S0}

= exp{−
∫ t

0
λk0(

w

a
)dw}
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and

Rk1(t|A = a) = Rk0(τ |A = a)P{T k > t|A = a, S1}

= Rk0(τ |A = a) exp{−
∫ t

τ
αkλ

k
0(
w

a
)dw},

=
[
Rk0(τ |A = a)

]1−αk [
Rk0(t|A = a)

]αk
From the assumptions that the model is a tampered failure rate the conditional reliability
function of a test unit in the presence of competing risks and under simple step-stress test
is

Rk(t|A = a) =


Rk0(t|A = a)
where 0 ≤ t < τ ;

Rk1(t|A = a) =
[
Rk0(τ |A = a)

]1−αk [Rk0(t|A = a)
]αk

where τ ≤ t <∞.

(2)

3 Estimation

Consider n units are on test and n1 units fail under S0 and n2 units fail under S1. Let V
denote the failure mode of a unit.

V =


1, if T = T 1,
2, if T = T 2,
...

...
s, if T = T s.

(3)

Here, we focused on the case in which the intensity function is considered to be

λk(z, θ, ν) = ( zθk )νk , k = 1, ..., s.
(4)

This form of intensity is commonly used in the analysis of wear data. See, Bagdonavicius
(2004). The MLEs of parameters satisfy in following equations

α̂k[ν̂k] =

(∑n1
i=1 ti(

ti
ai

)ν̂k + τ
∑n2

i=1( τai )
ν̂k∑n2

i=1 ti(
ti
ai

)ν̂k − τ
∑n2

i=1( τai )
ν̂k

)(∑n2
i=1 I(Vi = k)∑n
i=1 I(Vi = k)

)
(5)

θ̂k[ν̂k] =

(∑n1
i=1 ti(

ti
ai

)ν̂k + τ
∑n2

i=1( τai )
ν̂k

(ν̂k + 1)
∑n

i=1 I(Vi = k)

) 1
ν̂k

(6)

g(ν̂k) = 0 (7)

where

g(νk) =
n∑
i=1

I(Vi = k)

(
log(

ti
ai

)− log(θk[νk])

)
+

n1∑
i=1

tνk+1
(

1− (νk + 1)
(

log( tiai )− log(θk[νk])
))

(νk + 1)2(ai(θk[νk]))
νk

+

n2∑
i=1

τνk+1
(

1− (νk + 1)
(

log( τai )− log(θk[νk])
))

(νk + 1)2(ai(θk[νk])
νk (8)
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Once from (7), ν̂k, is obtained θ̂k and α̂k are resulted by substituting ν̂k, in (6) and (5). It
is clear that the equation (7), could not be analytically solved and the numerical methods
are needed. Simulation studies show that (8) is a decreasing function of the ν and have a
unique root. The root of (7), could be easily obtained using ”uniroot” in R software.
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Abstract

In this paper, we propose an optimization for the simple step stress accelerated life
test for two stress variables under type II censoring. The lifetime of the items follows
the Gompertz distribution. Furthermore, we model the effects of changing stress as
a cumulative exposure function. By minimizing the asymptotic variance of the maxi-
mum likelihood estimator of reliability at time ξ, we obtain the optimal bivariate step
stress accelerated life test. Finally, the simulation results are discussed to illustrate
the effect of the initial estimates on the optimal values.

Keywords: Bivariate step-stress accelerated life test; Gompertz distribution; Cu-
mulative exposure function; Optimal design.

1 Introduction

Accelerated life tests (ALTs) are used commonly to obtain information quickly on the
lifetime of highly reliable products. To implement the SSALT we first apply a low stress
to all products, if a product endures the stress (does not fail) we apply a higher stress, if
only one change of the stress level is done, it is called a simple step-stress test.

In reliability studies, especially in ALT design, complete data are hard to gather, and
the experimenter has to work with censored data.
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The problem of optimal scheduling of the step stress test has attracted great attention
in the reliability literature. Our main objective is to choose the times to change the stress
level in such a way that the variance of some estimator of a parameter is minimized under
a natural stress level.

Since accelerating just one variable does not result enough failure data, it is desirable
to include more stress variables. For instance, in an accelerated life testing of capacitors
the two variables temperature and voltage could be used. In addition of resulting more
failure data, increasing the number of stress variables would lead to a better understanding
of the simultaneous effects of the stress variables.

In this paper, we propose SSALT for two stress variables with Gompertz distribution
based on the Type II censoring scheme. The optimum test plan is developed to determine
the test duration for each combination of stress levels. The optimization criterion is to
minimize the asymptotic variance of the maximum likelihood estimator (MLE) of the life
under typical operating conditions with a specified reliability.

2 Bivariate Step stress ALT Model

We consider the SSALT with two stress variables, and each stress variable has two levels.
Let Slk be the kth stress level of variable l, where l = 1, 2 and k = 0, 1, 2. The S10, S20

are stress levels at typical operating conditions.

Suppose we have n independent and identically distributed items that are initially put
to test at first step with stress levels (S11, S21). The first stress variable is increased from
S11 to S12 at time τ1. The test is continued until time τ2, when the other stress variable
is increased from S21 to S22. The experiment terminates when the predetermined number
of failures r is reached. Let ni be the number of failures at time tij , where j = 1, 2, . . . , ni
in step i and i = 1, 2, 3.

The basic assumptions are:

1. For any level of stress, the life of test units follows a Gompertz distribution with
cumulative distribution function (CDF)

F (t) = 1− exp
{
− δ(eθt − 1)

}
, t ≥ 0

where δ is the shape parameter, and θ is the scale parameter.

2. The scale parameter θi at test step i, for i = 1, 2, 3, is assumed to be a log-linear
function of stress levels, and there is no interaction between the two stresses. Thus,
we proposed the following life-stress relationship:

Step1 : log (θ1) = β0 + β1S11 + β2S21,

Step2 : log (θ2) = β0 + β1S12 + β2S21,

Step3 : log (θ3) = β0 + β1S12 + β2S22.

where β0, β1 , and β2 are unknown parameters depending on the nature of the
product, and the method of test.

3. A cumulative exposure model holds, i.e., the remaining life of a test product depends
only on the cumulative exposure it has seen [1].
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4. The shape parameter δ is constant for all stress levels.

The CDF of test units under bivariate SSALT and CE model is:

G(t) =


1− exp

{
−δ
(
eθ1t − 1

)}
, 0 ≤ t < τ1,

1− exp
{
−δ
(
eθ1τ1+θ2(t−τ1) − 1

)}
, τ1 ≤ t < τ2,

1− exp
{
−δ
(
eθ1τ1+θ2(τ2−τ1)+θ3(t−τ2) − 1

)}
, τ2 ≤ t <∞.

(1)

3 Optimality Criterion

The likelihood function from observations tij , i = 1, 2, 3, j = 1, 2, . . . , ni and n−r censored
items, is obtained from the CDF in equation (1) and the corresponding pdf by replacement
in following equation:

L (θ1, θ2, θ3, δ; t) ∝
n1∏
j=1

g (t1j) .

n2∏
j=1

g (t2j) .

n3∏
j=1

g (t3j) .
[
1−G(t(r))

]n−r
.

We can obtain the preliminary estimates of the parameters θ1, θ2, θ3 and δ from
previous experiments of similar products, or from a small sample experiment. These
estimates are then used to obtain the optimal test design for a censored experiment, but
before we proceed we have to define the optimization criterion. Since the mean time
to failure is related to the reliability function, the optimization function could also be
defined as a function of reliability. In this paper, the optimization criterion is defined
to minimize the asymptotic variance of the reliability estimate at time ξ under normal
operating conditions.

Let xi = (Si1 − Si0)/(Si2 − Si0), i = 1, 2, then Si0 = (Si1 − xiSi2)/(1 − xi), i = 1, 2.
From assumption 2 we can obtain log(θ0) as follows:

log(θ0) =
1

(1− x1)
log(θ1) +

(x2 − x1)

(1− x1)(1− x2)
log(θ2)− x2

(1− x2)
log(θ3).

Thus, the reliability under typical operating conditions at time ξ is

R(S10,S20)(ξ) = exp
{
− δ(eθ0t − 1)

}
,

= exp

{
− δ
(

exp
{
t θ

1
(1−x1)

1 θ
(x2−x1)

(1−x1)(1−x2)

2 θ
− x2

(1−x2)

3

}
− 1
)}

.

Then the AV of the reliability estimate at time ξ under typical operating conditions
can be obtained as follows:

AV (R̂(S10,S20)(ξ)) = H ′. F−1. H,

where F is the expected Fisher information matrix, which is obtained by taking expecta-
tion of the negative of second partial derivatives of `(θ1, θ2, θ3, δ) with respect to θ1, θ2, θ3

and δ. H is the row vector of the first derivative of R̂(S10,S20)(ξ) with respect to θ̂1, θ̂2, θ̂3

and δ̂.
The problem objective is to

Minimum AV
[
R̂(S10,S20)(ξ)

]
Because, the objective function is nonlinear, numerical method is used to solve these above
problem. By using the numerical example, we illustrate the calculation of the optimal hold
times, and sensitivity analysis.
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4 Simulation study

In this section, to examine the effect of changes in the initially estimated parameters, θ1,
θ2, θ3, δ and r, on the optimal values of τ∗1 and τ∗2 , sensitivity analysis is performed. This
study done by chosing different values for the initial parameters.

Tables 1 present the sensitivity analysis for the different values of the parameter of θ1,
We did a similar examin for r, θ2, θ3 and δ. We can conclude, that the optimal values
of τ∗1 and τ∗2 slightly increase as parameters increases; and these parameters have a very
small effect on the hold times. Therefor, the optimal hold times are not too sensitive.

Table 1: Optimal hold times versus changes in θ1 with n = 50, r = 38, θ2 = 2.5, θ3 = 2, δ =
0.02.

θ1

2.85 2.95 3.05 3.15
τ∗1 τ∗2 τ∗1 τ∗2 τ∗1 τ∗2 τ∗1 τ∗2

0.7139 0.9035 0.7330 0.9138 0.7569 0.9490 0.7796 0.9599

5 Conclusion

In this paper, we have proposed an optimum design for step-stress accelerated life test
with two variables for Gompertz distribution based on Type II censoring. Furthermore,
according to simulation studies, we have found that since the optimal hold times are not
too sensitive to the model’s parameters, thus we anticipate that the proposed design is
robust.
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Abstract

In this paper, statistical evidences in sequential order statistics (SOS) coming from
a general class of lifetime distributions, proposed by AL-Hussaini are considered. Weak
and misleading evidences are derived in explicit expressions for both simple and com-
posite hypotheses about the parameters of interest and their behaviours with respect
to the model parameters are studied in details.

Keywords: sequential order statistics , Hypotheses testing, Likelihood ratio.

1 Introduction

1.1 Statistical Evidence

Following Royall [12], let ev (H1, H2) (> 0) be a given data-based measure of support
of the hypothesis H1 against H2. Large (Small) values of ev (H1, H2) are interpreted as
evidence given by data in favor ofH1(H2). The probabilities of observing strong misleading
evidence under H1 and H2 are

M1 = P
(
ev (H1, H2) < k−1

∣∣H1 is correct
)
, (1.1)

and

M2 = P
(
ev (H1, H2) > k

∣∣H2 is correct
)
, (1.2)
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respectively, where k is a known constant greater than unity. The probability of weak
evidence under Hi (i = 1, 2) is

Wi = P
(
k−1 ≤ ev (H1, H2) ≤ k

∣∣Hi is correct
)
. (1.3)

The natural chooses for k are 3, 8 and 10; See, e.g. Royall [12]. The decisive and correct ev-
idences are defined by D1 = P (ev (H1, H2) ≥ k

∣∣H1 is correct) and D2 = P (ev (H1, H2) ≤
k−1

∣∣H2 is correct), respectively. In this paper, we consider the likelihood ratio under the
hypotheses H1 and H2 as a measure of evidence of support for H1 in favor of H2. More
precisely, let Ωi(i = 1, 2) denotes the parameter space under the hypothesis Hi. If Ωi

contains a single point, say θi, then

ev (H1, H2) = ev ({θ1}, {θ2}) =
L(θ1; x)

L(θ2; x)
, (1.4)

1.2 Sequential order statistics

The concept of sequential order statistics (SOSs), introduced by Kamps [11], is an ex-
tension of the usual order statistics (OSs) and used for modelling lifetimes of sequential
r-out-of-n systems. Specifically, consider a given r-out-of-n system consisting of n compo-
nents and X1, · · · , Xn denote the corresponding component lifetimes. Then, the system
lifetime (T ) coincides to the r-th order statistics among X1, · · · , Xn, denoted by Xr:n.
In the usual r-out-of-n systems, it is assumed that the lifetimes X1, · · · , Xn are indepen-
dent and identically distributed (i.i.d.) with a common cumulative distribution function

(CDF), say F , and denoted by X1, · · · , Xn
i.i.d.∼ F . Notice that in these systems failing a

component does not change distributions of lifetimes of surviving components. Motivated
by Cramer and Kamps [2, 3], in practice, the failure of a component may result in higher
load on the remaining components and hence causes the distribution of the surviving
components change.

In the literature, (X?
(1), · · · , X

?
(n)) is called SOSs from F1, · · · , Fn and abbreviated by

(X?
(1), · · · , X

?
(n)) ∼ SOS(F1, · · · , Fn); For other formal definitions and extensions of SOS,

see, e.g., Cramer and Kamps [6-9] and Esmailian and Doostparast [7]. Suppose that we
observed s independent SOS samples. The available data may be represented as

x =

 x11 . . . x1r
...

. . .
...

xs1 . . . xsr

 , (1.5)

where the i-th row of the matrix x in (1.5) denotes the SOS sample coming from the i-th
population. Let X?

(1), · · · , X
?
(n) be the first r SOS. Then, the likelihood function (LF) of

the available data given by (1.5) is then (Cramer and Kamps [3])

L(F1, · · · , Fr; x) = As
s∏
i=1

r−1∏
j=1

[
fj(xij)

(
F̄j(xij)

F̄j+1(xij)

)n−j]
fr(xir)F̄r(xir)

n−r

 , (1.6)

where A = n!/(n− r)! and F̄ (x) = 1− F (x), for x > 0.
The problem of estimating parameters on the basis of SOS has been considered in lit-
erature. For example, Cramer and Kamps [2] considered the problem of estimating pa-
rameters on the basis of s independent multiple SOSs samples under a conditional pro-
portional hazard rates (CPHR) model, defined by F̄j(t) = F̄

αj
0 (t) for j = 1, · · · , r. Here
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F0(t) is a baseline distribution and the hazard rate function of the CDF Fj , defined by
hj(t) = fj(t)/F̄j(t) for t > 0 and j = 1, · · · , n, is proportional to the hazard rate function
of the baseline CDF F0, i.e. hj(t) = αjh0(t), for t > 0.

1.3 An Overview

Statistical evidences in various types of data have been discussed; See for example, De
Santis [4], Doostparast and Emadi [5, 6] and references therein. According to the authors’
knowledge, there is no work in literature on statistical evidences on the basis of SOS
samples. Recently, Hashempour and Doostparast [9] considered evidences in SOS under
the CPHR model when the baseline population follows the one-parameter exponential
distribution. Here, we consider a wide class of lifetime distributions and extend the findings
of Hashempour and Doostparast [9].

2 Evidences in The AL-Hussiani’s family of distributions

Al-Hussaini [1] proposed a general family of lifetime distributions of the form

F (x; θ) = 1− exp {−K(x; θ)} , x > 0, (2.7)

where θ ∈ Θ is a vector of parameters and Θ is the parameter space. Here, the function
K(x; θ) is an increasing function in x for all θ ∈ Θ and K(0; θ) ≡ 0 and K(x; θ) tends
to infinity as x → +∞. Various well-known lifetime distributions including Exponential,
Weibull and Pareto belong to the Al-Hussaini’s family; For a greater detail, see Al-Hussaini
[1]. Under the CPHR model and assuming that the baseline CDF of the parent population
belongs to the Al-Hussaini’s family with the CDF (2.7), the LF (1.6) simplifies to

L(θ,α; x) = C

 r∏
j=1

αj

s s∏
i=1

r∏
j=1

∂K(xij ; θ)

∂xij

 exp
{
−

s∑
i=1

r∑
j=1

mjK(xij ; θ)
}
, (2.8)

where C = (n!/(n− r)!)s, α= (α1, · · · , αr) and mj = (n− j + 1)αj − (n− j)αj+1, for j =
1, · · · , r, with convention αr+1 ≡ 0. Generally, the maximum likelihood estimate (MLE)
of the parameter vector θ is derived by maximizing the LF (2.8) for a given structural form
K(.; .). Now, we restrict ourselves to a subclass of the AL-Hussaini’s family in which one
may obtain explicit expressions for the MLE of the parameter vector θ. More precisely,
assume that

F (x; θ) = 1− exp {−g(θ)h(x)} , x > 0, (2.9)

where g(.) is a non-negative function and h(x) is an increasing function and h(0) = 0 and
h(x)→ +∞ as x goes to infinity. This subclass, denoted by C, consists some well-known
lifetime distributions such as Exponential, Weibull and Pareto models. From (2.9), the
LF (2.8) reads

L(θ,α; x) = η(x;α)g(θ)sr exp {−g(θ)ξ(x;α)} , (2.10)

where ξ(x;α) =
∑s

i=1

∑r
j=1mjh(xij) and

η(x;α) =

(
n!

(n− r)!

)s r∏
j=1

αj

s s∏
i=1

r∏
j=1

∂h(xij)

∂xij

 .
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For g(θ) = θ and h(x) = x, our findings in this paper reduce to the results of Hashempour
and Doostparast [9].
One can see from (2.10) that

2g(θ)ξ(x;α) ∼ χ2rs , (2.11)

where χν calls for the chi-square distribution with ν degrees of freedom. Therefore, an
equi-tail 100(1− γ)% confidence interval for g(θ), when the parameter vector α is known,
is (

χ
2rs,γ/2

2ξ(x;α)
,

χ
2rs,1−γ/2

2ξ(x;α)

)
, (2.12)

where χν,γ stands for the γ-th percentile of the χν -distribution.
If g(θ) is an increasing function and θ has one-dimension, an equi-tail 100(1− γ)% confi-
dence interval for θ is (

g−1

(
χ

2rs,γ/2

2ξ(x;α)

)
, g−1

(
χ

2rs,1−γ/2

2ξ(x;α)

))
, (2.13)

where g−1(x) is the inverse function of g(x).
In sequel, we consider evidences in the available data (1.5) for the problem of hypotheses
testing

H1 : g(θ) = g(θ1) v.s H2 : g(θ) = g(θ2) (2.14)

where θ1 and θ2 are known constants and 0 < g(θ1) < g(θ2). To do this, Equations (1.4)
and (2.10) give the evidence for the hypothesis H1 in favor of H2 as

ev ({g(θ1)}, {g(θ2)}) =
L(θ1,α; x)

L(θ2,α; x)
=

(
g(θ1)

g(θ2)

)sr
exp

{
(g(θ2)− g(θ1)) ξ(x;α)

}
. (2.15)

The probabilities of misleading and weak evidences on the basis of s independent SOS
samples under the CPHR model with the baseline CDF (2.9) are

M
[g]
1 = Fχ2rs

 2g(θ1)

(g(θ2)− g(θ1))
ln


(
g(θ2)
g(θ1)

)sr
k

 , (2.16)

M
[g]
2 = 1− Fχ2rs

(
2g(θ2)

(g(θ2)− g(θ1))
ln

(
k

(
g(θ2)

g(θ1)

)sr))
, (2.17)

W
[g]
1 = Fχ2rs

(
2g(θ1)

(g(θ2)− g(θ1))
ln

(
k

(
g(θ2)

g(θ1)

)sr))
−

Fχ2rs

 2g(θ1)

(g(θ2)− g(θ1))
ln


(
g(θ2)
g(θ1)

)sr
k

 , (2.18)

W
[g]
2 = Fχ2rs

(
2g(θ2)

(g(θ2)− g(θ1))
ln

(
k

(
g(θ2)

g(θ1)

)sr))
−

Fχ2rs

 2g(θ2)

(g(θ2)− g(θ1))
ln


(
g(θ2)
g(θ1)

)sr
k

 . (2.19)
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The L’ Hopital rule implies that, for i = 1, 2, limg(θ2)→+∞M
[g]
i = limg(θ2)→+∞W

[g]
i = 0.

Under this circumstance, the distance between two baseline populations will increasing
as much as possible. Thus, the probabilities of misleading and weak evidences vanish.
So, even with few SOS data we can make a statement about the hypotheses. Moreover,

limg(θ2)→g(θ1)+ M
[g]
i = limg(θ2)→g(θ1)+

(
1−W [g]

i

)
= 0. In this case, the distance between

two baseline populations will decreasing as much as possible. So, M
[g]
1 and M

[g]
2 vanish

while W
[g]
1 and W

[g]
2 tend to unity. Hence, one can not make decision based on the available

data and needs more SOS samples.

An interesting topic in statistical evidence is determination of the global maximum

of the misleading evidences. Here, maximizing M
[g]
1 in Equation (2.16) is equivalent to

maximizing h(ψ) = ln (ψsr/k) /(ψ − 1) where ψ = g(θ2)/g(θ1) with respect to ψ > 1.
After some algebraic manipulations, one can see that the global maximization of h(ψ) is
derived by solving the non-linear equation ∂h(ψ)/∂ψ = 0, or equivalently 1/ψ + ln(ψ) =
1 + ln(k)/sr. Note that the function h(ψ) is convex and therefore the solution of the
mentioned equation is unique. Similar arguments imply the next proposition.

Let u(t) := t−1 + ln(t) − ln(k)/(sr) − 1, for t > 1. The points of global maximum of

M
[g]
2 and M

[g]
1 , as a function of g(ψ), are derived as the unique solutions of the non linear

equations u(g(ψ)) = 0 and u(1/g(ψ)) = 0, respectively.

Notice that the decisive and correct evidences are

D
[g]
1 = 1− Fχ2rs

(
2g(θ1)

(g(θ2)− g(θ1))
ln

(
k

(
g(θ2)

g(θ1)

)sr))
, (2.20)

and

D
[g]
2 = Fχ2rs

 2g(θ2)

(g(θ2)− g(θ1))
ln


(
g(θ2)
g(θ1)

)sr
k

 . (2.21)

respectively. In Equations (2.16)-(2.21) the probabilities are given in terms of the CDF of
the χν-distribution.

3 Conclusions

Here, we considered statistical evidences in multiple SOS arising from the Al-Hussaini’s
family distribution populations. Weak and misleading evidences for simple hypotheses
about the population parameter were derived in explicit expressions under the CPHR
model. We assumed that the parameter vector α= (α1, · · · , αr) of the CPHR model is
known. One can see that the measure ev ({θ1}, {θ2}) given by (2.15) does not depend on
the vector α.
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The Prediction of Future Record and Inter-Record Time for
Two Parameters Exponential Distribution
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Abstract

There are many situations where experimental outcomes are a sequence of record
observations. In this article, the problem of predicting, either point or interval, for
future record and inter-record time based on lower record are given two parameter
exponential distribution . Also, a Bayesian prediction is presented for future record
and numerical result is given.

Keywords: Two-parameter Exponential distribution , Lower record, Bayes predic-
tion

1 Introduction

Prediction of future observations on the basis of the past and present knowledge is a
fundamental problem of statistics, arising in many contexts and producing varied solutions.
A predictor can be either a point or an interval predictor.

In this paper, we assume that the data available for study are lower record statistics.
Let X1, X2, X3, ... be a sequence of continuous random variables. Xk is a lower record
value if its value is smaller than all preceding values X1, X2, ..., Xk−1. By definition, X1 is
a lower record value. Record statistics arise naturally in many practical problems and in
applied fields such as athletic events (Kuper and Sterken[6]), Biology (Krug and Jain[6]),
catastrophic loss (Hsieh [5])and ... . In this paper, under the Bayesien framework, record
values are used to develop prediction of future record. Prediction of future records has
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been studied by a numbers of statisticians ( See, Ahsanullah [1], Arnold et al. [2],).
The rest of this article is organized as follows. In Section 2, the basic two-parameter
exponential model described that considered and then explained the form of record data
based on which all inferential procedures are developed here. In Section 3, the classical
and Bayesian prediction (point or interval) of future record and inter-record time, are
presented.

2 Model and form of data

A random variable is said to have a two-parameter exponential distribution, denoted by
X ∼ Exp(µ, σ), the corresponding probability density function (pdf) is given by

f(x;µ, σ) =
1

σ
exp

{
−
(
x− µ
σ

)}
, x ≥ µ, −∞ < µ <∞, σ > 0, (2.1)

As in Doostparast and Balakrishnan[4], our starting point is a sequence of independent
random variables X1, X2, X3, ... drawn from the cdf F (.) in (1). We assume that data
may be represented by (R,K) := (R1,K1, ...,Km−1, Rm) where Ri is the i-th record value
meaning new minimum and Ki is the number of trials following the observation of Ri
that are needed to obtain a new record value Ri+1. Throughout this paper, we denote
the observed value of these record data by (r,k) := (r1, k1, ..., km−1, rm). The likelihood
function associated with the sequence (r1, k1, ..., km−1, rm) is given by

L(θ; r,k)=f(rm; θ)
m−1∏
i=1

f(ri; θ)[1− F (ri; θ)]
ki−1I(−∞,rm−1)(rm), (2.2)

ki = 1, ...,∞,

where r0 ≡ +∞ and IA(x) is the indicator function of the set A. Hence, the likelihood
function associated with (r,k) for the two parameter exponential becomes

L(µ, σ; r,k) =
e−

rm−µ
σ e−

1
σ

∑m−1
i=1 ki(ri−µ)

σm
, (2.3)

σ > 0, −∞ < µ < rm < rm−1 < ..... < r1 <∞

3 Prediction

Suppose that we observe only {r1, k1, ..., rm} and the goal is to predict either point or
interval, for the (m+1)th lower record value and mth inter record time. The conditional
distribution of (Rm+1,Km) given (R,K) is just the distribution of (Rm+1,Km) given
Rm = rm due to the well-known Markovian property of record statistics. It follows that
the predictor density is given by

f∗(rm+1, km | r,k;µ, σ) =
1
σe
− 1
σ

(rm+1−µ)e−
1
σ

∑m
i=1 ki(ri−µ)

e−
1
σ

(rm−µ)e−
1
σ

∑m−1
i=1 ki(ri−µ)

=
1

σ
e−

1
σ

(rm+1−µ)e−
1
σ

(km−1)(rm−µ),

µ < rm+1 < rm, km = 1, ...,∞.
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3.1 Classical prediction

There is a type of classical point prediction where calculated the marginal predictive
density, then the predictive estimator rm+1 and km under square error loss function,
introduce E(Rm+1) and E(Km). For this purpose, we use the marginal predictive density
Rm+1 and Km.

f∗(rm+1 | r,k;µ, σ) =
∞∑

km=1

1

σ
e−

1
σ

(rm+1−µ)e−
1
σ

(km−1)(rm−µ)

=
1
σe
− 1
σ

(rm+1−µ)

1− e−
1
σ

(rm−µ)
, µ < rm+1 < rm,

note that, Rm+1 | (r,k) has a truncated two-parameters exponential distribution in rm.
If (µ, σ) are known, under square error loss, classical prediction is E(Rm+1 | r,k).

E(Rm+1 | r,k;µ, σ) =

∫ rm

µ
rm+1

1
σe
− 1
σ

(rm+1−µ)

1− e−
1
σ

(rm−µ)
drm+1

=
1

1− e−
1
σ

(rm−µ)

∫ rm

µ

rm+1

σ
e−

1
σ

(rm+1−µ) drm+1

=
µ+ σ − (rm + σ)e−

1
σ

(rm−µ)

1− e−
1
σ

(rm−µ)
,

With using cdf of Rm+1 can obtain the construction of exact interval prediction for a
future record.

F ∗Rm+1(t | r,k;µ, σ) =

∫ t

µ

1
σ e
− 1
σ (rm+1−µ)

1− e− 1
σ (rm−µ)

drm+1 =
1− e− 1

σ (t−µ)

1− e− 1
σ (rm−µ)

, µ < t < rm

So, a 100(1− α) percent interval prediction for Rm+1 is given by

P (L < Rm+1 < U | (r,k)) = 1− α,

so, the lower bound and upper bound are

L = µ− σLn(1− α

2
(1− e−

1
σ

(rm−µ))), U = µ− σLn(1− (1− α

2
)(1− e−

1
σ

(rm−µ))).

The marginal predictive density function of Km given (r,k) is given by

f∗(km | r,k;µ, σ) =

∫ rm

µ

1

σ
e−

1
σ

(rm+1−µ)e−
1
σ

(km−1)(rm−µ) drm+1

= [e−
1
σ

(rm−µ)]km−1(1− e−
1
σ

(rm−µ)), km = 1, ...,∞

given (r,k), Km has Geometric(1−e−
1
σ

(rm−µ)), If (µ, σ) are known, under square error
loss, classical prediction is E(Km | r,k) of Km is

K̂m = E(Km | (r,k)) = [
1

1− e−
1
σ

(rm−µ)
],

With using cdf of Km can obtain the construction of exact interval prediction for the
future inter-record time,

F ∗Km(k | (r,k);µ, σ) = 1− e−
k
σ

(rm−µ)
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So, a 100(1− α) percent interval prediction for Km is given by

P (L < Km < U | (r,k)) = 1− α,

therefore

L = [1−
σLn(1− α

2
)

(rm − µ)
], U = [−

σLn(
α

2
)

(rm − µ)
] µ < rm, σ > 0.

When parameters are unknown, we used the Bayesian method to do on predicting the
next record.

3.2 Bayesian prediction

From a strict Bayesian view point, there is clearly no way in which one can say that one
prior is better than any other. Presumably one has own subjective prior and must live
with all of its lumps and bumps. It is more frequently the case that we elect to restrict
attention to a given flexible family of prior distributions and we choose one from the
family which seems to best match our personal believes. With this in mind, we consider
location and scale parameters are both unknown Here, the joint prior distribution for the
parameters µ and σ suggested in the form:

π(µ, σ) = π1(µ | σ)π2(σ) (3.4)

where

π1(µ | σ) ∝ 1

σ
, µ ∈ R , (3.5)

which is the Jeffreys non-informative prior distribution (see Berger [3]) of the parameter
µ for fixed value of the parameter σ, and

π2(σ) =
βγe−

β
σ

Γ(γ)σγ+1
, σ > 0, γ > 0, β > 0, (3.6)

which is the conjugate prior distribution of the parameter σ.
Substituting (3.2) and (3.3) in (3.1), get

π(µ, σ) =
βγe−

β
σ

Γ(γ)σγ+2
σ > 0, µ ∈ R, (3.7)

Hence, the joint posterior distribution of µ and σ is given by

π(µ, σ | r,k) =
(
∑m−1
i=1 ki + 1)[β +

∑m−1
i=1 ki(ri − rm)]m+γ

Γ(m+ γ)σm+γ+2

×exp

[
− 1

σ

(
β +

m−1∑
i=1

ki(ri − µ)

)]
,−∞ < µ ≤ rm, σ > 0,

(3.8)

where km = 1.
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In this subsection, the problem of point prediction for a future record from a Bayesian
approach is considered. In general the Bayes predictive density function of Y given X is
given by

h(Y | X) =

∫
Θ
f(Y | x; θ)π(θ | x)d θ. (3.9)

Assume that we have (r1, k1, ..., km−1, rm), from the Exp(µ, σ). Substituting from
(2.3) and (3.5) into (3.6), we get the Bayes predictive density function (rm+1, km) given
(r,k)

h(rm+1, km | r,k) =

∫ ∞
0

∫ rm+1

−∞
f∗(rm+1, km | r,k;µ, σ)× π(µ, σ | r,k) dµ dσ

=

∫ ∞
0

∫ rm+1

−∞

1

σ
e−

1
σ (rm+1−µ)e−

1
σ (km−1)(rm−µ)

×
(

m−1∑
i=1

ki + 1)[β + η(r,k)]m+γ

Γ(m+ γ)σm+γ+2
e

− 1

σ

β+

m−1∑
i=1

ki(ri − µ)




× e− 1
σ (rm−µ) dµ dσ

=

(

m−1∑
i=1

ki + 1)[β +

m−1∑
i=1

ki(ri − rm)]m+γ(m+ γ)

[β +

m−1∑
i=1

ki(ri − rm+1) + km(rm − rm+1)]m+γ+1(

m−1∑
i=1

ki + km + 1)

,

The marginal pdf of rm+1 given (r,k) is given by

h(rm+1 | r,k) =

∞∑
km=1

f∗(rm+1, km | r,k)

=

∞∑
km=1

(

m−1∑
i=1

ki + 1)[β +

m−1∑
i=1

ki(ri − rm)]m+γ(m+ γ)

(

m−1∑
i=1

ki + km + 1)[β +

m∑
i=1

ki(ri − rm+1)]m+γ+1

,

−∞ < rm+1 < rm (3.10)

Now, the lower and upper 100(1− α) prediction bounds for Y ≡ Rm+1 can be obtained
by evaluating the predictive survival function
Pr(Y ≤ x | (r,k)) for some positive x. It follows, from (3.7), that

HRm+1
(x | r,k) =

∫ x

−∞
h(rm+1 | r,k) drm+1

=

∞∑
km=1

∫ x

−∞
f∗(rm+1, km | r,k) drm+1

∞∑
km=1

(

m−1∑
i=1

ki + 1)[β +

m−1∑
i=1

ki(ri − rm)]m+γ

(

m−1∑
i=1

ki + km + 1)[β +

m∑
i=1

ki(ri − x)]m+γ(

m−1∑
i=1

ki + km)

,

−∞ < x < rm
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Because rm+1 should be less than rm, so we need only one-sided interval prediction for
prediction of rm+1 and we choose C to do so

P (Rm+1 > C | r,k) = 1− α =⇒ P (Rm+1 < C | r,k) = α = HRm+1
(C | r,k). (3.11)

The marginal pdf of Km given (r,k) is given by

g(km | r,k) =

∫ rm

−∞
h(rm+1, km | r,k) drm+1

=

m−1∑
i=1

ki + 1

(

m−1∑
i=1

ki + km + 1)(
m−1∑
i=1

ki + km)

, km = 1, 2, ....

With calculation the cdf of Km can obtain the construction of exact confidence interval
for the future inter-record time.

GKm(k) =
k∑

km=1

m−1∑
i=1

ki + 1

(

m−1∑
i=1

ki + km + 1)(

m−1∑
i=1

ki + km)

, (3.12)

So, a 100(1− α) interval prediction for Km is given by
P (L < Km < U) = 1− α.

3.3 Illustrative example

In the following, a numerical example is given to illustrate the developed procedures in this
section. An lower record sample of size m = 5 is generated from the Exp(1, 5) distribution
with pdf given by (2.2) and written in Table 1.

Table 1: Generated record sample from Exp(µ = 1, σ = 5)

i
1 2 3 4 5

R 1.8508 1.5619 1.1960 1.0517 1.0112
K 3 5 2 4 ...
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It can be seen that with prior parameters γ = 3 and β = 4 in (3.3), by (3.7), we have

HRm+1
(c | r,k) =

∞∑
km=1

(

m−1∑
i=1

ki + 1)[β +

m−1∑
i=1

ki(ri − rm)]m+γ

(

m−1∑
i=1

ki + km + 1)[β +

m∑
i=1

ki(ri − c)]m+γ(

m−1∑
i=1

ki + km)

=

∞∑
km=1

(

4∑
i=1

ki + 1)[4 +

4∑
i=1

ki(ri − r5)]8

(

4∑
i=1

ki + km + 1)(

4∑
i=1

ki + km)[4 +

5∑
i=1

ki(ri − c)]8

=

∞∑
km=1

1265764157

(15 + km)(14 + km)[23.93− 14c+ 1.01km − ckm]8

= 0.05

By numerical methods (Maple22) we solve the (3.8):

HRm+1(C) = 0.05 =⇒ c = 0.8045

So, a 95 percent bayes prediction interval for rm+1 is as follows

0.8045 < rm+1 < 1.0112.

Also,
P (L < Km < U) = 0.9

By using of GKm we solve numerically for L and U and give
45 < Km < 375
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Bayesian estimation for component distribution from
system lifetime data
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Abstract

The problem of Bayesian estimation of the proportionality parameter in the pro-
portional hazard rate model is considered. The Bayes estimate is obtained on the
basis of system lifetime data and under the squared error loss function. Explicit forms
of Bayes estimator cannot be obtained. Approximate expressions for this estimate are
derived using the Simulation-Based method as well as using the Mont-Carlo Integra-
tion method. A numerical simulation study is performed to compare the proposed
estimates.

Keywords: Bayesian estimate, coherent system, signature.

1 Introduction

In reliability analysis, the reliability estimations of components in a system are often
obtained using system life test data. In practice, the exact cause of system failure is
sometimes unknown due to various reasons such as the constraints of cost and time.
Therefore, the cause of system failure is masked and the only observable quantities are the
systems-life (failure or censoring time). The estimations on the basis of such data are very
useful since they can reflect the actual operational capacity of individual components in
system environment.

Component-reliability is often estimated from system life data by using a series system
assumption (see, e.g. [5] and [4]). Recently, some authors discussed such inference for a
coherent system with known signature, see [1] and [2].

Consider a coherent system consisting of n independent and identically distributed
(iid) components with common reliability function F̄ . It is known that the reliability
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function of system can be obtained with the following expression F̄T (t) =
∑n

i=1 aiF̄1:i(t)
where, a = (a1, ..., an) is the minimal signature vector of system.

In proportional hazard rate model we have F̄ (t) = [Ḡ(t)]α where, Ḡ(t) is the baseline
reliability function in [0,∞), and α > 0 is the proportionality parameter. This model
includes some common lifetime distributions such as exponential, Pareto and Weibull
distributions. Based on the proportional hazard rate model we have,

F̄T (t) =
n∑
i=1

ai[Ḡ(t)]iα

In the following it is supposed that the Ḡ(t) is completely specified and an interesting
problem is estimating the proportionality parameter, α, based on the system lifetimes
when the signature of the system is available. For such model, Ng et al. [1] employed the
method of moments, maximum likelihood method and the least squares method. We here
consider the problem of estimating α via Bayesian approach.

Suppose m independent n-component systems with the same distribution as T are
placed on a life-test and that the corresponding lifetimes T1, T2, ..., Tm are observed. The
likelihood function of α is

L(α) = αm
m∏
k=1

{g(tk)
n∑
i=1

iai[Ḡ(tk)]
iα−1}

where, g(t) is density function of Ḡ(t).
Under the squared error loss, the Bayes estimator of any function of the unknown pa-

rameter and its corresponding minimum Bayes risk, MBR, are the posterior expectation
and variance of that function, respectively. Thus to get the Bayes estimate of α and cor-
responding MBR, we need the first and the second posterior moments. The rth posterior
moment of α is obtained as follows

E(αr|t1, .., tm) =

∫
αm+rπ(α)

∏m
k=1

∑n
i=1 iai[Ḡ(tk)]

iα}dα∫
αmπ(α)

∏m
k=1

∑n
i=1 iai[Ḡ(tk)]iα}dα

where, π(α) is the prior distribution of α.
Explicit form of Bayes estimator cannot be obtained. In such case, different approxi-

mations are used to establish point estimate.

2 Exponential distribution

We assume that the lifetime of the n components in a system are iid with constant hazard
rate, i.e., they are exponentially distributed with reliability F̄ (t) = e−αt, hence we have
Ḡ(t) = e−t.

It is assumed here that the parameter follows the Gamma(b, c) prior distribution, i.e.
π(α) = 1

Γ(b)α
b−1ce−cα where the hyperparameters b and c are assumed to be non-negative

and known. Under the assumptions, the Bayes estimator becomes

α̃B =

∫∞
0 αm+be−cα

∏m
k=1

∑n
i=1 iaie

−iαtkdα∫∞
0 αm+b−1e−cα

∏m
k=1

∑n
i=1 iaie

−iαtkdα
(2.1)

If the hyperparameters are unknown we can estimate them with empirical Bayes.
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Table 1: Bias and MSE of point estimates
Bias MSE

m Syst. no MME MLE SB MCI MME MLE SB MCI
5 1 0.172 0.188 0.087 0.133 0.398 0.390 0.125 0.126

2 0.162 0.180 0.089 0.132 0.292 0.296 0.114 0.115
10 1 0.080 0.086 0.055 0.955 0.139 0.136 0.082 0.989

2 0.075 0.083 0.056 0.936 0.096 0.095 0.064 0.953
15 1 0.063 0.066 0.051 2.627 0.066 0.065 0.049 7.054

2 0.038 0.042 0.029 2.365 0.055 0.054 0.042 5.741

The (2.2) does not take a closed form. Therefore, in the following we adopt two
approximation techniques to obtain Bayes estimate. Simulation-Based method (SB)

In this method, a random sample from the posterior distribution of the parameter is
generated (see [3]). This method is based on generating a random number from prior
distribution (say, αp) and calculating the ratio of likelihoods at this point and at MLE of
parameter using the original data. A random number from uniform distribution is gener-

ated (say, u); if u ≤ L(αp)
L(α̂) , then αp can be considered as a data from posterior distribution.

Using simulated random sample from posterior distribution, the Bayes estimate and its
MBR are approximated.

Monte Carlo Integration (MCI) method

In computing a complex integral, if the integrand (say w(x)) can be decomposed into
the product of a function (v(x)) and a probability density function (p(x)), then the integral
can be approximated by drawing a large random sample from the density p(x) and then
computing the mean of function v(x) evaluated at generated data.

Using MCI method the (2.2) can be obtained as

α̃B ∼=
1
M

∑M
l=1 αl

∏m
k=1

∑n
i=1 iaie

−iαltk

1
M

∑M
l=1

∏m
k=1

∑n
i=1 iaie

−iαltk

where, αl, l = 1, ...,M are random sample from Gamma(m+ b, c).

Example 1. To evaluate the performance of the proposed Bayesian estimate, a large
simulation study is carried out. Consider two 4-components coherent systems: series
system T1 = min(X1, X2, X3, X4) with minimal signature a1 = (0, 0, 0, 1), and the second
system with T2 = min(X1,max(X2, X3, X4)) and a2 = (0, 3,−3, 1). We take α = 1 and
the hyper paramererts b = c = 2. We generate 1000 sets of system lifetime in order to
compare the estimated bias and MSE of point estimators based on i) method of moments
(MME) ii) maximum likelihood (MLE) iii) Simulation-Based method (SB) iv) Mont Carlo
Integration method (MCI) (for the MME and MLE methods see [1]).

In this simulation study we observe that the SB method has the smallest bias and the
smallest MSE among the other estimators considered here. This means that the Bayes
procedure provides better estimates than the method of moments and maximum likelihood
approaches in this example. The SB method leads in the better approximation to Bayes
estimate of the parameter than the MCI estimate. As it is expected, the MSEs of the
different estimators are decreasing with increase the sample size m. Inference based on
samples from the second system results in better estimates than series system (useful when
we intend to choose a suitable system structure to run the life-testing experiment).
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Abstract

In this paper we consider stress-strength modeling for calculating of the stress-
strength reliability of a coherent system which is represented as a function of the
stress-strength reliabilities of its components. The system components may experi-
ence the same or different stress levels. We also point out a mistake result given by
Bhattacharya and Roychowdhury (2013) when the components of the system are sub-
jected to a common stress level.

Keywords: Coherent system, Minimal cut sets, Minimal path sets, Stress-strength
reliability

1 Introduction

Stress-strength models are important in reliability literature and engineering applications.
A system or unit may be subjected to randomly occurring environmental stress such as
pressure, temperature and humidity and survival of the system depends on its resistance.
In the simplest setup of stress-strength models, a unit functions if its strength is greater
than the stress imposed on it. The reliability of the unit is then defined as R = P (X > Y ),
where X and Y represent the random values of strength of the unit and stress placed
on the unit, respectively. The estimation of R has been widely studied under various
distributional assumptions on X and Y (see e.g., Kotz et al.(2003)). These models have
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also been studied for the systems consist of more than one component. Most of literatures
on this subject are concerned when the system components are subjected to a common
stress level. Eryilmaz (2008) considered a multivariate stress-strength model for a coherent
system. He assumed that the components are subjected to a common random stress.
Eryilmaz (2010) expressed the system stress-strength reliability in terms of those of series
systems and presented some approximations for system reliability. He assumed that the
stress level imposed on the components is common. Eryilmaz (2013) studied the stress-
strength reliability of a system with a time dependent(dynamic) strength and a static and
common random value of the stress. Bhattacharya and Roychowdhury (2013) studied the
stress-strength reliability of a system with different stress levels and claimed their results
include the case when the system components are subjected to a common stress level as a
special case. In the following section we point out that their claim is not correct and give
correct argument.

2 Main result

Let φ be the structure function of a coherent system with n components whose random
strengths are X1, . . . , Xn and suppose the components are subjected to the stress levels
Y1, . . . , Yn, respectively. The ith component fails if the imposed stress exceeds its strength
at any time, i.e. if Yi ≥ Xi. Thus pi = P (Xi > Yi) gives the stress-strength reliability of
the ith component. We define the status of components as follow:

Zi =

{
1 if Xi > Yi
0 if Xi ≤ Yi i = 1, 2, . . . , n (2.1)

where we assume that Y1, . . . , Yn are independent and Yi has a continuous distribution
function Gi. Also assume that X1, . . . , Xn are independent random variables and Xi has
a continuous distribution function Fi. We also assume that Fi and Gi are independent
distributions. Then the reliability of the coherent system φ under the above mentioned
stress-strength setup is given by

Rφ = Pr {φ(Z1, . . . , Zn) = 1}

where φ(z) indicates the state of the system. Note that the binary random variables
defined by (2.1) are independent.

In the following using minimal path(cut) sets of the system we obtain a general ex-
pression for Rφ (for a details on the coherent structures, minimal path(cut) sets etc. see
e.g. Barlow and Proschan (1975)). Suppose now that the coherent system has p minimal
path sets given by P1, . . . , Pp and c minimal cut sets C1, . . . , Cc. It is known that

φ(z) = max
1≤i≤p

min
j∈Pi

zj = min
1≤i≤c

max
j∈Ci

zj

= 1−
p∏
i=1

(1−
∏
j∈Pi

zj) =

c∏
i=1

1−
∏
j∈Ci

(1− zj).


We have

Rφ = Pr {∩ci=1[∪j∈Ci(Xj > Yj)]} = Pr {∪pi=1[∩j∈Pi(Xj > Yj)]} (2.2)
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Proof. The first equality was proved by Bhattacharya and Roychowdhury (2013). The
second equality can be similarly proved. In the following Remarks we consider some
special cases for the Equation (2.2) and also point out the mistake examples given by
Bhattacharya and Roychowdhury (2013).
Remark 1. The Equation (2.2) holds true in general even if the independence assumption
does not hold. Under independence assumption and according to the form of the minimal
cut(path) sets of the system, the first or the second equality in (2.2) may be easier to use
than the other. For example in a consecutive-k-out-of-n:F system minimal cut sets are
Ci = {i, i + 1, . . . , i + k − 1}, i = 1, . . . , c = n − k + 1 which are of simple form and easy
to use whereas the minimal path sets of this system do not have such a simple form and
also determining of p(> c) for this system is usually complicated. Hence the first equality
in (2.2) is easier to use than the second one.
Remark 2. If the minimal cut sets of the system are non-overlapping, the first equality
in (2.2) is then reduced to

Rφ =
c∏
i=1

Pr(∪j∈Ci(Xj > Yj)).

Also when the minimal path sets are disjoint we then have

Rφ = 1− Pr {∩pi=1[∪j∈Pi(Xj ≤ Yj)]} = 1−
p∏
i=1

Pr(∪j∈Pi(Xj ≤ Yj)).

Remark 3. It seems that the situation of common stress level (that is Yi = Y, i = 1, . . . , n)
can be obtained from the case of different stress levels as a particular case. But this is
not true in general. Note that when Yi = Y the binary random variables Z1, . . . , Zn
(or equivalently the events (Xi > Yi)) are not independent. For example in a series
system we now have Rφ = Pr(minZi = 1) = Pr(Z1 = 1, . . . , Zn = 1) = Pr(X1 >
Y, . . . ,Xn > Y ) = Pr(minXi > Y ) 6=

∏n
1 Pr(Xi > Y ). Hence those expressions given

by Bhattacharya and Roychowdhury (2013) for the reliability of k-out-of-n systems, a
series-parallel system(examples 1, 2 and 4), a hi-fi system(Example 5) and for a bridge
system(Example 6) are not correct. Her we only give the correct value of the reliability of
a series-parallel system.
Example 1. Consider the following series-parallel system.

c
1

2

c3
c

We have Rφ = Pr [(X1 > Y ) ∩ {(X2 > Y ) ∪ (X3 > Y )}] =
Pr(X1 > Y ) + Pr(X2 > Y ) + Pr(X3 > Y )− Pr [(X2 > Y ) ∩ (X3 > Y )]
−Pr [(X1 > Y ) ∪ (X2 > Y ) ∪ (X3 > Y )] which is (after simplification) equal to

Pr(min(X1, X2) > Y ) + Pr(min(X1, X3) > Y )− Pr(min(X1, X2, X3) > Y )
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Abstract

Let X be the lifetime of a system and Xt = (X − t|X > t) be the residual lifetime
of the system at time t. In the present paper, we propose two dynamic measures
to evaluate the dynamic Fisher information (DFI) and dynamic Fisher information
distance (DFID) of residual lifetime Xt. We show that DFI and DFID of Xt are
connected to well-known reliability measures such as hazard function (HF) and mean
residual life (MRL). Several properties of DFI and DFDI are investigated based on
aging properties of Xt.

Keywords: Fisher information, Fisher information distance, Mean residual life time
, Hazard function

1 Introduction

The Fisher information (FI) and the Fisher information distance (FID) are well known
measures with applications in different disciplines such as Statistics, Physics etc (see, for
example, Fisher (1925), Johnson(2004) , Frieden (1988) and Frieden (2004)). Given a
random variable X with an absolutely continuous density function f , the FI of X (or f)
is defined by

I(X) = I(f) =

∫ ∞
−∞

ρ2(x)f(x)dx (1.1)

where ρ(x) = −f
′
(x)

f(x) is the score function corresponding to f . For two random variables
X and Y with absolutely continuous density functions f and g, respectively , the DFI

1

2
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between f and g is defined by

D(f |g) =

∫ ∞
−∞

(ρf (x)− ρg(x))2f(x)dx (1.2)

where ρf (x) and ρg(x) are the score functions corresponding to f and g, respectively.
Duration study is a subject of interest in many branches of science such as reliability,

survival analysis, Let X be a nonnegative random variable denoting a duration such as
a lifetime of a system with distribution function F , and density function f . Capturing
effects of the age t of system on the information about the residual lifetime is important
in many applications. For example, in reliability when the system is working at time t,
one is interested in the study of the lifetime of the system beyond t. In such case, the set
of interest is the residual lifetime St = {x;x > t}. Hence the distribution of interest for
computing information is the residual distribution with survival function

F̄t(x) =

{
F̄ (x)
F̄ (t)

x ∈ St
1 otherwise,

(1.3)

where F̄ denotes the survival function of X. In the present paper, we introduce a dynamic
FI (DFI) and a dynamic FFD (DFID) corresponding to distribution Ft and study its
properties in connection to reliability measures such as hazard rate and mean residual life.

2 Dynamic Fisher Information

Assume that ft(x) and gt(x) denote the density functions corresponding to F̄t(x) and
Ḡt(x), respectively.

Definition 1. The DFI of ft is defined as

IX(t) =

∫ ∞
t

(
dft(x)
dx

ft(x)

)2

ft(x)dx

=

∫∞
t ρ2(x)f(x)dx

F̄ (t)
(2.4)

Definition 2. The DFID between ft and gt is defined as

Dt(f ||g) =

∫ ∞
t

(
dft(x)
dx

ft(x)
−

dgt(x)
dx

gt(x)
)2ft(x)dx

=

∫∞
t (ρf (x)− ρg(x))2f(x)dx

F̄ (t)
(2.5)

Clearly for a non-negative random variable X, DFI and DFID reduce, respectively, to FI
and FID, when t→ 0.

Now we develop some results about DFI and DFID.

Theorem 1. IX(t) is increasing (decreasing) if and only if

IX(t) ≤ (≥)ρ2(t).
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Theorem 2. The survival function F̄ (t) can be represented in terms of IX(t) and ρ(t) as
follows:

F̄ (t) = e
−
∫ t
0

I
′
X (t)

IX (t)−ρ2(t)

Theorem 3. If X is a random variable with continuous density f and φ is a twice dif-
ferentiable and invertible function then

Iφ(X)(t) =
1

F̄ (φ−1(t))

∫ ∞
φ−1(t)

1

φ′(x)2 [
f ′(x)

f(x)
− φ′′(x)

φ′(x)
]2f(x)dx (2.6)

Theorem 4. Let X and Y have densities f and g, distribution F and G, respectively.

(a) Assume that g is increasing . IG(X)(G(t)) ≤ 1
g(t)2Dt(f ||g)

(b) Assume that g is decreasing. IG(X)(G(t)) ≥ 1
g(t)2Dt(f ||g).

In (a) and (b) equalities hold if and only if Y is uniform .

Definition 3. Let X and Y be two random variables with dynamic Fisher information
functions IX(t) and IY (t) respectively. X is said to be less than Y in dynamic Fisher
information, denoted by X ≤DFI Y , if IX(t) ≤ IY (t), for all t.

Theorem 5. Let X and Y have densities f and g, respectively.

(a) Assume that f is increasing and g is log-convex. If X ≤lr Y , then X ≤DFI Y .

(b) Assume that f is decreasing and g is log-convex. If Y ≤lr X, then X ≤DFI Y .

where ≤lr denotes the likelihood ratio order .

3 Connection to reliability functions

Let X be a random variable with density f , survival function F̄ , the score function ρf (x) =

−f ′(x)
f(x) , hazard function r(x) = f(x)

F̄ (x)
and cumulative hazard function R(x) = −lnF̄ (x),

respectively.

Theorem 6. Let X be a random variable with DFI If (x). Then

(a) E[ρf (X)R(X)] = E[r(X)] , If limx→∞ f(x) = 0

(b) E[ρ2
f (X)R(X)] = E[If (X)]

(c) E[ρf (X)|X > t] = r(t)

Theorem 7. If the smooth conditions limx→∞ f(x) = 0 and limx→0 f(x) = 0 are met
then we have

(a) corr(ρf (X), R(X)) = E[r(X)]√
I(f)

(b) corr(ρ2
f (X), R(X)) =

E[If (X)]−I(f)√
V ar(ρ2

f (X))

(c) E[ρf (X)R(X)|X > t] = r(t)R(t) + E[r(X)|X > t]

(d) E[ρ2
f (X)R(X)|X > t] = If (t)R(t) + E[If (X)|X > t]
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(e) Cov((ρf (X), R(X))|X > t) = E[r(X)|X > t]− r(t)

(f) Cov((ρ2
f (X), R(X))|X > t) = E[If (X))|X > t]− If (t)

Theorem 8. Given a random variable X with DFI IX(t), we have

(a) IX(t) ≥ r2(t)

(b) F̄ (x) ≥ e−
∫ t
0

√
IX(x)dx

equalities hold if and only if X is exponential.

Theorem 9. Let Xe be the equilibrium random variable corresponding to the random
variable X. Then the density function of Xe is

fe(x) =
F̄ (x)

µ
,

where µ is the mean of X. The residual Fisher of Xe can be represented as

I(Xe) =
E(r(X)|X > t)

mX(t)
,

where mX(t) denotes the MRL of X.

From above theorem , we particulary get that the Fisher information of Xe is given
by I(Xe) = E(r(X))

µ , where µ is the mean of X. Also, from the fact that an IFR (DFR)
distribution is DMRL (IMRL), This representation implies that if X is IFR (DFR) then
the dynamic Fisher information IXe(t) is increasing (decreasing) in t.

Theorem 10. Let Xe be the equilibrium random variable corresponding to the random
variable X with density fe(x) and score function ρfe(x), respectively, then

(a) E[ρfe(X)] = 1
µ , where µ = E(X)

(b) E[ρfe(X)|Xe > t] = 1
mX(t) , where mX(t) is MRL of variable X.

(c) IXe(t) ≥ 1
m2
X(t)

.

(d) IXe ≤
√
If
µ , where If is FI of random variable X.

Theorem 11. Let Xe be the equilibrium random variable corresponding to the random
variable X and Xe2 be the equilibrium random variable corresponding to the equilibrium
random variableXe then

Dt(fe||fe2) = E[(
m
′
X(X)

mX(X)
)2)|Xe > t]

where mX(t) and Dt are MRL of X and DFID , respectively.
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Abstract

In this note, using numerical studies and Telescopic form of discrete distributions,
we have tried to found a good approximation of stress-strength measure, R = P (Y <
X). Also, we have illustrated our method for geometric and discrete Weibull distri-
butions.

Keywords: Reliability function; Stress-Strength model; Telescopic form.

1 Introduction

R = P (Y < X) is a measure of component reliability, which provides a general measure of
the difference between two populations and has applications in many areas such as clinical
trials, genetics, and reliability. For example, if Y is the response for a control group, and
X refers to a treatment group, R is a measure of the effect of the treatment. Or, if Y is the
water pressure on the dam wall, and X be the strength of the dam, then the parameter
R is of very important in maintenance.

A lot of authors on various topics have done extensive research on stress-strength
models and a good review of many papers on theory and applications aboutR = P (Y < X)
can be found on the book by Kotz et al. [3]. We should also mention the recent works
of Surles and Padgett [12], Kundu and Gupta [4, 5], Sengupta [10], Kundu and Raqab [6]
and Panahi and Asadi [8] which have obtained results due to estimation of P (X > Y ) and
characterizations related to it in continuous cases.
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A few works have been done when the stress (or demand) Y and strength (or supply)
X are taken to be discrete random variables. The first works on discrete cases are done
by Maiti [7] in the geometric case and Chaturvedi and Tomer [2] and Sathe and Dixit [11]
in the negative binomial case. Behboodian [1] find properties of P (X > Y ) for binomial
distribution.

2 P (Y < X) in Telescopic form of discrete distributions

Recently based on the above method, Rezaei et al. [9] introduced a general form of any
discrete distribution and named it ”Telescopic form of distribution”.

Let X be any non-negative discrete integer valued random variable, then the Telescopic
form of its pmf is as follow:

pX(x) = qkθ(x) − qkθ(x+1), x = 0, 1, 2, ..., (2.1)

where 0 < q < 1 and kθ(x) is a strictly increasing function of x with kθ(0) = 0 and
kθ(∞) =∞.

If F (x) = P (X > x) has closed form, then kθ(x) can be of form lnF (x−1)
ln q . Also, we

have RX(x) = Pr(X ≥ x) =
∑∞

i=x(qkθ(i) − qkθ(i+1)) = qkθ(x) , x = 0, 1, 2, ..., ..

If X and Y are two independent discrete random variables with pdf of forms,

pX(x) = q
kθ(x)
1 − qkθ(x+1)

1 , x = 0, 1, 2, ...,

and

pY (y) = q
kθ(y)
2 − qkθ(y+1)

2 , y = 0, 1, 2, ...,

respectively, we have,

R = P (Y < X) =

∞∑
x=0

P (Y < x)PX(x)

=
∞∑
x=0

(1− qkθ(x)
2 )(q

kθ(x)
1 − qkθ(x+1)

1 )

= 1−
∞∑
x=0

(q1q2)kθ(x) +

∞∑
x=0

q
kθ(x+1)
1 q

kθ(x)
2 .

As special cases for Geometric distribution (kθ(x) = x) we have,

R = P (Y < X) = 1−
∞∑
x=0

(q1q2)x +
∞∑
x=0

qx+1
1 qx2

=
q1(1− q2)

1− q1q2
, (2.2)

which is the result of Maiti (1995).

As it is seen, in some discrete case, calculation of the R is not always straightforward
and the results are not simple. The rest of this note is to study P (X > Y ) with a numerical
study also.
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3 Numerical studies

In discrete distributions of Telescopic form, the problem of computation of R = P (Y < X)

is due to calculation of two series
∑∞

x=0(q1q2)kθ(x) and
∑∞

x=0 q
kθ(x+1)
1 q

kθ(x)
2 which have not

closed form for some kθ(x). So in this section we try to obtain the convergence of function
R(n) with respect to n of form below,

R(n) = 1−
n∑
x=0

(q1q2)kθ(x) +

n∑
x=0

q
kθ(x+1)
1 q

kθ(x)
2 .

Firstly, note that R(n) is a decreasing function of n and because of the closeness of it
values for different values of n, some lines coincide in the following plots.

3.1 Geometric distribution

In Figure ??, we compute and plot R(n) for different values of q1 and q2, and also plot
the exact value of R via (2.2).

Figure 1: Computation of exact R = P (X < Y ) for two independent geometric distributions with
parameters q1 and q2 (bold line) and computation of R(n) for different values of parameters and n
(from above line to down line the values of n are 2, 3, 5, 10 and 30 respectively).

Our computations show that, for n about 20, the differences between R(n) and exact
values R for large values of q2 are negligible and more interesting for small values of q1

and q2, the differences are less than 0.00001 for n = 5. Although in geometric distribution
the exact value of R has obtained, but a good approximation of it can be as follow,

R̃ = q1 + q1q2(q1 − 1)
(
q1q2(q1q2 + 1)(q2

1q
2
2 + 1) + 1

)
.

3.2 Discrete Weibull distribution

In special case of kθ(x) = xθ we have discrete Weibull distirbution with pmf pX(x) =

qx
θ − q(x+1)θ . Figure ?? shows the computations of R(n) for two independent discrete

Weibull distribution with different values of parameters q1, q2 and θ1 = θ2 = 2. From
numerical study, we found that for small values of q1 and q2 and for θ > 1 the convergence
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Figure 2: Computations of R(n) for two independent discrete Weibull distributions with parameters
θ1 = θ2 = 2 and different values of parameters q1 and q2 for some n (from above line to down line the
values of n are 1, 2, 3, 4 and 100 respectively).

rate of R(n) is very high for small n and the differences are less than 0.00001. So, we have
the following approximation of R in case of θ > 1,

R̃ = q1 + q1q2

[
(q1q2)2θ−1(q1−2θ

2 − 1) + (q1q2)3θ−1(q2θ−3θ

2 + q4θ−3θ

1 − 1) + 1
]
.

For θ < 1 the differences of R(n) are noticeable for n < 50.
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Abstract

In this paper, we discuss the maximum likelihood and Bayes estimation problem for
the shape parameter of the weighted exponential distribution based on upper record
ranked set samples. A simulation study is presented for the purpose of comparison.

Keywords: Bayesian estimation, maximum likelihood estimation, record ranked set
sampling.

1 Introduction

The record ranked set sampling plan has been introduced recently by [2]. Here, we describe
this sampling scheme according to [2] as follows: Suppose that we have m independent
sequences of continuous random variables. If Ri,i denotes the i-th record value in the i-th
sequence for i = 1, ...,m, then i-th sequence sampling is terminated when Ui,i is observed.
Then, the only available observations, which are called record ranked set sample (RRSS),
include R1,1, · · · , Rm,m. Note that Ri,i’s are independent but not necessarily ordered.
These data can be minimal repair times of some reliability systems as mentioned in [2].

The weighted exponential (WE) distribution was introduced by [1] and has the follow-
ing probability density function (pdf)

f(x) =
α+ 1

α
λe−λx(1− e−λαx), x > 0, α > 0, λ > 0, (1.1)
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where α and λ are the shape and scale parameters, respectively. The WE distribution
can be applicable in reliability and therefore estimation of its parameters is important in
this field. In this paper, we consider the estimation problem for the shape parameter of
the WE distribution based on observed upper RRSSs, when the scale parameter is known.
Therefore, without loss of generality, we may assume λ = 1. Main results as well as a
simulation study are given in the next section.

2 Main results

Let U = (U1,1, ..., Um,m) be an upper RRSS from the standard WE distribution (λ = 1),
then the likelihood function for the parameter α given u = (u1,1, · · · , um,m) is (see [2])

L(α|u) =

m∏
i=1

{− log(1− F (ui,i))}i−1

(i− 1)!
f(ui,i) =

(
α+ 1

α

)m
e−
∑n
i=1 ui,i

×
m∏
i=1

1− e−αui,i
(i− 1)!

(
− log

[
α+ 1

α
e−ui,i − 1

α
e−(α+1)ui,i

])i−1

, (2.2)

and therefore the log-likelihood function is

` = m log(α+ 1)−m logα−
m∑
i=1

ui,i +

m∑
i=1

log(1− e−αui,i)−
m∑
i=1

log(i− 1)!

+

m∑
i=1

(i− 1) log
[
ui,i + logα− log(α+ 1− e−αui,i)

]
.

The maximum likelihood estimator (MLE) of α, say α̂M , can be obtained as the solution
of the following non-linear equation

∂`

∂α
=

m

α+ 1
− m

α
+

m∑
i=1

ui,ie
−αui,i

1− e−αui,i
+

m∑
i=1

(i− 1)
(

1
α −

1+ui,ie
−αui,i

α+1−e−αui,i

)
ui,i + logα− log(α+ 1− e−αui,i)

= 0.

For Bayesian estimation, we take the inverse gamma distribution as the prior density
function

π(α) =
bc

Γ(c)
α−c−1e

−b
α , (2.3)

where b and c are the positive hyperparameters. Note that for b = c = 0, we arrive at the
non-informative prior. The posterior distribution of α is then obtained to be

π(α|u) =
(α+ 1)me

−b
α

C0αm+c+1

m∏
i=1

(1− e−αui,i)
(
− log

[
α+ 1

α
e−ui,i − e−(α+1)ui,i

α

])i−1

,

where

C0 =
∫∞

0
(α+1)me

−b
α

αm+c+1

∏m
i=1(1−e−αui,i)

(
− log

[
α+1
α e−ui,i− e−(α+1)ui,i

α

])i−1
dα. Let α̂ be an estima-

tor of α, then the SEL function is defined as L1(α, α̂) = (α̂−α)2. The Bayes estimate of α
under SEL function based on RRSS, denoted as α̂S , is the mean of the posterior density,
i.e.

α̂S =
∫∞

0
(α+1)me

−b
α

C0αm+c

∏m
i=1(1− e−αui,i)

(
− log

[
α+1
α e−ui,i − e−(α+1)ui,i

α

])i−1
dα.

The SEL function is symmetric namely it assigns equivalent dimensions to underestimation
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and overestimation. Thus, it may not be appropriate in situations that overestimation and
underestimation have different consequences. Here, we consider a well-known asymmetric
loss function, called the LINEX loss function, which is defined as

L2(α, α̂) = p [exp{q(α̂− α)})− q(α̂− α)− 1], p > 0, q 6= 0.

Without loss of generality, we may assume p = 1. The sign and magnitude of parameter q
must be determined properly. For positive values of q, the overestimation is more serious
than underestimation and vice versa. The Bayes estimate of α under the LINEX function
based on RRSS, denoted as α̂L, is α̂L = −1

q logE(e−qα|u), where

E(e−qα|u) =

∫ ∞
0

e−qαπ(α|u)dα.

Here, we consider the Markov chain Monte Carlo (MCMC) method and the Gibbs sampler
to simulate samples from the posterior density and then compute the Bayes estimators of
α. The posterior density function of α can be rewritten as π(α|u) ∝ g(α|u)h(α), where
g(α|u) is the inverse gamma density function with parameters a + m and b and h(α) is
given by
h(α) = (α+ 1)m

∏m
i=1(1− e−αui,i)

(
− log

[
α+1
α e−ui,i − 1

αe
−(α+1)ui,i

])i−1
.

Now, using the importance sampling procedure, we can state the following algorithm
to approximate the Bayes estimators
Step 1. Generate α1 from g(α|u).
Step 2. Repeat Step 1, N times to obtain α1, ..., αN .
Step 3. The approximate value for the Bayes estimator of α under the SEL function is

α̂MS =
∑N

i=1 αiwi and the approximate value for α̂L is α̂ML = −1
q log

(∑N
i=1 e

−qαiwi

)
,

where wi = h(αi)∑N
j=1 h(αj)

.

2.1 A simulation study

In this section, we performed a simulation in order to compare the point estimators. In
this simulation, we randomly generated M = 2000 upper RRSSs of size m = 6 from
the WE distribution with α = 2. We considered three cases for the prior distribution as
follows: Case I: A case that is very close to the non-informative prior with b = 0.01 and
c = 0. Case II: Informative prior with prior information E(α) = 2 =true value, and
V ar(θ) = 2 and from (2.3), we obtain b = 6 and c = 4. Case III: Informative prior with
prior information E(α) = 2 and V ar(θ) = 0.5 and consequently from (2.3), we have b = 18
and c = 10. We then obtained the MLEs. In addition, the approximate Bayes estimators
of α under SEL and LINEX (for q = −2, 2) functions, which are denoted by α̂MS(i) and
α̂ML(i), in the i-th iteration, respectively, were obtained using the importance sampling
procedure with N = 500. The estimated risks (ERs) of the estimators were calculated
using the relations ERS(α̂MS) = 1

M

∑M
i=1[α̂MS(i)− α]2, and

ERL(α̂ML) = 1
M

∑M
i=1[exp{q(α̂ML(i)− α)})− q(α̂ML(i)− α)− 1].

Actually, we calculated the ER of each Bayes estimator according to its own loss function.
For the MLEs, we calculated both kinds of ERs, i.e. ERS and ERL to compare them
with their corresponding approximate Bayes estimators. The results are given in Table 1.
From Table 1, we observe that the ERs of the Bayes estimators are smaller than the ERs
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Table 1: The results of the simulation.
ERS ERL

q = −2 q = 2
MLE 42.71484 2.222723 > 1000
Case I 3.969463 48.78501 3.003302
Case II 0.4819587 1.041379 0.8500697
Case III 0.07773791 0.1794383 0.268095

of the corresponding MLEs (except for one case) which reveals that the Bayesian methods
are superior to the likelihood ones. We also see that the smallest ERs belong to Case III
that is reasonable as Case III has the smallest prior variance and therefore is the most
informative case.

References

[1] Gupta, R.D. and Kundu D. (2009), A new class of weighted exponential distributions,
Statistics, 43, 621-634.

[2] Salehi, M. and Ahmadi, J. (2014), Record ranked set sampling scheme, Metron, 72,
351-365.



Estimating the Survival Function Using Different Copula
Functions

Mireh, S. 1 and Khodadadi, A. 2

1,2 Department of Statistics, Faculty of Mathematical Sciences, Shahid Beheshti University,

Tehran, Iran

Abstract

The analysis of reliability and survival functions is one of the most important goals
in system safety, especially when several dependent failure modes influence on failure
time. In previous research, dependency between the degradation process and trau-
matic failure time has been studied in limited detail (special closed form expression).
This study gives some contributions that evaluate reliability metrics with more than
one failure mechanism which may not be independent and possibly follow a different
distribution function. We have used different copula functions as a basis to develop a
proposal model and analysis methods. Finally, real and simulation data were used to
review the suggested approach.

Keywords: Survival Function, Copula Function, Traumatic Failure Time, Degra-
dation Process, General Dependency Structure.

1 Introduction

At the beginning of the work done in reliability, engineers used the survival function
to describe the uncertainties about the failure times. From a statistical point of view,
accurate estimation of the survival function needs the observation of failure times of many
items. Because of advances in materials science, it is not always possible to observe many
failures, and even if such failure times are possible to obtain, they are not independent as
they all might be affected by a common environment. Thus, it is difficult to obtain the
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accurate reliability estimation based on life data. Another method is to assess the failure
of a component based on the characteristics of the process that caused its failure, is often
named degradation process. So there are two kinds of data: Hard and Soft failure. Hard
failure causes instant product failure, is characterized as both complete and sudden, and
cannot be forecasted by prior testing or examination. On the other hand, soft failure,
occurs when a measurable physical degradation reaches a critical threshold level (z0),
which is often specified by industrial standards. Soft failures can be predicted by prior
testing or examination.

We can speak of a classification of research done according to failure mechanisms (hard
failure or soft failure), operating conditions (normal or accelerated stress), performance
characteristic dimensionality (univariate or multivariate), and structural dependency (de-
pendent or independent). Many studies has been done in each category (such as [1], [2],
[3]). However, no studies considered both types of dependent structures as one model.

Hence, the current study developed a methodology that took into consideration both
degradation measurements and observed failure time. The dependency structure was
described by different copula functions.

This paper is organized as follows. In section 2, our proposed method is discussed.
Examples of real and simulated data are expressed in section 3, followed by the conclusion
in section 4.

2 The model

Suppose degradation data (Z(t)) and observed failure time (T ) are dependent. We define
T as the minimum of soft (T 0) and hard failure times (T 1): T = min(T 0, T 1). The
purpose of this section is to estimate the survival function with the assumption that the
degradation data and observed failure time are not independent. The copula function is
utilized as a basis to develop the proposed model and analysis.

In parameter estimation, we suppose that the increments of degradation and failure
time data have gamma and Weibull distributions, respectively. Let Θ = (θ, α1, β1, α2, β2)
be the collection of unknown parameters. The maximum likelihood (ML) method is used
for parameter estimation. Given the observed data, the likelihood is:

L(Θ) =

n∏
i=1

(
fT (ti).gZ(ti)(z0).c(FT (ti), GZ(ti)(z0))

)δi
.

n∏
i=1

(
gZ(ti)(z0)

)1−δi
,

where c(FT (ti), GZ(ti)(z0)) =
∂2C(FT (ti),GZ(ti)

(z0))

∂FT (ti)∂GZ(ti)
(z0) , c is the copula density, f , F , g and G are the

marginal density and distribution function of Weibull and gamma, respectively.

After estimating the parameters, we can calculate the survival function using different copulas
as follows:

S(t) = v − C(u, v)

where C is an copula cdf and FT (t) = u and GZ(t)(z0) = v. For example for Frank copula we
have:

S(t) = v +
1

θ
ln

(
1− (1− e−θu)(1− e−θv)

(1− e−θ)

)
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3 Examples

3.1 Real data Study

The numerical data are taken from [4]. In the data, 21 samples have been tested for fatigue
crack development. To demonstrate the degradation along with traumatic failure time, we use
degradation data and simulate the traumatic failure time using the Frank copula (θ = −15). Next,
the minimum soft and hard failure times are considered as failure time (T ). The item is considered
failed if either the crack size exceeds 1.6 in. (δi=0) or the failure happened according to the
mechanism, which is characterized as a hard failure (δi=1). Finally, we can estimate the model
parameters.

Table 1 shows these estimations only for Frank copula. In this table, the independence and neg-
ative dependency between traumatic failure time and degradation is assumed. Next, we compare
these two assumptions. α1 and β1 are used to express the parameters of the Weibull distribution
and α2 and β2 express the gamma parameters.

Table 1: Estimation of parameters using Frank copula
Diag ColumnmnHead II Dependency Parameters α1 β1 α2 β2 θ
Negative Dependency 1.723 0.101 41.263 0.406 -203.741
Independency 2.826 0.062 89.198 0.166 -

According to the estimated parameters and the proposal method in section 3, we can estimate
the survival function. Our results show that using different copula functions, the two methods
(assuming the dependency and independency between T and Z) have different behaviors. The
efficiency of the model drops drastically when we do not consider the dependency factor, through
the general dependency structure.

3.2 Simulation Study

In this section we simulate n = 100 of degradation and failure time data. To evaluate the effect
of dependencies between data, we consider several negative dependencies and different copula
functions for comparison with each other. After the simulation is completed, the distributions
parameters are estimated for several copula functions and different values of the copula parameter,
but only θ = −200 for Frank, Rotated BB6, Rotated Gumbel 90 and Gaussian copula is shown in
Table 2.

Table 2: Estimated parameters for simulation data
Diag ColumnmnHead II @Copula
functionParameters α1 β1 α2 β2 Copula parameter(s)
Frank 6.646 11.567 6.624 0.266 -17.757
Gaussian 6.965 11.305 7.159 0.249 -0.922
Rotated BB6 6.936 11.120 8.405 0.215 -2.905, -2.353
Rotated Gumbel 90 7.191 11.427 6.432 0.276 -3.300

Our results shows that as negative dependency increases, the number of hard failures increases,
as expected and like the previous example, the survival function for the independent case declines
more rapidly than the survival functions of different copula functions for the negative dependency
case. As expected, when the data are more dependent, the distance between the survival function
curves increases.

4 Conclusion

The approach given in this paper shows that analysis of dependency is very important, particularly
when the degradation process and traumatic failure time are dependent in a general form and have
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two different structures (distributions). Our research has indicated that the estimation of survival
function using different copulas is different from independent case. This method provides a suitable
approach to dependency analysis in complicated cases.
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Abstract

In this article we consider series system products with independent lifetimes for
each component in which causes of system failures might be masked Due to cost
considerations or environmental restrictions. As a new approach we have defined a
missing indicator for the true cause of failure which might be observed or masked. The
likelihood with missing not at random (MNAR) mechanism is derived and compared
with the usual likelihood for masked data via some simulation studies. The results
show superior performance of our approach when non-ignorable missing mechanism is
occurred.

Keywords: Masked Data , Non-ignorable missing data, Reliability Analysis.

1 Introduction

In general, failure time data for a series system contain the time to failure along with information
on the exact component responsible for the system failure. Which can be used to estimate system
and component reliabilities. In many cases, however, due to lack of proper diagnostic equipment
or cost and time constraints, the exact component causing the system failure is not identified, but
the cause of failure is only narrowed down to a smaller set of components. These Kinds of data are
called to be masked (Miyakawa;1984, Basu, et al;1999). In the analysis of masked data, often it is
assumed that the masking probability is independent of the component which caused the failure
or in the case of dependency some prior probabilities are assumed for these conditional events.
Also masking probability is assumed to be dependent on the observed failure time. In this article,
as a new approach we will introduce a missing indicator according to the masking status of each
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observed failure time. Also a MNAR mechanism (Little Rubin 2002) is assumed for this variable
which allow masking to be dependent on the component index along with the observed failure time
using generalized linear model. We have performed some simulation studies under exponentially
distributed failure times which show superior results for our proposed model when masking has a
non-ignorable mechanism.

2 Assumption and Likelihood function

Consider series systems with J components. Assume the observed failure data are t1, t2, ..., tr
,(n-r systems are censored) but the exact associated cause of failure might be unknown, which
is only known to belong to the Minimum Random Subset (MRS) of {1, 2, ..., J}. Let Mi be the
observed MRS corresponding to the failure time ti, i = 1, 2, ..., r. The set Mi essentially consists
of components, narrowed down to be the possible causes responsible for the system failure. When
Mi is a singleton set, then the corresponding system has an observed cause of failure. While if
Mi = {1, ..., J} the system is called to be completely masked. We define the binary variable Ri
which takes the value 1, when Mi is a singleton and has a zero value for masked data(when Mi

has more than one element). Thus, the observed data are

(t1,M1, R1), (t2,M2, R2), ..., (tr,Mr, Rr) (2.1)

The model considered in this article is based on the following assumptions.

• The failure of a system occurs due to one of the J independent components with lifetimes,
T1, T2, ..., TJ , and the failure time of the system (T ) is the shortest of Tl, l = 1, ..., J .

• Tl, the failure time of the lth component , follows a continuous distribution with density and
reliability functions denoted by fl(t), Rl(t).

• Pr(M = Mi|T = ti,Ki = l) is called the masking probability, where Ki denotes the index of
the component actually causing the ith system to fail. pl(Mi)s have some constraints. Let
Mi be the collection of all 2J−1 possible nonempty subsets of {1, ..., J} and Ml = {M0 ∈
M : l ∈M0, l ∈ {1, ..., J}} and pl(Mi) = P (M = Mi|Ki = l) = 0,∀Mi ∈M c

l = M −Ml and
thus

∑
Mi∈M pl(Mi) =

∑
Mi∈Ml

pl(Mi) = 1, l = 1, ..., J. Denote pl = {Pl(Mi) : Mi ∈ Ml}
and p = (p1, ..., pJ).

• Ri is a Bernoulli variable with success probability p(Ri = 1|ki = j,Mi, ti; j ∈Mi) = h(β0 +
β1ki + β2ti), where h(.) is some appropriate link function (e.g. logit, probit, clog-log,...).
When β1 = 0 the missing is ignorable.

Let τ be the end time of the test and Imask = {1 ≤ i 6 r;Ri = 0} denotes the set of indices for
maked systems. Therefor the complete likelihood function for data 2.1 is as follows:

L(θ) =
∏

i∈Icmask

[p(Ri = 1|ki = j, ti,Mi = {j})p(Mi = {j}|ki = j, ti)

× fj(ti)p(ki = j)]
∏

i∈Imask

[p(Ri = 0|ki = j, ti,Mi)

× p(Mi|ki = j, ti)fj(ti)p(ki = j)[

J∏
l=1

Rl(τ)]n−r (2.2)

If the missing mechanism is at random (β1 = 0) the above likelihood reduces to

L(θ) ∝
r∏
i=1

f(Ri|ti)
∑
j∈Mi

f(ti|ki, ti)p(Mi|ki, ti)p(ki = j)

[ J∏
l=1

Rl(τ)

]n−r

Where Ris could be ignored and simple masked data analysis be used.



Misaii, H. , Eftekhari, S. 125

3 Simulation Study

In this section we assume 100 series systems with two components where the lifetimes of compo-
nents follow some exponential distribution with parameters α1 and α2 respectively for first and
second component. We have generated non-ignorable missing mechanism according to the logistic
regression logit(p(Ri = 1|ki = j)) = β0 + β1ki. The results of maximum likelihood estimation of
the parameters α1 and α2 are presented in Table 1. In this table the true value of parameters along
with the percent of failure due to second component ,CP, and masking rate,MP, are given. Also

Table 1: The results of simulation analysis

α1 α2 β1 β0 CP MP Bα1 Bα2

MAR 0.3 0.7 2.5 -2 70 47 0.062 0.059
MNAR 0.033 0.036

MAR 0.3 0.7 2.5 -3 70 27 0.04 0.024
MNAR 0.011 0.024

MAR 0.3 0.7 2.5 -4 70 13 0.011 0.02
MNAR 0.012 0.002

MAR 0.3 0.7 3.5 -3.5 69 35 0.081 0.073
MNAR 0.002 0.006

MAR 0.3 0.7 3.5 -4 70 26 0.041 0.044
MNAR 0.007 0.005

MAR 0.3 0.7 3.5 -5 70 13 0.02 0.009
MNAR 0.002 0.008

MAR 0.3 0.5 2.5 -4 62 12 0.034 0.018
MNAR 0.007 0.009

MAR 0.3 0.5 2.5 -3 63 25 0.041 0.043
MNAR 0.021 0.019

MAR 0.3 0.5 2.5 -2 63 44 0.082 0.076
MNAR 0.041 0.047

MAR 0.3 0.5 3.5 -5 61 12 0.034 0.021
MNAR 0.005 0.007

MAR 0.3 0.5 3.5 -4 63 25 0.053 0.037
MNAR 0.009 0.025

MAR 0.3 0.5 3.5 -3 62 41 0.117 0.108
MNAR 0.007 0.016

the last two columns present the amount of biasness for α1 and α2 (respectively denoted by Bα1

and Bα2) in 100 iterations of each simulation study. According to the results, MNAR modeling
leads to less biased estimators compared with the usuall MAR model.
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Abstract

The generalized joint signature (GJS) is a useful tool to investigate the reliability of
a set of systems with some shared components. The GJS depends only on the system
structure and is a generalization of the signature which is used as an important concept
for studying the system reliability. This paper surveys the relation between the GJS,
the signature and the GJS of fewer number of systems. An algorithm is provided to
obtain the signature and GJS of lower orders from the GJS.

Keywords: Reliability, coherent system, order statistics.

1 Introduction

In the last decades, the modeling and analysis of systems reliability have been widely studied
under different approaches. One of the approaches, introduced in [4], is based on the assumption
that a system with lifetime T consists of n components having independent and identically
distributed (i.i.d.) lifetimes X1, X2, . . . , Xn. Under this setting, the system reliability can be
presented as P (T > t) =

∑n
i=1 siP (Xi:n > t), where si = P (T = Xi:n), i = 1, . . . , n, and Xi:n

is the i-th ordered component lifetime. The vector s = (s1, s2, . . . , sn) is called the signature
of the system and depends only on the system structure. Many signature based properties of
system reliability are examined by others.

An example of systems with shared components is in computer sciences. For instance, some
computer systems include a set of slave computers which share a common server. The reliability
of two systems which share some components has been explored in [3]. Consider m systems, with
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lifetimes T1, . . . , Tm, having some shared components. Let A be a set of components with i.i.d.
lifetimes X1, . . . , Xn having common distribution function F . Assume that the components of
each system is a subset of A such that the union of the components supporting all systems is
equal to the set A. If (i1, i2, . . . , im) is a permutation of (1, 2, . . . ,m), then the joint distribution
function of (T1, . . . , Tm), for ti1 ≤ · · · ≤ tim , is

G(t1, t2, . . . , tm) =

n∑
l1=1

n∑
l2=0

· · ·
n∑

lm=0

s
(i1,i2,...,im)
l1,l2,...,lm

m∏
j=1

Flj :n(tij ), (1.1)

where Flj :n is the distribution function of the lj-th order statistic from X1, ..., Xn and

s
(i1,i2,...,im)
l1,l2,...,lm

’s are coefficients, such that
∑
l1,...,lm

s
(i1,...,im)
l1,...,lm

= 1. Let S(i1,...,im) be an m-

dimensional matrix defined as below S(i1,...,im) = {s(i1,...,im)
l1,...,lm

}l1∈{1,...,n}, l2,...,lm∈{0,...,n}. The

vector (S(i1,...,im))(i1,...,im), with m! elements, is referred to as the generalized joint signature

(GJS) of the systems. Each S(i1,...,im) is called the GJS for the corresponding permutation

(i1, . . . , im). Notice that the elements s
(i1,...,im)
l1,...,lm

are not necessarily non-negative, although they
sum up to 1.

In Section 2, via an example, a general formula for transforming the GJS to JS and then
to signature is given. In Section 3, we propose an algorithm for the transformation of the
GJS’s of different orders. Via an R program, we generate the results in an example. It will be
implemented in an R package later.

2 The relation between the GJS, JS and signature

Assume that we have the GJS of m systems. We want to know how one can obtain the GJS of
k systems, k < m. Let us explore this relationship in the following example.

Example 1. Consider three systems with lifetimes T1 = max{X1, X2}, T2 = max{X2, X3},
and T3 = max{X3, X4}. Suppose X1, X2, X3, X4 are i.i.d. random variables with common
distribution function F . The GJS of (T1, T2, T3) is obtained in Example 3.5 in [2]. Now we
want to calculate the JS of the two systems (T1, T2) from the GJS of (T1, T2, T3). To obtain
the joint distribution function of (T1, T2), we need to assume t3 →∞, hence, we only consider
the permutations in which max{t1, t2, t3} = t3. Let us assume t1 ≤ t2 ≤ t3. The GJS matrix

S
(1,2,3)
1 is a 5 × 5 zero matrix and S

(1,2,3)
2 = 1

96Q, S
(1,2,3)
3 = 1

48Q, S
(1,2,3)
4 = 1

32Q, where Q is
a 5× 5 matrix with the first row and column all 0’s and the rest all 1’s. We make the sum of
the GJS matrices over the third dimension. Hence S

(1,2,3)
1 is now a zero vector of length 5 and

S
(1,2,3)
2 = 1

24q, S
(1,2,3)
3 = 1

12q, S
(1,2,3)
4 = 1

8q, where q = (0, 1, 1, 1, 1). Arranging all the vectors

as the rows of a matrix, one obtains S(1,2) as a 4 by 5 matrix with the first column and row
all 0’s. The other elements of the second, third and fourth rows are 1

24 , 1
12 and 1

8 , respectively.
This is the JS for (T1, T2), for the permutation (1, 2), when we consider four components. In
order to obtain the JS for (T1, T2), with the three components X1, X2, X3, we delete the
last row and column of S(1,2). The elements of the matrix obtained do not sum up to 1. We
normalize the matrix and obtain a matrix which is exactly the S matrix in Example 2.1 of
[3], for the same (T1, T2). Choosing the permutation t2 ≤ t1 ≤ t3, a similar procedure leads
us to S(2,1) = (S(1,2))T , which is obtained as S∗ in Example 2.1 of [3]. Repeating the same
argument as above with the last S(1,2), one derives s = (0, 1

3 ,
2
3 ), which is for the case of three

components. If we want to obtain the s for the case of two components, X1, X2, we delete the
last element and normalize the vector and derive s = (0, 1).
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3 The proposed algorithm

The notations used in the proposed algorithm are as below.
Notations:

Perm(i) a permutation (i1, . . . , im) of (1, ...,m).
S the vector of GJS matrices of T1, ..., Tm.
S(i1,...,im) the GJS matrix of T1, ..., Tm for (i1, . . . , im).
Sj the vector (S(i1,...,im))(i1,...,im):{j1,...,jk}={i1,...,ik}.
Nj the number of elements of Sj .

S
(i1,...,im)
j,l each member of Sj , for l = 1, ..., Nj .

S
(i1,...,ik)
j,l the GJS matrix of (Tj1 , ..., Tjk), corresponding to S

(i1,...,im)
j,l ,

with the original n components, for l = 1, ..., Nj .
n1 the maximum number of components used in (Tj1 , ..., Tjk).

S
(i1,...,ik)
j,l,[n1] the non-normalized GJS matrix of (Tj1 , ..., Tjk),

related to the n1 components, for l = 1, ..., Nj .

S
(i1,...,ik)
j,[n1] the vector (S

(i1,...,ik)
j,l,[n1] )l=1,...,Nj .

[S
(i1,...,ik)
j,l,[n1] ] the total mass of S

(i1,...,ik)
j,l,[n1] .

S
(i1,...,ik)
j,l,[n1],1 the normalized S

(i1,...,ik)
j,l,[n1] .

S
(i1,...,ik)
j,[n1],1 the vector (S

(i1,...,ik)
j,l,[n1],1 )l=1,...,Nj .

The Algorithm

1. Insert S, Perm(i) and j = (j1, ..., jk).

2. Create Sj .

3. Create S
(i1,...,im)
j,l , for l = 1, ..., Nj .

4. Create S
(i1,...,im)
j,l,[n1] , for l = 1, ..., Nj .

5. Create S
(i1,...,ik)
j,[n1] .

6. Create and print S
(i1,...,ik)
j,[n1],1 .

Here is an example for the algorithm.

Example 2. Let X1, X2, X3, X4 be i.i.d. random variables with common distribution func-
tion F . Consider now four systems with lifetimes T1 = min{max{X1, X2}, X3}, T2 = X3,
T3 = max{X1, X4}, and T4 = max{X2, X4}. The GJS of (T1, T2, T3, T4) is already obtained in
Example 3.4 in [2] and now, we want to obtain the JS for T1 and T2. We apply Algorithm 1
and the output for all permutations starting with (1,2) is shown in Listing 1.

Listing 1

Per

[1] 1 2
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S

F0:4(t2) F1:4(t2) F2:4(t2) F3:4(t2) F4:4(t2)

F1:4(t1) 1/4 0 0 0 0

F2:4(t1) 1/4 1/24 1/24 1/24 1/24

F3:4(t1) 0 1/12 1/12 1/12 1/12

F4:4(t1) − 1/2 1/8 1/8 1/8 1/8

References

[1] Gertsbakh, I. and Shpungin, Y. (2009), Models of Network Reliability. Analysis, Combina-
torics, and Monte Carlo, CRC Press.

[2] Mohammadi, L., and Zarezadeh, S., (2016). Algorithms to Access the Generalized Joint
Signature of Systems with Shared Components. Submitted.

[3] Navarro, J., Samaniego, F. J. and Balakrishnan, N. (2010). The joint signature of coherent
systems with shared components, Journal of Applied Probability 47(1), 235-253.

[4] Samaniego, F.J. (1985), On closure of the IFR class under formation of coherent systems,
IEEE Trans. Reliab., 34, 69-72, 1985.
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Abstract

Burn-in test is very important in manufacturing process which helps to detect weak
items before selling products. Traditional burn-in test which was based on collecting
time to failure data is not efficient in short time. When there is at least one quality
characteristic (QC) related to lifetime of the products, collecting degradation data
and using them in inference can be helpful. New products, due to their complexity,
have more than one QC. these QCs may be dependent and so it is very important to
find the joint distribution of them. In this paper, we assume that the product has two
QCs and their degradation can be governed by inverse Gaussian process. The optimal
burn-in test using cost model is obtained and finally a simulation study is conducted.

Keywords: Burn-in test, Bivariate degradation, optimal test, Stochastic pro-
cess, Inverse Gaussian process

1 Introduction

To satisfy their customers, manufacturers try hard to produce high reliable products. Uunfortu-
nately due to some flaws in the production procedure and the quality of used material, usually
a subpopulation of products can not operate acceptably. These products which are called weak
items fail sooner than typical items. If they are not removed before selling products, it will
impose burden of finances. Burn-in test helps manufacturers to detect and eliminate weak
items.

Traditionally, burn-in test was based on collecting failure data. Nnowadays, products func-
tion for a long time and then their failure time cannot be obtained, so the traditional burn-in
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test can be efficient no longer. In such cases, using degradation data related to some quality
characteristic (QC) of the product can solve the problem. Due to the nature of the degrada-
tion data and their dependency on time, using stochastic processes is an appropriate way to
model degradation process. Important processes used for this issue are Wiener process, gamma
process, and inverse Gaussian process.

Tseng and Tang [7],Tseng et al. [8], Tseng and Peng [6], and Ye et al.[9]developed different
decision rules for distinguishing weak items with considering degradation follows a Wiener
process. Burn-in test based on gamma process is discussed in Tsai et al. [5] and Ye et al.[10].
Also the optimal burn-in test for inverse Gaussian process is worked out by Zhang et al [19] .

Nowadays, the products are more complex and it means that they may have multiple degra-
dation processes. Usually these multiple degradation processes depend each other and so their
dependency must be considered in the model. There are two approaches for this issue: using a
multivariate process and using copula. In the former approach, the relation between multiple
degradation process are govern by a multivariate process; Jin and Matthews [2], Pham and
Mercier [3], to name a few. Works related to former approach can be found in: Hao and Su
[1], Pan and Sun[4]. In this paper, we are to discuss obtaining optimal burn-in test in presence
of dependent bivariate degradation processes. We consider the bivariate degradation follows a
bivariate inverse Gaussian process. The remainder of this paper is organized as follows. Section
2 gives some basic information of model and discusses optimal burn in test and the optimal
termination time. Section 3 deals with statistical inference and parameters estimation.

2 Model Description

Let (X1(t), X2(t)), t > 0 be the bivariate degradation path of the quality characteristics
of a product. Assume that the bivariate degradation follows a bivariate process, that is
(X1(t), X2(t)) has a distribution fΘ(x1, x2). Usually, products can be classified into two groups.
Weak group with higher tendency to fail and typical group. Tacking this into account, we have:

(X1(t), X2(t)) ∼
{

fΘw(x1, x2) for weak group
fΘt(x1, x2) for typical group

(2.1)

such that EΘw(Xi(t)) > EΘt(Xi(t)), for i = 1, 2. Hence, from 2.1, an item is classified as a
typical one if X1(t) and X2(t) are relatively small. Let ξ1(t) and ξ2(t) denote cutoff points for
X1(t) and X2(t) between the typical and weak items, respectively. Then the decision rule is
given by:

An item is classified as a weak item⇔ X1(t) < ξ1(t) and X2t) < ξ2(t).

So for the fixed time t, the probabilities of type I and type II errors are:

α(t) = 1− P (X1(t) < ξ1(t), X2(t) < ξ2(t)|typical item)

= 1−
∫ ξ1(t)

0

∫ ξ2(t)

0

fΘt(x1, x2)dx1dx2

β(t) = P (X1(t) < ξ1(t), X2(t) < ξ2(t)|weak item)

=

∫ ξ1(t)

0

∫ ξ2(t)

0

fΘw(x1, x2)dx1dx2

Each of these errors impose some cost to model. Let Cα and Cβ be the cost of type I and type
II errors respectively. Then the misclassification cost, sum of the cost of both errors, at time t
is :

MC(t) = Cαn(1− p)α(t) + Cβnpβ(t), (2.2)
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where n is the total number of items subjected to burn-in test and p is the proportion of weak
items. For a fixed t, the optimal (ξ∗1(t), ξ∗2(t)) is given by

(ξ∗1(t), ξ∗2(t)) = arg min(ξ1(t),ξ2(t))MC(t) (2.3)

In addition to the misclassification cost, there is another burden of cost. Operation cost (OC),
the cost of conducting a degradation test and collecting data, must be taken into account. The
total cost (TC) is the sum of these two costs; i.e.

TC(ti) = MC(ξ(ti), t) + Copnti + Cmean(i+ 1) (2.4)

Similarly, the optimal termination time can be determined by:

t∗i = arg min
{ti}mi=1

{MC(ξ∗(ti), ti) + Copnti + Cmean(i+ 1)} (2.5)

where Cop and Cmea are the cost of running a degradation test and cost of measuring degra-
dation of an item, respectively.

3 Statistical Inference

From 2.1, the distribution of (X1(t), X2(t)) is a mixture distributions. That is

f(x1, x2) = pfΘw(x1, x2) + (1− p)fΘt(x1, x2).

Assume that n and m are the total number of products under burn-in test and the number of
inspection, respectively. We define:

Y
(ij)
k = Xi

k(tj)−Xi
k(tj−1), k = 1, 2

where Xi
k(tj) denotes the degradation of k-th QC measured for i-th item at time tj . Then the

log-likelihood has the following form:

l(Θ) =

n∑
i=1

ln{pHi(Θw) + (1− p)Hi(Θt)} (3.6)

where

Hi(Θ) =

m∏
j=1

fΘ(y
(ij)
1 , y

(ij)
2 )

The maximum likelihood estimators(MLEs) of unknown parameters can be obtained by maxi-
mizing 3.6.
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Abstract

In this paper we derive the pdf and cdf of the concomitant of the r-th order statistics
arising from a dependent and non-identical random vector (Xi, Yi), i = 1, . . . , n and
then present their formulas in a special case when Xi and Yj are independent for
i 6= j = 1, . . . , n. We also derive some formulas for the pdf and cdf of concomitant
of order statistics arising from a random vector distributed according to an (nested)
Archimedean copula. Some explicit formulas for the pdf of concomitant of order statis-
tics was obtained for Clayton and Gumbel families. A numerical example provided for
more illustration.

Keywords: Archimedean copula, order statistics, reliability systems.

1 Introduction

Consider a random sample (Xi, Yi), i = 1, . . . , n, from a bivariate cdf. If the pairs are ordered
by their X variates, then the Y variate associated with the r-th order statistic Xr:n of X will be
denoted by Y[r:n], 1 ≤ r ≤ n, and called the concomitant of the r-th order statistic. Concomi-
tants of order statistics have found a wide variety of applications in different fields. The most
important use of concomitants arises in selection procedures when k(1 ≤ k ≤ n) individuals are
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chosen on the basis of their X values. Then the corresponding Y values represent performance
on an associated characteristic. For example, X might be the score of a candidate on a screening
test and Y the score on a later test. In the literature, there are many papers which deal with
concomitants. David, O’Connell and Yang [3] derived the cdf of the rank of Y[r:n]. David and
Galambos [2] discussed the asymptotic properties of the rank of Y[r:n]. Balasubramanian and
Beg [1] studied the concomitants for bivariate exponential cdfs of Marshall and Olkin, Morgen-
stern type bivariate exponential cdfs and Gumbel’s bivariate exponential cdf, respectively, and
gave the recurrence relations between single moments and product moments of concomitants
of order statistics.

2 Concomitants of order statistics arising from non-iid
random variables

In this section, we consider the pdf and cdf of the concomitants of the r-th order statistics
arising from a non-iid random vectors (Xi, Yi), i = 1, . . . , n. We denote the pdf and cdf of
the concomitant of r-th order statistic Y[r:n], 1 ≤ r ≤ n, denoted by g[r:n](y) and G[r:n](y),
respectively.

Theorem 1. The pdf and cdf of the concomitant of the r-th order statistics arising from a
non-iid random vectors (Xi, Yi), i = 1, . . . , n, respectively, given by

g[r:n](y) =

∫ ∞
−∞

n∑
i=1

∑
Cr−1

P (Cr−1≤ x,Ccr−1
> x|Y = y,Xi = x)fY,Xi(y, x)dx , (2.1)

and

G[r:n](y) =

∫ ∞
−∞

n∑
i=1

∑
Cr−1

P (Yi ≤ y,Cr−1
≤ x,Ccr−1

> x|Xi = x)fXi(x)dx , (2.2)

where the summations over Cr−1 extend to all permutations (s1, . . . , sn−1) of {1, . . . , i− 1, i+
1, n} for which s1 < · · · < sr−1 and sr < · · · < sn and and Cr−1 = (Xs1 , . . . , Xsr−1) and

Ccr−1
= (Xsr , . . . , Xsn−1

) and denote a vector of ones with desirable dimension and fXi(x) and

fY,Xi(y, x), i = 1, . . . , n are the marginal pdfs of the random variable Xi and random vector
(Y,Xi), respectively.

In the following result, we consider the pdf and cdf of r-th order statistics arising from a non-iid
random vectors (Xi, Yi), i = 1, . . . , n, with additional assumption in which Yi is independent of
Xj for any i 6= j = 1, . . . , n.

Theorem 2. Under assumption of Theorem 2, the pdf and cdf of the concomitant of the r-th
order statistics, respectively, given by

g[r:n](y) =

∫ ∞
−∞

n∑
i=1

fYi|Xi(y|x)
∑
Cr−1

P (Cr−1≤ x,Ccr−1
> x|Xi = x)fi(x)dx , (2.3)

and

G[r:n](y) =

∫ ∞
−∞

n∑
i=1

P (Yi ≤ y|Xi = x)
∑
Cr−1

P (Cr−1
≤ x,Ccr−1

> x|Xi = x)fi(x)dx , (2.4)

where fYi|Xi(y|x) is the conditional pdf of Yi given Xi, for i = 1, . . . , n.
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3 Numerical example

Johnson and Wichern ([4], p.24) provide data consisting of mineral content measurements of
three bones (radius, humerus, ulna) in two arms (dominant and non dominant) for each of 25
old women. We consider variables, X as Dominant radius and Y as Non dominant radius. The
sample data is presented in Table 1. We apply model to this data. For this purpose we fit a
two dimensional Archimedean copula to this data set. We use inference from marginal method.
In this method we first fit the best marginal distribution to this data and then we obtain the
best Archimedean copula fitted to this data set. The first procedure is done using ”easy fit”
package. Using this package the Dagum distribution with parameters k = 0.28751, α = 20.237,
and β = 0.88839 and γ = 0 is the best distribution fitted to the Dominant radius data, the his-
togram of this data is shown in Figure 1 and the Bur distribution with parameters k = 5.6456,
α = 7.9541, and β = 0.98628 and γ = 0 is the best distribution fitted to the Dominant radius
data, the histogram of this data is shown in Figure 2. Then using Copula package in R the
Gumbel copula with parameter θ̂ = 2.9812 is the best Archimedean copula fitted to the data set.

Table 1. Goodness of fit test of the data set
Copula P-value Log-likelihood
Clayton 2.11× 10−7 21.97
Frank 1.49× 10−11 33.63

Gumbel < 2× 10−16 36.49
Ali-Mikhail-Haq 2.55× 10−14 33.72

Figure 1: The plots of distribution functions of DAGUM and Burr fitted to the dominant radius
and non dominant radius data, respectively.

4 Conclusion

In this paper we derive the pdf and cdf of the concomitant of the r-th order statistics arising
from a dependent and non-identical random vector (Xi, Yi), i = 1, . . . , n and then present their
formulas in a special case when Xi and Yj are independent for i 6= j = 1, . . . , n. However, there
are many interesting further work which may be carry out. We may generalize our work by
extending our results in the presence of one or more covariates. The results of this paper may
be extended to elliptical copula distributions.
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Abstract

In this paper, the aim is to design the strength system, so that the stress-strength
reliability increase. Stress-strength parameters for several system designs have been
introduced and the systems have been compared. The performance of stress-strength
reliability parameter in the corresponding system has been assessed.

Keywords: Stress-strength system , Reliability, PHR model

1 Introduction

In a stress-strength model, according to the desired problem, stress-strength reliability pa-
rameters can be expressed in different ways, followed by parameter estimation problem arises.
In statistical inference, there are many ways to find the desirable estimator for the parame-
ter of interest. In recent years, numerous studies have been carried out on estimation of the
stress-strength reliability parameter, under the various distributions on stress-strength with the
dependency or in-dependency hypothesis of the components of the model and different plans of
sampling scheme. A survey of different topic on the stress-strength model has been covered the
following studies Kotz (2003) and Krishnamoorthy et al.(2007). Point and interval estimations
for the parameter of stress-strength reliability have been conducted by Al-Mutairi et al. (2015)
where lifetime of stress and strength system both are simultaneously distributed as Lindley.
Consider a stress-strength system consisting of two strength components with lifetimes W and
Y and the stress component with lifetime X.

1

2

3
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In this paper the question that has been raised is:” how the two components of the strength
system together so that increases the reliability?” Here we would like to review g(Y,W ), where
g(., .) is any positive function of two variables Y and W , such as Y +W , YW , min{Y,W} and
etc.

2 Some design of strength system

Let Y and W denote the lifetimes of strength components with survival function Ḡ and H̄
respectively, and X is the lifetime of the stress system with the survival functions F̄ . We are
interested in computing R = P (X < g(Y,W )), where g(., .) is a given positive function of Y and
W . It has been interested to find the effect of the relationship among the strength components
on the stress-strength reliability. Let Y and W are independent random variables, then

R = P (X < g(Y,W )) =

∫ ∞
0

∫ ∞
0

P (X < g(y, w))dG(y)dH(w). (2.1)

In what follows, we consider different designs which lead different forms for functions g(., .). In
each case, we obtain the stress-strength reliability.

•g(Y,W ) = Y +W
Let the component in strength system fails, Here we replace another component in the strength
system. In this case, we have

R∗ = P (X < Y +W ) =

∫ 1

0

∫ 1

0

F (G−1(u1) +H−1(u2))du1du2. (2.2)

Result 1: If X 6pr Y then R∗ ≥ 1
2 .

Result 2: If F = Φ(G) or F = Φ(H) where Φ(.) is a concave distortion function then R∗ ≥ 1
2 .

Result 3: If X is NBU and X 6st Y and X 6st W then R∗ ≥ 3
4 .

Result 4: If X is NBU, for PHR model R∗ ≥ 1− αβ
(α+1)(β+1) .

Result 5: If X is NBU, for RPHR model R∗ ≥ 1− 1
(α+1)(β+1) .

Theorem 1. If X is NBU then R∗ ≥ c + (1 − c)a, where c =
∫ 1

0
F (H−1(u))du and a =∫ 1

0
F (G−1(u))du.

Theorem 2. Let X is NBU or NWU. X has the exponential distribution if and only if R∗ =

a+ (1− a)c, where c =
∫ 1

0
F (H−1(u))du and a =

∫ 1

0
F (G−1(u))du.

•g(Y,W ) = min(Y,W )
Suppose that the components in the strength system is series . Therefore

R1
∗ = P (X < min(Y,W )) =

∫ 1

0

Ḡ(F−1(u))H̄(F−1(u))du (2.3)

Result 6: If X 6st Y and X 6st W , then R∗1 ≥ 1
3 .

•g(Y,W ) = max(Y,W )
Suppose that the components in the strength system, is parallel. Thus

R2
∗ = P (X < max(Y,W )) = 1−

∫ 1

0

G(F−1(u))H(F−1(u))du (2.4)
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Figure 1: Stress-strength reliability in Table 1 for λ = 2, β = 3 and p1 = p2 = 1
2 .

Result 7: If X 6st Y and X 6st W , then R∗2 ≥ 2
3 .

•g(Y,W ) = YW
we have

R3
∗ = P (X < YW ) =

∫ 1

0

∫ 1

0

F (G−1(u1)H−1(u2))du1du2. (2.5)

•g(Y,W ) = V
Let g(Y,W ) = V has the survival function F̄V (v) = p1Ḡ(v) + p2H̄(v), where p1 = P (V = Y )
and p2 = P (V = W ). By definition

R∗4 =

∫ ∞
0

F̄V (v)f(v)dv = p1

∫ 1

0

Ḡ(F−1(u))du+ p2

∫ 1

0

H̄(F−1(u))du.

Result 8: If X 6st Y and X 6st W , then R∗4 ≥ 1
2 .

•g(Y,W ) = min(Y, t) +W
In this case

R∗5(t) = P (X < min(Y, t) +W )

=

∫ ∞
0

∫ G(t)

0

F (G−1(u1) +H−1(u2))du1du2 + Ḡ(t)

∫ 1

0

F (l +H−1(u2))du2.

In the following, for the exponential case, we compare the stress-strength reliability in various
position in Figure 1.
Example: Let X, Y and W have exponential distributions with means λ, β and α respectively.
Here for different functions of g(Y,W ), we obtain the stress-strength reliability. Under this
assumptions we have

In Figure 1, α > 1, R1
∗ < R2

∗ < R4
∗ < R3

∗ < R∗ is satisfied. This inequality shows that when
the strength component has been designed to form g(Y,W ) = Y + W , we obtain the highest
stress-strength reliability among considered designs.
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Figure 2: R∗5(t) for λ = 2, β = 3 and α = 4

Table 1:

R∗ = 1− αβ
(λ+β)(λ+α) R1

∗ = 1− αβ
∫∞

0
e−αw

β+λw

R2
∗ = λ

α+β+λ R3
∗ = λ

α+λ + λ
β+λ −

λ
α+β+λ

R4
∗ = p1

λ
λ+β + p2

λ
λ+α R5

∗ = 1− 1
(α+λ)(β+λ) −

α
α+λe

−t(β+λ)
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Abstract

In this article, we consider the statistical inferences of the unknown parameters
of a generalized inverted exponential (GIE) distribution based on the progressive
Type II hybrid censored sample. The maximum likelihood estimators are developed
for estimating the unknown parameters. The Bayesian estimates of the unknown
parameters under the assumption of independent gamma priors are obtained using
Lindley’s approximation. Finally, one data set is analyzed for illustrative purposes.

Keywords: Generalized Inverted Exponential; Lindley’s Approximation; Progressive
Type II Hybrid Censoring.

1 Introduction

In many experimental studies, the experimenters may not always be in a position to obtain
complete information on failure times for all experimental units. Data obtained from such
experiments are called censored data. The most common censoring schemes are Type I (time)
and Type II (failure) censoring. A hybrid censoring scheme is the mixture of the Type I and
Type II censoring schemes. However, the conventional Type I, Type II and hybrid censoring
schemes do not have the flexibility of allowing removal of units at points other than the terminal
point of the experiment. One censoring scheme known as Type II progressive censoring scheme,
which has this advantage. The drawback of the Type II progressive censoring, similar to the
conventional Type II censoring, is that it can take a lot of time to get to the mth failure time.

1panahi@liau.ac.ir
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Because of that problem, Kundu and Joarder (2006) introduced a new censoring scheme named
as progressive Type II hybrid censoring (PHCII) scheme, which ensures that the length of the
experiment cannot exceed a pre-specified time point T . Although several articles have been
done on the progressive Type II hybrid censoring scheme (See for example, Bayat Mokhtari
et. al., (2011)), but we have not come across any article under this censoring for the GIE
distribution. Thus, in this paper we consider the analysis of the progressive Type II hybrid
censored lifetime data when the lifetime of each experimental unit follows a GIE distribution.
The probability density function of the GIE distribution is given by

f(x;α, β) =
αβ

x2
exp(−β/x)[1− exp(−β/x)]

α−1
; α > 0, β > 0 (1)

Due to its practicality, it can be used for many applications, including accelerated life testing,
horse racing, supermarket queues, sea currents, wind speeds, and others. In Section 2, MLEs of
the unknown parameters are obtained. Bayesian analyses are presented in Section 3. Analysis
of real data set appears in Section 4.

2 Maximum Likelihood Estimation

Let X1:m,n, ..., Xm:m,n denote the progressively Type II hybrid order statistics from a
GIE(α, β) distribution. To simplify the notation, we will use Xi in place of Xi:m,n. Then,
based on progressive Type II hybrid censored data, the log-likelihood function from GIE(α, β),
dropping terms that do not involve α and β is

L(α, β) = s lnα+ s lnβ − 2

s∑
i=1

lnxi − β
s∑
i=1

1

xi
−

s∑
i=1

ln(1− e−β/xi) + α=(β).

where, s = m, =(β) =
m∑
i=1

(Ri + 1) ln(1− e−β/xi ) and s = J, =(β) =
s∑
i=1

(Ri + 1) ln(1− e−β/xi ) +R∗J ln(1− e−β/T )

for Case I and Case II respectively. Taking derivatives with respect to α and β from log-
likelihood function and equating them to zero, we obtain the maximum-likelihood estimate of
the parameter α as α̂ML = −s

=(β) . The MLE of β can be obtained by solving the non-linear
equation

h(β) =
s

β
−

s∑
i=1

1

xi(1− e−β/xi)
− s~(β)

=(β)
= 0 (2)

The solution of Equation (2) can be evaluated numerically by some suitable iterative procedure
such as the fixed point iteration (see Panahi and Sayyareh; 2014, 2016).

3 Bayesian Estimation

In this section, we compute the Bayes estimates of the unknown parameters of the GIE(α, β)
distribution under the squared error loss (SEL) function. The independent prior distributions
for α and β are taken to be Gamma(a, b) and Gamma(c, d) respectively. Unfortunately, we
cannot compute the Bayes estimate of any function of α and β say g(α, β), under squared error
loss function analytically. Therefore, we adopted the useful approximation namely Lindley’s
approximation to compute them.
Lindley’s Approximation: Lindley (1980) first proposed his procedure to approximate
any ratio of integrals. Based on Lindley’s approximation, the approximate Bayes estimates of
α and β for the squared error loss function become

α̂SEL = E (α̂ |data ) = α̂ +
1

2

[
2(
a− 1

α̂
− b) (

=2

=1=2 − (=3)2
)− 2(

c− 1

β̂
− d)(

=3

=1=2 − (=3)2
)
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+(
=2

=1=2 − (=3)2
)
2

L̂ααα + (
=2

=1=2 − (=3)2
)(

=1

=1=2 − (=3)2
)L̂ββα

+2(
=3

=1=2 − (=3)2
)(

=3

=1=2 − (=3)2
)L̂αββ −(

=3

=1=2 − (=3)2
)(

=1

=1=2 − (=3)2
)L̂βββ

]

and
β̂SEL = E

(
β̂ |data

)
= β̂ +

1

2

[
2(
c− 1

β̂
− d) (

=1

=1=2 − (=3)2
)− 2(

a− 1

α̂
− b)(

=3

=1=2 − (=3)2
)

+(
=1

=1=2 − (=3)2
)
2

L̂βββ − 3(
=3

=1=2 − (=3)2
)(

=1

=1=2 − (=3)2
)L̂αββ −(

=2

=1=2 − (=3)2
)(

=3

=1=2 − (=3)2
)L̂ααα

]

respectively. Where, α̂ and β̂ are the MLE of α and β, respectively and =1 = −s
α̂2 ; =2 =

− s
β̂2
−

s∑
i=1

e−β̂/xi

x2
i (1−e−β̂/xi )

2 − α̂<(β̂); =3 = ~(β̂); L̂ααα = ∂3L(α,β)
∂α3

∣∣∣α=α̂,β=β̂ ; ,L̂βββ =

∂2L(α,β)
∂β2

∣∣∣α=α̂,β=β̂ , ... , where, <(β̂) =
s∑
i=1

e−β̂/xi (1+Ri)

x2
i (1−e−β̂/xi )

2 ;

s = m and <(β̂) =
s∑
i=1

e−β̂/xi (1+Ri)

x2
i (1−e−β̂/xi )

2 +
R∗Je

−β̂/T

T 2(1−e−β̂/T )
2 ; s = J for Case I and Case II respectively.

Also, ~(β) is defined before.

Figure 1: The P-P plot for the data.

4 Real Data Analysis

Previous sections dealt with the analytical technique and this section focuses on the numerical
one through practical data set, which was originally considered by Lieblein and Zelen (1956).
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The following data set represents the number of millions of revolutions before failure for
each of the 23 ball bearings in a life test 17.88, 28.92, 33.0, 41.52, 42.12, 45.60, 48.40,
51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84,
127.92, 128.04, 173.4. To check for goodness of fit, we provide the P-P plot in Figure
1. Also we compute the Kolmogorov-Smirnov distance, it is 0.0918 and the associated
p-value is 0.9902. Therefore, based on the p-value we can say that the GIE distribution
fits quite well to the above data more than any other distribution. Now, we created an
artificial data by progressive Type II hybrid censoring. In this case we have n = 23 and
we tookm = 10, T = 85, R1 = ... = R9 = 1, R10 = 4. From the sample corresponding to
Case I (17.88, 28.92, 41.52, 45.60, 48.40, 51.96, 54.12, 67.80, 68.64, 84.12), we obtain the
MLEs and the BELs of α and β as (10.7152, 129.727) and (9.654, 126.323), respectively.
Now consider m = 10 and T = 60 (J = 7) and Ri

′s to be the same as before. It is observed
that the MLEs and the BELs of α and β as (21.722, 136.021) and (20.501, 134.084) respectively.
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Abstract

Optimization of redundancy problems in reliability by meta-heuristic methods has
attracted attention of many researchers during the last few years. In this paper, we
have used hierarchical memetic algorithm (HMA) to optimize the mixed redundancy of
a bridge network under cost constraint in minimal paths to increase the efficiency of the
reliability. We have applied mixed cold and hot redundancies for all levels (components,
subsystems and system) simultaneously in the network. What is interesting in this
paper is that there is no limitation on the type of distribution of each component.
Therefore, we try to optimize mixed redundancy for all the levels and find the maximum
reliability for different costs in a network. Finally, the numerical results have been
derived by HMA.

Keywords: Hierarchical memetic algorithm, Mixed redundancy allocation, A
bridge network, minimal paths

1 Introduction

During the last two decades various optimization methods have been used to tackle redundancy
allocation problems. Yun and Kim [11] optimized a restricted redundancy allocation problem
(RAP) using genetic algorithm (GA). Yun et al. presented a multi-level redundancy allocation
problem (MLRAP) optimized by GA and they succeeded to obtain a constant vector as the
optimal solution. Kumar et al. [4] presented a MLRAP in a hierarchical structure, so that
redundancy units were allocated to each level and optimized by hierarchical genetic algorithm
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Figure 1: A bridge network

(HGA). Many reliability researches based on meta-heuristic methods have been developed (
simulated annealing (Kim et al. [11]), heuristic method ((Safari and Tavakoli [6]),You and Chen
[10]),ant colony optimization (Liang and smith [12])). In this paper we have used a multi-
level mixed redundancy allocation problem (MLMRAP) to maximize the system reliability,
which gives more efficient reliability and better results and a hierarchical memetic algorithm
(HMA) is proposed to optimize mixed redundancy in a network. Then it compared to other
optimization methods. In this method there is no restriction on selection of distribution of
each unit. Therefore, in this article the exponential distribution with different parameters are
assumed and the simulated data are tested on a network and using the minimal paths the
optimal mixed redundancy is derived. The structure of the paper is as follows: In section 2, we
introduce the structure of MLMRAP of a network. In section 3, the optimization of MLMRAP
is formulated and the HMA is considered to solve MLMRAP. In section 4, the numerical results
on a bridge network are given. In section 5, conclusion is presented.

2 Problem description

In this paper, we apply a new method using minimal paths to obtain the optimal mixed hot
and cold redundancy allocation in different levels of component, subsystem and system in a
network. A path collection ”p” is a set of components u which mentions the operation of the
whole system i. e. the system would work if all path units work. The path set is presumed to
be minimal, if no other path is formed. In a bridge network in Figure2 minimal paths are as
shown below:

p1 = {u1, u4}, p2 = {u2, u5}, p3 = {u1, u3, u5},

p4 = {u2, u3, u4}

We know a bridge network system does work if and only if at least one of the series minimal
paths is working. Therefore, this structure may be constituted of a parallel system of minimal
paths connected in series. In this paper, algorithm is designed for each component distribution.
So, reliability function is defined for each unit when there are i + 1 hot and n − i − 1 cold
redundancy numbers as follows [1]:

R(t) = 1−
∫ t

0

∫ t

0

· · ·
∫ t

τi

· · ·
∫ t

τn−2

∫ t

τn−1

f1(τ1)f2(τ2) · · ·

fi+1(τi+1) · · · fn−1(τn−1 − τn−2)fn(τn − τn−1)

dτndτn−1 · · · dτ2dτ1

For example, the reliability function of a system component with two hot and two cold redun-
dancies are calculated by:

R(t) = 1−
∫ t

0

∫ t

τ1

∫ t

τ2

∫ t

τ3

f1(τ1)f2(τ2)f3(τ3 − τ2)

f4(τ4 − τ3)dτ4dτ3dτ2dτ1
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We are going to optimize MLMRAP in the network. Therefore, obtaining maximum improved
reliability and optimal redundancy number based on cost constraint are calculated by:

max Rsys(t) = R(h, c)
subject to Csys = C(h, c) ≤ C0

Where C0 is constant cost. We can obtain cost of each unit in the multi-level network (For
above example) as follows:

Ci =



∑ni
j=1

∑zij
s=1 C

s
ij , if xi is not at

the second lowest
level∑ni

j=1

∑zij
s=1 C

s
ij + a

zij
ij , if xi is at

the second lowest
level

Where zij = hij + cij is redundancy number of ijth unit at the lowest level. Also, h, c are
the symbols for a hot and cold redundancy vector, respectively, and additional costs of com-
ponents at the second lowest level are presented with the symbol aij . The mixed hot and cold
redundancies are allocated in the component, subsystem and system units simultaneously. For
example, xi, xij and xijk units are system, subsystem and component units, respectively as 1, 4
components in 1 subsystem are shown with x111, x114 and 2, 5 components in 2 subsystem are
shown by x122, x125 and 1, 3 and 5 components in 3 subsystem are shown by x131, x133, x135

and 2, 3 and 4 components in 4 subsystem are shown by x142, x143 and x144. Also, hi, ci, hij ,
cij , hijk and cijk are hot and cold redundancy numbers of system, subsystem and component,
respectively and z is summation of hot and cold redundancy numbers of each unit in each
level(the total of redundancies for every unit).

3 Hierarchical memetic algorithm

HMA is used to optimize MLMRAP includes the following steps:

3.1 Encoding solution

The initial population is randomly generated and included the coded information of decision
parameters. The encoding process starts from system level the first and iterates to reach the
lowest second level, so that the hot and cold redundancy numbers for each unit of the level is
specified. The redundancy numbers of hot and cold change respectively from 1 to p and 0 to
p, where p is pre-determined constant.

3.2 Evaluation

We compute the reliability of each individual and take it as an objective function and use the
penalty function suggested by Gen and Cheng [3] consider if it falls out of the cost constraint or
not. To evaluate the quality of the solution we use the equation 3.1. Where R(h, c), ψ(h, c), h
and c are respectively reliability function, penalty function and vectors of hot and cold decision
variables.

f(h, c) = R(h, c) ∗ ψ(h, c) (3.1)

3.3 Genetic operator

The two genetic operators which have been applied in this theory are called a first breadth
crossover and a first breadth mutation. The crossover operator for a hierarchical system between
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Table 1: Input data
unit λ cost a unit λ cost a unit λ cost a

1 12.018 1 1 3 13.02 1 2 5 11.125 2 2
2 10.01 2 2 4 11.02 2 2

two individual executes in two steps. In the first step we have chosen a subsystem at random,
where all the units at the same level have the chance to be chosen. In the second step the
selected units are exchanged with their inferior structure. Finally, these operations render to
producing of two new individuals. This is called the first breadth crossover. This process is
repeated for the mutation operator also, with the difference that in the second step the hot and
cold redundancy number of the selected units are exchanged with the chosen integers randomly.
Changing the redundancy units number, changes the lower unit structure. This is called the
first breadth mutation.

3.4 Local search

In this paper, A heuristic local search is applied which consists of three steps. In the first step
all the individuals are evaluated by:

γ(h, c) =
R(h, c)

C(h, c)
(3.2)

Then the individual with largest γ(h, c) is selected for local search. This strategy is used in
MLMRAP, so that to have the highest reliability taking in view the cost constraint. Therefore,
this criterion is used to measure an individual, as the minimum cost is considered. The second
step of the local search operator is performed on the selected individual. A subsystem of this
individual randomly is chosen and a unit of the chosen level is selected. The local search changes
the system structure partially, and then it is used for the component level only. The third step
is to select 10 pairs of the components randomly and changes the hot and cold redundancy
numbers of each component at random. The redundancy number of a unit reduces from a pair
to one and obtains two new individuals. Then the redundancy of a component is reduced from
a pair to one unit and the redundancy of the other component is increased by one and vice
versa. Two new individuals are obtained based on the same procedure. Again, we consider the
selected individual and this time the hot or cold redundancy number of each pair components
is increased by one and shall reach to two new individuals. In every loop of the local search
algorithm 4 new individuals are produced for each pair of components. These 4 new individuals
have been checked. So that to satisfy the cost constraint. The new individuals are added to a
provisional archive of the feasible solutions and the local search algorithm is repeated for every
10 pairs.

3.5 Evolution

In this part, all the initial and new individuals are checked and they are put in an ascend-
ing order and a new population is selected equal to initial population of the best individuals
and HMA process is repeated for the new population until the time to reach to the predeter-
mined generation number as the stop alarm, and the last individual with the maximum mixed
redundancy reliability in the multi-level system is achieved.

4 Experimental results and discussion

The input data for the system reliability optimization problem are summarized in Table 1. The
input data consists of failure rate (λ), corresponding cost and additional cost for each unit.
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Table 2: Optimal mixed redundancy allocation in a bridge network system using HMA
Cost constraint

redundancy 550 560 570 580 590 600 610 620 630 640 650
(h1, c1) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)

(h11, c11) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (1, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
(h12, c12) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
(h13, c13) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
(h14, c14) (1, 0) (1, 0) (1, 0) (2, 0) (2, 0) (2, 0) (1, 0) (1, 0) (1, 0) (2, 0) (2, 0)
h111 2 1 2 1 2 1 2 2 2 2 2 2 1 2 1 2 1 2 2 2 2
c111 2 1 2 1 2 1 2 1 2 1 2 3 1 3 1 3 1 2 1 2 1
h114 2 1 2 1 2 1 2 2 2 2 2 3 1 3 1 3 1 2 2 2 2
c114 0 0 0 0 0 0 2 0 2 0 2 2 0 2 0 2 0 2 0 2 0
h122 2 1 2 1 2 1 2 2 2 2 2 2 1 1 1 1 1 1 2 1 2 1
c122 1 1 1 1 1 1 1 2 1 2 2 1 2 1 2 1 2 1 1 1 1 1
h125 2 1 2 1 2 1 2 2 2 2 2 2 3 1 3 1 3 1 2 1 2 1
c125 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1
h131 1 1 1 1 1 1 2 1 2 1 3 1 2 1 2 1 2 1 2 1 2 1
c131 2 2 2 2 2 2 1 1 1 1 1 1 1 2 1 2 1 2 1 1 1 1
h133 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
c133 2 1 2 1 2 1 2 1 2 1 0 0 2 1 2 1 2 1 2 1 2 1
h135 1 1 1 1 1 1 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1
c135 1 2 1 2 1 2 2 2 2 2 0 0 1 1 1 1 1 1 1 1 1 1
h142 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2
c142 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
h143 3 3 3 2 1 2 1 2 1 1 1 1 2 1 2 1
c143 1 1 1 2 0 2 0 0 1 2 2 2 1 2 1 2
h144 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2
c144 0 0 0 0 1 0 1 1 1 1 1 1 1 2 1 2
Rsys 0.9978 0.9978 0.9978 0.9987 0.9987 0.9991 0.9994 0.9994 0.9994 0.9996 0.9996
cost 159 159 159 260 260 202 214 214 214 282 282

Table 3: Optimal mixed redundancy allocation in a bridge network system using HGA
Cost constraint

redundancy 550 560 570 580 590 600 610 620 630 640 650
(h1, c1) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)

(h11, c11) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
(h12, c12) (2, 0) (1, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
(h13, c13) (2, 0) (1, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
(h14, c14) (2, 0) (2, 0) (2, 0) (1, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
h111 2 2 2 1 2 1 2 1 1 1 1 1 2 2 2 1 2 2 2 2 1 1
c111 1 1 2 2 0 2 2 1 1 0 1 0 1 1 0 1 2 1 2 1 2 1
h114 1 2 2 1 3 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2
c114 2 1 1 1 0 1 0 0 1 0 1 0 2 1 0 0 2 0 2 0 2 1
h122 2 2 2 1 1 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1
c122 2 2 1 2 2 2 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1
h125 2 1 2 2 2 2 1 2 1 2 1 1 1 2 1 2 2 2 2 2 1
c125 1 1 1 1 1 1 1 0 1 0 1 2 2 2 2 1 1 1 1 2 0
h131 1 1 2 2 1 1 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1
c131 1 1 1 1 1 2 2 2 2 2 2 1 2 2 2 1 1 1 1 2 1
h133 1 1 2 1 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1
c133 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 2 1 2 1 2 1
h135 2 1 2 2 2 1 2 2 1 2 1 2 2 1 2 2 2 2 2 2 2
c135 2 1 1 1 1 2 1 1 2 1 2 2 1 1 2 2 2 2 2 2 1
h142 1 1 2 1 2 2 2 2 1 2 1 2 1 1 1 2 2 2 2 2 2
c142 2 1 2 0 2 1 2 2 2 2 2 1 2 2 1 0 0 0 0 2 2
h143 1 1 2 2 2 1 2 2 2 2 2 2 1 1 1 2 1 2 1 2 2
c143 2 1 0 1 1 1 1 1 2 1 2 2 1 2 1 2 0 2 0 2 1
h144 2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 1
c144 2 1 1 0 2 2 1 1 2 1 2 1 1 2 1 0 1 0 1 2 1
Rsys 0.9766 0.9953 0.9955 0.9959 0.9978 0.9978 0.9983 0.9985 0.9987 0.9987 0.9994
cost 249 214 243 220 251 251 264 221 260 260 284
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Figure 2: The optimal reliability function by the MA and HGA under different constraint values

The objective is to maximize system reliability with a mixture of hot and cold redundancies
for all levels simultaneously in the network, under system cost constraint. We apply HGA and
HMA presented in the previous section to solve our system reliability, and then the results are
calculated and compared. This numerical example consists of 2 redundancy maximum for the
subsystem units and 2 redundancy maximum for the component units. The system has five
components. The system cost constraint has ranges from 550 to 650. For each constraint, every
algorithm runs 10 times independently. A single case study, the performance over different cost
constraint values, and the performance on test instance with different system parameters. The
maximum generation number was set to 500 for both methods. The crossover rate pc and the
mutation rate pm are set to 0.8 and 0.05. An initial population of 100 individuals is generated,
50 and 10 offsprings are generated by crossover and mutation operators, respectively. The
simulation process can also be applied for other maximum redundancies. For solving MLMRAP
by HMA, the solution is clearly improved when adding the local search algorithm but HGA
does not consist of the local search algorithm and other steps of algorithm performance are
the same in both algorithms. In the case of network, the influence of the local search is clearly
highlighted. The optimal solutions have a mixture of hot and cold redundancy indicating the
fact that the reliability of the system design with a mixture of hot and cold standby redundancy
is more than those of systems designed exclusively with either hot or cold standby redundancy
with the same system cost constraint.

In Tables 2 and 3, the best results obtained by the HMA are slightly better than those obtained
by HGA. The proposed HMA is an effective algorithm for solving the reliability redundancy
optimization problems, and it performs better than or competitive to HGA existing algorithm
in the literature. Figure 4 confirms these results.

5 Conclusion

A design was presented to determine optimal solutions for the mixed hot and cold redundancy
allocation problem for a bridge network system. We applied mixed cold and hot redundancy
for all the levels (components, subsystems and system) simultaneously in the network by the
HMA. The efficiency of the reliability increased when we used the minimal paths for redundancy
optimization. Also, superiority of the HMA was specified by comparing of the HMA and the
HGA.
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On the reliability of series and parallel systems with
randomized components
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Abstract

In this paper, we consider a series or parallel system of independent components
and assume that the components are selected from three distinct batches. Under some
conditions, it is proved that if the number of components chosen from the first and the
second batches increases in the usual stochastic order then the reliability of the series
(parallel) system increases (decreases) in the same stochastic order sense.

Keywords: Reliability, stochastic ordering, series system.

1 Introduction

One of the significant problem in reliability is optimization of complex system; see, e.g., [3] and
references therein. Barlow and Proschan [1] gave some examples of bounds for the reliability
of series and parallel systems when the number of components is a random variable. Li and
Hu [4] studied stochastic comparisons between the lifetimes of a series system with redundant
components and two allocation choices.

Di Crescenzo and Pellerey [2] considered a series or parallel system whose components are
chosen from two distinct batches. They showed that the reliability increases if the the number
of components chosen from the first batch increases in convex order. In this paper, we explore
this result when the components of the system may be chosen from more than two batches.
For example, assume that there are three different batches BX , BY , BZ and the corresponding
lifetimes in each batch are {Xi; i = 1, ..., n}, {Yi; i = 1, ..., n} and {Zi; i = 1, ..., n}.
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Let X1, X2, . . . , Xn, Y1, Y2, . . . , Yn and Z1, Z2, . . . , Zn be independent and identically dis-
tributed as random variables X, Y and Z, respectively. Suppose the components of a series or
parallel system with n components are chosen from batches BX , BY , BZ . If k components is
selected from batch BX and l components from batch BY and n− k− l components are taken
from the batch BZ , 0 ≤ k + l ≤ n, define

Π(k,l) =


Z1, ..., Zn if k = 0, l = 0
Y1, ..., Yn if k = 0, l = n
X1, ..., Xn if k = n, l = 0

if k = 1, ..., n− 1,
X1, ..., Xk, Yk+1, ..., Yl+k, Zl+k+1, ..., Zn l = 1, ..., n− 1.

By this setting, the lifetimes of the series and parallel systems can be respectively represented
as T s(k,l) = min{Π(k,l)} and T p(k,l) = max{Π(k,l)}. The random variables K and L denote the

number of components selected from the first and the second batches, respectively.

The aim of this paper is to survey the appropriate conditions under which the reliability
of the system is improved. Under some conditions, it is proved that if (K,L) increases in
the usual stochastic order then the reliability of the series system increases and under same
assumptions the reliability of the parallel system decreases. This result can be generalized for
the case where we have m different batches. Throughout the paper, for any random variables
W we denote its distribution function by FW (w) = P (W ≤ w) and its reliability function by
F̄W (w) = P (W > w).

2 Series system

Consider a series system with n independent components. Suppose the components of the
system are chosen from three different batches in which the first batch contains the components
with common reliability function F̄X , the second includes components with common reliability
function F̄Y and the third has components having identical reliability function F̄Z . Let K and
L be discrete random variable which denote the components chosen from the first and the
second batch, respectively. If T s(K,L) denotes the lifetime of the series system, then it is easy to
show that the reliability of the system can be written as

P (T s(K,L) > t) =
∑∑

(k,l)∈S(K,L)

F̄ kX(t)F̄ lY (t)F̄n−k−lZ (t)P (K = k, L = l).

where S(K,L) = {(k, l)|k = 0, 1, ..., n, l = 0, 1, ..., n, 0 ≤ k+ l ≤ n} is the support of joint random
variable (K,L).

The following theorem is a main tool to obtain the next results (Theorem 6.B.18 of [5]).

Theorem 1. Let {Giθ, θ ∈ Xi}, i = 1, 2, ..., n, be n families of univariate distribution functions
as above. Let Θ1 and Θ2 be two random vectors with supports in Πn

i=1Xi and distribution func-
tions F1 and F2, respectively. Let Y1 and Y2 be two random vectors with distribution functions
H1 and H2 given by

Hj(y1, y2, ..., yn) =

∫
χ1

∫
χ2

...

∫
χn

Πn
i=1G

i
θi(yi)dFj(θ1, θ2, ..., θn)

for (y1, y2, ..., yn) ∈ Rn, j = 1, 2. If Xi(θ) ≤st Xi(θ
′) whenever θ ≤ θ′, i = 1, 2, ..., n, and

Θ1 ≤st Θ2, then Y1 ≤st Y2.

Theorem 2. Let Z ≤st X and Z ≤st Y . If (K1, L1) ≤st (K2, L2), then T s(K1,L1) ≤st T
s
(K2,L2).

Proof. Define a two-variate function as follows

Q(k, l) =

(
F̄X(t)

F̄Z(t)

)k (
F̄Y (t)

F̄Z(t)

)l
.
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By the assumptions of the theorem, it can be concluded that Q(k, l) is an increasing function
of (k, l). Then, from (K1, L1) ≤st (K2, L2) we can write

E(Q(K1, L1)) ≤ E(Q(K2, L2))

Then

∑∑
(k1,l1)∈S(K1,L1)

(
F̄X(t)

F̄Z(t)

)k1 ( F̄Y (t)

F̄Z(t)

)l1
P (K1 = k1, L1 = l1)

≤
∑∑

(k2,l2)∈S(K2,L2)

(
F̄X(t)

F̄Z(t)

)k2 ( F̄Y (t)

F̄Z(t)

)l2
P (K2 = k2, L2 = l2).

By manipulation the expression (F̄Z(t))n on two sides of the above inequality, it is followed
that P (T s(K1,L1) > t) ≤ P (T s(K2,L2) > t) and hence the proof is completed.

3 Parallel system

Assume a parallel system has n independent components whose components choose from three
different batches, BX , BY , BZ . The components in batches BX , BY , BZ arev independent and
identically distributed with distribution functions FX , FY , FZ , respectively. Let random vari-
ables K and L indicate the number of components chosen from batches BX and BY , respec-
tively. If T p(K,L) is the lifetime of the parallel system, then

P (T p(K,L) ≤ t) =
∑∑

(k,l)∈S(K,L)

F kX(t)F lY (t)Fn−k−lZ (t)P (K = k, L = l),

where S(K,L) = {(k, l)|k = 0, 1, ..., n, l = 0, 1, ..., n, 0 ≤ k+ l ≤ n} is the support of joint random
variable (K,L).

Theorem 3. Let Z ≤st X and Z ≤st Y .If (K1, L1) ≤st (K2, L2), then T p(K1,L1) ≥st T
p
(K2,L2).

Proof. Let G(k, l) = (FX(t)/FZ(t))
k

(FY (t)/FZ(t))
l
. By the supposition of theorem we can

follow that G(k, l) is an decreasing function of (k, l). Then, from (K1, L1) ≤st (K2, L2) we can
write

E(G(K1, L1)) ≥ E(G(K2, L2))

Then ∑∑
(k1,l1)∈S(K1,L1)

(
FX(t)

FZ(t)

)k1 (FY (t)

FZ(t)

)l1
P (K1 = k1, L1 = l1)

≥
∑∑

(k2,l2)∈S(K2,L2)

(
FX(t)

FZ(t)

)k2 (FY (t)

FZ(t)

)l2
P (K2 = k2, L2 = l2)

If two sides of the above inequality are manipulated by (FZ(t))n, the result is obtained.
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Stochastic Comparisons of (n− k + 1)-out-of-n Systems
with exchangeable components Based on Residual
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Abstract

In this paper, we consider a (n − k + 1)-out-of-n system in which the component
lifetimes are exchangeable random variables. In following, we stochastically compare
the residual lifetimes of (n− k + 1)-out-of-n systems in one sample and two samples.

Keywords: inactivity time, stochastic order, dependence, reliability.

1 Introduction

(n−k+1)-out-of-n systems are the papular systems of coherent systems. A (n−k+1)-out-of-n
system is a system consisting of n components and the system works if and only if at least
(n − k + 1) components out of n components are operating (k ≤ n). Two important special
cases of (n − k + 1)-out-of-n systems are parallel systems and series systems corresponding
to k = n and k = 1, respectively. The mean residual lifetime (MRL) function is one of the
most important measures in the reliability theory. During the last few years, many authors
have investigated properties of MRL for coherent systems specially k-out-of-n systems as well.
Among others, we can refer to [1], [2], [3], [5], [10] and [13].

Much attention of authors has been paid to studying properties of the systems restricted to
the case when the components are independent. In fact the components are not independent
in practical perspectives. The assumption of dependence among components of system is rea-
sonable. In this regard, one can refer to [4], [6], [7], [8], [11] and [12].

In this note, we consider the a (n − k + 1)-out-of-n system in which the component lifetimes
are exchangeable. We present some new stochastic ordering properties of the residual lifetimes
of the systems from one sample, and two samples.
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2 Preliminaries

In this section, we present the required tools and concepts for the following section. Let T be
the lifetime of a coherent system consisting of n components with the lifetimes T1, T2, . . . , Tn.
Denote by T1:n, T2:n, . . . , Tn:n the ordered lifetimes of the components. If Tr:n denotes the rth
smallest component lifetime, then the conditional random variable

{T − t|Tr:n > t}, (2.1)

represents the residual lifetime of the system under the condition that at least n − r + 1
components of the system are working at time t. The other realistic and interesting situation
is the residual lifetime of a (n − k + 1)-out-of-n system given the condition that at least r
components of the system have failed but the system is working at time t, i.e.

{T − t|Tr:n ≤ t, T > t}. (2.2)

Among the researchers who have extended this concept to the coherent system, we can refer
to [2], [8] and [13].

Before giving the main results, we introduce some concepts of stochastic orders which will be
used in the next section. For more details see [9].

Definition 1. Let X and Y be two nonnegative random variables with survival functions F̄
and Ḡ, respectively. X is said to be smaller than Y in the usual stochastic order, denoted by
X ≤st Y , if for all t, F̄ (t) ≤ Ḡ(t).

Definition 2. A density function f : Rn → R+ is said to be multivariate totally positive of
order 2 (MTP2) if for all x,y ∈ Rn,

f(x)f(y) ≤ f(x ∧ y)f(x ∨ y),

where x ∨ y = (x1 ∨ y1, x2 ∨ y2, . . . , xn ∨ yn) and x ∧ y = (x1 ∧ y1, x2 ∧ y2, . . . , xn ∧ yn), with
xi ∨ yi = max{xi, yi} and xi ∧ yi = min{xi, yi}, i = 1, 2, . . . , n.

Theorem 1. Let {X1, X2, . . .} and {Y1, Y2, . . .} be two sequences of (not necessarily inde-
pendent) random variables such that (X1, X2, . . . , Xk) ≤st (Y1, Y2, . . . , Yk), k ≥ 1. Then
Xi:m ≤st Yj:n, whenever i ≤ j and m− i ≥ n− j.

Let {X1, X2, . . .} be a sequence of (not necessarily independent) random variables. Then
Xi:m ≤st Xj:n, whenever i ≤ j and m− i ≥ n− j.

3 Main results

In this section, we consider a (n − k + 1)-out-of-n system consisting of n components with
exchangeable lifetimes T1, T2, . . . , Tn. We will stochastically compare the residual lifetimes of the
systems that introduced in equations (2.1) and (2.2), in one-sample and two-sample problems
(see [8]).

Now, we have the following theorems.

Theorem 2. For any t > 0, and 1 ≤ r ≤ k < n,

{Tk:n − t|Tr:n > t} ≤st {Tk+1:n − t|Tr:n > t}.

Here, we present that the residual lifetime of the system is stochastically decreasing in r, for
any fixed k and n under the certain condition, [8].
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Theorem 3. If the joint density function of the exchangeable random variables T1, T2, . . . , Tn
satisfies the MTP2 property, then

i) for t > 0 and 1 ≤ r < k ≤ n,

{Tk:n − t|Tr+1:n > t} ≤st {Tk:n − t|Tr:n > t};

ii) for t > 0, r = 1, 2, . . . , k − 2 and k ≤ n,

{Tk:n − t|Tr+1:n ≤ t, Tk:n > t} ≤st {Tk:n − t|Tr:n ≤ t, Tk:n > t}.

Let the joint density function of Ti’s i = 1, 2, . . . , n, be MTP2. Using Theorems 2 and 3,

i) For 1 ≤ l ≤ r ≤ k ≤ p ≤ n,

E(Tk:n − t|Tr:n > t) ≤ E(Tp:n − t|Tl:n > t);

ii) for 1 ≤ l ≤ r < k ≤ n,

E(Tk:n − t|Tr:n ≤ t, Tk:n > t) ≤ E(Tk:n − t|Tl:n ≤ t, Tk:n > t).

Now, consider two (n−k+ 1)-out-of-n systems S1, and S2 with exchangeable components T =
(T1, T2, . . . , Tn), and Z = (Z1, Z2, . . . , Zn), respectively. The following result shows that, when
the component lifetimes of two systems are ordered in terms of usual multivariate stochastic
order, then the corresponding systems are stochastically ordered in terms of their residual
lifetimes (see [8]).

Theorem 4. If {T|T ∈ Ei(t)} ≤st {Z|Z ∈ Ei(t)} for i = 0, 1, . . . , r − 1 and for Ei(t) =
[0, t]i × (t,∞)n−i and [0, t]i × [0,∞)× (t,∞)n−i−1, then for t > 0,

i) {Tk:n − t|Tr:n > t} ≤st {Zk:n − t|Zr:n > t},

ii) {Tk:n − t|Tr:n ≤ t, Tk:n > t} ≤st {Zk:n − t|Zr:n ≤ t, Zk:n > t}.
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Abstract

In this talk, we consider a coherent (or mixed) system consisting of n identical
components with independent lifetimes. We show that when the underlying distribution
function F is absolutely continuous, then it can be univocally determined by some
particular mean residual lives or mean inactivity times of the system and their
derivatives.

Keywords: Burn-in test, Bivariate degradation, optimal test, Stochastic pro-
cess, Inverse Gaussian process

1 Introduction

In reliability engineering, k-out-of-n structure play an important role. A technical system has
an k-out-of-n structure if it works when at least k of the n components work. Suppose that
the lifetimes of the components are described by random variables T1, T2, ..., Tn. Assume that
Ti’s are independent and have a common absolutely continuous distribution function F (t). It is
known that the lifetime of the (n− k+ 1)-out-of-n system is represented by the corresponding
kth order statistic Tk:n Many properties and applications of this system are obtained in the
literature (see, for example, [4]). The class of k-out-of-n systems is a special case of a class of
systems which is known in the literature as the coherent systems. A structure consisting of n
components is known as a coherent system if it has no irrelevant component and the system
is monotone in every component. Samaniego [6] showed that the reliability function of the
system lifetime TS can be written as a mixture of the reliability functions of Ti:n with weights
s1, s2, ..., sn such that si = P{TS = Ti:n}, i = 1, 2, ..., n.

1m.tavangar@stat.ui.ac.ir
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Boland and Samaniego [5] introduced the notion of mixed systems by admitting signatures with
arbitrary non-negative coordinates summing up to 1. In other words, any probability vector
(s1, s2, ..., sn) is the signature of a mixed system. The mixed system is a randomly chosen
k-out-of-n system in which the choice probability is determined by the signature.

In recent years, the residual lifetime of the system at the system level has aroused the interest
of many authors. One can define the MRL function of a (n−k+1)-out-of-n under the condition
that at most (r − 1) components of the system have failed, as follows:

Hr,k,n(t) = E(Tk:n − t|Tr:n > t), 1 ≤ r ≤ k ≤ n.

Special cases of this function are studied, e.g., in [2] and [3].

In recent literature, the inactivity time of a component or a system is also considered by
researchers. Suppose that an n-component system is put in use at time t = 0. Assume that
the system is not monitored continuously. A problem of interest is to get information about
the history of the system, e.g., when the components of the system have failed. Motivated
by this, Asadi [1] defined and investigated the concept of mean inactivity time (MIT) of a
parallel system, at the system level. Tavangar and Asadi [8] have extended the Asadi’s results
to (n− k + 1)-out-of-n structures and defined the MIT of such a system as follows,

Mr,k,n(t) = E(t− Tr:n | Tk:n ≤ t), 1 ≤ r ≤ k ≤ n. (1.1)

The aim of the present talk is to summarize some representation results for the parent distri-
bution of components of the system in terms of some particular MRL or MIT functions.

2 Main results

Theorem 1. (Tavangar [7]) Let the components of the system be independent and have a
common absolutely continuous distribution F which is strictly increasing on (0, ω(F )), where
ω(F ) = sup{x : F (x) < 1}. The reliability function F̄Tr:n(t) of Tr:n can be represented as
follows,

F̄Tr:n(t) = exp

{
−
∫ t

0

1 + d
dxHr,k,n(x)

Hr,k,n(x)−H1,k−r,n−r(x)
dx

}
, t ∈ (0, ω(F )).

It is known that there is a one-to-one relation between the distribution function of Tr:n and
the parent distribution function F (t). Hence we have shown, in Theorem 1, that when F (t) is
absolutely continuous and strictly increasing on its support, then it can be uniquely determined
by Hr,k,n(t) and H1,k−r,n−r(t), for fixed values of r, k, n, 1 ≤ r ≤ k ≤ n. It is an open question
if Hr,k,n(t) for specific values of r, k, n uniquely identifies F (t).

A similar result as that of Theorem 1 has already been proved by Tavangar and Asadi [8] for
the MIT of the components of k-out-of-n system at the system level. Their result is as follows,

FTk:n(t) = exp

{
−
∫ ω(F )

t

1− d
dxMr,k,n(x)

Mr,k,n(x)−Mr,k−1,k−1(x)
dx

}
, t ∈ (0, ω(F )),

where Mr,k,n(x) is the MIT function defined in (1.1). Similar expressions for the parent distri-
bution in terms of conditional MRL and conditional MIT functions and their derivatives are
obtained in [9].

Consider the coherent system S with the property that, with probability 1, it is operating as
long as (n−k+1) components operate. Such system must have a signature of order n of the form
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(0, ..., 0, sk, sk+1, ..., sn), where sk > 0. It is known that the MRL HS
r,n(t) = E(TS− t | Tr:n > t)

of the coherent system can be represented as follows,

HS
r,n(t) =

n∑
i=k

siHr,i,n(t).

In the literature, there exist other definitions of the MRL. For example, one can consider the
MRL H̃S

r,n(t) of the coherent system S with signature (0, ..., 0, sk, sk+1, ..., sn),sk > 0, under
the condition that exactly (n − r), r = 1, 2, ..., k − 1, components of the system are working,
and the other components have already failed; that is

H̃S
r,n(t) = E(TS − t | Tr:n ≤ t < Tr+1:n).

Similarly, we can define the MIT M̃S
k,n(t) of the coherent system S with signature (s1, s2, ...,

sr, 0, ..., 0), sr > 0, under the condition that exactly (k − 1), k = r + 1, ..., n, components have
already failed; that is

M̃S
k,n(t) = E(t− TS | Tk−1:n ≤ t < Tk:n).

The following theorem states that the parent distribution can be uniquely determined from
HS
r,n(t) and H̃S

r,n(t), for some fixed 1 ≤ r ≤ k.

Theorem 2. (Tavangar, [7]) Let the components of the coherent system S be independent and
have a common absolutely continuous distribution F which is strictly increasing on (0, ω(F )).
Let the signature of the system be of the form (0, ..., 0, sk, sk+1, ..., sn), sk > 0. Then the relia-
bility function F̄Tr:n(t) of Tr:n, (1 ≤ r ≤ k), can be represented as follows,

F̄Tr:n(t) = exp

{
−
∫ t

0

1 + d
dtH

S
r,n(x)

HS
r,n(x)− H̃S

r,n(x)
dx

}
, t ∈ (0, ω(F )).

Let the signature be of the form (s1, s2, ..., sr, 0, ..., 0), sr > 0. In a similar way as in Theorem 2,
it can be verified that the distribution function FTk:n(t) of Tk:n, (r + 1 ≤ k ≤ n), can be
represented as follows,

FTk:n(t) = exp

{
−
∫ ω(F )

t

1− d
dtM

S
k,n(x)

MS
k,n(x)− M̃S

k,n(x)
dx

}
, t ∈ (0, ω(F )).

It should be pointed out here that H̃S
r,n(t) = HS′

1,n−r(t) = E(TS′ − t | T1:n−r > t), where
TS′ denotes the lifetime of the (n − r)-component mixed system S ′ with the signature vector
s′ = (0, ..., 0, sk, sk+1, ..., sn). In other words, H̃S

r,n(t) is the MRL of the mixed system S ′, under
the condition that all the components of the system are working at time t. Note that s′ is a
signature of order (n − r). Similarly, if we consider the (k − 1)-component mixed system S ′′
with lifetime TS′′ and the signature vector (s1, s2, ..., sr, 0, ..., 0), then M̃S

k,n(t) = E(t − TS′′ |
Tk−1:k−1 ≤ t) = MS′′

k−1,k−1(t).
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Abstract

This article introduces a new mixture representation for the reliability function
of conditional inactivity time of coherent system consisting of n independent and
identically distributed components under a specific condition on the status of the
system components. Also we drive some stochastic comparisons of the proposed
conditional inactivity time.

Keywords: Coherent system, Inactivity time, Order statistics,Signature, Stochastic
order.

1 Introduction

A coherent system is a technical structure consisting of no irrelevant component (a component
is said to be irrelevant if its performance does not affect the performance of the system) and
having a structure function that is monotone in each argument. Recently, the inactivity times
of a coherent system or its components have been studied under different conditions; see,
for example, Asadi (2006)[1], Zhang (2010)[5], Goliforushani and Asadi (2011)[2], Consider
a coherent system comprising n components with i.i.d. lifetimes X1, X2, ..., Xn distributed
according to a common continuous distribution F . Suppose T = T (X1, X2, ..., Xn) denotes the
system lifetime. The concept of signature of coherent systems is a useful tool in the study of
the reliability of coherent systems. In this paper, we consider a coherent system in which the
signature vector is of the following form:

s = (s1, ..., si, 0, ..., 0), (1.1)
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166



Teimoori, F. , Goli, S. 167

where sk > 0 for k = 1, 2, ..., i, i = 1, 2, ..., n − 1. A coherent system with the signature of the
form (2.1) has the property that, upon the failure of the system at time t, components of the
system with lifetimes Xk:n, k = i+ 1, i+ 2, ..., n, will be still alive. The study of the reliability
properties of such a system may be of interest for engineers and system designers because after
the failure of the system, the live components in the system can be removed and used for some
other testing proposes. The rest of this paper is organized as follows. In Section 2, we introduce
some stochastic orders and definitions which are used throughout the paper and we present
a new mixture representation of the conditional inactivity time of coherent system in terms
of conditional inactivity times of order statistics and then use them to obtain some stochastic
ordering proporties of the conditional inactivity times.

2 Main results

Before proceeding to present the main results, we briefly introduce some stochastic orders for
two nonnegative continuous random variables X and Y with respective distribution functions
F and G , density functions f and g, and reliability functions F and G .

Definition 1. The random variable X is said to be less than the random variable Y in the

i) stochastic order, denoted by X ≤st Y , if F (x) ≤ G(x) for all x > 0;

ii) reversed hazard order, denoted by X ≤rh Y , if F (x)
G(x) is a decreasing function of x;

iii) likelihood ratio order, denoted by X ≤lr Y , if f(x)
g(x) is a decreasing function of x.

Definition 2. If X ≤rh Y ,then

P (X − t ≤ −s|X ≤ t) ≥ P (Y − t ≤ −s|Y ≤ t), for all s ≥ 0 and all t,

or equivalently

[X|X ≤ t] ≤st [Y |Y ≤ t], for all t.

We now our attention to studying the inactivity time of the coherent system that has failed by
time t, i.e., T < t, but at time t, exactly l components have failed. In this case, we can define
the following conditional random variables:

(t− T |T < Xl:n < t < Xl+1:n), l = i+ 1, i+ 2, ..., n− 1.

The reliability function of this conditional random variable is given by

P (t− T > x|T < Xl:n < t < Xl+1:n) =

l−1∑
m=1

P (T = Xm:n, t− T > x|T < Xl:n < t < Xl+1:n)

=

l−1∑
m=1

pl,m(t)P (t−Xm:n > x|Xl:n < t < Xl+1:n).

We then have

P (t− T > x|T < Xl:n < t < Xl+1:n) =

l−1∑
m=1

pl,m(t)CXk,l,n(t, x), (2.2)
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where

pl,m(t) =
smP (Xl:n < t < Xl+1:n)

P (T < Xl:n < t < Xl+1:n)

=
sm∑l−1
u=1 su

, m = 1, ..., l − 1

= pm, m = 1, ..., l − 1.

It is obvious that pl,m(t) is independent of t and l, and so we simply have

pl,m(t) = (p1, ..., pl−1, 0, 0, .., 0). (2.3)

Let X and Y denote two continuous random variables with distribution functions F and G,
density functions f and g, and reversed hazard rates rF and rG, respectively. Consider two
coherent systems with the same signature as in (2.3), and let T1 and T2 denote the lifetimes
of the systems whose components are distributed as F and G, respectively. We now prove that
when the components of the system are ordered in terms of reversed hazard rates, then the
inactivity times of the failed components of the systems are stochastically ordered. First, let
Xi:n and Yi:n, i = 1, 2, ..., n, denote the ordered lifetimes of the components of the two systems,
respectively. It can be easily shown that X ≤rh Y if and only if

(t−Xm:n|Xl:n < t < Xl+1:n) ≥st (t− Ym:n|Yl:n < t < Yl+1:n).

Theorem 1. If X ≤rh Y and T1 and T2 denote the lifetimes of two systems with signature
vectors as in (2.3), then

(t− T1|T1 < Xl:n < t < Xl+1:n) ≥st (t− T2|T2 < Yl:n < t < Yl+1:n).

Proof. Note that

P (t− T1 > x|T1 < Xl:n < t < Xl+1:n)− P (t− T2 > x|T1 < Yl:n < t < Yl+1:n)

=

l−1∑
m=1

pm(CXk,l,n(t, x)− CYk,l,n(t, x))

From Remark 2, we have CXk,l,n(t, x) ≥ CYk,l,n(t, x), and so

P (t− T1 > x|T1 < Xl:n < t < Xl+1:n)− P (t− T2 > x|T1 < Yl:n < t < Yl+1:n) ≥ 0,

as required.

Theorem 2. Let p1 and p2 be the vectors of coefficients in (2.3) for two coherent systems of
order n, both based on components with i.i.d. lifetimes distributed as the common continuous
distribution function F . Let T1 and T2 be the corresponding lifetimes of the systems.

(i) If p1 ≤st p2, then (t− T1|T1 < Xl:n < t < Xl+1:n) ≥st (t− T2|T2 < Yl:n < t < Yl+1:n);

(ii) If p1 ≤rh p2, then (t− T1|T1 < Xl:n < t < Xl+1:n) ≥rh (t− T2|T2 < Yl:n < t < Yl+1:n);

(iii) If p1 ≤lr p2, then (t− T1|T1 < Xl:n < t < Xl+1:n) ≥lr (t− T2|T2 < Yl:n < t < Yl+1:n).

Theorem 3. If r(t) is decreasing, then P (t− T > x|Xl:n < t < Xl+1:n) is increasing in t for
all x ≥ 0.
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The New Burr Distribution with Application to Bladder
Cancer Susceptibility
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Abstract

This paper derives a new family of Burr type distributions as New Burr distribution.
This particular skewed distribution can be used quite effectively in analyzing lifetime
data. It is observed that the new distribution has modified unimodal hazard function.
Estimation of parameters and change-point of hazard function by the maximum
likelihood method are discussed. Change-point of hazard function is usually of great
interest in medical or industrial applications. The flexibility of the new model is
illustrated with an application to a real data set.

Keywords: Burr distributions, Change-point, Goodness-of-fit, Modified unimodal
hazard function, Lifetime data analysis

1 Introduction

Irving Burr (1942) developed the system of Burr distributions. Analogous to the Pearson system
of distributions, the Burr distributions are solutions to a differenial equation, which has the
form

dy

dx
= y(1− y)g(x, y), (1.1)

where y equal to F (x) and g(x, y) must be positive for y in the unit interval and x in the
support of F (x). Different functional forms of g(x, y) result in different solutions F (x), which
define the families of the Burr system.
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In this paper, we derives a New Burr distribution by replacing g(x, y) with g(x) =
3px2e−x

3
(1+e−x

3
)p−1

(1+e−x3 )p−1
, (p > 0). If g(x, y) is taken to be g(x), then the solution of the differential

equation (1.1) is given by:

F (x) = (e−G(x) + 1)−1, (1.2)

where G(x) =
∫
g(x)dx.

Then cdf and pdf of New Burr distribution are, respectively, given by:

F (x) = (1 + e−x
3

)−p, −∞ < x <∞, (p > 0), (1.3)

and

f(x) = 3px2e−x
3

(1 + e−x
3

)−p−1, −∞ < x <∞. (1.4)

If the location parameter µ and the scale parameter σ are introduced in the equation (1.3), we
have

F (x) = (1 + e−( x−µσ )3)−p, −∞ < x <∞, (p, σ > 0, µ ∈ R) (1.5)

and

f(x) =
3p

σ
(
x− µ
σ

)2e−( x−µσ )3(1 + e−( x−µσ )3)−p−1, −∞ < x <∞. (1.6)

Hence equation (1.5) is three parameter New Burr distribution. Hazard function associated
with the New Burr distribution is

h(x) =
3p
σ (x−µσ )2e−( x−µσ )3(1 + e−( x−µσ )3)−p−1

1− (1 + e−( x−µσ )3)−p
. (1.7)

The shapes of density and hazard functions of the New Burr distribution for different values
of shape parameter p are illustrated in Figure 1.

Figure 1: graphs of density and hazard functions of the New Burr distribution for different values of
shape parameter p

2 Hazard change point estimation-classical approach

Hazard function plays an important role in reliability and survival analysis. New Burr dis-
tribution has modified unimodal (unimodal followed by increasing) hazard function. In some
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medical situations, for example breast cancer, the hazard rate of death of breast cancer patients
represents a modified unimodal shape.
A modified unimodal shape has three phases, first increasing, then decreasing, then again
increasing. It can be interpreted as a description of three groups of patients, first group is
represented by the first phase that contains the weak patients, so the hazard rate of this group
is increasing, while the second phase represents the group with strong patients, their bodies
have became familiar with the disease and they are getting better. The hazard rate of death of
these patients is decreasing. In the third phase they become weaker and their ability to cope
with the disease declines, then the hazard rate of death increases.
For situations where the hazard function is modified unimodal shaped, usually, we have inter-
est in the estimation of lifetime change-point that is , the point at which the hazard function
reaches to a maximum (minimum) and then decrease (increase). In reliability, the change-point
of a hazard function is useful in assessing the hazard in the useful life phase. In this section, we
consider maximum likelihood estimation procedure for change-point of the hazard function.
Let us assume that x1, ..., xn is a random sample of size n of lifetimes generated by a New Burr
distribution with parameters µ, σ and p. The log-likelihood function is given by:

l(µ, σ, p) = n log(
3p

σ
) + 2

n∑
i=1

log(
xi − µ
σ

)−
n∑
i=1

(
xi − µ
σ

)3−

(p+ 1)

n∑
i=1

log(1 + e−(
xi−µ
σ )3).

The maximum likelihood estimates for µ, σ and p denoted by µ̂, σ̂ and p̂, respectively, are
obtained solving the likelihood equations, ( ∂l∂µ = 0, ∂l

∂σ = 0 and ∂l
∂p = 0).

From the invariance property of maximum likelihood estimators, we can obtain maximum
likelihood estimators for functions of µ, σ and p. For φ = g(µ, σ, p), a differentialable function

of µ, σ and p, we have φ̂ = g(µ̂, σ̂, p̂). Taking φ = h(x), defined in (1.7), the change-point of
New Burr hazard function is obtained as solution of equation d

dx log(φ) = 0. The maximum

likelihood estimator of the change-point is the solution of d
dx log(φ) = 0 with µ, σ and p

replaced by maximum likelihood estimates. We observe that d
dx log(φ) = 0 is non-linear in

x, so the change-point of the hazard function estimate should be obtained using some one
dimensional root finding technique like Newton-Raphson.

Figure 2: cdfs of the New Burr, Burr II and Generalized Burr II models for the remission times of bladder
cancer data
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3 Application

In this section, we use a real data set to compare the fits of the New Burr distribution and
those of Burr II and Generalized Burr II. We consider an uncensored data set corresponding
to remission times (in months) of a random sample of 128 bladder cancer patients. These data
were previously reported in Lee and Wang (2003). TTT plot for considered data is concave then
convex indicating an increasing then decreasing failure rate function, is properly accommodated
by New Burr distribution.

References

[1] Burr, I. W. (1942), Cumulative frequency distribution, Annals of Mathematical Statistics,
13, 215-232.

[2] Lee, E. T. and Wang, J. W. (2003), Statistical Methods for Survival Data Analysist, 3rd
edition, Wiley, New York.



Effect of imperfect ranking on estimator of
stress-strength model based on ranked set sampling

Zamanzade, E. 1

1 Department of Statistics, University of Isfahan, Iran

Abstract

This paper is a short review on the estimation of stress-strength model based on
ranked set sampling. We investigate the effect of imperfect ranking on the efficiency of
ranked set sampling estimator with respect to simple random sampling estimator.

Keywords: Ranked set sampling, Imperfect ranking, Efficiency, Nonparametric
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1 Introduction

Suppose that X and Y be two independent random variables with distribution functions F (x)
and G(y), respectively. One of the importan criterion in reliability is stress-strength model
which is defined as θ = P (X > Y ). The nonparametric estimation of θ based on two in-
dependent simple random sample {X1, . . . , Xk1} and {Y1, . . . , Yk2} from two population with
distribution F (x) and G(y), respectively, is given by

θ̂SRS =
1

k1k2

k1∑
i=1

k2∑
l=1

I(Xi > Yl),

where I(B) is the indicator function of set B.

One can easily verify that θ̂SRS is an unbiased estimator.
In the recent decades a new sampling design is taken into attention which is called ranked set
sampling (RSS). RSS was originally proposed by McIntyre (1952) for increasing precision of
mean estimator of pasture yields. This is a design for collecting data when actual measurement
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of units are expensive, time consuming, but ranking small subsets of units are relatively easy
and inexpensive. For drawing a ranked set sample with size N = km, first draw a simple random
sample with size k2 from population and divide it into k sets with size k. Rank units within
each set from smallest to largest without actual (judgement ranking). For measuring, select 1th
smallest unit from 1th set and 2th smallest unit from 2th set until draw kth smallest unit from
kth set, these measured units construct a ranked set sample with size k and 1 cycle. Repeat this
procedure for m times, a ranked set sample with size N = km and m cycle will be obtained.
This sample is indicated by {X[i]j , i = 1, . . . , k, j = 1, .,m}, where X[i]j , ith judgement order
statistics in jth cycle. Using (.) instead of [.] shows that the rankings are perfect which means
that {X(i)j , i = 1, . . . , k, j = 1, . . . ,m} are independent order statistics from samples with size
k from population.
A ranking mechanism is called consistent if the following equation holds

F (x) =
1

k

k∑
i=1

F[i](x), ∀x,

where F (x) is parent distribution function and F[i] is distribution function of ith judgement
order statistics.
Now consider estimation θ by two independent ranked set samples,
{X(i)j , i = 1, . . . , k1, j = 1, . . . ,m} and {Y(l)h, l = 1, . . . , k2, h = 1, . . . ,m}. Then the unbiased
estimator of θ based on two ranked set samples is given by

θ̂[RSS] =
1

k1k2

m∑
j=1

m∑
h=1

k1∑
i=1

k2∑
l=1

I(X[i]j > Y[l]h).

Sengupta and Mukhuti (2008) obtained the variance of θ̂[RSS] and θ̂SRS and compared them
as the following theorem.

Theorem 1 (Sengupta 2008). Under the consistent ranking mechanism, V ar(θ̂[RSS]) ≤
V ar(θ̂SRS) equality holds iff F[i] = F,∀i = 1, 2, . . . , k1 and G[j] = G, ∀j = 1, 2, . . . , k2, i.e.
either k1 = k2 = 1 or both the distributions F and G are degenerate.

The relative efficiency of θ̂[RSS] with respect to θ̂SRS is defined as follows:

RE := RE(θ̂[RSS], θ̂SRS) =
V ar(θ̂SRS)

V ar(θ̂[RSS])
.

Theorem 1 implies that RE(θ̂[RSS], θ̂SRS) ≥ 1. In order to investigate the relative efficiency in
more details, in the next section we discuss effect of ranking error on the RE.

2 Main results

For evaluating performance of imperfect ranking on RSS estimator, four different models of the
judgement ranking are used:

(1) Fraction of random ranking (M1): Consider the distribution function of ith judgement
order statistic F[i] as a mixture of the distribution of ith order statistic F(i) and parent
distribution function F: F[i] = λF(i) + (1− λ)F, λ ∈ [0, 1].

(2) Fraction of inverse rankings (M2): Consider the distribution function of the ith judgement
order statistic F[i] as mixture of perfect and perfectly wrong rankings: F[i] = λF(i) + (1−
λ)F(k−i+1), λ ∈ [0, 1].
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Table 1: Simulated RE for Exp(α) under different choices of k1, k2, λ, α and Mi, i =
1, 2, 3, 4.

(k1, k2) α λ = 1 λ = 0.8 λ = 0.5

M1 M2 M3 M4 M1 M2 M3 M4

(5,5) 3.5 2.850 1.706 1.291 2.419 1.482 1.137 1.000 2.014 1.129
1 2.897 1.708 1.246 2.335 1.443 1.156 1.002 2.081 1.096
0.8 2.769 1.721 1.310 2.407 1.414 1.172 1.012 2.042 1.105
0.1 2.797 1.675 1.284 2.458 1.465 1.203 1.015 2.032 1.128

(5,10) 3.5 3.349 1.871 1.359 2.975 1.511 1.205 1.000 2.550 1.166
1 3.363 1.787 1.322 3.033 1.527 1.201 1.022 2.568 1.161
0.8 3.274 1.849 1.346 2.902 1.532 1.207 1.013 2.555 1.155
0.1 3.385 1.819 1.374 2.973 1.523 1.232 1.001 2.466 1.142

(10,10) 3.5 5.233 2.110 1.484 4.772 1.678 1.272 1.038 4.089 1.174
1 5.311 2.037 1.430 4.796 1.683 1.220 1.016 4.134 1.192
0.8 5.123 2.107 1.396 4.712 1.643 1.256 1.016 4.128 1.197
0.1 5.188 2.015 1.409 4.644 1.686 1.244 1.027 4.190 1.169

(3) Fraction of neighbours (M3): F[i] is a mixture of F(i) and the distributions of the adjacent

order statistics: F[i] = (1−λ)
2 F(i−1) + λF(i) + (1−λ)

2 F(i+1), where F(0) := F(1) and F(k+1) :=
F(k).

(4) Concomitant (M4): Rank variable of interest X according to values of concomitant variable
W which has correlation λ with X.

These models were used by Frey et al. (2007) and Zamanzade et al. (2014).
In the simulation study, we considered parent distribution as Exp(α) and Normal(0, α2), λ
values as 1, 0.8, 0.5 and samples sizes (k1, k2) as (5, 5), (5, 10), (10, 10). We are generating 10,000
samples for different parent distributions, different judgement ranking models, different sample
sizes and different values of λ. For each combination a relative efficiency value was computed.
Table 1 and 2 exhibit the results for different parent distributions. While RE is always greater
than 1 but, the quantity can differ for different values of k1, k2, λ and judgement ranking
models. The relative efficiencies are highest when λ = 1 (prefect ranking) and they decrease
as the λ values decrease. For judgement ranking models the relative efficiency is highest when
judgement ranking model is fraction of neighbours (M3) and λ = 0.8. As the sample sizes
increase relative efficiencies increase. Result for different parent distributions are not much
remarkable. The efficiency was not affected by cycle variation, so results in the tables are just
for one cycle (m = 1).
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Table 2: Simulated RE for N(0, α2) under different choices of k1, k2, λ, α and Mi, i =
1, 2, 3, 4.

(k1, k2) α λ = 1 λ = 0.8 λ = 0.5

M1 M2 M3 M4 M1 M2 M3 M4

(5,5) 3.5 2.810 1.659 1.283 2.414 1.589 1.215 0.999 2.096 1.175
1 2.753 1.738 1.321 2.443 1.673 1.217 1.033 1.957 1.167
0.8 2.748 1.712 1.320 2.416 1.613 1.150 1.022 2.009 1.153
0.1 2.759 1.644 1.281 2.488 1.643 1.188 1.013 2.036 1.179

(5,10) 3.5 3.444 1.822 1.359 2.917 1.718 1.218 1.010 2.483 1.161
1 3.458 1.808 1.347 2.997 1.745 1.224 1.023 2.558 1.175
0.8 3.445 1.759 1.351 2.965 1.766 1.209 1.008 2.526 1.156
0.1 3.415 1.850 1.412 2.880 1.746 1.224 1.043 2.561 1.175

(10,10) 3.5 5.115 2.010 1.451 4.685 1.999 1.251 1.028 4.086 1.186
1 5.207 2.037 1.413 4.899 2.003 1.272 1.006 4.293 1.258
0.8 5.164 2.089 1.447 4.736 2.001 1.286 1.023 4.069 1.224
0.1 4.966 2.100 1.402 4.676 1.947 1.252 1.019 4.288 1.211

[4] Zamanzade, E. , Arghami, N. and Vock, M. (2014), A parametric test of perfect ranking
in balanced ranked set sampling, Communications in Statistics - Theory and Methods, 43,
4589–4611.
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Abstract

In this paper, we consider a network with absolutely reliable nodes whose links are
subject to shocks based on a counting process. Each shock may lead to links failure and
the network finally fails due to one of these shocks. Two age-based and shock-based
approaches are suggested for policy of preventive maintenance of such networks. The
results can be illustrated by considering some networks.

Keywords: Reliability, t-signature, counting process, signature.

1 Introduction

Preventive maintenance (PM) is an interesting problem in reliability engineering for improving
the network (or system) performance. Let a new unit have lifetime X with cumulative distri-
bution function (c.d.f.) F and start operating at t = 0. PM means that the unit is replaced
by a new one with the same c.d.f. F at each of the time instants T , 2T , 3T, . . . . Further,
the unit is replaced by a new one at the time of unit failure which termed emergency repair
(ER). It is assumed that the required time for the replacement of the unit is negligible. In the
literature on PM, we are usually interested to optimum the maintenance parameters such as
the maintenance period. To this, we first obtain some expressions for the mean incurred costs
when the unit is working, e.g., costs per unit of time or costs for the maintenance period.

The PM problems are frequently studied for the single unit systems or simple multi-unit net-
works such as series networks. Recently, some researchers have explored the PM policy for the
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network with more complex structures to obtain the corresponding optimal solutions; see [1],
[2].

Consider a network with lifetime T having two states: up, and down. The network is subject
to shocks which appear according to a counting process {ξ(t), t > 0}. Let each shock may
lead to link failure and the network finally fail by one of these shocks. Further, it is assumed
that Wi, i = 1, . . . , n, denotes the number of links that fail at the i-th shock and W0 ≡ 0, by
convention. If N(t) denotes the number of links that fail up to time t, then N(t) takes values on

{1, 2, . . . , n} and N(t) =
∑ξ(t)
i=0 Wi. Under the assumption that the process of shocks occurrence

is independent of the number of failed links, Zarezadeh et al. [5] showed that

P (T > t) =

n∑
i=1

sτi P (N(t) ≤ i− 1),

where sτi is the i-th element of vector sτ = (sτ1 , . . . , s
τ
n) which is called t-signature. This vector

depends only on the network structure and is a variant of the concept of signature defined by
[4] in which avoids the restriction of not allowing the ties. With S̄τj =

∑n
i=j+1 s

τ
i , it was shown

that

P (T > t) =

∞∑
k=0

βk,nP (ξ(t) = k), (1.1)

where, for k = 0, 1, . . . , βk,n =
∑n−1
j=0 S̄

τ
j P (

∑k
i=0Wi = j).

Let ϑ1, ϑ2, . . . be the epoch times corresponding to {ξ(t), t > 0}. Then βk,n = P (T > ϑk), and
as a function of k, βk,n is a survival function with probability mass function bn = (b1,n, b2,n, . . . )
where bk,n = P (T = ϑk), k = 1, 2, . . . .

In this paper, we consider the model described above and the PM on the network based on
relation (1.1) is investigated. We use two approaches for this purpose: age-based PM and shock-
based PM. The age-based approach is more traditional and the PM parameters are determined
based on the time of the network failure. The latter is a novel approach in which the number
of shocks is considered for obtaining optimal PM actions. Due to the limitation on the pages
number of the paper, the illustrative examples are removed.

2 Age-based preventive maintenance

Let c0 denote the cost of replacement of a failed link with a new one and cER be the cost of
the emergency repair (ER). Based on the model described in (1.1), the expected cost of the
renewal of the network is

C = c0

∞∑
i=1

βi−1,nE(Wi) + cER,

where β0,n = 1. If cPM is the cost which is incurred by PM, the cost of the PM of the working

network is equal to c0
∑k
i=1E(Wi) + cPM when the PM is applied at the k-th shock. It is clear

that cPM < cER. Assume that the network is replaced at TPM which is the failure time or the
last renewal point. Then the expected cost for one cycle can be expressed as

S(TPM ) =

∞∑
i=0

P
(
ξ(TPM ) = i

)
βi,n

(
c0

i∑
j=1

E(Wj) + cPM
)

+

∞∑
i=1

P
(
ξ(TPM ) = i

)(
c0

i∑
j=1

(E(Wj)

i∑
k=j

bk,n) + cER(1− βi,n)
)
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It can be seen that the expectation of the minimum of a random variable X and real number
c is

∫ c
0
F̄ (x)dx where F̄ = 1− F is the survival function of X. Then the expected duration of

the renewal cycle for the network with the PM and shocks is equal to
∫ TPM

0
F̄T (t)dt in which

F̄T is given in (1.1). From the renewal reward theorem (see, e.g., [3]), the long-run expected
cost per unit of time is equal to the expected cost per unit of time for one renewal cycle. Then
the expected cost per unit of time is

C(TPM ) =
S(TPM )∫ TPM

0
F̄T (t)dt

and hence we need to obtain C∗TPM = inf{C(TPM ), TPM ≥ 0}.

3 Shock-based PM

In this section, to apply the PM policy, we consider the number of shocks but not the times
of the shocks occurrence. The PM is performed immediately after the k-th shock or the ER,
whichever comes first. The expected number of shocks before the network failure is computed
using the following relation

L(k) =

k∑
i=1

ibi,n + kβk,n.

It can be shown that the mean cost per cycle is

R(k) = βk,n

(
c0

k∑
j=1

E(Wj) + cPM

)
+ c0

k∑
j=1

(
E(Wj)

k∑
i=j

bi,n

)
+ cER(1− βk,n)

Then we apply PM when the kmin-th shock occurs so that

kmin = inf{D(k), k = 1, 2, . . . }, D(k) =
R(k)

L(k)
.

Therefore, we want to find an optimal kmin for the PM replacing all failed links. Obviously, in
the case where D(k) is strictly decreasing, no PM should be scheduled.

Let a network have n links with reliable nodes. Assume that each link of the network fails
with probability p when a shock arrives and the links fail independent of each other. If the
number of failed links in the first shock, W1, has binomial distribution with parameters (n, p)
and the number of failed links in the i-th shock, Wi, i ≥ 2 has binomial distribution with
parameters (ni, p) where ni = n−

∑i−1
j=1Wj . With q = 1− p, it can be seen that, from Lemma

2 of [5], E
(∑k

i=1Wi

)
= n(1 − qk) and E(Wk) = npqk−1, k = 1, 2, . . . . For such network with

known t-signature, we can use the models described in Sections 2 and 3 for optimizing the PM
parameters.
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Abstract

This study was carried out to evaluate the problem associated with determining the
most reliable network configuration. The proposed approach focuses on improving the
efficiency of the evaluation of system reliabilities as well as quantifying the probability
of correctly selecting the true best design based on the estimation of the expected
system reliabilities through the use of ranking and selection procedures.

Keywords: Network Reliability Design, Ranking and Selection procedure, Probability
of Correct Selection.

1 Introduction

Networ Reliability Design (NRD) is the difficult optimization problem associated with finding
the topological configuration of an unreliable network, given certain design constraints, that
maximizes the system reliability function. This problem has received considerable attention by
researchers. Yang and Kubat [5] have proposed using theoretical bounds on the system relia-
bility as a substitute for the actual reliability measure. As such, system reliability is typically
approximated through simulation and estimation techniques such as Crude Monte Carlo simu-
lation or more recently artificial neural networks [4]. For Crude Monte Carlo simulation, various
approaches have been proposed to improve the efficiency of the simulation through different
types of sampling techniques [1]. Ranking and Selection (R&S) is a group of statistical tech-
niques used to justify the selection of the best or set of the best alternatives from a finite set
of alternatives based on the estimation of their expected performance, Fu [2] provides reviews
concerning how R&S is used throughout simulation optimization. In this study, we propose a
ranking and selection method for the network reliability design problem.

In section 2, we formulate the NRD optimization problem and describe how Monte Carlo
simulation is applied to solve it. Section 3, introduces the proposed method.
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2 Formulation

let G(V,E, T ) represent a network with reliable node set V = {1, ..., n}, unreliable edge set
E = {1, ...,m} , and terminal node set T ⊆ V which represents the set of nodes that must be
able to communicate with one another in order for the network to be considered operational.
Now, we define the network reliability design optimization problem as follows,

max
xi∈θ

R(xi) (2.1)

where θ is the set of feasible solutions defined by the following constraints:

m∑
e=1

xiece ≤ Cmax

0 ≤ xie ≤ 1, e ∈ E, i
xie ∈ Z+ ∪ {0}, e ∈ E

where ce represents the individual cost of edge e and xi = (xi1, ..., xim) is the edge purchase
vector of design i, where xie is the binary state of edge e ∈ E, such that

xie =

{
1 if edge e is purchased in design i
0 if otherwise

R(xi) is the evaluation of the system reliability of design i, and Cmax is the maximum allowable
budget for purchasing edges in each design. Also, we assume θ is nonempty and finite, containing
a total of K feasible designs, such that K ≤ 1000 . We can index the set of all candidate designs
via θ = {x1, ...,xK} , and represent the optimal solution(s) to (2.1) as θ∗ = {i : Ri > Rj ,∀j =
1, ...,K} where Ri ≡ R(xi). System reliability for this problem is defined as the probability
that a given set of terminal nodes T ⊆ V are connected at any given time, where the system is
connected if all nodes in T can communicate with one another via operational edges. However,
because the evaluation of the system reliability is difficult and cannot typically be solved in
polynomial time for most networks, (2.1) is typically represented via:

max
xi∈θ

R̂(xi) (2.2)

where R̂(xi) is the approximation of Ri , based on Monte Carlo simulation. Solutions selected
via (2.2) are just assumed to be optimal. Therefore, in order to achieve this purpose we propose
the probability of correct selection (PCS) is at least 1− α i.e

p(selectR̂k |Rk −Ri ≥ δ ∀i 6= k } ≥ 1− α (2.3)

where α is the allowable type I family-wise error and δ is the smallest difference worth detecting
between any two system reliabilities, such that any two system reliabilities that differ by less
than δ are considered equivalent. In order to implement (2.3) in terms of the NRD problem,
we need to find a selection rule. Based on the published results in the ranking and selection
literature, the procedure KN which is used in this study, has been shown to maintain superior
overall performance as compared to the other procedures, for optimization problems similar to
the NRD problem.

3 Procedure KN

In this section, we present the procedure KN. We define our samples in terms of the corre-
sponding batch mean, such that

dij =
1

B

B∑
l=1

ϕ(zij) (3.4)
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where dij represents the jth batch mean of the ith topological design of network G, and B
is the number of i.i.d. Monte Carlo samples used in each batch. We then define the system

reliability estimate for design i, as R̂i = 1
bi

bi∑
j=1

dij where bi = ni
B ∀i ∈ {1, ...,K} and ni is the

number of Monte Carlo samples.

Now, We follow this with a discussion of the individual details involved in each step.

1. Using (3.4) take b0 i.i.d. batch means dij from each design i; set bcount = b0, where b0 is the
batch mean counter variable for Procedure KN. And determine the system reliability estimates
for all K designs based on their initial b0 batch means, R̂i(b0) ∀i ∈ {1, ...,K}.
2. Determine the sample variance of the difference of the system reliability estimates of design
i and design j determined in Step 1, as follows

S2
ij =

1

b0 − 1

b0∑
l=1

(dil − djl − (R̂i(b0)− R̂j(b0)))2 ∀i, j ∈ {1, ...,K}

3. Calculate h = 2cη(b0 − 1) where η is the solution to g(η) = β represented by ηc =
1
2 (( 2α

N−1 )
−2
b0−1 − 1) if common random numbers are used and ηl = 1

2 (2(1− (1−α)
1

N−1 )
−2
b0−1 − 1)

if independent replications are used, α is the user-specified allowable type I error, and c is a
constant with recommended value c = 1.

4. Compute bij =
⌊
(
hSij
δ )2

⌋
∀i, j ∈ {1, ...,K}.

5. Set bj = max
j 6=i
{b0, bij} ∀i and b = max

i
bi.

6. Initialize I = {1, ...,K} , where I is defined as the set of candidate designs still in contention
for the best.

7. Set Iold = I and I = (i : i ∈ Iold and R̂i ≥ R̂l − Wil,∀l ∈ Iold, l 6= i) where Wil =

max(0, ( δ
2cbcount

)((
hSij
δ )2 − bcount)).

8. If |I| = 1 stop and select the candidate design in I as the best.

Else if bcount = b, stop and select the design in I with the largest system reliability estimate
as the best design. Else, take ∆b additional batch means for all i ∈ I, set bcount = bcount + ∆b,
where ∆b is the user-specified incremental increase for bcount between subsequent iterations,
such that 1 ≤ ∆b; set R̂i = R̂i(bcount) for all i ∈ I and return to Step 7.

This process then continues to iterate in this manner until one of the stopping criteria are
reached. It sould be noted that we had to omit the numerical examples of the proposed proce-
dure provided.
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Abstract

Redundancy allocation problem (RAP) consists of two general classes, reliability
optimization and availability optimization problems. In availability and reliability
classes it is assumed that the entire components are repairable and non-repairable,
respectively. In this paper a Mixed Integer Nonlinear Programming (MINLP) model
is presented for modeling the problem of availability optimization of a system using
repairable and non-repairable components, simultaneously. Also, it is shown that
using different types of components in subsystems will increase the availability of
the system. For solution of the proposed model, a genetic algorithm, as an efficient
meta-heuristic algorithm, is developed and implemented. Furthermore, in order to
indicate the efficiency of the proposed solution method, a numerical example for a
system consisting of both repairable and non-repairable components is presented and
solved. The results show a better performance for the proposed genetic algorithm
compared to the Improved Particle Swarm Optimization (IPSO) algorithm that
proposed at Literature review.

Keywords: Availability/Reliability Optimization, Redundancy Allocation Prob-
lem, Repairable and Non-Repairable Components, Genetic Algorithm.
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1 Introduction

Reliability optimization problem is an important issue in system design, and it often tries to
achieve the highest reliability for a system subject to several constraints such as cost, weight,
and volume, etc. High reliability design enables a system to work more safety and efciently.
In the past few decades, many approaches have been successfully proposed to solve this trou-
blesome problem. Nowadays, decreasing production costs and using systems that are capable
of operating in sensitive conditions has become more important than before due to the sys-
tems complications and competitive conditions. This necessity has resulted in significance of
the concepts such as reliability and availability. Reliability of a system (or a component) is
the probability that it will adequately perform its specied purpose for a specified period of
time under specified environmental conditions [10] and availability is defined as the probability
that a system is in its intended functional condition and therefore capable of being used in a
stated environment [2]. Availability/reliability optimization of a system is the determination of
the optimal number of components according to their characteristics and the structure of the
system to maximize the availability/reliability. Redundancy Allocation Problem (RAP), as a
method of improving the system reliability, is a complicated optimization problem which can
be introduced as the selection of optimized combination of components type and redundancy
levels for each subsystem in order to meet different needs with respect to all design constraints
[6]. There are generally two groups of problems in this area [4]. The first group devotes its dis-
cussion to determination of type and number of redundant components for each subsystem. In
this case, it is supposed that characteristics of each component such as reliability, weight, cost,
etc. are pre-determined and the goal is to find the type and number of components that must
be used in each subsystem to maximize its reliability. The second group considers component
reliability as a decision variable; and its cost, weight and other characteristics are considered as
predetermined increasing functions of component reliability. In this paper, the concerned prob-
lem pertains to the first group and the main difference is the assumption that system involves
both repairable and non-repairable components. To solve this problem, a new mixed integer
non-linear programming model is introduced and solved by a Genetic Algorithm (GA). To show
the capability of proposed GA, a modified problem from the literature is considered and the
GA results are compared to the result of the Improved Particle Swarm Optimization (IPSO)
algorithm that proposed at Literature review. Over the past decades a number of optimization
techniques have been developed in reliability-redundancy allocation problems. These techniques
can be classied as implicit enumeration, dynamic programming, branch and bound method, lin-
ear programming, Lagrangean multiplier method, heuristic methods and so on. Hikita et al. [7]
presented an application of the surrogate-constraints algorithm for an optimal reliability assign-
ment/redundant allocation problem. Hsieh [8] presented a simple linear programming approach
to approximate the integer nonlinear programming problem. Chen [2] presented a heuristic ap-
proach to solve reliability allocation problems with considering the weight, volume and cost
constraint and proposed some solutions for this production problem and compared them with
previous studies. Wu et al. [17] presented an improved particle swarm optimization (IPSO)
algorithm to solve reliability problems. Yeh and Hsieh [18] proposed a penalty guided Articial
Bee Colony algorithm (ABC) to solve the reliability redundancy allocation problem (RAP).
Okasha et al. [13] proposed a novel maintenance optimization approach that integrates the
system reliability and redundancy as objectives in addition to the life-cycle cost (LCC) objec-
tive. Their approach was able to optimally and automatically select what maintenance actions
are applied, when they are applied, and to which structural components they are applied. In
contrast to reliability optimization, fewer researchers have studied availability allocation and
optimization to nd out the optimal failure and repair rates for each component in a system
for maximizing (or minimizing) the objectives. In most cases, the problem of availability allo-
cation and optimization can be dened as a multi-objective optimization problem, which aims
to maximize system availability and minimize system cost [5]. Such as: Levitin and Lisnianski
[11] introduced a model in which the cost of designing the system is fixed and its purpose is to
optimize system availability. Also, Zio and Bazzo [20] presented an analysis on level Diagrams
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of Pareto Front for redundancy allocation problem. Their aims were to maximize system avail-
ability and minimize the cost and weight of the whole system. Chiang and Chen [3] proposed
a new multi-objective genetic algorithm, namely simulated annealing based multi-objective ge-
netic algorithm (saMOGA), to resolve the availability allocation and optimization problems
of a repairable series-parallel system. Tan et al. [15] developed a particle swarm optimization
algorithm combined with a differential evaluation to solve a reliability-redundancy allocation
problem. Zoulfaghari et al. [21,22] resolve the redundancy allocation problem and the avail-
ability redundancy allocation problem for optimization with Non Sorting Genetic Algorithm
II (NSGA II).Zhang and Chen [19] proposed a particle swarm optimization for solving the
multiobjective reliability redundancy allocation in an interval environment. Soltani et al. [14]
proposed a robust optimization approach is used to solve the redundancy allocation problem
(RAP) in series-parallel systems with component mixing where uncertainty exists in compo-
nents reliabilities. Teimori et al. [16] used an efficient memory-based electromagnetism-like
mechanism for the RAP.

2 Problem formulation

The series-parallel system as one of the well-established systems is used to describe and demon-
strate the proposed approaches [5] The common structure of a series-parallel system is illus-
trated in Figure 1. Without loss of generality, suppose that all components are different in each
subsystem. In general, the series-parallel system is considered with two objectives of maximiz-
ing system availability and minimizing system cost. As it is mentioned in previous sections,
in most of the studies on redundancy allocation problem, optimization of system reliability
has been considered and it has been supposed that all components are non-repairable. In fact
availability and maintainability of the components have given less attention. Furthermore, in
some cases where system availability is considered, it is supposed that the system consists of
only repairable components. While in real world there are a few systems that are designed by
using only either repairable or non-repairable components. In fact the most complicated sys-
tems consist of both repairable and non-repairable subsystems, as an example one can refer to
systems composed of electronic and mechanical sections such as automobile motor system, air-
plane system, production systems, etc., where the electronic sections consist of non-repairable
components while the mechanical sections have repairable components. Therefore, we assume
that some subsystems use non-repairable components while some others have repairable ones.
In this case, since some components of systems are repairable, it is not possible to use the
reliability formulation for objective function; therefore, modeling should be done in a way that
system availability is considered as the objective function for maximizing.

2.1 Mathematical model

In this section, a bi-objective mathematical model which is designed for the problem is pre-
sented. The suggested model is as follows;

Maxf1 = Max

∏
i

Avi =
∏
i∈R

(1−
mj∏
j=1

(1−Rij)nij )×
∏
i∈A

(1−
mj∏
j=1

(1−Aij)nij )

 (2.1)

Minf2 =

s∑
i=1

mi∑
j=1

cij nij (2.2)

s∑
i=1

mi∑
j=1

wij nij ≤W (2.3)
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s∑
i=1

mi∑
j=1

vij nij ≤ V (2.4)

pi ≤
mi∑
j=1

nij ≤ Ni ∀i = 1, 2, . . . , s (2.5)

nij ∈ Z+ ∀i = 1, 2, . . . , s
∀j = 1, 2, 3, . . . ,mi

(2.6)

In this model equations (2.1) and (2.2) demonstrate the objective functions which are maximiz-
ing the system reliability and minimizing the overall cost of the system respectively. Constraints
(2.3) and (2.4) ensure the available weight and volume constraints. Constraint (2.5) is related
to the maximum and minimum number of permitted components in each subsystem and the
constraints (2.6) denote the domain of the variables. Chern [2] proved that redundancy alloca-
tion problem in its simplest form of series system is a NP-hard problem. Therefore, in order to
maximize the objective function of the proposed model, it is reasonable to use meta-heuristic
methods.

3 Proposed genetic algorithm

However, genetic algorithm is applied generally to solve the models with one objective function.
But, in this paper genetic algorithm is used to solve the suggested bi-objective model. In
the first step, the -constrained method is used and by finding the optimized value for the
second objective function (cost), this value is used in the problem constraints, then the one-
objective problem is solved by genetic algorithm. The steps of proposed Genetic algorithm
are follows:Chromosome definition, Fitness function, Initial population,Selection, Crossover,
Mutation, Stopping criteria.

Description of the algorithm we refused due to the lack of space.

4 A numerical example

This part of the paper includes an example whose data is a combination of those applied in [21,9]
. In this example, the series-parallel system includes 8 sub-systems where sub-systems 1 to 3
have non-repairable components while sub-systems 4 to 8 have repairable components. Maximum
allowable weight and volume for the system are 350 and 450, respectively. Maximum and minimum
numbers of allowable components in each sub-system have been considered as 1 and 5, respectively.
Tables 1 to 4 include details of problem.

4.1 Case1: The identical components in each subsystem

In this subsection, it is assumed that for each subsystem only one type of component can be
used. To solve this problem, the proposed genetic algorithm has been used. The designed GA
has been coded by MATLAB software and has been run on a computer with 2G of RAM. In this
algorithm, crossover rate and mutation rate are 0.85 and 0.15, respectively. Also, population size
and maximum generation are 100 and 500, respectively. In order to show the capability of genetic
algorithm, the problem has been also solved by Improved Particle Swarm Optimization (IPSO)
algorithm that proposed by Wu et al.[18]. They demonstrate that IPSO is a very capable algorithm
to solve redundancy allocation problems. Therefore, this algorithm is suitable for comparison.
Also, for the IPSO, population size PS=100, maximal number of iterations K=500 and mutation
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Table 1: Availability of components
sub Tp.1 Tp.2 Tp.3 Tp.4 Tp.5 Tp.6 Tp.7 Tp.8 Tp.9

NR-Sub1 0.94 0.91 0.89 0.75 0.75 - - - -
NR-Sub2 0.97 0.86 0.70 0.66 - - - - -
NR-Sub3 0.96 0.82 0.72 0.71 0.67 - - - -
R-Sub4 0.98 0.977 0.982 0.978 0.983 0.92 0.984 - -
R-Sub5 0.995 0.996 0.997 0.997 0.9987 - - - -
R-Sub6 0.971 0.973 0.971 0.976 - - - - -
R-Sub7 0.977 0.978 0.978 0.983 0.983 0.981 0.971 0.983 0.977
R-Sub8 0.984 0.983 0.987 0.981 - - - -

Table 2: Cost of components
sub Tp.1 Tp.2 Tp.3 Tp.4 Tp.5 Tp.6 Tp.7 Tp.8 Tp.9

NR-Sub1 9 6 6 3 2 - - - -
NR-Sub2 12 3 2 2 - - - - -
NR-Sub3 10 6 4 3 2 - - - -
R-Sub4 59 53.5 47 42 40 18 22 - -
R-Sub5 20.5 18.9 9.1 5.6 4.2 - - - -
R-Sub6 752.5 472 359 242 - - - - -
R-Sub7 18 16 15 12.1 10.2 9.6 7.1 4.9 4.4
R-Sub8 98.6 82.5 49 47.5 - - - - -

probability Pm=0.1. Figure 2 shows the convergence of the Objective function value in each
generation. This solution belongs to one of 20 times executions for cost equal to 1400. The
near-optimal solution (Objective Function Value=0.96975691) is achieved after approximately 480
generations. Also, these results show that availability of the system increases when the cost is
increasing. Pareto front of results are illustrated in figure 3 by using the median of availability.
This figure shows that in each value of cost, obtained availability by GA is better than obtained
availability by IPSO. These results have demonstrated that the GA has strong convergence and
stability than IPSO algorithm. Figure 4 shows, the average run time of the GA compared to that
of the IPSO for all test examples.

4.2 Case2: Different components in each subsystem

In this subsection, it is assumed that in subsystem i there are mi types of redundant components.
Two algorithms are executed 20 times for each value of cost changing from 375 to 800 (units of
cost) and the results are given in table 6. Figure 5 shows the convergence of the Objective function
value in each generation. This solution belongs to one of 20 times executions for cost equal to 400.
The near-optimal solution (Objective Function Value=0.96723014) is achieved after approximately
390 generations. Also, these results show that availability of the system increases when the cost
is increasing. Pareto front of results are illustrated in figure 6 by using the median of availability.
This figure shows that in each value of cost, obtained availability by GA is better than obtained
availability by IPSO. These results have demonstrated that the GA has strong convergence and
stability than IPSO algorithm. Figure 7 shows, the average run time of the GA compared to that
of the IPSO for all test examples. Comparing the results of tables 5 and 6, it is interesting to notice
that using different components in subsystems will increase the system availability. For example,
when value of cost in case.1 is 1000 units, availability of system is equal to 0.88362519, while in
case.2, the obtained availability is equal to 0.99995482. In other words, when different components
are used in a subsystem, the model has more flexibility for making optimal situations and problem
is more flexible for solution.
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Table 3: Weight of components
sub Tp.1 Tp.2 Tp.3 Tp.4 Tp.5 Tp.6 Tp.7 Tp.8 Tp.9

NR-Sub1 12 8 6 9 10 - - - -
NR-Sub2 7 10 5 6 - - - - -
NR-Sub3 8 11 4 6 6 - - - -
R-Sub4 40 40 39 38 39 38 37 - -
R-Sub5 32 28 25 26 30 - - - -
R-Sub6 53 51 50 50 - - - - -
R-Sub7 30 28 29 28 30 31 28 30 20
R-Sub8 29 27 26 27 - - - - -

Table 4: Volume of components
sub Tp.1 Tp.2 Tp.3 Tp.4 Tp.5 Tp.6 Tp.7 Tp.8 Tp.9

NR-Sub1 12 8 6 9 10 - - - -
NR-Sub2 7 10 5 6 - - - - -
NR-Sub3 8 11 4 6 6 - - - -
R-Sub4 40 40 39 38 39 38 37 - -
R-Sub5 32 28 25 26 30 - - - -
R-Sub6 53 51 50 50 - - - - -
R-Sub7 30 28 29 28 30 31 28 30 20
R-Sub8 29 27 26 27 - - - - -

5 Summary and Conclusions

Reliability and availability measures are very important characteristics in many systems especially
electronic and mechanical systems. Providing secure and reliable systems require special attention
to these features. In most of previous studies in this area, it is always supposed that systems either
have just repairable components or they merely include non-repairable components. In this paper,
it is supposed that the system has both repairable and non-repairable components, simultaneously.
On the base of this assumption, a new mathematical model is introduced and solved by genetic
algorithm. Results produced by genetic algorithm shows that the system availability has always
been in an appropriate level and compared to other common methods, the precision and speed of
the genetic algorithm is higher than other methods. Also, the results show that the availability
of a system will increase if there are different components in subsystems. For future studies one
can extend the model such a way that each subsystem could have different components in terms of
cost, availability (or reliability), weight, volume, etc. by considering either redundancy allocation
or availability allocation.
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Abstract

In this article we discuss about the problem of estimate the Burr type III distri-
bution parameters based on progressive type II hybrid censored data. Because the
estimation of these parameters is complex and has not closed form. So we use the EM
and stochastic EM algorithm (SEM) for estimating the parameters of this distribution
which based on the missing data. Then, a Mont Carlo simulation study is conducted
to assess the accuracy of proposed estimators. The results revealed that SEM and EM
have better performances than MLE estimates based on Newton-Raphson method and
parameter estimates are improved when the sample size is increasing.

Keywords: Burr type III distribution, Progressive type II hybrid censored data,
EM algorithm, Stochastic EM algorithm, maximum-Likelihood estimator.

1 Introduction

In many lifetime and reliability studies, we face the test units are excluded before failure time it
observed in lifetime test. In many cases, removal of the test unit, is deliberate and pre-designed
to save time and cost of testing are done. Kundu and Joarder [1] discussed type-I progressive
hybrid censoring scheme. Further Childs et al.[2] Proposed the type-II progressive hybrid censor-
ing scheme. In summary, Type II Progressive Hybrid Censoring Scheme is as follows: consider n
identical, independent units with distinct distribution are placed in a lifetime test. each random
variable X1:m:n, X2:m:n,...,Xm:m:n has identically distributed, with p.d.f f(x; θ) and c.d.f F (x; θ),
where θ denotes the vector of parameters (α, β). The correct values of m (m < n) is a random
variable. Let R1, R2, ..., Rm are fixed before the start of the experiment are called progressive
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censoring scheme with Rj > 0 and
∑m
j=1Rj +m = n is specified in experiment. Under the Type-II

Progressive Hybrid Censoring scheme, at the time of the first failure X1:m:n , R1 of the n − 1
surviving units are randomly withdrawn from the experiment. Also, at the time of the second
failure X2:m:n , R2 of then n− R1 − 2 surviving units are withdrawn. And so on so forth, finally
at the time of the m-th failure, Xm:m:n all Rm = n − R1 − R2 − ... − Rm − 1 surviving units
are withdrawn from the experiment. Hence,X1:m:n, X2:m:n, ..., Xm:m:n are called progressive cen-
sored failure times. The type-II Progressive Hybrid Censoring scheme includes the termination of
the life-test at T ∗ =max{ Xm:m:n, T }if Xm:n > T the experiment would terminate at the m-th
failure, with the withdrawal of units occurring after each failure according to the pre-fixed pro-
gressive censoring scheme (R1, R2, ..., Rm). Although, if Xm:n < T , then instead of terminating
the experiment by removing all remaining Rm units after the m-th failure, the test would con-
tinue to observe failures without any further withdrawals up to time T . Let D denote the number
of failures that occur before time T . In which d shows the observed value of D. Thus, in this
case, Rm = Rm+1 + 1 = ... = RD = 0. In this case, the resulting failures times is indicated by
X1:m:n, X2:m:n, ..., Xm:m:n, Xm+1:n, Xd:n. We denote the two cases as case I and case II, respec-
tively :

case I :X1:m:n < X2:m:n < ... < Xm:m:n , Xm:m:n > T ;

case II : X1:m:n < ... < Xm:m:n < Xm+1:m:n < ... < XD:n , Xm:m:n < T .

The likelihood function based on the observed data is as follow :

Case I : L(θ) = c1Πm
j=1 f(Xj:m:n; θ) [1− F (Xj:m:n; θ)]Rj ,

Case II : L(θ) = c2Πm
j=1 f( Xj:m:n; θ)[1− F (Xj:m:n; θ)]RjΠL

i=m+1f(Xi:n; θ)[1− F (T )]ŔD .

Where c1 = n(n − R1 − 1)...(n − R1 − R2 − ... − Rm−1 − m + 1) , c2 = n(n − R1 − 1)...(n −
R1 −R2 − ...−Rm−1 −D+ 1) , D = m+ 1, ..., n−Σk=1m−1Rk , ŔD = n−D−Σm−1

k=1 Rk, Rm = 0

if D ≥ m and L = m+ 1, ..., n− Σm−1
k=1 Rk − ŔD.

The usual Mamximum likelihood estimators (MLEs) can be obtained by solving the above nonlin-
ear system resulted to have a poor estimates when the initial values missspecified therefor, we use
a very stable and strong method in the next section.
Burr III has many application in reliabilty and quality control. Burr [3] introduced twelve distri-
butions.The Burr type III with two parameters α and β has c.d.f and p.d.f as follows:

F (x | α, β) =
(
1 + x−β

)−α
, x > 0, α > 0, β > 0, (1.1)

f (x | α, β) = βαx−β−1
(
1 + x−β

)−α−1
. (1.2)

In this study we are aiming to drew likelihood baesd estimation of the parameters based on pro-
gressive hybrid censored data. The rest of the paper is as follows.
in section 2 we obtanid the estimators based on EM, SEM and Newton-Raphson (NR) methods.
Section 3 contanes the simulation study and an illustrative example. This paper will be end up by
summary and conclusion in section 4.

2 Parameter Estimation

2.1 Maximum-likelihood estimators

The usual Mamximum likelihood estimators (MLEs) can be obtained by solving the above nonlinear
system resulted to have a poor estimates when the initial values missspecified therefor, we use a
very stable and strong method in the next section.
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2.2 EM algorithm

EM algorithms is used for parameter estimation when we have missing data and an iterative al-
gorithm is done in two stages. To make inferences about the type II progressive hybrid censored
data. The results for the Case I is stright forward so we neglected.
In case II, we denoteX = (X1:m:n, ..., Xm:m:n, Xm+1:n, ..., XD:n) and Zj = (Z11, ..., Z1Rj , ..., Zm1, ..., ZmRj ),Ź =

(Ź1, Ź2, ..., ŹŔD ) respectively denote the observed and censored data, Zj ,Ź are as the missing
data.This algorithm was introduced by Dempster, Laird and Rubin [6]. So all data will be show
W = (X;Zj , Ź). If we denote D to be the number of failures before time T, Log-likelihood function
is based on complete data for Burr III distribution as follows:

L(W ;α, β) = nlogβ + nlogα+ (−β − 1)[

m∑
j=1

logxj +

m∑
j=1

Rj∑
l=1

zjl +

D∑
j=m+1

logxj +

Ŕj∑
i=1

logźi]+

(−α− 1)[

m∑
j=1

log(1 + x−βj ) +

m∑
j=1

Rj∑
l=1

log(1 + z−βjl ) +

D∑
j=m+1

log(1 + x−βj ) +

ŔD∑
i=1

log(1 + źi)].

Then for E-step we have :

L(W;α, β) = nlogβ + nlogα+ (−β − 1)[
∑m
j=1 logxj +

∑D
j=m+1 logxj ]

+ (−β − 1)[
∑m
j=1

∑Rj
l=1E(logZjl|Zjl > xm) +

∑ŔN
i=1E(logźi | źi > T )]

+ (−α− 1)[
∑m
j=1 log(1 + x−βj ) +

∑D
j=m+1 log(1 + x−βj )]

+ (−α− 1)[
∑m
j=1

∑Rj
l=1E(log(1 + Z−βjl )|Zjl > xm) +

∑ŔD
i=1E(log(1 + ź−βi ) | ź−βi > T )].

where

A3(α, β;T ) = E(logŹi | Źi > T )

=
αβ

1− F (T ; θ)

∫ ∞
T

x−β−1(1 + x−β)−α−1logxdx

Also

A4(α, β;T ) = E(log(1 + Źβi ) | Źi > T )

=
αβ

1− F (T ; θ)

∫ ∞
T

x−β−1(1 + x−β)−α−1log(1 + x−β)dx

M-step
the estimators of (α, β) are (αk, βk), then (αk+1, βk+1) will be obtained by maximizing this func-
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tion:

L(W ;α, β) = nlogβ + nlogα+ (−β − 1)[

m∑
j=1

logxj +

D∑
j=m+1

logxj ]

+(−β − 1)[

m∑
j=1

RjA(α, β;xj) + ŔDA3(α, β;T )]

+(−α− 1)[

m∑
j=1

log(1 + x−βj ) +

D∑
j=m+1

log(1 + x−βj )]

+(−α− 1)[

m∑
j=1

RjB(α, β;xj)) + ŔDA4(α, β;T )].

The fix point will be obtaine by repeating the following equations:

α̂ =
n∑m−1

j=1 log(1 + x−βj ) +
∑D
j=m+1 log(1 + x−βj ) +

∑m
j=1RjB(α, β;xj) + ŔDA4(α, β;T )

.

β̂ =
n

[
∑m−1
j=1 logxj +

∑D
j=m+1 logxj ]− (−α− 1)[

∑m−1
j=1

x−βj logxj

log(1+x−βj )
+
∑D
j=m+1

x−βj logxj

log(1+x−βj )
]

n

−
∑m
j=1RjA(α, β;xj) +

∑ŔN
i=1A3(α, β;T )

2.3 SEM algorithm

In some cases, the E-step in the EM algorithm has complex and unsolvable calculation. In this
condition, this algorithm loses its efficiency. So in this case, the best solution is to use the stochastic
EM algorithm, such as the Monte Carlo EM algorithm. Monte Carlo EM algorithm approximates
the expectation in the e-step by the Monte Carlo Average (Zhang et al., 2013, p.712) [4]. Missing
or unobserved or randomly-drawn-out censored data are replaced with a simulated sample of the
conditional distribution of unobserved data according to the observed and complete data and in
m-step log-likelihood of the complete data are maximized.

3 Simulation Study

In this part, simulation results to compare the performance of the maximum likelihood method.
Then EM and Stochastic EM algorithm presented. For this purpose, Progressively Hybrid censored
sample n = 15, 40, 50 the Burr III density function is generates. Then parameter distribution are
estimated under different scheme censored. As well as estimators covariance be presented for
diffrent n,m at the tables 1. Be considerate with increasing m estimated parameters are closer to
the actual value. Simulation results it shows, in general the SEM algorithm estimators is better
than EM and maximum likelihood estimator.

3.1 Simulation Results

In this section, a sample simulation results are presented for estimators in table 1. We have
different values for n and m, and T = 1.0, 1.5, 2.0 for a selected scheme Rj = (10, 0∗19). We first
generate type III Burr distribution based on type-II PHC Scheme data (see Gurulu Alama and
Arabi Belaghi (2015) ) [5], then parameter estimates are extracted under proposed methods with
1000 times simulation. According to the results, we observe that, Generally the SEM is supeiour
to the EM which is outperform the Newton-Raphson.
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Table 1: SEM, EM algorithm and Newton-Raphson estimation with covariance (scheme
2)

SEM EM NR

T α β α̂ β̂ cov(α̂, β̂) α̂ β̂ cov(α̂, β̂) α̂ β̂ cov(α̂, β̂)

1.0 0.5 1 2.64 0.93 0.17 2.60 0.87 0.08 23234 11.68 -12442

1.0 0.5 2 2.56 1.92 0.38 2.71 0.41 -0.30 1741 12.14 1874

1.0 0.5 3 2.94 2.88 1.29 2.51 2.60 -0.14 3.02 8.40 3.05

1.5 0.5 1 2.53 0.97 0.209 2.61 0.86 0.07 3.68 12.53 -2.15

1.5 0.5 2 2.94 1.83 0.801 2.55 1.71 0.194 2.82 16.43 19.46

1.5 0.5 3 2.82 2.70 1.38 1.47 1.98 -1.54 0.75 0.52 10.86

2.5 0.5 1 2.53 0.95 0.205 2.61 0.84 0.079 3.37 12.35 -1.99

2.5 0.5 2 2.82 1.77 0.908 1.48 1.29 -1.03 1.51 12.40 13.77

2.5 0.5 3 2.84 2.34 0.803 1.51 1.81 1.674 0.24 7.82 1.93

3.2 Illustrative example and real-life Data Analysis

In this section, the suggested manner are applied for patients lifetime data with the white blood
cells cancer in Rupert and Miller [7]. This data are shows 23 patients lifetime with white blood
cells cancer,that is 33, 43, 45, 9, 13, 13, 18, 23, 28, 31, 34, 45, 48, 161, 5, 5, 8, 8, 13, 16, 23, 27, 30. We fit
Burr III for the data distribution and the Kolmogorov-Smirnov statistic are computed as KS =
0.15 resulted in the data has Burr III distribution. Then based on this data the estimator of the
parameters are calculated and showen in table 2.

4 Summary and conclusion

In this paper we considered the estimation of the parameters of Burr III distribution under a
so-called EM and SEM with progressive hybrid type two censored data. We then compared the
results with those based on the usual maximum likelihood estimators via a Mont Carlo simulation
study. The results showed that the proposed EM and SEM are superiour the usual MLEs that
obtained from Newton-Naphson. This results can be compared with Bayes and emprical Bayes
estimators but for the sake of space limitation we will do that in future studies.

References

[1] Kundu D, Joarder A. (2006), Analysis of type-II progressively hybrid censored data, Comput
Stat Data Anal, 50, 2509-2528.

[2] Childs A, Chandrasekar B, Balakrishnan N. (2008), Exact likelihood inference for an expo-
nential parameter under progressive hybrid censoring, In: Vonta F, Nikulin M, Limnios N,



Arabi Belaghi, R., Valizadeh Gamchi, F., Bevrani, H. 199
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Abstract

Keywords: The multidimensional signature (D-spectrum) is a fundamental no-
tion to explore the stochastic properties of multi-state networks (or systems). This
concept depends only on the network structure and is a generalization of the signa-
ture which first defined by [2]. In this paper, we propose an algorithm to compute the
multi-dimensional signature. We use parallelization method to reduce the run time of
the algorithm.

Network reliability, multithreading, BFS algorithm.

1 Introduction

In many real situations, several states are considered for a network (or system), denoted by integer
numbers K = 0, 1, . . . ,M . K = M denotes the best state of the network in which the network has
the complete performance (up state). K = M − 1,M − 2, . . . , 1 correspond to the states of the
network in the process of its gradual disintegration. The state K = 0 shows the complete failure
of the network (down state). This type of networks is called multi-state networks. The reliability
of the multi-state networks is an important problem for engineers and designers of the networks
which has been investigated by numerous researchers.

From the point of view of mathematics, a network is a graph G = (V, E) that includes a set
of nodes (vertices), denoted by V, and a set of links (edges), denoted by E , that connect selected
pairs of nodes. T ⊆ V is considered as terminals set of the network and is used to indicate the
network states. Let a multi-state network be in state K = M at time t = 0. Assume that the links
of the network are subject to failure and its nodes are absolutely reliable. It should be mentioned
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that link failure means that the link is erased from the network. Let non-negative random variable
T1 denote the time that the network remains in state K = M . In the same way, random variable
Ti denotes the time that the network enters state K = M − i, i = 2, . . . ,M − 1 and by TM the
system lifetime, i.e. the time that the system goes into the state K = 0. Suppose X1, . . . , Xn are
independent and identically distributed random variables which denote the lifetimes of the network
links. If X1:n, . . . , Xn:n indicates the ordered lifetimes of the links, similar to (1.3.16) of [1], it can
be shown that, for t1 > 0, . . . , tM > 0

P (T1 > t1, . . . , TM > tM ) =
∑
· · ·
∑

1≤i1<···<iM≤n

si1,...,iMP (Xi1:n > t1, . . . , XiM :n > tM ),

where si1,...,iM = P (T1 = Xi1:n, . . . , TM = XiM :n); that is, the network enters states K =
M − 1, K = M − 2, . . . , K = 0 at the instant time of the i1-th, i2-th, . . . , iM -th link failure,
respectively. The M -dimensional matrix S = {si1,...,iM }i1,...,iM=1,...,n with size n× · · ·×n is called
the multidimensional signature. The matrix S depends only on the network structure and is free
of the stochastic mechanism under which the links are failed. Gertsbakh and Shpungin [1] gave
a combinatorial definition for the multidimensional signature. Suppose that π = (ei1 , ei2 , . . . , ein)
denotes a permutation of the network link numbers. Let ni1,...,iM be the number of permutations
that the i1-th, i2-th, . . . , iM -th link failure cause the states of the network change from K = M
to K = M − 1, from K = M − 1 to K = M − 2, . . . , from K = 1 to K = 0, respectively. If
all permutations are equally probable, the multidimensional signature matrix S has the non-zero
elements as

si1,...,iM =
ni1,...,iM

n!
, 1 ≤ i1 < · · · < iM ≤ n.

In this paper, we propose an algorithm to compute the multi-dimensional signature. Multithreading
is one method to execution of the algorithm which allows multiple threads to execute independently
but share source code. We use the multithreading to speed up the execution time of the proposed
algorithm. The performance of the algorithm is evaluated and simulation results are presented for
some networks. Due to the limitation on the pages number of the paper, the experimental results
are removed.

2 The Proposed Algorithm

Consider a network represented by a graph G in which the nodes are absolutely reliable and the links
are subject to failure. Assume that some nodes of the network are considered as the terminals set
which used to define the state of the network based on the connectivity between those. Assuming
that all orders of the link failures are equally probable, in what follows, we propose a new algorithm
to obtain the multidimensional signature matrix. In our algorithm, the adjacency matrix is used to
determine the graph of the considered network. If the network has m nodes, the adjacency matrix
has size m×m whose the (i, j)-th element is one if there is a link between the vertices i and j and
is zero otherwise. To indicate the terminals of the network we let 3 on the i-th diagonal element
of the matrix and 2 if the i-th node is not terminal. The adjacency matrix should be given by the
user. Since the adjacency matrices that arise in applications contain only few nonzero elements,
we apply adjacency list to reduce the used memory. The make adj list function converts adjacency
matrix to adjacency list.

Let us first introduce the following notations.
Notations:
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n the number of network links
k the number of network terminals
T = {t1, . . . , tk} the terminals set of the network
M + 1 the number of network states, K = 0, 1, . . . ,M
R defines the rules to determine the states of the network
Adj m the adjacency matrix corresponding to graph G
Adj l the adjacency list of graph G
cluster the number of clusters
state the current state of the network
π(r) the r-th element of vector π
N the number of times that the algorithm is executed.
N(r1, . . . , rM ) the number of times that the network state change to

K = M − 1, . . . ,K = 0 at the instant time of
the r1-th, . . . ,rM -th link failure, respectively.

Algorithm

1. Initialize Adj m matrix and load rules R

2. Adj l←make adj list(Adj m)

3. N(r1, . . . , rM )← 0, r1 = 1, ..., n, . . . , rM = 1, ..., n

4. π(1, . . . , n)←Perm(1, . . . , n), r ← 1, s← 1

5. Remove π(r)-th link from Adj l

6. ai ←connected(ti), i = 1, . . . , k, A← {a1, . . . , am}

7. {ai1 , . . . , aik1} ←dis elm(a1, . . . , am)

8. if num(A(aij )) = c(aij + 1), j = 1, . . . , k1, then cluster←cluster+c

9. state←state check(cluster)

10. if state=M − s
rs ← r, r++, s++, GOTO 5

else
r++, GOTO 5

11. If state=0 then N(r1, . . . , rM )← N(r1, . . . , rM ) + 1

12. Repeat Steps 4-11 N times

13. Calculate sr1,...,rM = N(r1,...,rM )
N , r1 = 1, ..., n, rM = 1, ..., n.

In our algorithm, the function perm simulates a random permutation for numbers 1, 2, . . . , n.
Steps 6-8 are most important steps in this algorithm because we calculate the number of clus-
ters in these steps which is objective for determining the current state of the network. Function
connected(ti) uses BFS algorithm to determine which of network terminals are connected to termi-
nal ti. For a sequence of real numbers a1, . . . , al, the function dis elm(a1, . . . , al) is used to indicate
which of elements of a1, . . . , al have different values. The function num(A(ai)) counts the number
of elements of A that is equal to ai.

If we consider all permutations of the links numbers, that is N = n!, the result of the algorithm
is exact value of the signature. However for n > 10, n! is very large number and hence it is not
usually possible that we consider all permutations. Then, in these cases, it can be taken into
account N < n! of permutations. Since survey on the all permutations is the most time-consuming
step in the algorithm and is unavoidable, we apply multthreading parallelization in this step.
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The computer program is developed in C++ compiler. To run this program we use a intel core
i7 computer with a 2.7 GHZ CPU and 16 GB RAM under Mac OS X 10.11. The experimental
results are removed due to the restriction on the pages number.
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Abstract

We consider the problem of estimation of the parameters of the bivariate Burr
type III distribution in presence of random censoring. Since the maximum likelihood
estimators of the parameters cannot be expressed in a closed form, we suggest to use
the EM algorithm to compute the maximum likelihood estimators of the unknown
parameters.

Keywords: Bivariate distribution, EM algorithm, Pseudo-likelihood, Random left
censoring.

1 Introduction

Many times the life/failure data of interest is bivariate in nature. All studies on twins or on failure
data recorded twice on the same system naturally leads to bivariate data.

Burr family of distributions was introduced by Burr (1942). One of the most important dis-
tribution of this family is the Burr type III distribution. The probability density function of the
Burr type III is given by,

fBIII(x; c, k) = kcx−c−1(1 + x−c)−k−1, x > 0.

Here c > 0 and k > 0 are the two shape parameters.
Suppose U1 ∼ BIII(c, k1), U2 ∼ BIII(c, k2) and U3 ∼ BIII(c, k3) and they are mutually

independent. Let X1 = max(U1, U3) and X2 = max(U2, U3). Then (X1, X2) has a bivariate Burr
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type III distribution with parameters c, k1, k2, and k3 is expressed as BBIII(c, k1, k2, k3). The,
joint density function of (X1, X2) is given as

f(x, y) =

 fBIII(x; c, k1 + k3)fBIII(y; c, k2) if x < y
fBIII(x; c, k1)fBIII(y; c, k2 + k3) if x > y
fBIII(x; c, k1 + k2 + k3) if x = y

Suppose the pair (X1, X2) is subject to random left censoring by an independent pair of random
variables (Y1, Y2). We observe (T1, δ1;T2, δ2) where T1 = max(X1, Y1), δ1 = I(X1 > Y1) and
T2 = max(X2, Y2), δ2 = I(X2 > Y2). Therefore, if X1 < Y1, X1 is censored.
In order to write down the likelihood, we note that, when δ1 = δ2 = 1, both failure times are
observed and the contribution to the likelihood is f(t1, t2). When δ1 = 1− δ2 = 1, first component
fails at t1 and the second component is censored (fails before t2) and the contribution to the

likelihood is
∫ t2

0
f(t1, y)dy. Similarly, when 1−δ1 = δ2 = 1, first component is censored (fails before

t1) and the second component fails at t2 and the contribution to the likelihood is
∫ t1

0
f(x, t2)dx.

Finally, when 1 − δ1 = 1 − δ2 = 1, both failure times are censored and the contribution to the
likelihood is F (t1, t2). Hence, the likelihood function, based on (T1i, δ1i;T2i, δ2i), i = 1, 2, ..., n is
given by

L =

n∏
i=1

[
f(t1i, t2i)

]δ1iδ2i[ ∫ t2i

0

f(t1i, y)dy
]δ1i(1−δ2i)

[ ∫ t1i

0

f(x, t2i)dx
](1−δ1i)δ2i[F (t1i, t2i)

](1−δ1i)(1−δ2i).
Let I0, I1, I2, denote the following sets

I0 = {i|t1i = t2i = ti} I1 = {i|t1i < t2i} I2 = {i|t1i > t2i}.

Then the likelihood function can be written as

L =
∏
i∈I0

L(ti, δ1i, ti, δ2i)
∏
i∈I1

L(t1i, δ1i, t2i, δ2i)
∏
i∈I2

L(t1i, δ1i, t2i, δ2i).

Let n0,n1,n2, respectively, denote the number of elements in the sets I0,I1,I2 and nij be the

number of pairs for which (δ1, δ2) = (i, j), i, j = 0, 1. Then, n =
∑2
i=0

∑2
j=0 nij and nk =∑2

i=0

∑2
j=0 n

k
ij , k = 0, 1, 2 where nkij denotes the number of individuals in Ik with (δ1, δ2) =

(i, j), i, j = 0, 1, k = 0, 1, 2.

2 EM algorithm under random censoring

Maximizing the likelihood with respect to k1 , k2 , k3, and c is a non linear optimization problem.
We suggest to use of ECM (Expectation Conditional Maximization) algorithm for finding the
M.L.E.s of the unknown parameters. It is easy to see that

µ1 = P (U1 < U3 < U2|X1 < X2) =
k3

k1 + k3
, µ2 = P (U3 < U1 < U2|X1 < X2) =

k1

k1 + k3

ν1 = P (U2 < U3 < U1|X1 > X2) =
k3

k2 + k3
, ν2 = P (U3 < U2 < U1|X1 > X2) =

k2

k2 + k3
.

Each of the sets I0,I1,I2 contributes to the log-likelihood function of the pseudo data based on E
step. Let

N0 = n0
11 + n0

10 + n0
01 + 2n1

11 + n1
10 + n1

01 + 2n2
11 + n2

10 + n2
01

N1 = n0
10 + µ2(n1

11 + n1
10) + (n2

11 + n2
10)

N2 = n0
01 + n1

11 + n1
01 + ν2(n2

11 + n2
01)

N3 = n0
11 + µ1(n1

11 + n1
10) + ν1(n2

11 + n2
01). (2.1)
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Using equations (2.1), the pseudo log-likelihood is given by

N0 log c+N1 log k1 +N2 log k2 +N3 log k3

− k1

[∑
i∈I0

log(1 + t−ci ) +
∑
i∈I1

log(1 + t−c1i ) +
∑
i∈I2

(1− δ2i + δ1iδ2i) log(1 + t−c1i )
]

− k2

[∑
i∈I0

log(1 + t−ci ) +
∑
i∈I1

(1− δ1i + δ1iδ2i) log(1 + t−c2i ) +
∑
i∈I2

log(1 + t−c2i )
]

− k3

[∑
i∈I0

log(1 + t−ci ) +
∑
i∈I1

log(1 + t−c1i ) +
∑
i∈I2

log(1 + t−c2i )
]

− (c+ 1)
[∑
i∈I0

(δ1i + δ2i − δ1iδ2i) log ti +
∑

i∈I1∪I2

(δ1i log t1i + δ2i log t2i)
]

−
∑
i∈I0

(δ1i + δ2i − δ1iδ2i) log(1 + t−ci )−
∑

i∈I1∪I2

[
δ1i log(1 + t−c1i ) + δ2i log(1 + t−c2i )

]
+

∑
i∈I1

δ1i(1− δ2i) log
[
(1 + t−c2i )−k2 − (1 + t−c1i )−k2

]
+

∑
i∈I2

(1− δ1i)δ2i log
[
(1 + t−c1i )−k1 − (1 + t−c2i )−k1

]
(2.2)

In order to implement the M-step of the EM algorithm, we need to maximize the pseudo log
likelihood equation (2.2) w.r.t k1, k2, k3 and c

∂`

∂k1
=

N1

k1
+
[ ∑
i∈I0

log(1 + t−ci ) +
∑
i∈I1

log(1 + t−c1i ) +
∑
i∈I2

(1− δ2i + δ1iδ2i) log(1 + t−c1i )
]

−
∑
i∈I2

(1− δ1i)δ2i
ln(1 + t−c1i )(1 + t−c1i )−k1 − ln(1 + t−c2i )(1 + t−c2i )−k1

(1 + t−c1i )−k1 − (1 + t−c2i )−k1
= 0,

∂`

∂k2
=

N2

k2
+
[ ∑
i∈I0

log(1 + t−ci ) +
∑
i∈I1

(1− δ1i + δ1iδ2i) log(1 + t−c2i ) +
∑
i∈I2

log(1 + t−c2i )
]

−
∑
i∈I1

δ1i(1− δ2i)
ln(1 + t−c2i )(1 + t−c2i )−k2 − ln(1 + t−c1i )(1 + t−c1i )−k2

(1 + t−c2i )−k2 − (1 + t−c1i )−k2
= 0,

∂`

∂k3
=

N3

k3
+
[ ∑
i∈I0

log(1 + t−ci ) +
∑
i∈I1

log(1 + t−c1i ) +
∑
i∈I2

log(1 + t−c2i )
]

= 0,

and

∂`

∂c
=

N0

c
− (k1 + k2 + k3)

∑
i∈I0

ln tit
−c
i

1 + t−ci
− (k1 + k3)

∑
i∈I1

ln t1it
−c
1i

1 + t−c1i

− (k2 + k3)
∑
i∈I2

ln t2it
−c
2i

1 + t−c2i

+
∑
i∈I1

(1− δ2i + δ1iδ2i)
ln t1it

−c
1i

1 + t−c1i

+
∑
i∈I2

(1− δ1i + δ1iδ2i)
ln t2it

−c
2i

1 + t−c2i

−
∑
i∈I0

(δ1i + δ2i − δ1iδ2i) log ti

−
∑

i∈I1∪I2

[δ1i log t1i + δ2i log t2i]−
∑
i∈I0

(δ1i + δ2i − δ1iδ2i)
ln tit

−c
i

1 + t−ci

+
∑

i∈I1∪I2

[
δ1i ln t1it

−c
1i

1 + t−c1i

+
δ2i ln t2it

−c
2i

1 + t−c2i

]

+
∑
i∈I1

δ1i(1− δ2i)
k2 ln t2it

−c
2i (1 + t−c2i )−k2−1 − k2 ln t1it

−c
1i (1 + t−c1i )−k2

(1 + t−c2i )−k2 − (1 + t−c1i )−k2

+
∑
i∈I2

(1− δ1i)δ2i
k1 ln t1it

−c
1i (1 + t−c1i )−k1−1 − k1 ln t2it

−c
2i (1 + t−c2i )−k1

(1 + t−c1i )−k1 − (1 + t−c2i )−k1
= 0.
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We observe that there is no explicit solution of any of the M. L. equations as parameters are
interrelated. To maximize the pseudo log-likelihood function we use the method of fixed point
equation.

3 Discussion

In this paper we have considered the M.L.E.s of the four parameters of bivariate Burr type III
distribution when both components of the bivariate variable are subject to random censoring. Since
the estimators can not be expressed in a closed form, we suggest to use of expectation-conditional
maximization algorithm.
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Abstract

In the recent years, Lindley distribution has received a considerable attention in
the statistical literature. In this talk, pivotal, likelihood and Bayesian inferences are
discussed for estimating the unknown parameter of the Lindley distribution based on
different censoring schemes. We propose a new method based on a pivotal quantity to
estimate the unknown parameter. Maximum likelihood and Bayes estimators are also
discussed. Different confidence intervals are considered to estimate the unknown pa-
rameter. We also discuss the prediction of future failures based on observed censored
data. Finally, Monte Carlo simulations are performed to compare the performances
of the different methods, and one data analysis has been presented for illustrative
purposes.
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Mean residual life function of a coherent system with
known number of failed components
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Abstract

This article considers the mean residual life (MRL) function of a coherent system
when the number of failed components of the system is known. We assume that the
lifetimes of the system components are independent and identically distributed (iid)
random variables and show that when the components of the system have increasing
(decreasing) failure rate, that is IFR (DFR), the MRL function of the system is de-
creasing (increasing) in time. Same property for k-out-of-n systems with independent
but not identical (inid) components is also shown when the failed components of the
system are known, extending some results in literatures.

Keywords: Coherent system, mean residual lifetime, signature, IFR, DFR

1 Introduction

The mean residual life and the failure rate functions are very important in Reliability and Survival
analysis. It is well known that both of them uniquely determine the distribution function(see
e.g. Barlow and Proschan, 1975). Hence in recent years, the MRL functions of technical systems,
such as k-out-of-n systems, have been widely studied by the many authors and under various
assumptions. For example Khanjari (2008-a) studied the MRL function of a parallel system with
inid components. Asadi and Goliforushani (2008) obtained some properties of the MRL function
of a coherent system with iid components. Their results have been extended to the systems with
inid or exchangeable components by Khanjari (2011). Let T1, . . . , Tn denote the lifetimes of n
components which are connected in a coherent system and let T = φ(T1, . . . , Tn) represent the
lifetime of the system. For a details on the coherent structures see e.g. Barlow and Proschan

1mkhanjari@birjand.ac.ir
2
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(1975). We assume that Ti’s are iid random variables and F (t) = 1 − F̄ (t) is their common
distribution function. Suppose N(t) is the number of failed components of the system up to time
t. We note that N(t) is distributed as Binomial(n, F (t)). We define Mr(t), the MRL function of
the system as follow:

Mr(t) = E(T − t|T > t,N(t) = r) (1.1)

Let Ti:n represent the ith ordered lifetime of components. It is well known that the lifetime of a
k-out-of-n:F system is Tk:n. Khanjari (2008-b) defined

Hr
n,k(t) = E(Tk:n − t|N(t) = r), 0 ≤ r < k ≤ n, t > 0 (1.2)

and showed that if Hk
n(t) = E(Tk:n − t|T1:n > t) then

Hr
n,k(t) = E(Tk−r:n−r − t|T1:n−r > t) = Hk−r

n−r(t) (1.3)

In fact
P (Tk:n > t+ x|N(t) = r) = P (Tk−r:n−r > t+ x|T1:n−r > t)

He also characterized F̄ (t) by Hr
n,k(t). In the following section we extend his result to a coherent

system. Also in inid case, the MRL function of a k-out-of-n:F system is considered when the both
N(t) and the failed components of the system are known.

2 Main results

Let T = φ(T1, . . . , Tn), Ti:n, Mr(t), N(t), Hk
n(t) and Hr

n,k(t) are defined as in previous section.
Samaniego (1985) obtained the following interesting and important result

P (T > t) =

n∑
i=1

siP (Ti:n > t) (2.4)

where si = P (T = Ti:n) and called the probability vector s = (s1, . . . , sn) as the signature of the
system. In the following lemma it is shown that the MRL function Mr(t) can be written as a
convex combination of MRL’s Hk−r

n−r(t), k = r + 1, . . . , n.
For 0 ≤ r < k ≤ n and t > 0 we have

Mr(t) =

n∑
k=r+1

wkH
k−r
n−r(t) (2.5)

where wk = sk/
∑n
r+1 sj , k = r + 1, . . . , n. Proof. We have P (T > t + x|T > t,N(t) = r) =

P (T>t+x|N(t)=r)
P (T>t|N(t)=r) It is known that for 1 ≤ i, j ≤ n two events T = Tj:n and Ti:n are independent(see

e.g. Kochar et al. 1999). Note that N(t) = r is equivalent to Tr:n < t < Tr+1:n. Therefore two
events N(t) = r and T ≥ Tr+1:n are also independent. Now in view of Lemma 2.2 in Samaniego
et al. (2009) and from Equations (1.2) and (1.3) we have

P (T > t+ x|T > t,N(t) = r) =

∑n
k=r+1 skP (Tk:n > t+ x|N(t) = r)∑n

j=r+1 sj

which is equal to
∑n
k=r+1 wkP (Tk−r:n−r > t+x|T1:n−r > t). Now by integrating both sides of this

equation with respect to x the proof of the lemma is immediate.
Remark 2.1. Samaniego et al.(2009) showed that P (T = Tk:n|T > t,N(t) = r) = sk/

∑n
r+1 sj =

wk, k = r + 1, . . . , n and called the probability vector w(n−r) = (wr+1, . . . , wn) as the dynamic
signature of the system. By using other argument they showed that P (T > t + x|T > t,N(t) =
r) =

∑n−r
j=1 wj+rḠj:n−r|t(x) where Ḡj:n−r|t(x) is the reliability function of the jth order statistic

from a random sample of size n− r from Ḡ(x|t) = F̄ (x+ t)/F̄ (t). As shown in Khanjari (2008-b),
we note that Ḡj:n−r|t(x) = P (Tj:n−r > t+ x|T1:n−r > t) = P (Tj+r:n > t+ x|N(t) = r).
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Remark 2.2. Asadi and Goliiforushani (2008) proved that Hk
n(t) = E(Tk:n − t|T1:n > t) is a

decreasing(increasing) function of t, if F is IFR(DFR). (Recall that F is said to be IFR(DFR) if
for all x > 0, F̄ (t+x)/F̄ (t) is decreasing(increasing) in t.) In inid case Khanjari (2011) showed that
when Fi’s are IFR(DFR), Hk

n(t) is decreasing(increasing) in t. He also showed that(Tk:n− t|T1:n >
t) ≤st (Tk:n−1 − t|T1:n−1 > t) and therefore Hk

n(t) ≥ Hk
n−1(t). Now in iid case and from Lemma

2.1, Mr(t) is decreasing(increasing) in t if F is IFR(DFR).
Remark 2.3. It seems that the probability p(x, t, r) = P (T > t+x|T > t,N(t) = r) is decreasing
in 0 ≤ r < n. But this is not true in general. For example suppose n = 3 and s = (1/3, 1/3, 1/3)
be the signature of an arbitrary mixed system(see e.g. Samaniego et al.(2009) for a definition of
mixed systems). Also suppose F̄ (t + x)/F̄ (t) = 0.1. It is easy to see that p(x, t, 0) = 299/3000 <
p(x, t, 1) = p(x, t, 2) = 0.1 and if s = (1/6, 2/6, 3/6) then p(x, t, 0) = 5/8 > p(x, t, 1) = 11/20 >
p(x, t, 2) = 1/2. Therefore Mr(t) is not monotone in r.
Now consider a k-out-of-n:F system with inid components and suppose N(t) = r, 0 ≤ r < k ≤ n.
We define the set Sr with cardinality of r, as the set of indices of the failed components at or before
time t. Sr is a subset of {1, . . . , n} and assume that S0 = ∅.

For t > 0 and 0 ≤ r < k ≤ n we have

E(Tk:n − t|N(t) = r, Sr) = Hk−r
S′r

(t) = E(T(k−r:n−r) − t|T(1:n−r) > t)

where T(j:n−r) is the jth ordered lifetime of the random sample {Ti|i ∈ S′r = {1, . . . , n} − Sr}
Proof. It is easy to show that

P (Tk:n > t+ x|N(t) = r, Sr) = P (T(k−r:n−r) > t+ x|T(1:n−r) > t).

Now the proof of the lemma is immediate.
Remark 2.4. In view of Remak 2.2 we note that in inid case, when Fi’s are IFR(DFR), the MRL
function of a k-out-of-n:F system, given in Lemma 2.2, is decreasing(increasing) in t.
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