


In the Name of Allah

Proceeding of

The First Seminar on

Reliability Theory and its
Applications

Department of Statistics
University of Isfahan, Isfahan, Iran

and

Ordered and Spatial Data Center of Excellence

Ferdowsi University of Mashhad, Iran

27-28 May, 2015



Preface

On behalf of the organizing and scientific committees, we would like to extend a very
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of this seminar, in which more than 110 colleagues, researchers, and postgraduate
students have participated.

Finally, we would like to extend our sincere gratitude to the students of the De-
partment of Statistics at Isfahan for their kind cooperation. We wish them all the
best.
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Estimating the Performance of Series System’s Production
Process

Ahmadi Nadi, A. 1 and Sadeghpour Gildeh, B. 2

Department of Statistics, Ferdowsi University of Mashhad

Abstract

In former Lifetime performance index CL studies, it is usually assume that quality
characteristic is the lifetime of an electronic component, engine, camera or in special
case lifetime of business. In this paper we suppose that the quality characteristic is
the lifetime of a series system and under the assumption of exponential distribution
for component lifetime, we provide a maximum likelihood estimator of CL and then
this estimate used to develop testing procedure of CL. Finally, we give an example to
illustrate the use of the testing procedure.

Keywords: Lifetime performance index , Series system, Capability analysis.

1 Introduction

Process capability indice (PCI) is an effective means for measure the ratio of the spread
between the process specifications to the spread of the natural variation. Montgomery
[1] proposed PCIs such as, Cp, Cpk, Cpm and Cpmk that measure the target-the-better
type quality characteristics. Beside above PCIs, they also proposed the indices CPL or CL
(lifetime performance index) for measure the larger-the-better type quality characteristics,
where L is the lower specification limit. Clearly, a longer lifetime implies a better product
quality, so the lifetime is a larger-the-better type quality characteristic. Recently, CL have
been an interesting subject for many researchers in capability analysis field, for example,
Tong et al. [2], Hong et al. [3] and Ahmadi et al. [4] worked on statistical inference of
CL. In former CL studies, it is usually assume that quality characteristic is the lifetime
of an electronic component, engine, camera or in special case lifetime of business. For

1adelahmadinadi@um.ac.ir
2sadeghpour@um.ac.ir
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example, Tong et al. [2] assume that the quality characteristic is the lifetime of electronic
components or Hong et al. [3] suppose that the quality characteristic is the lifetime of
businesses.
A series system is a system that work if and only if all of it components work. Let
X1, X2, ..., Xn be the lifetime of the system components. Since the failure time of the
series system depends on the failure time of the weakest component, so the failure time of
a series system can be modeled by X1:n ( first order statistic ).
In this paper we want to do a statistical inference about the performance of series system’s
production process. In Section 2, we introduce some properties of CL for lifetime of series
system. In Section 3, we discusses about the conforming rate. Sections 4 and 5 presents
the ML estimator of CL and a new hypothesis testing procedure for CL based on lower
confidence bound, respectively. Finally, in Section 6 we present a numerical example to
illustrate proposed testing procedure.

2 The lifetime performance index

Lifetime performance indice CL is defined as follows:

CL =
µ− L

σ
, (1)

which µ denotes the process mean, σ represents the process standard deviation, and L is
the known lower specication limit. Suppose thatm series systems are placed independently
in test at time zero. Also suppose that the components of each system are independent
and identically distributed and comes from the one-parameter exponential distribution
with below probability density function (p.d.f.):

f(X)(x, λ) = λe−λx, x > 0, λ > 0, (2)

where λ is the scale parameter. Let Xij ∀j = 1, 2, ..., n and ∀i = 1, 2, ...,m be the lifetime
of the j-th component of the i-th system and Ti = Xi

1:n ∀i = 1, 2, ...,m be the lifetime
of the i-th series system, respectively. By a simple computation, it can be seen that the
lifetime of systems (T) follow one-parameter exponential distribution with p.d.f (2) with
scale parameter nλ . By substituting the mean and standard deviation of T in (1), the
lifetime performance index can be obtained as follows:

CL =
1
nλ − L

1
nλ

= 1− nLλ, −∞ < CL < 1, (3)

where 1
nλ = E(T ) = σ(T ). Obviously, when the mean lifetime of system exceed L (i.e

1
nλ > L), then the lifetime performance index CL > 0.

3 The conforming rate

If the lifetime of a system, T, exceed the lower specification limit (i.e T > L) then the
system defined as a conforming product. The ratio of conforming products is known as
the conforming rate Pr which is defined as follows:

Pr = P (T > L) = e−nLλ = eCL−1.

Obviously, a strictly relationship exist between conforming rate Pr and lifetime perfor-
mance index CL.
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4 MLE of lifetime performance index

The likelihood function corresponding observed sample (t1, t2, ..., tm) is given as follows:

L(λ) =
m∏
i=1

nλe−nλti = (nλ)me−nλ
∑m

i=1 ti . (4)

By setting the first partial derivatives of the natural logarithm of the likelihood function
(Eq (4)) equal to zero with respect to λ, the MLE of λ obtained as λ̂ = m

nW , where
W =

∑m
i=1 Ti. From (4), it can be seen that W =

∑m
i=1 Ti is a complete and sufficient

statistic for λ and also W ∼ Gamma(m,nλ) therefore, 2nλW ∼ χ2
(2m). According to the

invariance property of the MLE, the MLE of CL can be written as:

ĈL = 1− mL

W
(5)

By taking expectation from ĈL, it can be seen that when m −→ ∞ the MLE of CL is
a unbiased estimator for CL.

5 Testing procedure for the lifetime performance index

At first suppose that the lifetime performance index target value is shown by c∗. Given
the specified significance level α and the pivotal quantity 2nλW , which is distributed as
χ2
(2m), the level 100(1−α)% one-sided confidence interval for CL can be derived as follows:

P
(
2nλW < CHIIN(1− α, 2m))

)
= 1− α,

⇒ P
(
CL > 1− (1− C̃L)CHIIN(1− α, 2m)

2m

)
= 1− α. (6)

where CHIIN(1−α, 2m) function represents the lower 100(1−α) percentile of χ2
(2m). From

(6), the level 100(1− α)% lower confidence bound for CL can be derived as:

LB = 1− (1− C̃L)CHIIN(1− α, 2m)

2m
, (7)

where C̃L , α and m denote the MLE of CL, the specified significance level and the
observed number, respectively. So the testing procedure can be constructed with the
one-sided confidence interval as follows:

step1: Determine the lower lifetime limit L for products and performance index target
value c∗.

step2: Specify a significance level α.

step3: Calculate the value of lower confidence bound LB from (7).

step4: The decision rule of statistical test is “If performance index target value
c∗ ̸∈ [LB,∞), it is concluded that the lifetime performance index of products meets
the required level”.
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6 Numerical example

Example 1. Simulated data set

A simulated data set of the failure times ofm= 20 series systems with n=5 components
from exponential distribution with p.d.f (2) and parameter λ= 0.2 (nλ = 1) are: 1.69,
0.98, 0.54, 0.16, 1.23, 3.92, 0.39, 5.11, 0.01, 0.08, 2.42, 0.42, 0.80, 1.18, 0.56, 0.18, 0.29,
0.41, 0.95, 2.29. step1 the lower lifetime limit L and the lifetime performance target
value c∗ are assumed to be 0.1 and 0.8, respectively. In step2 Specify a significance level

α=0.05. Calculate the value of LB = 1− (( 20∗0.1
23.61

)∗55.76)
2∗20 = 0.88 in step3. In step4, because

of 0.8 ̸∈ [0.88,∞), so it is concluded that the lifetime performance index of products meets
the required level.
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A Preventive Maintenance Model for Periodically Inspected
Deteriorating Systems

Ahmadi, R. 1

School of Mathematics, Iran University of Science and Technology

Abstract

Using the repair alert model, this paper proposes a probabilistic model for the
maintenance scheduling of periodically inspected systems whose state is described by
a mean residual lifetime (MRL) process. Attention is restricted to the periodic inspec-
tion and perfect repair, but the model provides a framework for further developments.

Keywords: Maintenance, Inspection, Repair alert model, Scheduling function, Mean
residual lifetime process.

1 Introduction

Benefiting from the repair alert model [3] and the joint modeling of the degradation phe-
nomenon and the maintenance effect, we formulate a maintenance scheduling model with
a general form for periodic inspection policy. The approach presented is appropriate for
maintaining systems subject to failure due to aging and damage caused by operating envi-
ronment factors. During operating, inspections at periodic times reveals the true state of
the system and corrective maintenance (CM) and preventive maintenance (PM) actions
are carried out in response to the observed system state. Since higher level of repair and
maintenance incurs more costs, but on the other hand it would more likely prevent the
system failure (CM avoided by a preceding PM), the maintenance procedure is faced with
the dilemma of whether performing PM actions or experiencing critical failures (CM). In
this case an appropriate PM policy is required which balances the amount of maintenance
and resulting maintenance costs. Thus, the situation is a case of competing risk between
CM and PM. The pleasant feature of the model making use of the so-called repair alert
model and some other characteristics is to devise a scheduling function and a mean residual
lifetime process.

1re ahmadi stat@yahoo.com
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2 Modelling degradation

We consider a deteriorating system subject to failure due to aging and operating envi-
ronment factors. It is assumed that the system state is described by the mean residual
lifetime process

µ(Wn) = exp

(
V 2
nψ(XVn)

2

)√
2π

ψ(XVn)

[
1− Φ

(
Vn
√
ψ(XVn)

)]
, (1)

incorporating a controllable bivariate process Wn = (XVn , Vn) where Vn denotes the Ki-
jima Type-I Virtual age (VA) model [4], XVn is a damage process reflecting the effect of
operating environment factors, ψ(·) refers to the multiplicative factor of the proportional
intensity model and Φ(·) implies the cumulative distribution function of the standard nor-
mal distribution. One can note that the interrelation between the damage process and the
maintenance effect reflected by a virtual age process is accommodated through the change
of the time origin Xt 7→ XVt . Based on some assumptions, the argument presented by
Ahmadi [2] follows (1).

3 Features of the model

3.1 Model assumptions

a) PM actions are carried out in response to the observed MRL process (1); b) Inspections
are perfect and instantaneous and reveal the true state of the system; c) The system is
inspected at fixed intervals τ at cost C; d) The impact of PM is minor (minimal repair),
or major (perfect repair); e) The preventive replacement rule is of threshold type. That
means, the preventive replacement time Tp is defined as the first time the mean residual
lifetime process (1) reaches or falls below a threshold k; f) Replacement after failure (PM)
is instantaneous and incurs a cost Cf (Cp) (Cf > Cp); g) The pair (Tf ;Tp) of life variables
satisfies the requirements of the repair alert model. The last assumption implies that (i)
Tp is a random signs censoring of the catastrophic failure time Tf . That means, the event
{Tp < Tf} is stochastically independent of Tf ; (ii) there exists an increasing function G
with G(0) = 0 such that for all t > 0,

P(Tp ≤ u|Tp < Tf , Tf = v) =
G(u)

G(v)
, 0 < u ≤ v,

where G is called the cumulative repair alert function. For details see Lindqvist et al. [3].

3.2 The framework

At inspection time nτ and before any maintenance action, a decision is made based on
the mean residual lifetime process µ

(
W−
n

)
n ≥ 1, and the replacement threshold k where

W−
n = (XVn−1+τ , Vn−1 + τ). There are two states at nτ :

(i) Operating state: A minimal repair is performed and it is left to continue until
the next planned inspection in τ units of time at (n + 1)τ with inspection cost C, if
the mean residual lifetime process µ

(
W−
n

)
is observed in the non-critical region (working

perfectly). That means, µ
(
W−
n

)
> k, n ≥ 1. At inspection time (n + 1)τ and before

any maintenance action, a decision is made based on the updated mean residual lifetime
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µ
(
Wn

)
where Wn = (XVn+τ , Vn + τ);

(ii) Failure state: there are two possibilities: a) the system either experiences a critical
failure at time Tf , or; b) it undergoes a perfect repair (replacement) at time Tp = nτ , if the
mean residual lifetime process is found in the critical region. In other words, µ

(
W−
n

)
≤

k, n ≥ 1. At time T = min(Tf , Tp) the system is instantaneously replaced with the
random cost of C. Theses failure times form a renewal process.

3.3 Optimizing the model: average cost criterion

3.3.1 Expected cycle length

Let the starting state of the system at initial time be w0 = (x, v) and Lxτ denote the length
of a cycle with the expected cycle length lxτ . A renewal reward argument yields the length
of a cycle:

Lxτ =
(
τ + LXτ

τ

)
I
(
T > τ−

)︸ ︷︷ ︸
Operating state

+ TI(T < τ)︸ ︷︷ ︸
Failure state

(2)

Taking expectations:

lxτ = A(x) +

∫
C̄
lyτK

x
τ (y)dy, (3)

where A(x) =
∫ τ
0 R

w0(t)dt with the survival function Rw0(t) given the starting state w0 =
(x, v), Kx

τ (y) = P
(
Xτ− = y|X0 = x

)
denotes the kernel function and C̄ = {y : µ(y, τ) > k}

is the non-critical region with the mean residual lifetime µ(y, τ) given in (1).

3.3.2 Expected cost per cycle

The expected cost of a cycle, cxτ , is obtained similarly. The cost of a cycle Cxτ given the
starting state w0 = (x, v) is

Cxτ =
(
C + CXτ

τ

)
I
(
T > τ−

)︸ ︷︷ ︸
Operating state

+ CI(T < τ)︸ ︷︷ ︸
Failure state

(4)

Taking expectations:

cxτ = B(x) +

∫
C̄
cyτK

x
τ (y)dy, (5)

where B(x) = C + C1F
w0(τ) + qC2G(τ)

∫∞
τ

dFw0 (t)
G(t) with q = P(Tp < Tf ), which is the

probability that the CM is avoided by a preceding PM, the catastrophic failure time
distribution Fw0(t) given the starting state w0, and

C1 =
(
Cf − C

)
− q
(
Cf − Cp

)
, C2 = Cp − C.

3.3.3 Expected cost per unit time

The structure described above allows a renewal reward argument to be used. A standard
renewal reward argument gives the cost per unit time Cxτ = cxτ/l

x
τ with expressions for lxτ

and cxτ given in (3) and (5).
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3.4 Obtaining solutions

As noted the equations (3) and (5) refer to Fredhom equations

lxτ = A(x) +

∫
C̄
Kx
τ (y)l

y
τdy vxτ = B(x) +

∫
C̄
Kx
τ (y)v

y
τdy.

They are solved numerically using the Nystrom routine with a Gauss-Legendre rule [1].
The optimal period of inspection τ∗ and the optimal replacement threshold k∗ can be
obtained as

(τ∗, k∗) = argmin
(τ,k)∈R+×R+

Cxτ . (6)
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Estimation of Stress-Strength Reliability for Stable
Distributions

Alizadeh Noughabi, R. 1 and Mohammadpour, A. 2

Department of Statistics, Amirkabir University of Technology

Abstract

This paper deal with the estimation of Stress-Strength reliability parameter, R =
P (X < Y ), when stress and strength are two independent stable distributions. The
maximum likelihood estimator of stable distribution studied. Furthermore, we investi-
gate the Rr,k = P (Xr:n1 < Yk:n2) for Lévy distribution as a member of stable family.
Using a Monte Carlo simulation, the MSE and Bayes risk estimators are computed
and compared.

Keywords: Stable distributions, Stress-Strength, Maximum likelihood estimator,
Lindley approximation.

1 Introduction

Stable distributions are a class of probability distributions that specified by four parame-
ters, an index of stability α ∈ (0, 2], a skewness parameter β ∈ [−1, 1], a scale parameter
γ > 0 and finally a location parameter δ ∈ ℜ. A stable distribution determined by its
characteristic function, that is X ∼ S(α, β, γ, δ) if and only if φX (t) as follows

φX (t) =

{
exp

{
−γα|t|α

[
1− iβ

(
tan πα

2

)
(sign t)

]
+ iδt

}
α ̸= 1,

exp
{
−γ |t|

[
1 + iβ 2

π (sign t) log |t|
]
+ iδt

}
α = 1.

where sign t is sign function, see Nolan [6].
Many authors discussed inference on R in reliability context. But there has not been

much work on the estimation of R for Lévy distribution, the only paper, we are study
is Ali and Woo [1]. In 2010 Eryilmaz [3] studied stress-strength reliability for a general
coherent system. the probability Rr,k = P (Xr:n1 < Yk:n2) discussed by Pakdaman and
Ahmadi [5].
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2 General case

To estimate Stress-Strength reliability for stable distributions we consider two cases:
I : X and Y have same and know skewness parameter, i.e. X ∼ S (α1, β) and Y ∼

S (α2, β) be independent random variables.

II : Skewness parameter be unknown, that is X ∼ S (α1, β1) and Y ∼ S (α2, β2) be
independent random variables.

2.1 MLE

In case I we have

R = P (X < Y ) =

∫ +∞

−∞
[1− SY (z|α2, β)] sX (z|α1, β) dz. (1)

The SY and sX are used to show the distribution function and density function of
stable distributions, respectively. By computing the ML estimators of α1 and α2 we can
calculate the (1) by a numerical method. Case II is same as I but we must obtain the
ML estimators of α1, β1, α2 and β2. Simulation results are shown in Table 1.

3 Lévy distribution

Let X and Y be two independent random variables. In other word, X ∼ Lev (α) and
Y ∼ Lev (β) respectively. Ali and Woo [1] study P (X < Y ) for the Lévy distribution. In
this paper, we investigate the case of Rr,k = P (Xr:n1 < Yk:n2).

Thus, the Rr,k follows

Rr,k = P (Xr:n1 < Yk:n2) =

∫ +∞

−∞
FXr:n1

(z) fYk:n2
(z) dz. (2)

By formulas of pdf and cdf of the ith order statistic (See David and Nagaraja [2]) and
writing the binomial expansion for F jX (z) and F k−1

Y (z) we simplify Rr,k as follows

Rr,k = P (Xr:n1 < Yk:n2)

= k

(
k
n2

)
n1∑
j=r

j∑
t=0

k−1∑
l=0

(
n1
j

)(
j
t

)(
k − 1
l

)
(−1)t+l

∗
∫ +∞
−∞ [1− FX (z)]n1−t[1− FY (z)]n2−l−1fY (z) dz.

(3)

3.1 MLE

Suppose X1, X2, · · · , Xn1 is a sample from Lev (α) and Y1, Y2 · · · , Yn2 is a sample from
Lev (β), Calculate the likelihood function and by taking logarithm and derivative to α
and β we obtain the maximum likelihood of parameters as follows

α̂ =
n1
n1∑
i=1

1
xi

, β̂ =
n2
n2∑
i=1

1
yi

.

Since the maximum likelihood estimators have invariance property, we can calculate Rr,k
by numerical methods.
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3.2 Bayes estimator

Suppose the parameters, α and β, have the gamma priors, with following parameters

α ∼ GAM (k, θ) , and β ∼ GAM (µ, σ) .

Posterior pdfs of α and β are

α|x ∼ GAM

(
n1
2

+ k,
1

2

n1∑
i=1

1

xi
+ θ

)
, and β|y ∼ GAM

(
n2
2

+ µ,
1

2

n1∑
i=1

1

yi
+ σ

)
.

3.3 Lindley’s approximation

We consider Lindley’s approximation (See Lindley [4]) from expanding about the posterior
mode. Lindley’s approximation leads to

ÛLindley =

(
U(θ) +

1

2
[B +Q30B12 +Q21C12 +Q12C21 +Q03B21]

)
|(θ1,θ2)=(θ̃1,θ̃2)

, (4)

where B =
∑2

i=1

∑2
j=1 Uijτij and Qηξ = ∂η+ξ

∂ηθ1∂ξθ2
that η, ξ = 0, 1, 2, 3. Furthermore,

i, j = 1, 2, Ui =
∂U
∂θi

and for i ̸= j, Uij =
∂2U
∂θi∂θj

, Bij = (Uiτii + Ujτij)τii, Cij = 3Uiτiiτij +

Uj(τiiτij + 2τ2ij).
Is the τij (i, j)th element in the inverse of matrix Q∗ = (−Q∗

ij), i, j = 1, 2 so that Q∗
ij =

∂2Q
∂θi∂θj

.

It is not difficult to obtain the above terms.

4 Simulation study

Table 1 shows the bias and MSE of R in general case of a stable distribution. Furthermore,

Table 1: Bias and MSE of R for stable law with unknown β
Symmetric Positive Asymmetric

n1 = n2 α β Bias MSE α β Bias MSE α β Bias MSE
5 0.3 0 -0.0396 0.0973 0.2 1 0.0738 0.0288 1.2 1 0.0793 0.1223

0.8 0 -0.0094 0.1427 0.4 1 -0.0120 0.0472 1.4 1 0.0028 0.0496
1.2 0 -0.0801 0.0529 0.7 1 -0.0226 0.0060 1.7 1 -0.0119 0.0695
2 0 -0.0025 0.0151 0.9 1 -0.0041 0.0025 2 1 0.0174 0.0171

10 0.3 0 -0.0335 0.827 0.2 1 -0.0153 0.0203 1.2 1 0.0019 0.1091
0.8 0 0.0999 0.0951 0.4 1 0.0451 0.0020 1.4 1 0.0013 0.0765
1.2 0 0.1120 0.0970 0.7 1 0.0117 0.0142 1.7 1 -0.0036 0.0370
2 0 -0.0108 0.0101 0.9 1 0.1056 0.0401 2 1 0.0391 0.0167

we simulate the Estimated Risks (ER) of Bayes and approximation Bayes estimators with
respect to prior parameters.

Conclusion

We have used the symmetric, positive asymmetric and asymmetric stable laws for simulat-
ing bias and MSE. We have observed that the Bayes estimator has the smallest estimated
risk. The estimated risk decreases as the priors become more ”informative”.
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Table 2: Bias and ER for Bayes Estimators of Rn1,1

Informative k θ µ σ n1 = n2 ER(RB
Lin) Bias(RB

Lin) ER(RB) Bias(RB)
Least informative 1 2 1 2 5 0.320 0.562 0.358 0.583

1 2 1 2 10 0.264 -0.513 0.273 0.508

Informative 5 10 5 10 5 0.273 0.503 0.289 0.519
5 10 5 10 10 0.203 -0.467 0.229 -0.471

Most informative 10 20 10 20 5 0.241 0.488 0.251 0.497
10 20 10 20 10 0.191 -0.438 0.197 -0.439
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Abstract

Survival data often come in a form called ”censoring”. When exact survival times
are known only for a portion of the individuals or units under study censoring occurs.
In this paper, we consider a progressive hybrid censoring. The problem of predicting
times to failure of units censored in multiple stages of progressively hybrid censored
from exponentil distribution is discused. The best unbiased predictor (BUP), best
linear unbiased predictor (BLUP) and maximum likelihood predictor are derived.

Keywords: Best linear unbiased predictor, Conditional median predictor, Maximum
likelihood predictor, Order statistics, Progressive hybrid censoring.

1 Introduction

Kundu and Joarder (2006) and Childs et al. (2008) proposed respectively type I and
type II progressive hybrid censoring procedures by introducing a stopping time T ∗ to a
progressive type-II censored experiment. The termination times are defined by a given
(fixed) threshold time T as follow:

(i) T ∗
1 = min{Xm:m:n, T}, this procedure is called type-I progressive hybrid censoring

scheme; the life-testing experiment is stopped when either m failures have been
observed or the threshold time T has been exceeded. The number of observations
may be zero (for the case when X1:m:n > T ).(Kundu and Joarder (2006))
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(ii) T ∗
1 = max{Xm:m:n, T}, this procedure is called type-II progressive hybrid censoring

scheme. The number of observations is between m and Rm+m, where Xi:m:n is ith
progressively type II censored order statistic.(Childs et al. (2008))

Let X1, X2, · · · , Xn, denote the ordered failure times of n-independent units placed on a
life testing experiment simultaneously. Assume theseXs come from a common exponential
distribution with the density function

f(x; θ) = θe−θx x > 0, θ > 0. (1.1)

. For simplicity we show k progressively hybrid right censored order statistics by Y1, Y2, · · · , Yk.
Our purpose is to discuss the prediction of life lengths Yj:ri(j = 1, 2, · · · , k) that denotes
the jth-order statistic out of ri removed units at stage i = 1, 2, · · · , k, T . Prediction of
times to failure of Yj:ri at progressive censored data has been discussed earlier by Bal-
akrishnan and Basak (2006 and 2009) and Asgharzadeh and Valliollahi (2010). Since
F is continuous, the conditional distribution of Yj:ri given Y = (Y1, Y2, · · · , Yk) is just
the distribution of Yj:ri given Yi due to the well-known Markovian property of progres-
sively hybrid right censored order statistics. Hence the best unbiased predictor (BUP) of
Yj:ri(j = 1, 2, · · · , ri; i = 1, 2, · · · , k) , Eθ(Yj:ri |Y ) is nothing but Eθ(Yj:ri |Yi) and hence it
depends only on Yi. In progressive hybrid censoring type-I

(i) if Ym ≤ T then censoring method is similar to the ordinary progressive censoring
with censoring scheme (r1, r2, · · · , rm),

(ii) if Yk ≤ T < Yk+1 then ri units are randomly withdrawn at i th stage ; i = 1, 2, · · · , k
and rT units at time T . Censoring scheme change to (r1, r2, · · · , rk, rT ) ; rT =
n− k − Σki=1ri

In progressive hybrid censoring type-II

(iii) If Yk < T < Yk+1, k ≥ m then ri units are randomly withdrawn at i th stage
; i = 1, 2, · · · ,m− 1 and rT units which rT = n− k − Σm−1

i=1 ri at time T .

(iv) If Ym > T and Yk ≤ T < Yk+1, censoring method is similar to the ordinary pro-
gressive censoring which censoring scheme changes to (r1, r2, · · · , rk, 0m−k−1, r∗m) ;
r∗m = n−m− Σki=1ri.

2 Best linear unbiased predictor

For exponential distribution it can be shown that Yj:ri−Yi for i = 1, 2, · · · , k is distributed

as
Zj:ri
θ

where Zj:ri denotes the jth order statistic out of ri units from a standard expo-

nential distribution. Therefore the distribution of Yj:ri − Yi is independent of Yi.
Let π1(j, ri) , π2(j, ri), π0(j, ri) respectively denote the mean, variance and mode of Zj:ri
which are given by:

π1(j, ri) =
∑n

l=ri−j+1

1

l
, π2(ri, ri) =

∑n
l=ri−j+1

1

l2

and π0(j, ri) = log(
ri

ri − j + 1
). (2.1)

In cases (i), (iv) and (ii), (iii) for i = 1, 2, · · · , k predicting problem is the same as the
one which studied by Balakrishnan and Basak (2006). According to it
If θ is known: The best unbiased predictor (BUP) Y ∗

j:ri
of Yj:ri is simply given by
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E[Yj:ri |Yi]. Since (Yj:ri −Yi) and Yi are independent and Yj:ri −Yi
d
=

1

θ
Zj:ri the BUP Y ∗

j:ri

is given by:

Y ∗
j:ri = E[Yj:ri |Yi] = Yi +

1

θ
π1(j, ri). (2.2)

According to (2.2) BUP is a linear combination of Yi so the best linear unbiased predictor
(BLUP) is:

Y B
j:ri = Yi +

1

θ
π1(j, ri) ; i = 1, 2, · · · , k. (2.3)

If θ is unknown: The BLUP of Yj:ri ; is given by Y B
j:ri

= Yi +
1

θ∗
π1(j, ri) where

1

θ∗
=

1

m

∑m
l=1(rl + 1)Yl is BLUE of

1

θ
.

In cases (ii) and (iii) BUP for Yj:rT is like Asgharzadeh and Valiollahi (2012). Based on
Markovian property Y ∗

j:rT
=
∫∞
T yF (y|y > T )dy. By substituting fθ(y|y) and using the

binomial expansion BUP is:

Y ∗
j:rT

= j

(
rT
j

)
Σj−1
i=0

(
j − 1
i

)
(−1)j−i−1 (rT − j)T + θ

(rT − j)2
(2.4)

When the parameter θ is unknown, we can use MLE of θ.

3 Maximum likelihood predictor

In cases (i) and (iv) predictive likelihood function of Yj:ri and θ is:

L = cθk+1e−θy[e−θyi − e−θy]j−1[e−θy]ri−j
k∏
l=1

e−θyl
k∏

l=1;l ̸=i
e−θylrl ; y ≥ yi.

θ is known: Maximum likelihood predictor(MLP) YMLP
j:ri

of Yj:ri is:

YMLP
j:ri = Yi +

1

θ
π0(j, ri) (3.1)

In cases (ii) and (iii) predictive likelihood function of Yj:ri and θ is:

L = cθk+1e−θΣ
k
l=1;l̸=i(rl+1)yl+(ri−j+1)y+TrT−riyi [e−θyi − e−θy]j−1

=⇒ YMLP
j:ri = Yi +

1

θ
log

ri
ri − j + 1

(3.2)

predictive likelihood function of Yj:rT and θ is:

L = cθk+1e−θΣ
k
l=1(rl+1)yl+(rT−j+1)y[e−θT − e−θy]j−1

=⇒ YMLP
j:rT

= T +
1

θ
log

rT
rT − j + 1

(3.3)

θ is unknown: in cases (i) and (iv)

YMLP
j:ri = Yi +

1

θ∗∗
π0(j, ri);

1

θ∗∗
=

1

k + 1
Σkl=1(rl + 1)yl (3.4)
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In a similar way for (ii), (iii)

YMLP
j:ri = Yi +

1

θ∗∗
log

ri
ri − j + 1

;
1

θ∗∗
=

1

k + 1
Σkl=1;l ̸=i(rl + 1)yl + TrT (3.5)

YMLP
j:rT

= T +
1

θ∗∗
log

rT
rT − j + 1

;
1

θ∗∗
=

1

k + 1
Σkl=1;l ̸=i(rl + 1)yl + TrT (3.6)
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Abstract

In this paper, we investigate stochastic comparisons of lifetimes of parallel and
series systems with the multiple-outlier independent components of the scale models
with respect to likelihood ratio and dispersive orders.

Keywords: Likelihood ratio order, Dispersive order, p-larger order, Parallel system,
Series system.

1 Introduction

Random variable X be said to belong to the scale family of distributions if it has the
distribution function F (λx) and the density function λf(λx), where λ is a scale parameter
and F is an absolutely continuous distribution function with density function f and called
the base line distribution. Tow special cases of this model are gamma and exponential
distributions. There are many papers in literature about stochastic comparisons of the or-
der statistics when the random variables are independent and identically distributed(i.i.d).
For more details the reader refer, Balakrishnan and Rao (1998a, 1998b), Kochar (1996),
Bapat and kochar (1994), Khaledi and Kochar (2000), However, in the literature, some
interesting new results on order statistics when random variables are non-i.i.d. have been
obtained by Pledger and Proschan (1971), Proschan and Sethuraman (1976) and Zhao, Li
and Balakrishnan (2009).

Many researchers have investigated the effect of two different vectors of parameters
in some parametric models like exponential, gamma and Weibull families of distributions
on the survival function, the hazard rate function and other characteristics of the time to
failure of parallel and series systems.
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Let us now review some well known results concerning stochastic comparisons of par-
allel systems. Let Xi, i = 1, . . . , n be independent exponential random variables with Xi

having hazard rate λi, i = 1, . . . , n and let X∗
i , i = 1, . . . , n be another independent expo-

nential random variables with X∗
i having hazard rate λ∗i . Pledger and Proschan (1971),

for the first time proved the following interesting result, for 1 ≤ k ≤ n,

(λ1, . . . , λn) ⪰m (λ∗1, . . . , λ
∗
n) =⇒ Xk:n ≥st X

∗
k:n, (1)

Khaledi and Kochar (2000) further improved the result (1) under a weaker condition as

(λ1, . . . , λn) ⪰p (λ∗1, . . . , λ
∗
n) =⇒ Xk:n ≥st X

∗
k:n. (2)

Khaledi et al. (2011) considered the problem of comparing of lifetimes of parallel and
series systems with heterogeneous components from the scale model. They showed that
under some conditions series and parallel systems with component lifetimes from the scale
model of distributions are ordered in terms of the hazard rate order and the reversed
hazard rate order.

In this paper specifically, we will study stochastic comparisons of parallel and series
systems in the scale model in terms of the likelihood ratio and dispersive orders but shift
our attention to multiple-outlier scale model.

The definitions and study of all the stochastic orders that are mentioned in this paper
can be found in Müller and Stoyan (2002) or in Shaked and Shanthikumar (2007). Specifi-
cally, ≥lr stands for the likelihood ratio order, ≥disp, ≥hr and ≥rh stand for the dispersive
order, the hazard rate order and the reversed hazard rate order, respectively, when two
univariate random variables are compared (cf. Shaked and Shanthikumar, 2007, pages 16
and 36).

The rest of the paper is organized as follows: Stochastically comparing parallel and
series systems in terms of the likelihood ratio order and dispersive order are investigated,
respectively, in section 2 and section 3.

2 Parallel systems

In this section, we compare parallel systems from multiple-outlier scale model according
to likelihood ratio and dispersive orders. In the first theorem we consider the likelihood
ratio order in order to compare the lifetimes of parallel systems arising from two sets of
independent heterogeneous random variables in the scale models.

Theorem 1. Let X1, . . . , Xn be independent random variables following the multiple-
outlier scale model with parameters (λ1, . . . , λ1︸ ︷︷ ︸

p

, λ, . . . , λ︸ ︷︷ ︸
q

) and let X∗
1 , . . . , X

∗
n be another

set of independent random variables following the multiple-outlier scale model with param-
eters (λ∗1, . . . , λ

∗
1︸ ︷︷ ︸

p

, λ, . . . , λ︸ ︷︷ ︸
q

), where p ≥ 1 and p+ q = n ≥ 2. If λ ≥ λ∗1 ≥ λ1,

xr(x) and
xr′(x)

r(x)
are decreasing in x,

then
Xn:n(p, q) ≥lr X

∗
n:n(p, q), (3)

where r(x) = f(x)
F (x) is the reversed hazard rate function.
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Theorem 2. Let X1, . . . , Xn be independent random variables following the multiple-
outlier scale model with parameters (λ1, . . . , λ1︸ ︷︷ ︸

p

, λ2, . . . , λ2︸ ︷︷ ︸
q

) and let X∗
1 , . . . , X

∗
n be an-

other set of independent random variables following the multiple-outlier scale model with
parameters (λ∗1, . . . , λ

∗
1︸ ︷︷ ︸

p

, λ∗2, . . . , λ
∗
2︸ ︷︷ ︸

q

), where p ≥ 1 and p + q = n ≥ 2. Suppose that

λ1 ≤ λ∗1 ≤ λ∗2 ≤ λ2 and p ≥ q. If

xr(x) and
xr′(x)

r(x)
are decreasing in x,

then
(λ1, λ2) ⪰p (λ∗1, λ

∗
2) =⇒ Xn:n(p, q) ≥disp X

∗
n:n(p, q). (4)

where, r(x) = f(x)
F (x) is the reversed hazard rate function.

3 Series systems

In this section we give some new results involving series systems with multiple-outlier
components from scale model.

Theorem 3. Let X1, . . . , Xn be independent random variables following the multiple-
outlier scale model with parameters (λ1, . . . , λ1︸ ︷︷ ︸

p

, λ, . . . , λ︸ ︷︷ ︸
q

) and let X∗
1 , . . . , X

∗
n be another

set of independent random variables following the multiple-outlier scale model with param-
eters (λ∗1, . . . , λ

∗
1︸ ︷︷ ︸

p

, λ, . . . , λ︸ ︷︷ ︸
q

), where p ≥ 1 and p+ q = n ≥ 2. If λ ≥ λ∗1 ≥ λ1,

xh(x) and
xh′(x)

h(x)
are decreasing in x,

then

X1:n(p, q) ≥lr X
∗
1:n(p, q),

where h(x) = f(x)

F (x)
is the hazard rate function.
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Baysian Estimation of Lifetime Performance Index Based
on RSS Sample
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Abstract

Lifetime performance index (CL) is a flexible and effective tool for evaluating prod-
uct quality and conforming rate. Ranked set sampling (RSS) scheme is applied for
Baysian estimator of CL based on square error loss. We assume that lifetimes of prod-
ucts follow a one-parameter exponential distribution. The simulation result for this
scheme is compared with simple random sample (SRS) scheme based on bias, risk,
pitman nearness, relative efficiency.

Keywords: Ranked set sampling, Lifetime performance index, Baysian estimation

1 Introduction

In lifetime testing experiments, the experimenter because of time limitation or other re-
strictions such as lack of funds, lack of material resources, mechanical or experimental
difficulties, etc on data collection, may not always be in a position to observe the lifetimes
of all the products on test. In this paper, we propose sampling scheme known as ranked-set
sampling (RSS), introduced by McIntyre [3], instead of simple random sample (SRS) for
estimating and testing a lifetime performance index CL, since this method requires fewer
observations to provide the same information[1] . CL index, proposed by Montgomery [4],
has many applications in health care and public health monitoring and surveillance and
used to measure the larger-the-better type quality characteristics. This index defined as:
CL = µ−L

σ , where µ is the process mean, σ is the process standard deviation and L is the
lower specification limit. The ratio of conforming products is known as the conforming
rate and can be defined as p = P (X ≥ L) = eCL−1,−∞ < CL < 1. Obviously, a strictly
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increasing relationship exists between the conforming rate p and the lifetime performance
index CL. CL and θ can be derived as CL = 1+ ln p and θ = − L

ln p respectively. The RSS
scheme can be used for hospital monitoring with respect to patient infection rates, patient
falls or accidents, emergency waiting room times, and so on. The data from patients
can be obtained via RSS schemes using expert’s knowledge or using auxiliary variables
[2]. In this paper we assume that the lifetime data follow a one-parameter exponential
distribution, ε(θ), with pdf f(x) = 1

θe
−x

θ . In this case, the capability index CL reduces to
CL = 1− L

θ . To obtain a ranked set sampling, suppose X1, X2, ..., Xn be a random sample
of size n with pdf f(x) and we have n set of such sample. Ranked set sampling is sourced
by the sample selection which is based on two stages, involves an initial ranking samples
of size n as follows:

Table 1: Ranking the samples

1 X1(1) X1(2) . . . X1(n−1) X1(n)
2 X2(1) X2(2) . . . X2(n−1) X2(n)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
n Xn(1) Xn(2) . . . Xn(n−1) Xn(n)

Here, Xi(j),(i, j = 1 : n) denotes the jth order statistic of the ith random sample.
RSS sample is formed by selecting the diagonal elements in Table 1. Element of new
sample RSS are independent but not identically distributed. In certain situations, the
whole procedure to generate an RSS of size n can be repeated m times. Success of RSS
depends very much on our ability to rank the units without any error.

2 Baysian estimatin for CL based on RSS

In this section, based on two different prior, IG(a, b) with known parameters a, b and
Jeffrey’s prior, we obtain Bayes estimators for CL based on RSS samples and study per-
formance of these estimators.

2.1 Inverse Gamma prior

Suppose θ ∼ IG(a, b), which probability density function is defined as π(θ) = ba

Γ(a)(
1
θ )
a+1e−

b
θ .

By Bayes’ theorem, the posterior distribution of θ, π(θ|Xsrs), is IG(n+a, b+
∑
xi). There-

fore the Bayes estimators for θ under square error loss is equal to E(θ|Xsrs) =
b+nX̄
n+a−1 , and

Bayes estimator for CL will be obtained ĈsrsLbayes−IG = 1−LE(1θ |Xsrs) = 1−L( n+a
b+nX̄

). Let
Xrss = {X(1,1), X(2,2), . . . , X(m,m)} is one-cycle RSS sample from ε(θ). The joint proba-
blity density function of the RSS, due to the independence of element Xrss, is given by
Sadek et al. [5] such as

gθ(Xrss) =

0∑
j1=0

1∑
j2=0

. . .

m−1∑
jn=0

m∏
i=1

(
1

θ
)me−

1
θ

∑m
i=1(n+k−i+1)x(i, i). (1)

So the posterior density can be written as
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π(θ|Xrss) =

0∑
j1=0

1∑
j2=0

. . .

m−1∑
jn=0

m∏
i=1

Cji(i)(
1

θ
)m+a+1e−

1
θ
(b+

∑m
i=1(n+ji−i+1)x(i,i))

0∑
j1=0

1∑
j2=0

. . .

m−1∑
jm=0

m∏
i=1

Cjk(i)(b+

m∑
i=1

(m+ ji − i+ 1)(x(i,i))
−(m+a)Γ(m+ a)

Then the Bayes estimator of CL is ĈrssLbayesIG
= 1−LE(1θ |Xrss) = 1−L

∫∞
0

1
θπ(θ|Xrss)dθ

2.2 Jeffry’s prior

If θ has the Jeffrey prior, π(θ) ∝ 1
θ , then 1

θ |Xsrs ∼ G(n, 1∑
Xi

). Therefore, the Bayes

estimator of CL is E(CL|Xsrs) = 1− L n∑
Xi

= 1− L
X̄srs

.
In the case of RSS scheme

π(θ|Xrss) =

0∑
j1=0

1∑
j2=0

. . .

m−1∑
jn=0

m∏
i=1

Cji(i)(
1

θ
)m+1e−

1
θ
(
∑m

i=1(m+ji−i+1)x(i,i))

0∑
j1=0

1∑
j2=0

. . .

m−1∑
jn=0

m∏
i=1

Cjk(i)(

m∑
i=1

(m+ ji − i+ 1)(x(i,i))
−(m)Γ(m)

,

therefore ĈrssLbayesJ
= 1− LE(1θ |Xrss) = 1−

∫∞
0

1
θπ(θ|Xrss)dθ

2.3 Simulation study

For studying performance of discussed estimators, we carry out Monte-Carlo simulations
as follows:

1. Determine lower specification limit L, hyper parameter (a, b), sample size n. Gen-
erate θ0 from distribution IG(a, b) and calculate CL. 10000 times repeat steps 2,
3.

2. Generate SRS and RSS samples of size n from ε(θ0) and derived ĈsrsLbayesIG
, ĈsrsLbayesJ

,

ĈrssLbayesIG
, ĈrssLbayesJ

.

3. For each samples and estimators in the step (2), calculate, di = (ĈLi − CL), i =
1, ..., 10000. In each times, for calculating the Pitman nearness criteria between two
estimators, we investigate if |ĈL1 − CL| < |ĈL2 − CL|.

4. The risk values of ĈLi is the mean of di2. Relative Efficiency between ĈL1 and ĈL2 is

RE(ĈL1, ĈL2) =
MSE(ĈL1)

MSE(ĈL2)
. The bias of ĈL is 1

10000

(∑10000
i=1 ĈLi

)
−CL. The pitman

nearness between ĈL1 and ĈL2 is 1
10000#|ĈL1 − CL| < |ĈL2 − CL|.

Example 1. We select values of hyper parameters, (a, b), in prior distribution, such that
the mean of prior distribution, IG(a, b), is fixed at 0.5 and for it’s variance we consider
three state: small (0.0357), moderate (0.0833) and large (0.25). With this strategy select
(a, b) = (9, 4), (5, 2), (3, 1). Let L = 1.04 and n = 4, 5, 6. Table 2 shows the values of Bias,
Risk, Relative Efficiency (RE) and Pitman Nearness criterion (PN).
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Table 2: Observed values of Bias, Risk, RE, PN
IGestimator jeffrys estimator pitman-nearness Relative efficiency

3 1 Bias 0.0347 0.0187 -1.0689 -0.3888 PN 0.4103 0.3779 0.6346 0.5873
Risk 1.6624 1.0309 15.718 2.429 RE 1.6126 6.3284 0.1081 0.4244

4 5 2 Bias -0.0145 -0.0099 -0.8825 -0.3292 PN 0.4115 0.3727 0.6676 0.6083
Risk 0.8147 0.5279 8.512 1.4876 RE 1.5434 5.7221 0.0957 0.3549

9 4 Bias 0.0085 0.0012 -0.7505 -0.2963 PN 0.4306 0.3876 0.7057 0.6446
Risk 0.437 0.3231 5.525 1.1639 RE 1.3525 4.747 0.0791 0.2776

3 1 Bias 0.0157 0.0013 -0.7643 -0.2641 PN 0.3906 0.359 0.6144 0.5795
Risk 1.4285 0.7502 7.3862 1.4537 RE 1.9042 0.1016 5.0810 0.7634

5 5 2 Bias -0.0088 -0.0001 -0.6944 -0.2202 PN 0.3998 0.3517 0.6564 0.602
Risk 0.7473 0.411 4.8278 0.9213 RE 1.8182 5.2402 0.1548 0.4461

9 4 Bias 0.0055 0.0019 -0.5689 -0.1889 PN 0.4113 0.3575 0.691 0.6207
Risk 0.4117 0.2602 3.3125 0.6376 RE 1.5822 5.1953 0.1243 0.4081

3 1 Bias -0.0115 0.0046 -0.69 -0.1802 PN 0.3624 0.3349 0.6117 0.5558
Risk 1.3246 0.5905 6.2285 0.93 RE 2.2431 6.6974 0.2127 0.6350

6 5 2 Bias 0.0047 0.0041 -0.5264 -0.1544 PN 0.3823 0.3356 0.6404 0.5796
Risk 0.6953 0.3356 3.1049 0.5839 RE 2.0718 5.3175 0.2239 0.5748

9 4 Bias 0.0007 0 -0.4829 -0.1407 PN 0.3898 0.331 0.6772 0.6049
Risk 0.3849 0.2114 2.489 0.4472 RE 1.8211 5.5656 0.1547 0.4727

Table 2 shows that absolute values of bias and also risk for ĈrssLbayes−IG and ĈrssLbayes−J
are smaller than similar estimators in SRS scheme.

Moreover the RE and PN probability criteria indicates the efficiency of RSS estimators
with respect to SRS estimators. Because of reducing the cost of data collection and better
performance estimators in simulation for RSS scheme, we suggest that ĈrssLbayes−IG and

ĈrssLbayes−J estimators as long as there are no ranking errors caused by a large set of size
m.
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Abstract

In this paper, we consider a single-step network consists of n links and assume that
the links are subject to failure. It is assumed that the network can be in three states,
up (K = 2), partial performance (K = 1) and down (K = 0). Under different scenarios
on the states of the network and using the concept of two-dimensional signature, we
obtain the probabilities that i links fail at time t1 and j links fail at time t . Several
stochastic and aging properties of the proposed probabilities are studied.

Keywords: Signature matrix, Bivariate increasing failure rate, Total positive of order
2, Stochastic order.

1 Introduction

In this paper, we consider a three-state network consisting of n i.i.d. binary links. We
assume that the network can be in three states, up (K = 2), partial performance (K = 1)
and down (K = 0). Let the network start to function at time t = 0 in state K = 2.
Denote by T1 the lifetime of the network which remains in state K = 2. Also, denote by
T the network lifetime i.e. the entrance time into state K = 0. Using these notations,
the two-dimensional signature of the network is defined to be a probability matrix S with
elements defined by

si,j =
ni,j
n!
, 1 ≤ i < j ≤ n,

where ni,j is the number of ways that the ith and the jth links failure cause the state of
the network changes from K = 2 to K = 1 and from K = 1 to K = 0, respectively.

Recently Erylmaz (2010) studied the distribution and expected value of the num-
ber of working components at time t in a consecutive k-out-of-n system under the condition
that it is working at time t. Asadi and Berred (2012) studied the number of failed compo-
nents in a binary coherent system. In this paper, we assume that at time t1 the network is
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in state K = 2 and at time t, it is in state K = 1 or it is functioning. Then, we present a
model for the probabilities that k and l, 0 ≤ k < l ≤ n−1 links have failed at times t1 and
t, respectively. Based on the notion two-dimensional signature, we obtain some stochastic
and aging properties of the proposed probabilities.

2 Main results

Consider a network consisting of n links. Suppose thatX1, ..., Xn denote the links lifetimes,
where we assume that Xi’s are i.i.d with a common continuous distribution function F (x).
Suppose that, we have some information about the states of the network at times t1 and
t, t1 < t, for example, we know T1 ∈ A1 and T ∈ A where A1, A ⊆ [0,∞). Denote by N(t)
the number of failed links in [0, t]. In such a situation, we are interested in the conditional
probability

pA1,A(k, l) = P (N(t1) = k,N(t) = l|T1 ∈ A1, T ∈ A), 0 ≤ k ≤ l ≤ n.

In this paper, we consider two following cases:

(I) Suppose that at time t1 the network is in state K = 2 and at time t, t > t1, it
is in state K = 1. In such a situation A1 = (t1, t) and A = (t,∞). In this case,
pA1,A(k, l), which we denote it by pt1,t(k, l), is

pt1,t(k, l) = P (N(t1) = k,N(t) = l|t1 < T1 < t, T > t), 0 ≤ k < l ≤ n− 1.

(II) Suppose that at time t1 network is in state k = 2, and at time t, it is functioning.
In such a situation, A1 = (t1,∞) and A = (t,∞). In this case, pA1,A(k, l), which we
denote it by qt1,t(k, l), is

qt1,t(k, l) = P (N(t1) = k,N(t) = l|T1 > t1, T > t), 0 ≤ k ≤ l ≤ n− 1.

In the following theorem, pt1,t(k, l) and qt1,t(k, l) are computed.

Theorem 1. Consider a network consists of n links with i.i.d. lifetimes. Suppose that
F (x) denotes the common distribution of the links lifetimes and T1 and T are the lifetime
in state K = 2 and the lifetime of the network, respectively. Assume that S is the signature
matrix of the network.

(a) If βk,l =
∑l

i=k+1

∑n
j=l+1 si,j then

pt1,t(k, l) =
βk,lck,l,nF

k(t1)(F (t)− F (t1))
l−kF̄n−l(t)∑n−2

k=0

∑n−1
l=k+1 βk,lck,l,nF

k(t1)(F (t)− F (t1))l−kF̄n−l(t)
, 0 ≤ k < l ≤ n− 1

where ck,l =
n!

k!(l−k)!(n−l)! .

(b) If S̄k,l =
∑l

i=k+1

∑n
j=max{i,l}+1 si,j then

qt1,t(k, l) =
ck,l,nS̄k,lF

k(t1)(F (t)− F (t1))
l−kF̄n−l(t)∑n−1

i=1

∑n
j=i ci,j,nS̄i,jF

i(t1)(F (t)− F (t1))j−iF̄n−j(t)
, 0 ≤ k ≤ l ≤ n− 1.
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In the following, we present results that compare the probabilities of the number of
failed links of two networks. Before it, we need the following definition.

Definition 1. Let f1(x, y) and f2(x, y) be two nonnegative functions. f1(x, y) is said to be
smaller than f2(x, y) in the total positive order (denoted by f1 ≤TP2 f2) if f1(x)f2(y) ≤
f1(x ∧ y)f2(x ∨ y) for every x,y ∈ R2, where x ∧ y = (min{x1, y1},min{x2, y2}) and
x ∨ y = (max{x1, y1},max{x2, y2}).

Theorem 2. Consider two networks each consists of n i.i.d. links. Suppose that the links
lifetimes of two networks have the same distribution. Let S1 and S2 be the corresponding

signature matrices and β
(r)
k,l =

∑l
i=k+1

∑n
j=l+1 sr,i,j and S̄

(r)
k,l =

∑l
i=k+1

∑n
j=max{i,l}+1 sr,i,j , r =

1, 2. Suppose that p
(r)
t1,t

(k, l) and q
(r)
t1,t

(k, l) are the probability functions corresponding to β
(r)
k,l

and S̄
(r)
k,l , r = 1, 2, respectively.

(a) If β
(1)
k,l ≤TP2 β

(2)
k,l then p

(1)
t1,t

(k, l) ≤TP2 p
(2)
t1,t

(k, l).

(b) If S̄
(1)
k,l ≤TP2 S̄

(2)
k,l then q

(1)
t1,t

(k, l) ≤TP2 q
(2)
t1,t

(k, l).

Recall that if in Definition 1, f1 and f2 are probability mass functions of (X1, X2)
and (Y1, Y2), respectively, then TP2 order is called likelihood ratio order and denoted by
(X1, X2) ≤lr (Y1, Y2).

In the following theorem, under some stochastic comparisons between links lifetimes of
two networks, we compare the probabilities of the number of failed links of two networks.

Theorem 3. Consider two networks each consists of n i.i.d. links. Assume that two
networks have the same structure and F1 and F2 are the corresponding distributions of

the link lifetimes. Suppose that p
(i)
t1,t

(k, l) and q
(i)
t1,t

(k, l) are the probability functions corre-

sponding to Fi, i = 1, 2. Let (I
(i)
1 , I

(i)
2 ) and (J

(i)
1 , J

(i)
2 ) have joint probability mass functions

p
(i)
t1,t

(k, l) and q
(i)
t1,t

(k, l), i = 1, 2, respectively. If F1 ≤rh F2, F1 ≤hr F2 and

(a) βk,l is TP2 in k and l then (I
(1)
1 , I

(1)
2 ) ≥lr (I

(2)
1 , I

(2)
2 ).

(b) S̄k,l is TP2 in k and l then (J
(1)
1 , J

(1)
2 ) ≥lr (J

(2)
1 , J

(2)
2 ).

The following definition is an analogue to that of Harris (1970) in the continuous set
up.

Definition 2. The bivariate mass function pi,j with survival function P̄i,j is said to be

BIFR if P̄i,j is TP2 and
P̄i+1,j+1

P̄i,j
is decreasing in i, j.

Theorem 4. Let P̄t1,t(k, l) and Q̄t1,t(k, l) be the survival functions corresponding to prob-
ability mass functions pt1,t(k, l) and qt1,t(k, l), respectively.

(a) If βk,l is TP2 in k and l and
βk+1,l+1

βk,l
is decreasing in k and l then P̄t1,t(k, l) is BIFR.

(b) If S̄k,l is TP2 in k and l and
S̄k+1,l+1

S̄k,l
is decreasing in k and l then Q̄t1,t(k, l) is

BIFR.

The following example present an application of Theorem 4.
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Example 1. Figure ?? presents a network consists of 5 nodes and 10 links. Assume that
links are subject to failures. The states of the network are defined as K = 2 if all nodes
are connected, K = 1 if nodes are divided into two disconnected sets, and K = 0 if nodes
are divided into at least three disconnected sets.

Figure 1: Network with 5 nodes and 10 links

The signature matrix (S) of this network is given in Gertsbakh and Shpungin (2012).
It can be seen that βk,4 = 0.0241, βk,5 = 0.1183, βk,6 = 0.4049, βk,7 = 0.9166, k = 0, ..., 3
and β4,5 = 0.0942, β4,6 = 0.3808, β4,7 = 0.8972, β5,6 = 0.2866, β5,7 = 0.8221, β6,7 =

0.5951. It can be shown that βk,l is TP2 in k and l and
βk+1,l+1

βk,l
is decresing in k and l.
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Abstract

Competing risks data are often summarized using a failure time and an indicator
of cause of failure that may not be observed for some subjects. In such case, stan-
dard analysis through complete case may lead to biased inferences when the missing
mechanism is not ignorable. In this paper, we propose a Bayesian Index of local Sen-
sitivity to Non-ignorability (ISNI) for modeling competing risks data in the presence
of hybrid censoring when the competing risks have Weibull distribution with the same
shape parameter, but different scale parameters. The results of applying the above
index on a set of real data show that the model could have potential sensitivity to
non-ignorability for scale parameters but not for the common shape parameter.

Keywords: Competing risks, Missing data, Sensitivity analysis, Type-I Hybrid cen-
soring, Weibull distribution.

1 Introduction

Competing risks arise when a subject is exposed to many causes of failure in a survival
analysis. To analyze multiple causes of failure in the framework of competing risks models,
it is often assumed that the data consists of a failure time and an indicator, denoting the
cause of failure. The competing risks models also have been studied by several authors
using parametric (such as [1] ) and nonparametric setups (such as [4]).

However, in applied studies the cause of failure may not be observed for some sub-
jects where some researchers have applied multiple imputation procedures which needs
the ignorability assumption (see [3], [2]). Since ignorability is a critical assumption, in
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this paper, we extend the Bayesian index of local sensitivity to non-ignorability (ISNI)
method proposed by Zhang and Heitjan [5] to competing risks with missing cause of fail-
ure. We derive formula for the Bayesian ISNI when the competing risks have Weibull
distribution with the same shape parameter, but different scale parameters with Type-I
hybrid censoring scheme.

The model assuming non-ignorable missing cause of failure will be studied In Section 2.
We will give the ISNI calculation In Section 3. In Section 4 we will illustrate the method
with a set of real data. Finally some concluding remarks will be given in Section 5.

2 Model Description

Consider a multiple causes of failure experiment with M possible causes on a sample of
n items. Let Tij ∼ Weibull(α, λj) denote the latent failure time for the i-th individual
and Ti = min{Ti1, ..., TiM} be the actual observable life time for the i-th individual. We
consider Type-I hybrid censoring scheme that terminates the experiment either if the
terminal time T is reached or the R-th failure happens. In other words, the experiment
terminates at T∗ = min{TR:n, T} and we will assume that d indicates the total number of
failures before T∗.

With the possibility of missing causes of failure, we assume that the missingness indi-
cator Mi has a Bernoulli distribution with the success probability πi = P (Mi = 1|ti, δi),
where logit πi = γ00+γ01ti+γ1δi. Actually this missing model introduces a non-ignorable
missing mechanism while γ1 ̸= 0. Let Θ = (α, λ1, λ2), Γ = (γ00, γ01, γ1) , then the full
likelihood function with the nonignorable missing mechanism would be (for M = 2):

Lfull(Θ,Γ|ti,Mi, (1−Mi)δi) ∝
d∏
i=1


(αλ1tα−1

i:n e−(λ1+λ2)tαi:n

)δi (
αλ2t

α−1
i:n e−(λ1+λ2)tαi:n

)1−δi
(1− πi)

]1−Mi

×

 ∑
δ∗=0,1

(
αλ1t

α−1
i:n e−(λ1+λ2)tαi:n

)δ∗ (
αλ2t

α−1
i:n e−(λ1+λ2)tαi:n

)1−δ∗
πi

]Mi
}

× e−(n−d)(λ1+λ2)Tα
∗

where,

δi =

{
1 the first cause leads to failure
0 the second cause leads to failure

3 Bayesian ISNI

In this section, we use the Bayesian ISNI as the derivative of posterior mean of parameters
η with respect to a nonignorability parameter, γ1, evaluated locally at the ignorable model
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Table 1: Parameters estimation, standard deviation, ISNI and SET indexes for different
missing rates.

Missing Rate Parameter Estimate SD ISNI SET
α 0.9617 0.1889 0.0368 5.1332

0.04 λ1 0.0004 0.0007 0.0567 0.0123
λ2 0.0007 0.0001 -0.0584 0.0017
α 0.9661 0.1805 -0.0143 12.6224

0.08 λ1 0.0004 0.0006 0.0845 0.0071
λ2 0.0006 0.0010 -0.0402 0.0249
α 0.9315 0.1744 -0.0126 13.8413

0.12 λ1 0.0005 0.0011 0.0210 0.0524
λ2 0.0008 0.0014 -0.0610 0.0230
α 0.8995 0.1708 -0.0450 3.79556

0.20 λ1 0.0007 0.0010 0.1429 0.0070
λ2 0.0008 0.0013 0.0146 0.0890
α 0.9721 0.1622 0.0368 4.4076

0.32 λ1 0.0005 0.0007 0.0117 0.0598
λ2 0.0004 0.0010 -0.0535 0.0187

(γ1 = 0):

ISNI(η̃(γ1)) =
∂E(η|γ1, Data)

∂γ1
|γ1=0

= COVI(η,
∂ℓfull(η; γ1, Data)

∂γ1
|γ1=0) (1)

where η̃(γ1) denotes the posterior mean of η when the non-ignorability parameter is fixed
at γ1 = 0. ℓfull and COVI(.) denote the log-likelihood and the posterior covariance under
the ignorable model respectively. Smaller absolute value of ISNI implies smaller local
sensitivity. For the competing risks model, we have:

∂ℓfull(η; γ1, t,M, δobs)

∂γ1
|γ1=0 = −

d∑
i=1

δi(1−Mi)(πi|γ1=0)

+

d∑
i=1

Mi
λ1

λ1 + λ2

1

1 + exp(γ00 + γ01ti)
(2)

4 An illustrative example

In this section, we use a real complete hybrid data set which has been taken from [1]. To
study the behavior of the Bayesian sensitivity index of previous section, we have created
some artificially missing values with different rates of 0.04, 0.08, 0.12, 0.2, 0.32. Also we
have used low-informative priors for the parameters (γ00, γ01 ∼ N(0, 100) and α, λ1, λ2 ∼
Γ(0.01, 0.01)). The results of Bayesian MAR estimation and its corresponding sensitivity
are presented in Table 1 where SET = |SD/ISNI|.

According to this table, the SET index is considerably large for the common shape
parameter α, while it has a small value for the two scale parameters λ1, λ2. Hence, we
could conclude that using this competing risks model framework, the scale parameters
could be highly sensitive to the non-ignorability of the missingness if it exists.

5 Conclusion

Sensitivity analysis is necessary to assess robustness of the model to non-ignorability of
missingness. In this paper we have presented a Bayesian index to study this sensitivity
for competing risks with hybrid censoring.
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Goodness-of-Fit Test Based on Kullback-Leibler
Information for Progressively First-Failure Censored Data
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Abstract

In this article, We constructed a goodness-of-fit test statistic based on Kullback-
Leibler information for exponential distribution by using maximum likelihood estimate
of the model parameter. A Monte Carlo simulation is performed to evaluate the power
of the proposed test for several alternatives under different sample sizes and progres-
sive first-failure censoring schemes.

Keywords: Entropy, Goodness-of-fit test, Kullback-Leibler information, Monte Carlo
simulation, Progressively frist-failure censored data.

1 Introduction

Censoring is very important in determining the distribution of life-time products and
where as units test are often censored based on cost and time. Although progressively
Type- II shortens the test duration, but it is still too long for products having a high
reliability that made Johnson [1] proposed a new censoring scheme known as the first-
failure. Wu & Kus [6] combined the concepts of fist-failure and progressively censoring to
introduce a new concept called progressively first-failure censoring scheme.
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1.1 Progressively First-Failure Censored Data

Suppose n independent groups with k items in each group are placed on a life-testing
experiment that their life-times are identically distributed with probability density (p.d.f),
f(x; θ), and cumulative distribution function (c.d.f), F (x; θ). Where θ is the unkown the
vector of parameters and m(n) is fixed prior to the exprement. When the first failure
(X1) occurs, R1 groups and the group with observed failure are randomly withdrawn
from the experiment. When second failure (X2) observed, R2 groups and the group with
observed failure are randomly withdrawn from the experiment, and so on. Finally, when
the failure m is observed, the remaining lm groups and the group with observed failure
are all withdrawn from the experiment. This censoring is called a progressive first-failure
censoring scheme. The joint p.d.f of all progressively first-failure censored order statistics
(X1:m:n:k, X2:m:n:k, . . . , Xm:m:n:k) with progressive censoring scheme proposed by Wu &
Ku? [?] that is given by

fX1:m:n:k,...,Xm:m:n:k
(x1, . . . , xm) = ckm

m∏
i=1

f(xi; θ) (1− F (xi; θ))
k(Ri+1)−1

, 0 < x1, . . . , < xm

where c = n(n−R1 − 1), . . . , (n−
∑m−1

i=1 Ri −m+ 1).

1.2 Nonparametric Entropy Estimate of Progressively First-Failure Cen-
sored Data

Balakrishnan et al. [1] has been simplified the joint entropy of progressively Type-II cen-
sored order statistics in terms of an integral involving the hazard function h(x). Since
the joint p.d.f Progressively first-failure censored is similar to the joint p.d.f progressively
Type-II censored, the nonparametric estimate of the joint entropy H1···:m:n:k is given by

H1···:m:n:k = − log c+ nkH(w, n,m, k)

where

H(w, n,m) =
1

nk

m∑
i=1

log

(
xi+w:m:n:k − xi−w:m:n:k

E(Ui+w:m:n:k)− E(Ui−w:m:n:k)

)

+
m

nk
− 1

nk

m∑
i=1

i∑
j=1

Di

γ2j

where Di =
∏i
j=1, γi = m− i+ 1 +

∑m
j=iRi for 1 ≤ i ≤ m.

1.3 Kullback-Leibler Information

For a null density function f0(xi; θ), the KL information from progressively first-failure
censored data can be estimated by

T = −H(w, n,m, k)− 1

nk

m∑
i=1

log f0(xi; θ̂)

− 1

nk

m∑
i=1

(k (Ri + 1)− 1) log
(
1− F 0(xi; θ̂)

)
where θ̂ is a MLE estimator of θ.
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1.4 Goodness-of-Fit Test for Exponential

Suppose we are interested in a goodness-of-fit test for

H0 : f
0 =

(
1

θ

)
exp

(
−x
θ

)
V S. HA : f0 ̸=

(
1

θ

)
exp

(
−x
θ

)
where θ is unknown. If we replace the maximum likelihood estimate in place of the
unknown parameter θ, then the KL information for progressively first-failure censored
data can be estimated by

T = −H(w, n,m, k) +
m

nk

[
log

(
1

m

m∑
i=1

k (Ri + 1)Xi:m:n:k

)
+ 1

]
.

If T (w, n,m, k) is close to 0, H0 will be acceptable, and therefore large values of
T (w, n,m, k) will lead to the rejection of H0.

Table 1: VALUE OF THE WINDOWS SIZE m WHICH MINIMUM CRITICAL VALUES OFα FOR 0.1

nk k m w
20 (2,2) (5,7) (3,4)
30 (2,2,3) (5,7,10) (3,4,6)
40 (2,2,2,4,4) (5,10,15,5,7) (3,6,8,3,4)
50 (2,2,2,2,5,5) (5,10,15,20,5,7) (3,6,8,11,3,4)

2 Implementation of Test

Because the sampling distribution of T (w, n,m, k) is intractable, we determine the per-
centage points using 10,000 Monte Carlo simulations from an exponential distribution. In
determining the window size w which depends on n, m, k and α, we consider the optimal
window size to be one which gives minimum critical points. However, we understood from
the simulated percentage points that the optimal window size w varies much according to
m rather than n, k and does not vary much according to α, if α ≤ 0.1. In view of these
observations, our recommended values of w for different m are presented in Table 1.

3 Main results

Since the suggested test statistic is related to the hazard function of the distribution, we
consider the following alternatives according to the type of hazard function as

(a) Monotone increasing hazard including Gamma and Gexp (shape param-
eter 2) and Chi-square (degree of freedom 3),

(b) Monotone decreasing hazard including Gamma and Gexp (shape param-
eter 0.5) and Chi-square (degree of freedom 1), and

(c) Non-monotone hazard including Beta and Log-logistic (shape parameter
0.5) and Burr (shape1 and shape2 1).
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To estimated the power of proposed test statistic, We used 10,000 Monte Carlo simu-
lations for nk = 20(10)40, each with own different k′s, and some m under null hypothese.
However, we understood following results when the alternative is either monotone decreas-
ing hazard or monotone increasing hazard functions:

(a) Censoring scheme R = (m, . . . , 0) and R = (0,m, . . . , 0) show better power
than other censoring schemes when the alternative is a monotone increas-
ing hazard function.

(b) It is observed that for fixed n and k, as m increases the power is improved
but when k increases the power is decreased .

(c) for nk = (20, 30, 40), the best power is shown at k = 2 and m = (7, 10, 15, 20)
respectively.
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Abstract

In this paper, the residual lifetime of a repairable system is studied when the fail-
ure status of the system is known. A mixture representation of the reliability function
of the conditional residual lifetime of a repairable system in terms of the reliability
function of residual records is provided. Some stochastic properties of the conditional
probabilities and the residual lifetimes also are given.

Keywords: Aging properties, Minimal repair, Residual lifetime, Stochastic order-
ing.

1 Introduction

For a repairable system, carrying out minimal repairs is a natural approach, because it
can keep the system working at a minimal cost. That is, minimal repair restores the
system to its functioning condition just prior to failure with the failure rate of the system
remaining undisturbed. Many authors have been followed this model, see e.g., for example
[1], [2], [3], [4] and [5]. The present paper explores some applications of the residual life of
record values in analysis of a repairable system. For this purpose we consider a repairable
system with minimal repairs, whose number of repairs is a positive random variable with a
given probability vector. We obtain some mixture representations for residual lifetime of a
repairable system and compare two systems. For briefness, we just mention the following
orders for comparison of arithmetic random variables.
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Definition 1. If X and Y are discrete random variables taking on values in Z+, with
distributions p = (p1, p2, . . .) and q = (q1, q2, . . .), where pi = Pr(X = i) and qi =
Pr(Y = i), i ∈ Z+. Then

1. X ≤st Y if and only if
∞∑
j=i

pj ≤
∞∑
j=i

qj, for all i ∈ Z+;

2. X ≤hr Y if
∞∑
j=i

pj/
∞∑
j=i

qj is decreasing in i, for all i ∈ Z+;

3. X ≤lr Y if pi/qi is decreasing in i, for all i ∈ Z+ when pi, qi > 0, ∀i ∈ Z+.

We refer the reader to [6] and [7] for more details on stochastic orderings and their
applications.

2 Model description

Consider a repairable coherent system under the condition that, at time t, some infor-
mation about the status of the system lifetime is available. Suppose the system can be
repaired N − 1 times and the Nth failure is fatal to the system with probability vector p,
where

p = (0, . . . , 0, pℓ1 , pℓ1+1, . . . , pℓ2−1, pℓ2), ℓ1 = 1, 2, . . . , ℓ2, ℓ2 = 1, 2, . . . , n. (1)

Chahkandi et al. [8] investigated some reliability properties of this model. Sometimes, an
operator may know that, at time t > 0, the system is still operating, i.e. T > t, which is
related to the residual lifetime of the system. Thus, we are interested in the probability
that the system can be repaired (i − 1) times by assuming that T > t. Let us denote
Pr(T = T (i)|T > t) by bi(t), then we have

bi(t) =
piF̄T (i)(t)

ℓ2∑
j=ℓ1

pjF̄T (j)(t)

i = ℓ1, . . . , ℓ2. (2)

3 Mixture representations

Navarro et al. [9] considered the residual lifetime of a coherent system and obtained a
mixture representation for the system’s residual lifetimes in terms of the order statistics
of its components. Here, we consider the situation that one may have some partial in-
formation about the system lifetime and interested in finding the dynamic probability of
system failure. We derive a mixture representation for the survival function of used but
working repairable system, i.e. for distribution function of the system lifetime T given
that its lifetime is greater than t, (T − t|T > t). In the next result, we obtain a mixture
representation for the residual lifetime of a repairable system in terms of the record values
of its original distribution.

Theorem 1. If T is the lifetime of a repairable system that can be repaired (N − 1) times
and the N th failure is fatal to the system with probability vector p. Then, for all x ≥ 0
and t > 0, such that F̄T (t) > 0, we have

Pr(T − t > x|T > t) =

ℓ2∑
i=ℓ1

bi(t) Pr(T (i)− t > x|T (i) > t), (3)
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where the coefficient bi(t) is given in (2) such that
ℓ2∑
i=ℓ1

bi(t) = 1.

Consider two repairable systems with different probability vectors for their repairable
numbers. For example two manufactures may guaranty their products with different
number of repairs:

p = (0, . . . , 0, pℓ1 , pℓ1+1, . . . , pℓ2−1, pℓ2)

and

q = (0, . . . , 0, qℓ1 , qℓ1+1, . . . , qℓ2−1, qℓ2),

for ℓ1 = 1, 2, . . . , ℓ2, ℓ2 = 1, 2, . . . , n, respectively. Suppose two systems are repairable
(N − 1) and (M − 1) times, and the Nth and Mth failures are fatal to the systems with
probability vectors p and q, respectively. Take

b(t) = (0, . . . , 0, bℓ1(t), . . . , bℓ2(t)), (4)

where bi(t) is given as in (2). In this case, if p ≤lr q, then bp(t) ≤st bq(t), where bp(t) is
the dynamic probability vectors corresponding to p.

Theorem 1 shows that the reliability function of the residual lifetime of a repairable
system can be expressed in terms of a weighted summation of record values’ residual
lifetimes. Here, we consider a situation in which the system is alive after a known number
of repairs and investigate its residual. For this purpose, we study the residual lifetime of
a repairable system when the system is working, and at least k − 1 repairs are done on
the system at time t; namely the conditional random variable [T − t|T > t, T (k) ≤ t], k =
ℓ1, . . . , ℓ2 − 1. The next theorem presents a mixture representation for the conditional
residual lifetime of [T − t|T > t, T (k) ≤ t], k = ℓ1, . . . , ℓ2 − 1.

Theorem 2. Consider a repairable system with probability vector p, as in (1), for the
random maximum number of minimal repairs that can be performed. If Pr(T > t, T (k) ≤
t) > 0, then

Pr(T − t > x|T > t, T (k) ≤ t) =

ℓ2∑
i=k+1

bi(t, k) Pr(T (i)− t > x|T (i) > t, T (k) ≤ t), (5)

where b(t, k) = (0, . . . , 0, bk+1(t, k), . . . , bℓ2(t, k)), with

bi(t, k) =
pi Pr(T (k) ≤ t < T (i))

ℓ2∑
j=k+1

pj Pr(T (k) ≤ t < T (j))

, (6)

such that
ℓ2∑

j=k+1

bj(t, k) = 1.
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Abstract

Redundancy is a technique that has been widely applied to improve the system
reliability and its availability. In this paper, a new switching model is proposed to
increase the reliability of a unit (system) with a cold standby backup. It is assumed
that the switch over to the standby unit is not failure-free, contrary to what we have
in standby redundancy. The optimal time to switch between the key unit and its cold
standby backup is find such that the mean lifetime of the system to be maximized.
Finally, an example is presented to compare the mean lifetime of the proposed switch-
ing model and a system with parallel redundancy.

Keywords: Parallel system, Redundancy, Survival function, Switching.

1 Introduction

Redundancy is a common method to increase system reliability. There are various meth-
ods, techniques, and terminologies for implementing the redundancy. Standby redundancy
is one of the main methods. In general, there are three types of standby, i.e. cold, hot
and warm standby. In cold standby, the secondary unit is powered off, thus preserving the
reliability of the unit. In hot standby, an inactive unit undergoes the same operational
environment as when it is in active state. Warm standby is an intermediate case. In this
case an inactive unit undergoes operational environment that is milder than the environ-
ment of the same component in active state. The performance of the standby system
was studied by some of researchers such as [1], [2], [3], [4] and [5]. For the simplicity of
the standby redundancy models, we assume that the switch over to the standby unit is
perfect, i.e. instantaneous and failure-free. But there are some real situations that we
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haven’t any time to switch the failed unit to its backup. Because after the unit failure,
the system would be failed. Here, we focus on this case, i. e. the case that the switch
over to the standby unit is not failure-free. In these situations, we can use the dual mod-
ular redundancy (DMR) or parallel redundancy, where the key component (system) and
its backup begins to operate together, to increase the system reliability. But, parallel
redundancy increases the cost and complexity of the system. Because, the lifetime of the
key unit and its backup decrease simultaneously. In this paper we present a new model
for a system with a cold standby component such that it is not required to work the key
component and its backup continuously. In the next section, we present the new model
that allows to switch between the key unit and its backup before the units failures. The
optimal switching time for increasing (decreasing) failure rate distributions is obtained in
Section 3. A parametric example is given to compare the mean lifetime of our new model
and a system with parallel redundancy.

2 A new switching model

In this section we present a new switching model for a unit (system) with a cold standby
backup. Consider a system consisting of two units A (the key unit) and B (the cold
standby unit) connected in parallel branches, and a switcher (S) as shown in Figure 1.

 

Figure 1: Standby system with two units.

At the beginning, the units are new with a good reliability. Thus, it may not be required
to operate both of them. We consider a switcher key before the units to allows us to switch
between the ones in specified times. First, the key components begins to operate and its
back up is in an ‘off’ state. After a specified time t1, a switch turns on the ‘standby’ backup
(while the key component goes on ‘off’ state), and the system continues to operate. After
specified time t2 a switch turns on the key components and its backup together. This
arrangement implies that the system may be failed before the first switch, when the key
unit is working, between the first and second switch, when the backup unit is operating,
or after the second switch, when both of the units are operating. For simplicity, suppose
that t1 = t2 = c, and the units’ lifetimes are the same, with distribution function F . After
some manipulations, the survival function of the system can be expressed as

F̄T1(t) =


F̄ (t) t ≤ c
F̄ (c) F̄ (t− c) c < t ≤ 2c
2F̄ (c)F̄ (t− c)− F̄ 2(t− c) t > 2c.

(1)

The failure rate function of T1 also is given as

rT1(t) =


r(t) t < c

r(t− c) c < t < 2c

2r(t− c)

[
F̄ (c)− F̄ (t− c)

2F̄ (c)− F̄ (t− c)

]
t > 2c,

(2)
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Table 1. The values of mean lifetimes
(λ, β) c0 (the optimal switching time) E(T1) E(T2)
(1, 0.5) 0.000 3.500 3.500
(1, 1) 0.000 1.500 1.500
(1, 1.5) 0.164 1.286 1.236
(1, 2) 0.347 1.303 1.145
(1, 3) 0.507 1.359 1.077
(1, 4) 0.586 1.472 1.037
(1, 5) 0.637 1.530 1.028
(1, 7) 0.703 1.616 1.023

where r(t) is the units’ failure rate function. Utilizing (1), the expectation lifetime of the
system can be found as

E(T1) =

∫ c

0
F̄ (t)dt+ F̄ (c)[E(X) +

∫ ∞

c
F̄ (t)dt]−

∫ ∞

c
F̄ 2(t)dt = g(c). (3)

We are interested in finding a value of c that maximize the mean lifetime of the system.

3 Main results

In this section, we find the optimal time of switching to maximize the mean lifetime of
the system. In the next results the optimal time of switch is found in DFR and IFR
distributions.

Theorem 1. Let F be a DFR distribution, then the function g(c) in (3) would be maxi-
mized at c = 0.

Theorem 2. Let F be an IFR distribution and f(0) < 1
2µ , where f is the density function

of F and µ is its mean, then the function g(c) in (3) takes its maximum value at a point
on its domain (on the interval [0,∞)) not on the boundary points.

Now, we compare the mean lifetime of the system in switch model, E(T1), and the
mean life of a parallel system with two units, E(T2). E(T1) is obtained in equation (3)
and E(T2) can be obtained as

E(T2) = 2µ−
∫ ∞

0
F̄ 2(t)dt,

where X1, X2 are the units’ lifetime with distribution F and mean µ. The failure rate
function of T2 also is given by

rT2(t) = 2r(t)a(t), (4)

where a(t) = F (t)
1+F (t) . Note that 0 ≤ a(t) ≤ 0.5, and is an increasing function of t. By

comparing the equations (3) and (4), it would be found that E(T2) = g(0). In the next
example we find the optimal time for our switching model when the units’ distribution
lifetimes are Weibull. Consider the following distribution for the components’ lifetimes of
the system given in Figure 1

F̄ (t;λ, β) = e−(λt)β .

Table 1 confirms the results of Theorems 1 and 2.
The failure rate functions of T1 and T2 are also plotted in Figure 2 for λ = 1, β = 3

and c0 = 0.507. Note that the failure rate of the new switching model is less than the
failure rate of a parallel system after c0.
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Figure 2: The failure rate functions of T1 (thick line) and T2 (dotted line) for the Weibull distri-

bution.
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Abstract

In survival analysis and reliability theory, a fundamental problem is the study of
lifetime properties of a live organism or system. In this regard, there have been con-
sidered and studied several models based on different concepts of aging such as hazard
rate and mean residual life. In this paper, we consider an additive-multiplicative haz-
ard model (AMHM) and study some of reliability and aging properties of the proposed
model. We then specify the bivariate models whose conditionals satisfy AMHM. Sev-
eral properties of the proposed bivariate model are investigated.

Keywords: Conditionally specified distributions, Bivariate Pareto distribution, Ad-
ditive hazard, Multiplicative hazard.

1 Introduction

In order to study the lifetime properties of a live organism or system, different ap-
proaches have been considered in the literature. In the the context of reliability and
survival analysis some of approaches are based on aging concepts such as hazard rate,
reversed hazard rate, mean residual life etc. Among the well known models, one can refer
to proportional hazards model, proportional mean residual lives model, proportional odds
ratio etc, see, for example, Cox (1972), Navarro et al. (2015)). Assume that X denotes the
lifetime of a live organism or a device. In the study of aging and stochastic of the system
in addition to the main variable (X), to be more realistic one has to consider other observ-
able or unobservable random variable (covariate) which effects the aging characteristics of
X such as hazard rate, reversed hazard rate, mean residual life, odds ratio etc. In many
applications, the effect of some covariates to the lifetime characteristics are additive while
others are multiplicative. There are situation where the effect of covariates on the lifetime
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characteristic are both the additive and multiplicative (see, for example, Cox (1972), Un-
nikrishnan and Sankaran (2012)). In additive-multiplicative hazard model (AMHM), one
considers a baseline hazard rate, r(x), corresponding to a non-negative random variable
and a random variable, Z, representing the covariate with an additive-multiplicative effect
on r(x). In other words, in AMHM it is assumed that there are non-negative functions
a(.) and b(.) such that the conditional hazard rate r(x), given that Z = z, is expressed as:

r(x | z) = b(z)r(x) + a(z), (1)

The different choices for distribution function of Z and flexibility of choosing functions
a(z) and b(z) provide situations that one can have a very flexible model to describe variate
phenomena in reliability and survival analysis. In particular the model has proportional
hazards model as a special case when a(z) ≡ 0 and it reduces to the additive hazard
model when b(z) ≡ 1, which is recently studied by Unnikrishnan and Sankaran (2012).
This paper is an investigation on different aging and stochastic properties of the model in
(1).

2 Additive−multiplicative hazards model

In this section, we study several properties of AMHM in (1). Note that, if X∗ is a
random variable satisfying to (1), the survival function of X∗ is represented as

S∗(x | z) = Sb(z)(x) exp(−xa(z)), x, z > 0. (2)

The marginal distribution of X∗ is given as follows

S∗(x) =

∫ ∞

0
Sb(z)(x) exp(−xa(z)) g(z)dz. (3)

From (6) the joint density of (X∗, Z) is

f∗(x, z) = (b(z)r(x) + a(z))S(x)g(z), x, z > 0. (4)

It can be easily seen that the following expression is equivalent to (3)

r∗(x) = r(x)

∫∞
0 b(z) Sb(z)(x) e−xa(z) g(z)dz∫∞

0 Sb(z)(x) e−xa(z) g(z)dz
+

∫∞
0 a(z) Sb(z)(x) e−xa(z) g(z)dz∫∞

0 Sb(z)(x) e−xa(z) g(z)dz
. (5)

Proposition 1. Suppose that S(x) is a baseline survival function and X∗ has the CDF
(3) for some functions a(z) and b(z). If both a(z) and b(z) are increasing or both are
decreasing, then

r∗(x) ≤ r(x)E(b(Z)) + E(a(Z)).

In the following we give an example.

Example 1. Assume that Y has generalized gamma distribution with density function

g(z) = (Γ(α))−1cλcαzcα−1 exp(−(λz)c), z > 0.

Now assume that a(z) = b(z) = zc, c > 0. Then, we have

S∗(x) =

(
λc

x− lnS(x) + λc

)α
, x, λ, c > 0,

or, equivalently, r∗(x) = α(r(x)+1)
x−lnS(x)+λc .
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Theorem 1. Let a(z) and b(z) be increasing (decreasing) functions and also suppose that
S(x) is IFR distribution. Then, the joint density of X∗ and Z is RR2 (TP2).

Theorem 2. Suppose that the functions a(z) and b(z) are both increasing or both decreas-
ing.

(a) If X∗ (X) is IFRA (DFRA) , then so is X (X∗);

(b) If X∗ (X) is NBU (NWU), then so is X (X∗);

Theorem 3. In two AMHM’s, suppose that Z1
d
= Z2, where

d
= stands for equality in

distribution. Then

(i) X1 ≤st X2 if and only if X∗
1 ≤st X

∗
2 .

(ii) If X1 ≥cx X2,then X
∗
1 ≥cx X

∗
2 .

Theorem 4. In two AMHM’s, suppose that X1
d
= X2. If Z1 ≤st Z2 and the functions

a(z) and b(z) are both decreasing (increasing), then X∗
1 ≤st X

∗
2 (≥st).

Constructing bivariate distributions based on conditional distributions is a subject that
has been explored by many researchers (see, e.g., Arnold et al. (1993)). In the sequel,
we study the bivariate models whose conditional distributions satisfy in AMHM. That is,
we are interested in specifying the joint distribution for (X,Y ) such that the following
conditions are met.

P (X > x | Y > y) = S
b1(y)
1 (x) exp(−xa1(y)), x, y > 0, (6)

and

P (Y > y | X > x) = S
b2(x)
2 (y) exp(−ya2(x)), x, y > 0. (7)

Theorem 5. Suppose that S1(x) and S2(y) are baseline reliability functions of X and
Y , respectively, and let (X,Y ) has common support (0,∞) × (0,∞). Then, the bivariate
reliability function with conditionals satisfying (6) and (7) is given by.

S(x, y) = Sλ1y+λ21 (x)Sλ3x+λ42 (y) exp
(
− (λ5 lnS1(x) lnS2(y) + λ6x+ λ7y + ϕλ6λ7xy)

)
, (8)

for x, y > 0, where λi, ϕ is nonnegative constants.

In the follwing, we study some reliability and aging properties of the model in (8) in
special case when b1(y) = b2(x) = 1. In other words we are absorbed in specifying the
joint distribution for (X,Y ) such that the following conditions be satisfied.

P (X > x | Y > y) = S1(x) exp(−xa1(y)), P (Y > y | X > x) = S2(y) exp(−ya2(x)). (9)

In this case the the joint reliability function of (X,Y ) has the from

S(x, y) = S1(x)S2(y) exp(−(λ1x+ λ2y + ϕλ1λ2xy)), (10)

where λ1, λ2 and ϕ are nonnegative constants. The choice of b1(y) = b2(x) = 1, enable
us to have more insight to the properties of the joint distribution of (X,Y ). First note
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that, from definitions of IFRA and NBU, one can easily conclude that when S1 and S2 are
univariate IFRA, then (X,Y ) is bivariate IFRA and when S1 and S2 are both univariate
NBU property, then (X,Y ) is bivariate NBU property.
From (10), the marginal distributions of X and Y are given respectively by

SX(x) = S(x, 0) = S1(x) exp(−λ1x), SY (y) = S(0, y) = S2(y) exp(−λ2y)

for x ≥ 0, y ≥ 0. Hence, the marginal distributions belong to additive hazards model.
From these, under the assumption that the derivatives exist, the marginal hazards rates
of X and Y are given by

rX(x) = r1(x) + λ1, rY (y) = r2(y) + λ2. (11)

Hence, rX(x)(rY (y)) is increasing (decreasing) iff r1(x)(r2(y)) is increasing (decreasing).
The conditional survival functions are also given by

P (X > x | Y > y) = S1(x) exp(−(λ1 + ϕλ1λ2y)x)

and
P (Y > y | X > x) = S2(y) exp(−(λ2 + ϕλ1λ2x)y)

for x, y ≥ 0. That is , the conditional survival functions belong to additive hazard model,
given in (9) , with both a1(y) and a2(x)increasing functions and

a1(y) = λ1 + ϕλ1λ2y, a2(x) = λ2 + ϕλ1λ2x, (12)

From (10), the bivariate PDF can be expressed as

f(x, y) =
(
(r1(x) + a1(y))(r2(y) + a2(x))− ϕλ1λ2

)
S(x, y), (13)

where r1(x) and r2(y) are the hazards rate of the baseline distributions S1 and S2, respec-
tively.

Theorem 6. The joint survival function defined in (10) is RR2 on (0,∞)× (0,∞).

Theorem 7. Suppose that the baseline distributions S1 and S2 are IFR. Then, the joint
PDF of (X,Y ) obtained in expression (13) is RR2 on (0,∞)× (0,∞).
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Abstract

In this paper, sequential k-out-of-n systems with coming non- homogeneous expo-
nential component lifetimes are considered. Point estimates of parameters as well as
equal-tail and approximate confidence intervals and Fisher Information are derived on
the basis of observed multiply system lifetimes.

Keywords: Bayesian approach, Estimation, Maximum likelihood, Sequential order
statistics.

1 Introduction

Kamps [7] introduced the concept of the sequential order statistics (SOSs), as an ex-
tension of the (usual) order statistics (OSs). SOSs may be used for modelling lifetimes
of sequential r-out-of-n systems. Specifically, in (usually) the k-out-of-n system failing
a component does not change the lifetimes of the surviving components. Motivated by
Cramer and Kamps [3, 4], in practice, the failure of a component may results in a higher
load on the remaining components and hence causes the distribution of the surviving
components change. In these cases, the system lifetimes may be modelled by SOSs. The
mentioned system is called sequential r-out-of-n system and the system lifetime is then
r-th component failure time, denoted by X⋆

(r). In the literature, (X⋆
(1), · · · , X

⋆
(n)) is called

SOSs; See, Kamps [7]. The problem of estimating parameters on the basis of SOS has
been considered in the literature. For example, Cramer and Kamps [3] considered the
problem of estimating the parameters on the basis of s independent SOSs samples under a
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proportional hazard rates (PHR) model, defined by F̄j(t) = F̄
αj

0 (t) for j = 1, · · · , r, where
the underlying CDF F0(t) is the exponential distribution, i.e.

F0(x;σ) = 1− exp
{
−
(x
σ

)}
, x > 0, σ > 0. (1)

In this case, the hazard rate function of the CDF Fj , for t > 0 and j = 1, · · · , n, is
hj(t) = αjh0(t). See also, Schenk et al. [9], Esmailian and Doostparast [5], Beutner and
Kamps [1] and references therein.

2 Main results

We assume that s ≥ 2 independent SOS samples of equal size r from s non-homogeneous
populations are available. The data may be represented by [[xij ]]i=1,··· ,s,j=1,··· ,r where the
i-th row of the matrix x in (2) denotes the SOS sample coming from the i-th population.
The LF of the available data is

L(F
[i]
j ;x) = Bs

s∏
i=1

r−1∏
j=1

f [i]j (xij)

(
F̄

[i]
j (xij)

F̄
[i]
j+1(xij)

)n−j f [i]r (xir)F̄
[i]
r (xir)

n−r

 , (2)

where B = Γ(n+ 1)/Γ(n− r + 1), and for i = 1, · · · , s, j = 1, · · · , r. By substituting
Equation (1) into Equation(2), under the earlier mentioned PHR model, the LF of the
available data reduces to

L(σ;x) = As

 r∏
j=1

αj

s(
s∏
i=1

1

σi

)r
exp

{
−

s∑
i=1

r∑
j=1

(xijmj

σi

)}
. (3)

where mj = (n − j + 1)αj − (n − j)αj+1, for j = 1, · · · , r, with convention αr+1 ≡ 0.
For sake of brevity, we assumed that the proportional parameter vector α are the same
among the s sequential r-out-of-n systems. First suppose that the vector parameter α in
Equation (3) is known. The solutions of the likelihood equations yields the ML estimate
of σi (i = 1, · · · , s) as

σ̂i =

∑r
j=1 xijmj

r
=

∑r
j=1(n− j + 1)αjDij

r
, (4)

where Dij = xij − xi,j−1, for j = 1, · · · , r. Cramer and Kamps [4] showed that under the
PHR with the one-parameter exponential baseline CDF,

Ti =

r∑
j=1

(n− j + 1)αjDij ∼ Γ(r, σi), i = 1, · · · , s, (5)

where Γ(a, b) calls for the gamma distribution. Thus, for i = 1, · · · , s, σ̂i ∼ Γ(r, σi/r),
and then E(σ̂i) = σi and V ar(σ̂i) = σ2i /r. From Equation (5), 2r (σ̂i/σi) ∼ χ2r, where
χν stands for the chi-square distribution with ν degrees of freedom. So, an equal-tail
confidence interval at level 100γ% for σi (i = 1, · · · , s) is(

2rσ̂i
χ

2r,(1+γ)/2

,
2rσ̂i

χ
2r,(1−γ)/2

)
, (6)
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where χν,p calls for the p-th percentile of the χν-distribution. The observed FI, de-
noted by [i(σ̂1, · · · , σ̂s)], on the basis of available SOSs data is equal to minus of the
Hessian matrix (HM) evaluated at the MLEs of the parameters, i.e. i(σ̂1, · · · , σ̂s) =
[[(−∂2 log(L)/∂σi∂σj)1≤i,j≤s]]|σ1=σ̂1,··· ,σs=σ̂s . It is well known that the MLEs have asymp-
totically normal distribution with mean σ and the variance [i(σ̂1, · · · , σ̂s)]−1. Therefore,
an approximate equi-tailed confidence interval for σi is(

σ̂i − z
γ/2

√
σ̂2i
r
, σ̂i + z

γ/2

√
σ̂2i
r

)
, (7)

where zγ stands for the γ-percentile of the standard normal distribution. When the vector
parameter α in Equation (3) is unknown, see, e.g., Cramer and Kamps [4] and Hashempour
and Doostparast [6].
We here consider the problem of estimating unknown parameters via a strict Bayesian
approach. To do this, we assume that α is known and suggest the conjugate prior distri-
butions for the scale parameters σi, i = 1, · · · , s, i.e.

σi ∼ IG(ai, bi), i = 1, · · · , s, (8)

From Equation (8) and the LF (3), the joint posterior density function of σ1, . . . , σs is

π(σ1, . . . , σs | x) ∝
s∏
i=1

 r∏
j=1

αj
baii σ

−(ai+r)−1
i

Γ(ai)
exp

{
−

(∑r
j=1 xijmj + bi

σi

)} . (9)

which implies σi | x ∼ IG
(
ai + r,

∑r
j=1(n− j + 1)αjDij + bi

)
, i = 1, · · · , s. As we

expected given x, the parameter σi are independent. Under the squared error loss (SEL)
function, the Bayes estimate of the parameter σi(i = 1, · · · , s) is

σ̂i,B =

∑r
j=1(n− j + 1)αjDij + bi

ai + r − 1
=

rσ̂i + bi
ai + r − 1

, (10)

where σ̂i is the ML estimate of σi given by Equation (4). For i = 1, · · · , s, the Bayes
estimates (10) is bias, admissible and may be written as a weighted mean of the mean of
the prior (8) and the ML estimate (4). The risk function of the Bayes estimates (10) is

R(σ̂i,B, σi) =
σ2i
(
r + (1− ai)

2
)
+ 2bi (1− ai)σi + b2i

(ai + r − 1)2
, (11)

which its minimum, as a function of σi, occurs at point bi(ai−1)/[(1−ai)2+r]. Notice for
r = n and α1 = · · · = αn = 1, σ̂i,n =

∑n
j=1 xij/n and σ̂i,B = (

∑n
j=1 xij + bi)/(ai + n− 1),

which are, respectively, the well-known ML and the Bayes estimates of the exponential
parameters on the basis of a random sample of size n; See, e.g., Lawless [8].
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Abstract

It is assumed that in long term studies the lifetimes are positively (negatively)
associated random variables. Under some regular conditions, the strong convergence
rates of Kaplan-Meier estimator of marginal distribution function F and cumulative
hazard function Λ are obtained. In order to demonstrate the empirical performance
of the results, simulation studies are done.

Keywords: Censored data, Kaplan-Meier estimator, Negative association, Positive
association, Strong consistency, Truncation.

1 Introduction

Let {Xn, n ≥ 1} be sequence of the lifetime variables which may not be mutually indepen-
dent, but have a common continuous marginal distribution function (df) F . Let {Tn, n ≥
1} be a sequence of iid rv’s with continuous df G. Suppose that the rv’s Xi be censored on
the right by the rv’s Yi, so that one observe only Zi = Xi∧Yi and δi = I(Xi ≤ Yi) where ∧
denotes minimum and I(.) is the indicator function. In this random censorship model, the
censoring times Yi, i = 1, ..., n are assumed to be iid rv’s with df H and be independent of
the Xi’s and Ti’s. The problem at hand is that of drawing nonparametric inference about
F , based on the right censored and left truncated observations (Zi, Ti, δi), i = 1, ..., n. In
the left truncated model, (Zi, Ti) is observed only when Zi ≥ Ti. Let γ ≡ P (T1 ≤ Z1) > 0.
Assume, without loss of generality, that Xi, Ti and Yi are nonnegative rv’s, i = 1, ..., n.
For any df L denotes the left and right endpoints of its support by aL = inf{x; L(x) > 0}
and bL = sup{x; L(x) < 1}, respectively. Then under the current model, we assume that
aG ≤ aW and bG ≤ bW , where W be the df of Z. Let Λ(x) denotes the cumulative hazard
function of F , C(x) = P (T1 ≤ x ≤ Z1|T1 ≤ Z1) = γ−1P (T1 ≤ x ≤ Y1) × (1 − F (x))
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and W1(x) = P (Z1 ≤ x, δ1 = 1|T1 ≤ Z1). Let Cn(x) and W1n(x) be the empirical es-
timators of C(x) and F1(x), respectively, i.e. Cn(x) = n−1

∑n
i=1 I(Ti ≤ x ≤ Zi) and

W1n(x) = n−1
∑n

i=1 I(Zi ≤ x, δi = 1), where F1(x) = P (Z1 ≤ x, δ1 = 1). Then, the

PL estimator of F and Λ(x) are F̂n(x) =

{
1−

∏
Zi<x

(1− 1
nCn(Zi)

)δi ;x < Z(n)

1 ;x ≥ Z(n)
and

Λ̂n(x) =
∑n

i=1
I(Zi≤x, δi=1)

nCn(Zi)
, respectively.

For independent failure time observations, the PL estimator has been studied exten-
sively by many investigators. However, there are preciously few results available for the
dependent case. Our focus in present paper is to study asymptotic properties of PL es-
timator for the right censored and left truncated data under PA (NA) failure times. So
in Section 2, we introduce preliminary results and discuss strong uniform consistency and
rates of convergence for the estimators F̂n and Λ̂n(x). Finally in Section 3, we use a simu-
lation study to show the convergence rates. We now introduce general assumptions to be
used throughout the article.
(A1). {Xn, n ≥ 1} is stationary sequence of PA (NA) rv’s having bounded density func-
tion and finite second moment.
(A2). The censoring time variables {Yn, n ≥ 1} and truncated time variables {Tn, n ≥ 1}
are iid rv’s with bounded density and are independent of {Xn, n ≥ 1}.
(A3).

∑∞
j=2 j

−2
∑j−1

i=1 |Cov(Xi, Xj)|1/3 <∞.

(A4).
∑∞

j=n+1 |Cov(X1, Xj)|1/3 = O(n−(r−2)/2), for some r > 2.
For the dfs F , G and H (the possibly infinite) times τF , τG and τH by τF = inf{y; F (y) =
1}, τG = inf{y; G(y) = 1}, τH = inf{y; H(y) = 1}, aF = sup{y; F (y) = 0}, aG =
sup{y; G(y) = 0} and aH = sup{y; H(y) = 0}. Then for the marginal df W of the Zi’s,
it holds τW = τF ∧ τH and aW = aF ∧ aH .

2 Strong uniform consistency with rates

In this section, we introduce preliminary and main results. Let {Xn, n ≥ 1} be a stationary
sequence of rv’s. Then:
i) If rv’s are PA under (A3), 1

n

∑n
i=1(Xi − EXi) → 0 a.s.

ii) If rv’s are NA with finite first moment, the convergence of (i) holds. Suppose that
(A1) and (A2) hold. Then
i) If the rv’s {Xi, i ≥ 1} are PA and (A3) is fulfilled, it holds

sup
aw≤x≤τW

|Cn(x)−G(x)[1−W (x)]| −→ 0 a.s., (1)

sup
aw≤x≤τW

|W1n(x)− F1(x)| −→ 0 a.s. (2)

ii) If the rv’s {Xn, n ≥ 1} are NA, (1) and (2) hold true.

Theorem 1. Under (A1) and (A2) and for any aW < τ < τW ,
i) If the rv’s {Xi, i ≥ 1} are PA and (A3) is satisfied, it holds

sup
aW≤x≤τW

|Λ̂n(x)− Λ(x)| −→ 0. a.s. (3)

ii) If the rv’s {Xi, i ≥ 1} are NA, then (3) holds.
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Theorem 2. Under (A1) and (A2) and the additional assumptions either in part (i) or
part (ii) of Theorem 1, it holds

sup
aW≤x≤τW

|F̂n(x)− F (x)| −→ 0 a.s., sup
Z1:n≤x≤Zn:n

|F̂n(x)− F (x)| −→ 0 a.s.,

where Zn:n = maxi≤n Zi and Z1:n = mini≤n Zi.

Theorem 3. Suppose that (A1), (A2) and (A4) hold. Then, for any aW ≤ a < τ ≤ τW ,

sup
a≤x≤τ

|Λ̂n(x)− Λ(x)| = O(n−θ) a.s., (4)

where 0 < θ < (r − 2)/(2r + 2 + δ), for any δ > 0 and r in (A4).

Theorem 4. Under the assumptions of Theorem 3, it follows

sup
a≤x≤τ

|F̂n(x)− F (x)| = O(n−θ). a.s. (5)

3 Simulation study

In this section, we intend to compare our results with simulation of such generated NA
(PA) data of size n=10(1)1000 to check the goodness convergence of the estimators. For
generating NA data as introduced by Cai and Roussas (1998), we could use n-variate
normal distribution with µ′ = (12, 12, ..., 12) and

Σ =
1

1− ρ2


1 −ρ −ρ2 . . . −ρn−1

−ρ 1 −ρ . . . −ρn−2

...
...

. . .
...

−ρn−1 −ρn−2 −ρ 1

 . (6)

We have a vector with NA property when ρ > 0. We set ρ = 0.2 and the censored
and truncation samples are generated from N(13, 1) and N(11, 1), respectively. So, we
calculate F̂n(x), Λ̂n(x), dFn = supaW≤x≤τW |F̂n(x)−F (x)| and dΛn = supaW≤x≤τW |Λ̂n(x)−
Λ(x)| for some n. Figure 1 shows the results for this two functions against n and the green
line is the convergence rates (4) and (5) using θ is equal to 0.27 and 0.12, respectively. In

Figure 1: dFn(F̂n(x), F (x)) and dΛn(Λ̂n(x),Λ(x)) for NA data and their convergence rates
(green line).

both graphs of Figure 1, we can see that the convergence rates are reasonable in NA case
i.e.:
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(a) in the left graph the convergence rate could get sharper and this graph shows that the
convergence behavior of F̂n(x) is good.
(b) in the right graph however the convergence rate isn’t reasonable as well as left graph,
but it is good enough to present. Since dΛ(x) ∈ [0,+∞), the differences more than one
could be reasonable.
For generating PA sample, we follow the same way as in NA case with

Σ =
1

1− ρ2


1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

...
...

. . .
...

ρn−1 ρn−2 ρ 1

 . (7)

We have a vector with PA property when ρ > 0. We set ρ = 0.2 and generate the censored
and truncation samples as NA case. Figure 2 shows the trend of dFn and dΛn with respect
to n and the green line is the convergence rates (4) and (5) using θ is equal to 0.27 and
0.12, respectively. Figure 2 shows the same results as in NA case.

Figure 2: dFn(F̂n(x), F (x)) and dΛn(Λ̂n(x),Λ(x)) for PA data and their convergence rates
(green line).
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Abstract

In this paper we consider estimation of the reliability characteristics of Burr type
X distribution based on fuzzy lifetime data. The Bayes estimates of the parameter
and reliability function of the Burr type X model are obtained using a Markov Chain
Monte Carlo method. Simulation studies are conducted to demonstrate the efficiency
of the proposed method.

Keywords: Fuzzy lifetime data, Reliability estimation, Bayesian estimation, Markov
Chain Monte Carlo method.

1 Introduction

Burr type X distribution has increasing importance in several areas of applications such
as lifetime tests, health, agriculture, biology, and other sciences. The probability density
function (pdf) and reliability function of Burr type X distribution is given by

f(t; θ) = 2θte−t
2
(1− e−t

2
)θ, t > 0, θ > 0 (1)

and
R(t; θ) = 1− (1− e−t

2
)θ (2)

, respectively. From now on Burr type X model with the shape parameter θ will be denoted
by Burr(θ).

In various fields of science such as biology, engineering and medicine, it is not possible
to obtain the measurements of a statistical experiment exactly, but is possible to classify

1aajafari@yazd.ac.ir
2abbas.pak1982@gmail.com

57



First Seminar on Reliability Theory and its Applications 58

them into imprecise quantities. For example, ”The lifetime of a bearing is around 8.17×106

revolutions” and ”The lifetime of some shaft be between 1,500 and 2,000 h, but near to
2,000 h” etc. are imprecise quantities relating to lifetime. The lack of precision of lifetime
data can be described using fuzzy sets. The classical statistical estimation methods are
not appropriate to deal with such imprecise cases. Therefore, we need suitable statistical
methodology to handle these data as well. In this paper, we study Bayesian estimation of
the reliability characteristics of Burr type X distribution when the lifetime observations
are reported in the form of fuzzy numbers. In Section 2, we obtain the Bayes estimates of
the parameter θ and reliability function R(t) using Markov Chain Monte Carlo technique.
Then, simulation study is presented in Section 3 in order to assess the accuracy of the
proposed method. For a review about the main definitions of fuzzy sets and some of the
formula used in this paper, see Pak et al. [2] and the references therein.

2 Bayesian estimation

Suppose that n identical units are placed on a life test with the corresponding lifetimes
X1, ..., Xn. It is assumed that these variables are independent and identically distributed
as Burr(θ). Let X = (X1, ..., Xn) denotes the vector of lifetimes. If a realization x of X
was known exactly, we could obtain the complete-data likelihood function as

L(θ;x) = (2θ)n
n∏
i=1

xie
−x2i (1− e−x

2
i )θ.

Now consider the problem where x is not observed precisely and only partial infor-
mation about x is available in the form of a fuzzy subset x̃ = (x̃1, ..., x̃n) with the Borel
measurable membership function µx̃(x) = (µx̃1(x1), ..., µx̃n(xn)). The observed data likeli-
hood function can then be obtained, using Zadeh’s definition of the probability of a fuzzy
event (see [2]), as

ℓ(θ; x̃) = θn
n∏
i=1

∫
2xe−x

2
(1− e−x

2
)θµx̃i(x)dx. (3)

For computing the Bayes estimate of the unknown parameter θ and reliability function
R(t), we assume that θ has Gamma(a, b) density with pdf given by

π(θ) =
ba

Γ(a)
θa−1e(−θb), θ > 0, (4)

where a > 0 and b > 0. Based on this prior, the posterior density function of θ given the
data can be written as

π(θ | x̃) ∝ θn+a−1e−θb
n∏
i=1

∫
xe−x

2
(1− e−x

2
)θµx̃i(x)dx. (5)

Then, under a squared error loss function, the Bayes estimate of any function of θ, say
h(θ), becomes

E(h(θ) | x̃) =

∫∞
0 h(θ)θn+a−1e−θb

n∏
i=1

∫
xe−x

2
(1− e−x

2
)θµx̃i(x)dxdθ∫∞

0 θn+a−1e−θb
n∏
i=1

∫
xe−x2(1− e−x2)θµx̃i(x)dxdθ

. (6)
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The ratio of integrals in (2.4) does not seem to take a closed form. Therefore, in the
following, we adopt Markov Chain Monte Carlo (MCMC) method for approximating (2.4).

Noting that the density function π(θ | x̃) is not known, but by experimentation, we
observed that it appears similar to normal distribution. So to generate random samples
from π(θ | x̃), we can use MetropolisHastings algorithm with normal proposal distribution
as follows.

1) Start with an initial guess θ(0) and set j = 1.
2) Generate θ(j) from π(θ | x̃) with the proposal distribution q(θ) ≡ I(θ > 0)N(θ(0), 1),

where I(.) is the indicator function, as follows:
(a). Let γ = θ(j−1).
(b). Generate ω from the proposal distribution q.

(c). Let p(γ, ω) = min
{
1, π(ω|x̃)q(γ)π(γ|x̃)q(ω)

}
.

(d). Accept ω with probability p(γ, ω) or accept γ with probability 1− p(γ, ω).
3) Compute R(j)(t) from (1.2).
4) Set j = j + 1.
5) Repeat Steps 2-4, M times and obtain θ(j) and R(j)(t) for j = 1, ...,M .

Now the Bayes estimates of the parameter θ and reliability function R(t) with respect to
the squared error loss function become

θ̂BM = Ê(θ | x̃) = 1

M

M∑
j=1

θ(j).

and

R̂BM (t) = Ê(R(t) | x̃) = 1

M

M∑
j=1

R(j)(t).

3 Simulation study

In this section, a Monte Carlo simulation study is presented in order to investigate the
performance of the proposed method. First, for fixed θ = 1 and different choices of n,
we have generated fuzzy samples from Burr X distribution using the method proposed
by Pak et al. [2]. Then, the Bayes estimates of the parameter θ and reliability function
R(t), at t = 1, for the fuzzy sample were computed using the MCMC technique. As a
conjugate prior for θ, we take the Gamma(a, b) density with a = b = 0.0001. The average
values (AV) and mean squared errors (MSE) of the estimates over 1000 replications are
presented in Table 1. In viewing the table, we find that the performance of the Bayes
estimates are quite satisfactory in terms of AVs and MSEs. It can be further observed
that, as the sample size increases, the MSEs of the estimates decrease as expected.
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Table 1: AVs and MSEs of the Bayes estimates of θ and R(t) for different sample sizes.

n θ̂BM R̂BM (t)
AV MSE AV MSE

15 1.1673 0.0631 0.4276 0.0093
20 1.1509 0.0580 0.4103 0.0081
30 1.1221 0.0519 0.4062 0.0076
40 1.0960 0.0428 0.3984 0.0070
50 1.0631 0.0297 0.3913 0.0058
70 1.0409 0.0156 0.3825 0.0043
100 1.0285 0.0117 0.3794 0.0026
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Abstract

In this paper we introduce a new aging class of life distributions when a device is
operating in a realistic environment. We study the behavior of such life distributions
through the mean residual life notion, when a device is experiencing number of shocks.
Due to these shocks the lifetime of such device has become shortened or prolonged.
These tempered events are governed by a homogenous Poisson process. A moment
inequality which characterizes this new aging class, namely renewal increasing mean
residual life, is derived. We propose a new U-statistic test procedure to address the
problem of testing exponentiality against such class of life distributions. It is shown
that the proposed test enjoys a superior power for some commonly used alternative.

Keywords: Poisson Shock model, Increasing mean residual life, Exponential distri-
bution, Moment inequalities, U-statistics.

1 Introduction

The mean residual lifetime, MRL, is the remaining lifetime of a component alive at time
t. If X denotes a nonnegative random variable with a continuous life distribution function
F and finite mean µ =

∫∞
0 F̄ (x)dx, then the MRL function at time t is defined as

m(t) = E (X − t|X > t) =
1

F̄ (t)

∫ ∞

t
F̄ (u) du. (1)

The properties of mean residual life (MRL) of a component (subjected to no shocks)
have been widely used for deriving maintenance and replacement policies.

The goal of this paper is to study the age replacement models through the remaining life
time of a device in a more real life environment in which unit fail by physical deterioration

1jamshidian@shbu.ac.ir

61



First Seminar on Reliability Theory and its Applications 62

suffered from some damage. In the latter case, units fail when the total damage due to
shocks has exceeded a critical level. Such damage models may apply to the actual units
that are working in industry, service, information, computers etc. In the past decade,
various properties of failure distributions when shocks occur in a Poisson process were
extensively investigated. We refer our reader to Li and Xu (2008), Ahmad and Mugdadi
(2010), and Izadkhah and Kayid (2013), Sepehrifar et al. (2014), among others. We study
the cumulative damage model for an operating unit through the increasing mean residual
life function, which follows by the related definitions. We use the innovative features of
this function to introduce the related moment inequality function and to derive a new U-
statistic testing exponentiality against renewal increasing mean residual life under shock
(RIMRlshock) alternatives. Finally, the power simulation ane some numerical results are
presented.

2 Basic definitions and properties

Consider a unit which is subjected to successive shocks and each shock causes some damage
to this unit in some amount. Let random variables {Tj: j=1, 2,...} denote the sequence
of time intervals between successive shocks, and random variables {Wi: i=1, 2,...} denote
the amount of life-damage produced by the i -th shock, where W 0 ≡ 0. It is assumed that
the sequence of {Wi} is nonnegative, independent and identically distributed. We also
assume that Wi is independent of Tj . Let random variable N (t) denote the total number
of shocks up to time t. Then, the total cumulative life-damage up to time t is defined as

Z (t)where Z (t) =
∑N(t)

i=0 Wi .

It is assumed that the unit fails when the total damage exceeds a pre-specified level
x (>0). Usually, the failure level x is statistically estimated and is already known. Let X
be the life variable of a device with survival function F̄ (t) = P{X ≥ t} which is subjected
to N(t) shocks withP {N (t) = j} = F (j) (t) − F (j+1) (t) , j = 0, 1, 2, . Let the random
variable Wi be the amount of hidden lifetime absorbed by the ith shock, with common
distribution G (x) = P{Wj ≤ x}. Then the distribution ofZ (t) is Q (x) = P{Z (t) ≤
x} =

∑∞
j=0G

(j) (x) [F (j) (t)−F (j+1) (t)] . Glynn and Witt (1993), studied the distribution
ofQ (x) .

Let X∗ = X − Z (t) be the lifetime of an item (with lifetime X, and survival function
F̄ (t) ) in a service with total life-damaged Z (t). Set m∗ (t) = E [X∗

t ] = E [X∗ − t| ≥ t],
which is the mean residual lifetime of such item in the age replacement model subjected
to N(t) shock, given that the item is in operating situation hours after installation or the
total life-damaged is not exceeding the threshold level x, whichever comes last. We assume
that X and Z(t) are independent. First, we present definitions and basic properties that
will be used in the sequel.
Definition 1. The mean residual life of a device under shock model (MRLshock) at time
t, is defined as

m∗ (t) =

∫∞
t v̄ (z) dz

v̄(t)
, (2)

where v̄ (z) =
∫ x
0 F̄ (z + w) dQ (w) .

Definition 2. The distribution function F is said to be a renewal increasing mean residual
life under shock models (RIMRLshock) if m

∗(t) is an increasing function in t ≥ 0 .
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Corollary 1. The distribution F belongs to RIMRLshoch if

(v̄ (t))2 ≤
∫ x

0
f (t+ w) dQ (w)

∫ ∞

t
v̄ (z) dz .

Corollary 2. The distribution function F belongs to RIMRLshock if

Ef∗ [Min(X∗
1 , X

∗
2 )] ≤

1

2
(Ef∗ (X

∗
1 ))

where X∗
i = Xi −Wi .

3 Testing exponentiality against RIMRLshock alternatives

Consider the problem of testing H0: F is exponential with mean,µ < ∞ versus H1: F is
RIMRLshock and not exponential. We consider corollary 2 for RIMRLshock as the measure
of departure from the null hypothesis H0 :

δ =
1

µ∗

{
Ef∗ [Min(X∗

1 , X
∗
2 )−

1

2
X∗

1 ]

}
where µ∗ = E(X∗

i ) .
This measure may be estimated by the following statistics:

δ̂ =
1

X̄∗ × 2

n (n− 1)


n∑
i=1
i<j

n∑
j=1

{
Min(X∗

i , X
∗
j )−

1

2
X∗
i

} (3)

where X̄∗ = 1
n

∑n
i=1X

∗
i is the sample mean based on a random sample from distribu-

tion F. Note that δ̂ is derived based on the standard U-statistic theory.Let

ϕ(X∗
1 , X

∗
2 ) =

1

µ∗

[
Min (X∗

1 , X
∗
2 )−

X∗
1

2

]

ϕ(X∗
2 , X

∗
1 ) =

1

µ∗

[
Min (X∗

2 , X
∗
1 )−

X∗
2

2

]
and define the symmetric kernel

ψ (X∗
1 , X

∗
2 ) =

1

2!

∑
ϕ(X∗

i1, X
∗
i2)

where the sum is an overall arrangement of X∗
1 and X∗

2 . It can be shown that δ̂ in
equation (3.1) is equivaltne to U-statistic given by

U =
1(
n
2

)∑
i<j

ϕ(X∗
i , X

∗
j ).

The following theorem gives the large sample properties of δ̂ or U.
Theolem 1. As n→ ∞,

√
n(δ̂ − δ)is asymptotically normal whit mean 0 and variance

V ar

(
1

2

{
2

µ∗
{X∗

1F (X∗
2 ) + µ∗F̄ (X∗

2 )} −
X∗

1

2µ∗
− 1

2

})
.
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Under the null hypothesis H0 ,X∗
i ∼ Exp (1) , the variance is calculated as σ20 = 7

48 .

To carry out this test, we calculate
√
nδ̂σ−1

0 and reject H0 if this value is larger than
Z1−α .
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Abstract

In this paper, we study the residual lifetime of coherent system with possibly de-
pendent identically distributed component lifetimes. These results are based on the
representation of system reliability function as a distorted function of common relia-
bility function of components.

Keywords: Coherent systems, Residual lifetime, Survival copula, Distorted function,
Stochastic orders.

1 Introduction

Consider a coherent system consisting of n possibly dependent components with lifetimes
X1, ..., Xn. Suppose that these random variables are identical with common distribution
function F and reliability function F̄ . The dependence among components is represented
by the joint reliability function of (X1, ..., Xn),

F̄ (x1, ..., xn) = Pr(X1 > x1, ..., Xn > xn).

Using the Sklar’s copula representation, we have

F̄ (x1, ..., xn) = K(F̄ (x1), ..., F̄ (xn)),

where, K(u1, ..., un) is reliability copula and 0 < ui < 1. In fact, K is an useful tool for
modeling dependence between the components. Denote the lifetime of coherent system
with T = ϕ(X1, ..., Xn) where ϕ is the structure function of system. Navarro et al. [1]
provided an useful representation for system reliability function as a distorted function of

1m.kelkinnama@cc.iut.ac.ir

65



First Seminar on Reliability Theory and its Applications 66

the F̄ . Let T be the lifetime of a coherent system with identically distributed component
lifetimes having the common reliability function F̄ and the joint reliability copulaK. Then

F̄T (t) = Pr(T > t) = h(F̄ (t)),

where, h is a function that depends only on copula K and system structure (minimal path
sets of system). The function h is a distorted function which is an increasing continuous
function from [0, 1] to [0, 1], h(0) = 0 and h(1) = 1. The function h is called domination
function. If K(u1, ..., un) is exchangeable, i.e. it is permutation invariant, then

h(u) =
n∑
i=1

aiK(u, ..., u︸ ︷︷ ︸
i−times

, 1, ..., 1︸ ︷︷ ︸
(n−i)−times

),

where, a = (a1, ..., an) is the minimal signature of the system. . In particular, in the
i.i.d. case, K is the product copula, hence hI(u) =

∑n
i=1 aiu

i As an example, consider the
system T = max(X1,min(X2, X3)). The minimal path sets are P1 = {1} and P2 = {2, 3}.

Pr(T > t) =Pr(XP1 > t) + Pr(XP2 > t)− Pr(XP1∪P2 > t)

=F̄ (t, 0, 0) + F̄ (0, t, t)− F̄ (t, t, t)

=K(F̄ (t), 1, 1) +K(1, F̄ (t), F̄ (t))−K(F̄ (t), F̄ (t), F̄ (t)) = h(F̄ (t))

where, h(u) = K(u, 1, 1)+K(1, u, u)−K(u, u, u). If K is exchangeable then a = (1, 1,−1)
is the minimal signature of the system.

In this paper, we study the aging properties and stochastic comparisons of residual
lifetimes of coherent systems with dependent identically distributed (DID) component
lifetimes. The results derived in this paper can also be applied to coherent systems with
exchangeable or i.i.d. components.

2 Main results

For a fixed t > 0, the residual lifetime of the coherent system at time t, is denoted by
T t = [T − t|T > t]. The reliability function of T t is

F̄T t(x) = Pr(T t > x) =
F̄T (t+ x)

F̄T (t)
=
h(F̄ (t+ x))

h(F̄ (t))
.

The hazard rate function of T t can be written as

rT t(x) = r(t+ x)α(F̄ (t+ x)),

where, α(u) = uh′(u)
h(u) and r is the hazard rate function of F̄ .

Theorem 1. If F̄ is IFR and α(u) is a decreasing function of u ∈ (0, 1), then for the
conditional random variable T t, we have

(i) T t ≥hr T
t′, for t ≤ t′.

(ii) T t is IFR for all t > 0.
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Note that part (i) implies that T t ≥st T
t′ , i.e. T is IFR.

For the reversed hazard rate function of T t we have

r̃T t(x) = r̃(t+ x)β(F̄ (t+ x))
1− h(F̄ (t+ x))

h(F̄ (t))− h(F̄ (t+ x))
,

where, β(u) = (1−u)h′(u)
1−h(u) , and r̃ is the reversed hazard rate of F̄ .

Theorem 2. Suppose that F̄ is DRHR, and β(u) is increasing in u ∈ (0, 1).

(i) If 1− h(u) is log-concave in u, then T t ≥rh T
t′ for t ≤ t′.

(ii) T t is DRHR for all t > 0.

The Glaser’s function (eta function) of T t can be written as

ηT t(x) = −
f ′T t(x)

fT t(x)
= η(t+ x) + r(t+ x)γ(F̄ (t+ x))

= η(t+ x) + r̃(t+ x)γ̄(F̄ (t+ x)),

where, γ(u) = uh′′(u)
h′(u) , γ̄(u) =

(1−u)h′′(u)
h′(u) , and η is the eta function of F̄ .

Theorem 3. If the common density function, f , is log-concave and there exist a ∈ [0, 1]
such that γ(u) is non-negative and decreasing in u ∈ (0, a) and γ̄(u) is non-positive and
decreasing in u ∈ (a, 1) then

(i) T t ≥lr T
t′, for t ≤ t′.

(ii) fT t is log-concave for all t > 0.

Navarro et al. [2] showed that, if F̄ is NBU(NWU) and h(u)h(v) ≥ (≤)h(uv) for all
0 ≤ u, v ≤ 1, then T is NBU(NWU), it means that T ≥st (≤st)T

t for all t > 0. Now, in
the next theorem, we give sufficient conditions for some other stochastic orders between
T and T t.

Theorem 4. (i) If F̄ is IFR(DFR) and α(u) ≥ (≤)1, then T ≥hr (≤hr)T
t for all

t > 0.

(ii) If F̄ is DRHR and β(u) ≤ 1, then T ≥rh T
t for all t > 0.

(iii) If f is log-concave (log-convex) and γ(u) ≥ (≤)0 then T ≥lr (≤lr)T
t for all t > 0.

The following theorems provide conditions under which the residual lifetimes of two
coherent systems with DID components can be compared.

Theorem 5. Let T1 = ϕ1(X1, ..., Xn) and T2 = ϕ2(Y1, ..., Ym) be the lifetimes of two
coherent systems with DID components having common reliability function F̄ . Let h1 and
h2 be their respective domination functions. Then, we have the following properties for all
t > 0.

(i) T t1 ≤st (≥st)T
t
2 for all F̄ if and only if h2(u)

h1(u)
is decreasing (increasing) in u ∈ (0, 1).

(ii) T t1 ≤hr (≥hr)T
t
2 for all F̄ if and only if h2(u)

h1(u)
is decreasing (increasing) in u ∈ (0, 1).
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(iii) T t1 ≤rhr (≥rhr)T
t
2 for all F̄ if and only if h2(q)−h2(u)

h1(q)−h1(u) is decreasing (increasing) in

u ∈ (0, q).

(iv) T t1 ≤lr (≥lr)T
t
2 for all F̄ if and only if

h′2(u)
h′1(u)

is decreasing (increasing) in u ∈ (0, 1).

Theorem 6. Let T1 = ϕ(X1, ..., Xn) and T2 = ϕ(Y1, ..., Yn) be the lifetimes of two coherent
systems with the same structure and with DID component lifetimes having the same copula
and common absolutely continuous reliability functions F̄ and Ḡ, respectively. Let h be
the domination function and assume that it is twice differentiable. Then, we have the
following properties for all t > 0.

(i) If X1 ≤st Y1 and h(u) is log-concave in u, then T t1 ≤st T
t
2.

(ii) If X1 ≤hr Y1 and uh′(u)
h(u) is decreasing in u, then T t1 ≤hr T

t
2.

(iii) If X1 ≤rhr Y1,
(1−u)h′(u)
1−h(u) is increasing in u, and 1−h(u1)

h(q1)−h(u1) ≤
1−h(u2)

h(q2)−h(u2) for u1 ≤ u2,

u1 ∈ (0, q1), u2 ∈ (0, q2), q1 ≤ q2, then T
t
1 ≤rhr T

t
2.

(iv) If X1 ≤lr Y1 and uh′′(u)
h′(u) is non-negative and decreasing in u, then T t1 ≤lr T

t
2.
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Stochastic Comparicons of Generalized Residual Entropy of
Order Statistics
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Abstract

In modeling of biological and engineering systems often requires use of concepts
of information theory, and in particular of entropy. The concept of residual entropy
is applicable to a system which has survived for some units of time. In this paper,
we propose a generalized residual entropy based on order statistics and obtain some
results on the stochastic comparisons of it.

Keywords: Generalized residual entropy, Hazard rate function, Order statistics,
Stochastic comparisons.

1 Introduction

Throughout this paper, X and Y will denote two random variables and the distribution
function, density function and hazard rate function ofX be denoted by F (t), f(t) and λF (t)
and those of Y be denoted by G(t), g(t) and λG(t), respectively. We will be particularly

interested in Xt, the remaining lifetime of a unit of age t ≥ 0. That is, Xt
d
= X − t|X > t

where
d
= stands for equality in distribution. For each t ≥ 0, the probability distribution

of Xt is absolutely continuous with distribution function Ft(x) = P (X − t ≤ x|X > t) =
[F (x+t)−F (t)]

F (t)
, x > 0, survival function F̄t(x) = 1 − Ft(x) =

F̄ (x+t)

F (t)
, x > 0, and probability

density function ft(x) =
f(x+t)

F (t)
, x > 0.

As is well known, an early definition of a measure of the entropy has been introduced
by Shannon (1948). Further, Nanda and Paul (2006) introduced a measure of residual
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entropy over (t,∞) based on the Tsallis entropy that is a generalisation of order β of the
Shannon entropy (Tsallis, 1988), given by

Hβ(X; t) =
1

β − 1

[
1−

∫ +∞
t fβ(x)dx

F̄ β(t)

]
, β ̸= 1, β > 0. (1)

Obviously Hβ(X; 0) results in Tsallis entropy and β −→ 1 gives Shannon entropy. In this
paper, we extend this generalized residual entropy based on order statistics and we derive
some stochastic comparisons based on the generalized residual entropy and order statistics
version of it.

2 Generalized residual entropy of order statistics

Suppose thatX1, X2, . . . , Xn are independent and identically distributed observations from
cdf F (t) and pdf f(t). The order statistics of the sample is defined by the arrangement
of X1, X2, . . . , Xn from the smallest to the largest, denoted as X1:n ≤ X2:n ≤ . . . ≤ Xn:n.
Generalized residual entropy associated with the ith order statistics Xi:n is given by

Hβ(Xi:n; t) =
1

β − 1

[
1−

∫∞
t fβi:n(x)dx

F
β
i:n(t)

]
, β ̸= 1, β > 0, (2)

where fi:n(x) and F i:n(x) are the density function and survival function of Xi:n, re-
spectively (see Davide and Nagaraja, 2003).

Now, using probability integral transformation U = F (X), where U is standard uni-
form distribution (2) can be expressed as

Hβ(Xi:n; t) =
1

β − 1

[
1−

BF (t)(β(i− 1) + 1, β(n− i) + 1)E[fβ−1(F−1(Yi))

B
β
F (t)(i, n− i+ 1)

]
,

where Yi ∼ BF (t)(β(i− 1) + 1, β(n− i) + 1).

3 Stochastic comparisons

Notation: a. The definitions of stochastic comparisons used in this section is available in
Shaked and Shanthikumar (1994).
b. The proof theorems stated in brief.

Definition 1. A random variable X is said to be smaller than Y in Tsallis entropy

ordering (denoted by X
GRE
⩽ Y ) if Hβ(X; t) ⩽ Hβ(Y ; t) for all t > 0.

It is well known that X
LR
⩽ Y ⇒ X

HR
⩽ Y ⇒ X

ST
⩽ Y and X

DIDP
⩽ Y ⇒ X

ST
⩽ Y and

X
LR
⩽ Y ⇒ X

ST
⩽ Y (Bickel and Lehmann, 1976; and Shaked and Shanthikumar, 1994).

We first prove the following preliminary results for generalized residual entropy.

Theorem 1. Let X and Y be two random variables, then X
DISP
≤ Y implies X

GRE
≤ Y .
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Proof. From (1), we have

Hβ(X; t) =
1

β − 1

[
1− B(1, β)

F
β
(t)

E(λβ−1
F (F−1(W )))

]
,

where W ∼ B(1, β). we also note that X
DISP
≤ Y if and only if λG(G

−1(u)) ≤ λF (F
−1(u))

for all u ∈ (0, 1) (see Shaked and Shanthikumar, 1994 ). First, we assume that β > 1, on

the other hand from Remark 3, X
DISP
≤ Y implies that X

ST
≤ Y . Hence, we find

Hβ(X; t)−Hβ(Y ; t) ≤ B(1, β)

β − 1

[
1

G
β
(t)

− 1

F
β
(t)

]
· E(λβ−1

F (F−1(W )))

≤ 0.

Thus, we obtain X
GRE
≤ Y . For 0 < β < 1 the proof is similar.

Theorem 2. Let X and Y be two random variables, at least one of them is DFR. Then

X
HR
≤ Y implies X

GRE
≤ Y .

Proof. First, we assume that 0 < β < 1 and X is DFR. Since X
HR
≤ Y implies that

Xt

ST
≤ Yt (see Shaked and Shanthikumar, 1994) and from (1), we have

Hβ(X; t) =
1

β − 1

[
1− EfXt,β

(λβ−1
F (t+Xt))

]
≤ 1

β − 1

[
1− EgYt,β (λ

β−1
F (t+ Yt))

]
≤ 1

β − 1

[
1− EgYt,β (λ

β−1
G (t+ Yt))

]
= Hβ(Y ; t),

where fXt,β =
−dF̄β

t (x)
dx . For β > 1 the proof is similar.

Now, by the fact that, X
DISP
⩽ Y implies that Xi:n

DISP
⩽ Yi:n (Shaked and Shanthiku-

mar, 1994) and by Theorem 1, we have the following result. Let X and Y be two random

variables. Then X
DISP
⩽ Y implies Xi:n

GRE
⩽ Yi:n.

Theorem 3. Suppose X has a DFR distribution. Then Xi:n

GRE
⩽ Xj:n, i < j.

Proof. Using the result of Chan et al. (1991), we have Xi:n

LR
⩽ Xj:n. By Remark 3, this

implies that Xi:n

HR
⩽ Xj:n. Since X has a DFR distribution , Xi:n has a DFR distribution,

(see Takahasi, 1988). So, by using Theorem 2 , we can conclude that Xi:n

GRE
⩽ Xj:n.

Theorem 4. Let X1, X2, . . . , Xn+1 be iid random variables with distribution function F (t).

Suppose X has a DFR distribution. Then, X1:n+1

GRE
⩽ X1:n and Xn:n

GRE
⩽ Xn+1:n+1 .

Proof. We use the fact that Xj:m

LR
⩽ Xi:n whenever j ⩽ i and m− j ⩾ n− i (Shaked and

Shanthikumar, 2007), and the method used in the proof of Theorem 3.
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On the Effect of Dependent Components on the Mean Time
To Failure (MTTF) of the System
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Abstract

In many practical applications in system reliability, the assumption that the com-
ponent lifetimes are independent is not valid and realistic.
In this talk we Consider the effect of dependency between system components on
MTTF of the system. For example if we increase (decrease) the degree of dependency
between system components wether the MTTF of the system has the same behavior
or not? We see that the answer of this question depends on the structure of the system
(it also may depend on the structure of dependency between system components).

Keywords: Quadrant Dependency, Mean Time To Failure, Diagonally Dependency,
System Reliability, Stochastic Ordering.

1 Introduction

In this paper we are trying to find some answers for the following questions.

1. In all systems, if the degree of dependency between component lifetimes of the system
changed, (for example increased from d1 to d2 > d1 in any sense), will the system reliabil-
ity or at least the MTTF of the system always be increased (or decreased)?

2. If the answer of Q.1 depends on the structure of the system, what is its answer for a
system with specific structure?

3. Even in a system with specific structure, is it possible the answer of Q.2 may depend
on the dependence structure between system components?
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In order to compare the systems containing dependent components with that of inde-
pendent components, we assume that when the degree of dependency between component
lifetimes changed their marginal distributions will not changed. We will see the answer of
Q.1 is no. It seems that the Q.2 and Q.3 have no specific answer in general till now. But
at least for series and parallel systems with positive (or negative) dependent components
(or even under some weaker conditions) the answer of Q.2 is yes and Q.3 is no. For other
structures it remains as an open problem.

Motivated by the recent work of Lai and Lin (2014) who defined the concept of more
diagonal dependent here we define a weaker dependence concept than PQD(NQD) and call
it positive(negative) diagonal dependent PDD(NDD) to use it for stochastic comparisons
of series and parallel systems.
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Abstract

The proportional odds model plays an important role in analyzing survival data.This
note develops the definition of dynamic proportional odds (DPO) model and its prop-
erties including some results on stochastic comparisons. One application of DPO
model is considered as Marshall and Olkin family of distribution in dynamic situa-
tion.

Keywords: Proportional odd model , Survival analysis, Marshall and Olkin dis-
tribution.

1 Introduction

The proportional odds model which was introduced by Bennett (1983) is appropriate to
analyze data in survival analysis. In survival studies, heterogeneity in the population of
lifetimes is usually represented by covariates. The main objective in such studies is to
understand and exploit the relationship between lifetime and covariates. Parametric and
semi parametric regression models are used to analyze such lifetime data. Commonly
used semi parametric regression model is Coxs (1972) proportional hazards model. In
practical situations, it is not uncommon for the hazard func- ions obtained for two groups
to converge with time. In the situations where the data exhibit non-proportional hazards,
proportional odds model can be employed. For more details, one could refer to Kirmani
and Gupta (2001) and Wang et al. (2003). The proportional odds (PO) frailty model is
defined by Marshall and Olkin (1997). Also, see Marshall and Olkin (2007). Its extensions
andmodications have been studied by various authors including Gupta and Peng (2009).
Since different distributions of frailty give rise to different population-level distribution for
analyzing survival data, it is appropriate to investigate how the comparative effect of two
frailties translates into the comparative effect on the resulting survival distribution.
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Frequently, in reliability and survival analysis the problem of interest is the lifetime
beyond an age t. For example, when a system is working at time t, one is interested
in obtaining the reliability of the system beyondt. In such case, the random variable
of interest, for computing the reliability of the system, is the residual random variable
Xt = X − t|X > t with survival function

F̄t(x) =

{
F̄ (x)
F̄ (t)

if xϵSt,

1 o.w

where F̄ denotes the survival function of X and St = {x;x > t}
Here we briefly recall the definition of proportional odds and proportional odds frailty

model .See Bennett (1983) , Kirmani and Gupta (2001),Marshall and Olkin (1997) and the
referencess therein for more details about these models. Let X0 and X be two nonnegative
random variables ,with cumulative distribution functions F0(x) and F (x) and survival
functions F̄0(x) and ¯F (x) , respectively.The odds functions of X0 and X are given by

ϕ0(x) =
F̄0(x)

F0(x)
(1)

and

ϕ(x) =
F̄ (x)

F (x)
(2)

for x ≥ 0,respectively.We say that X0 and X satisfy the proporttional odds model with
positive proportional constant α if

ϕ(x) = αϕ0(x), x ≥ 0, (3)

where ϕ(x) and ϕ0(x) are the population odds function and the baseline , respectively.
Recently, Marshall and Olkin introduced a family of distributions by adding a new

parameter to a survival function. Suppose that the F (. | γ) is defined in terms of the
underlying distribution F by the formula

F̄ (x | γ)
F (x | γ)

= γ
F̄ (x)

F (x)
(4)

The family {F (. | γ), γ > 0} is said proportional odds frality model.

2 Dynamic proportional odds model

In this section we will give the defenition and some results about DPO and PO frailty
models.

Definition 1. Let X0 and X be two nonnegative random variables with cumulative dis-
tribution functions F0(x) and F (x) and survival functions F̄0(x) and ¯F (x) , respectively.
The odds functions of X0 and residual odds function X are given by

ϕ0(x) =
F̄0(x)

F0(x)
(5)

and

ϕt(x) =
F̄t(x)

Ft(x)
(6)



Kharazmi, O. 77

for x ≥ 0,respectively.We say that X0 and X satisfy the dynamic proportional odds
(DPO)model with positive continuous proportional function α(x, t) if

ϕt(x) = α(x, t)ϕ0(x) (7)

where ϕt(x) and ϕ0(x) are the dynamic population odds function and the baseline
one,respectively.

Example 1. By appling residul life time distributions in PO model then DPO has the
following structure.

ϕt(x) = α
F0(x)

F0(x)− F0(t)
ϕ0(x) (8)

It is easily seen that PO model is a special case of DPO model as t→ 0.

Now we develop some properties on stochastic comparisons of the dynamic proportional
odds model.

Theorem 1. Suppose (2.3)holds,

1. if 0 < α(x, t) ≤ 1 , then Xt ≤lr X0

2. if α(x, t) ≥ 1 ,then X0 ≤lr Xt

where Lr denotes likelihood ratio order , X0 and Xt are the baseline variable and the
residual of population variable respectively.

Let X0 and X be two nonnegative random variables that satisfy the dynamic propor-
tional odds (DPO)model

ϕt(x) = α(x, t)ϕ0(x) (9)

and Y0 and Y be two nonnegative random variables that satisfy the dynamic proportional
odds (DPO)model

ψt(x) = β(x, t)ψ0(x) (10)

Theorem 2. Suppose (2.4) and (2.5) are satisfied,
if α ≤ β , X0 ≤st Y0 and G0(x)−G0(t) ≤ F0(x)− F0(t) then

X ≤st Y (11)

Definition 2. Suppose that the residul life time Ft(. | γ) is defined in terms of the under-
lying residual distribution Ft by the formula

F̄t(x | γ)
Ft(x | γ)

= α
F̄t(x)

Ft(x)
. (12)

then the family {Ft(. | γ), γ > 0} is said dynamic proportional odds frality model.

Example 2. Suppose underlying distribution has exponnetial distribution then by (2.8)
we have

F̄t(x|λ) =
αe−λx

e−λt − ᾱe−λx
(13)

Theorem 3. If F has a density f and hazard rate r. then for γ > 0, the hazard rate
distribution Ft(x | γ) is given by

rt(x|γ) =
r(x)F̄ (t)

F̄ (t)− γ̄F̄ (x)
(14)

———————————————————
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Abstract

In this paper, first we introduce the log-odds (LO) and log-odds ratio (LOR) func-
tions and their relations with reliability concepts such as hazard and reversed hazard
rate. Then, we proposed a new measure of skewness based on LO function in dis-
crete and continuous lifetime distributions and compare it with Pearson’s moment
coefficient of skewness and also Groeneveld-Meeden measure of skewness via some ex-
amples. Also some results due to bivariate log-odds are discussed.

Keywords: Log-odds rate, Hazard rate, Reversed hazard rate, Second hazard rate,
Second reversed rate of failure.

1 Introduction

Zimmer et al. [6] and Wang et al. [4, 5] introduced a new model for continuous time to
failure based on the log-odds rate (LOR) which is comparable to the model based on the
failure rate. Also Khorashadizadeh et al. [2] defined the discrete log-odds rate and have
obtained some characterization results for discrete lifetime distributions.

Suppose that X be a non-negative continuous random variable with probability density
function (pdf) fX(x), cumulative density function (cdf) FX(x) = P (X ≤ x) and reliability
function RX(x) = P (X > x), then the LOR function is defined by LORX(x) =

∂
∂xLOX(x),

where LOX(x) = ln FX(x)
RX(x) is the log-odds function. Hence,

LORX(x) =
fX(x)

FX(x)RX(x)
=
hX(x)

FX(x)
=

rX(x)

RX(x)
= hX(x) + rX(x),
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where hX(x) =
fX(x)
RX(x) is the hazard rate and rX(x) =

fX(x)
FX(x) is the reversed hazard rate.

The log-odds rate function characterizes the distribution uniquely [4].
Let T be a non-negative discrete random variable with probability mass function (pmf)

pT (t), cdf FT (t) = P (T ≤ t) and reliability function RT (t) = 1− F (t) = P (T > t). Then

the LO function is defined by LOT (t) = ln FT (t)
RT (t) . Khorashadizadeh et al. [2] have shown

that,

LOR∗
T (t) = LOT (t)− LOT (t− 1) = r∗T (t) + h∗T (t),

where r∗T (t) = ln FT (t)
FT (t−1) is the second reversed rate of failure and h∗T (t) = − ln RT (t)

RT (t−1)

is the second rate of failure. The LOR∗
T (t) function also characterizes the distribution

function uniquely [2].
By changing the variables, Y = lnX, (X = eY ), in continuous case the log-odds rate

in terms of lnx, we have LORY (y) = hY (y)
FY (y) = ey hX(ey)

FX(ey) for y ≥ 0. Wang et al. [4, 5]
proved the following relation, under mild condition, which is usually satisfied in reliability
practice,

ILOR in x⇒ IFR ⇒ ILOR in lnx.

The class of log-odds rate in terms of lnx is more interesting than log-odds rate in terms
of x, because the class of LOR in terms of ln t is weaker than the class of IFR.

Also, for discrete case in terms of K = lnT, (T = eK) it has been shown that [2],

LOR∗
K(k) =

∑t
i=1(r

∗
T (i) + h∗T (i))− ln FT (te−1)

RT (te−1)
+ a, where a = ln pT (0)

1−pT (0) .

In general for continuous lifetime distribution we have:

• F has constant LOR in x (lnx) if and only if F has a logistic (log logistic) distribu-
tion.

• If F has a Burr XII distribution with parameters α and β, then, for β = 1, it reduces
to log logistic distribution and has constant LOR in lnx, and for β > 1(β < 1), it is
ILOR (DLOR) in lnx.

Also, in discrete lifetime distribution we have,

• F is ILOR in terms of t (k = ln t) if and only if the LO function is convex with respect
to (w.r.t), t (k = ln t). Also, for dual class DLOR it is true for concave function.

• If T has a discrete standard logistic distribution, then LOT (t) = t+1 and by simple
transformation the discrete truncated logistics distribution has constant LOR in t.

• If T has a discrete Burr XII distribution with parameters α and θ, then in terms of
ln t, F is ILOR for θ < e−1, constant for θ = e−1, and DLOR for θ > e−1.

2 Measure of skewness based on LO

If we define SM =
∫
LO(x)dx, in continuous case and SM =

∑
LO(t) in discrete distri-

butions, then these measures may be measure of skewness.

Theorem 1. Let X be a continuous random variable with cdf, F (x) and log-odds function,

LO(x) = ln F (x)
1−F (x) , then if SM be finite such that, SM =

∫∞
−∞ LO(x)dx, we have, F (x)

is symmetric (positive or negative skewed) if and only if SM = (≥ or ≤)0.
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Proof:
Suppose X has a symmetric distribution, then we have, F (x) = F (2M − x), where M is

its median (or mean) and therefore LO(x) = −LO(2M−x). Thus, SM =
∫M
−∞ LO(x)dx+∫ +∞

M LO(x)dx, so, using the transformation x = 2M − t, we have SM = 0. Also, when
F is positive (negative) skewed, F (x) > (<)F (2M − x) and therefore LO(x) > (<) −
LO(2M − x), so the ”only if” part is proved. The ”if” can be proved on contrary.□

Similar results of Theorem 1 can be proved for discrete distribution, using SM =∑∞
−∞ LO(t). It should be noted that, since SM is just related to cdf, it estimating is

more easier than other measures of skewness like Pearson’s moment coefficient of skewness

[3], γ1 = E

[(
X−µ
σ

)3]
and also Groeneveld-Meeden measure of skewness [1] γ2 =

(µ−M)
E|X−M | ,

where M is median.

3 Bivariate case

Let LO1(x) and LO2(y) denote the marginal log odds functions of F1(x) and F2(y) re-
spectively. The bivariate log odds function can be defined as,

LO(x, y) = ln

(
F (x, y)

1− F (x, y)

)
.

We obtained the following properties for LO(x, y):

• The joint distribution can be determined uniquely by,

F (x, y) =
1

1 + e−LO(x,y)
.

• If X and Y be two independent random variables, then we have,

LO(x, y) = LO1(x) + LO2(y)− ln
(
1 + eLO1(x) + eLO2(y)

)
.

In similar way of Theorem 1, we can proved the following theorem.

Theorem 2. The bivariate distribution of the random variable (X,Y ), is radial symmetric
if and only if,

BSM =

∫
R

∫
R
LO∗(x, y)dxdy = 0,

where LO∗(x, y) = ln F (x,y)

F (x,y)
.

Future of the Work

Studying the estimation of the skewness based on data and also a similar definition of
skewness and symmetric in bivariate cases are the future of the work.
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Some Properties of Multivariate Skew-Normal Distribution,
with Application to Strength-Stress model

Mehrali, Y. 1
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Abstract

In recent years, a large number of research works are appeared in the literature
dealing with the properties and applications of the skew distributions. Skew distri-
butions are shown to be flexible models for describing different kind of data. In the
present study, we consider multivariate skew-normal distribution, and obtain some of
its properties. These properties help us to explore the stress-strength model based on
the multivariate skew-normal distribution.

Keywords: Linear combination, Multivariate skew-normal distribution, Skew-normal
distribution, Stress-strength model.

1 Introduction

Let ϕ(·) and Φ(·) denote the standard normal density and cumulative distribution func-
tions, respectively. Then, a random variable Zλ is said to have a standard skew-normal
distribution with parameter λ ∈ R, denoted by Zλ ∼ SN(λ), if its probability density
function (pdf) is given by (Azzalini 1985, 1986)

ϕSN (z;λ) = 2ϕ(z)Φ(λz), z ∈ R. (1)

Azzalini and Dalla Valle (1996) presented the multivariate skew-normal distribution
with the following pdf

ϕSNn (z;Ω,α) = 2ϕn(z;Ω)Φ(αT z), z ∈ Rn, (2)

where Ω is n×n dimensional dispersion matrix, α ∈ Rn is vector of shape parameter and
ϕn(·;Ω) denotes the pdf of the multivariate normal distribution with covariance matrix

1yasermehrali@gmail.com

83



First Seminar on Reliability Theory and its Applications 84

Ω. We denote by Z ∼ SNn (Ω,α) and in special case that Ω = In(Identity matrix), we
denote by Z ∼ SNn (α).

Azzalini and Dalla Valle (1996) presented representation of Z ∼ SNn (Ω,α) as fallow.
Let Y = (Y1, . . . , Yn)

T and (
Y0
Y

)
∼ Nn+1

(
0,

(
1 0T

0 Γ

))
, (3)

where Γ = [γi,j ] is n× n dimensional correlation matrix. Now if define Z = (Z1, . . . , Zn)
T

as

Zi = δi |Y0|+
√

1− δ2i Yi, (4)

where δi = λi/
√

1 + λ2i , i = 1, . . . , n, then Zi ∼ SN (λi) and Z ∼ SNn (Ω,α), where Ω =

∆
(
Γ+ λλT

)
∆, αT = λTΓ−1

∆−1√
1+λTΓ−1λ

, λ= (λ1, . . . , λn)
T and∆ = diag

{√
1− δ21 , . . . ,

√
1− δ2n

}
.

In matrix form, we can represent

Z = δ |Y0|+∆Y. (5)

In case n = 2, Gupta and Brown (2001) evaluated P (Z1 < Z2) as follow

P (Z1 < Z2) =
1

π
tan−1

(
δ2 − δ1√
2− δ21 − δ22

)
+

1

2
. (6)

where δi = λi/
√

1 + λ2i , i = 1, 2. Let Xi
d
= µi+σiZi, i = 1, 2, where Z1 and Z2 represented

as in (4). Mehrali and Asadi (2010) evaluated P (X1 < X2) as follow

P (X1 < X2) = ΦSN

(
k/
√

1 + δ2; δ
)
, (7)

where ΦSN (·; δ) is the cdf of SN (δ), k = 1
σ
µ2−µ1
σ1

and δ = a1δ1+a2δ2
σ , where δi, i = 1, 2 are

as in (6), σ2 = a21
(
1− δ21

)
+ a22

(
1− δ22

)
, a1 = 1 and a2 = −σ2

σ1
. Here we are interested in

evaluation of the following model of which presented by Kotz et al. (2003) as

P (X1 < X2 < · · · < Xn) (8)

where Xi
d
= µi + σiZi, i = 1, . . . , n, where Z = (Z1, . . . , Zn)

T ∼ SNn (Ω,α) with rep-
resentation 5. For this purpose we study some properties of multivariate skew-normal
distribution which help us to explore the stress-strength model based on the multivariate
skew-normal distribution.

2 Some properties of multivariate skew-normal distribution

In this section, we present some properties of multivariate skew-normal distribution. These
results help us to evaluate the stress-strength model based on the multivariate skew-normal
distribution.

Let Zλ ∼ SN (λ) independent of W ∼ Nn (0,Σ), where Nn (0,Σ) denotes the multi-
variate normal distribution.
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a) If we define Y = HTW+ kZλ, then Y ∼ SNn (Ω,α), where H is n× n symmetric

matrix, k ∈ Rn, Ω = HTΣH+ kkT , αT = δkTΩ−1

√
1−δ2kTΩ−1

k
and δ = λ/

√
1 + λ2.

Let Zλ ∼ SN (λ). Then

E [Φn (kZλ + u;Σ)] = ΦSNn (u;Ω,α) ,

where Φn (·;Σ) is the cdf of Nn (0,Σ), ΦSNn (·;Ω,α) is cdf of SNn (Ω,α), Ω is same as

lemma 2 part (c) and αT = − δkTΩ−1

√
1−δ2kTΩ−1

k
.

Let define

Ψn (k,u,Σ) =

∫ ∞

0
Φn (kz + u;Σ)ϕ (z) dz.

Then

Ψn (k,u,Σ) =
1

2
ΦSNn (u;Ω,α) ,

where Ω is same as lemma 2 part (c) and αT = − kTΩ−1

√
1−kTΩ−1

k
.

Let Z ∼ SNn (Ω,α) with representation 5 and D be an (n− 1)× n matrix, then

P (DZ < u) = ΦSNn−1 (u;Ω
∗,α∗) ,

where where Ω∗ = DTΩD and α∗T = δTΩDT−1

√
1−δTΩ−1δ

, where δ is same as 4.

3 Stress-strength models in multivariate skew-normal dis-
tribution

Theorem 1. Let Xi
d
= µi + σiZi, i = 1, . . . , n, with representation as in (4). Then

P (X1 < X2 < · · · < Xn) = ΦSNn−1 (u;Ω
∗,α∗) ,

where u = (u1, . . . , un−1)
T , ui = µi+1−µi, Ω

∗ and α∗ are same as lemma 2 part (a) with

D =


a1 b1 0

a2 b2
. . .

. . .

0 an−1 bn−1

 .
and ai = σi and bi = −σi+1.

In special cases, we can find main results of Mehrali and Asadi (2010) and Gupta and
Brown (2001) as in 6 and 7.
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Nonparametric and Parametric Estimation of Survival
Function

Mireh, S. 1 and Khodadadi, A. 2
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Abstract

This paper considers a general degradation path model and failure time data with
traumatic failure mode. It provides a review of the nonparametric estimator of sur-
vival function, studied by Bagdonavicius, and considers the parametric estimation of
survival function of failure times with a hazard rate in the degradation space. In
addition, we discuss the comparison of both parametric and nonparametric methods
according to simulated and real data.

Keywords: Degradation models, Failure times, Hazard rate, Nonparametric and
parametric estimation, Survival function.

1 Introduction

Analyzing survival data is historically based on (T1, . . . , Tn) each measuring an individual
time to event. It is difficult to assess reliability with traditional life tests that record only
time to the failure. In some cases, degradation is measured directly by passage of time.
Thus, it is necessary to define a level of degradation at which a failure is said to have
occurred. We define soft and hard failures in terms of a specified level of degradation and
traumatic failures.

Usually, one attempts to conditionally define the hazard rate such as Bagdonavicus[3]
that define λ(t|A) = λ0(t)× λ(g(t, A)) where g is a given non-decreasing function.

Statistical analysis of linear degradation and multiple failure modes using nonpara-
metric method are discussed by Bagdonavicuset al.[1]. They have presented reliability
characteristics using a semiparametric method[2]. In this work, we estimate the survival
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function from the degradation and failure time data using parametric and nonparametric
methods.

This paper is organized as follows. Section 2 defines the joint models for degradation
and failure time. Section 3 is devoted to a review on the estimation of survival function.
Section 4 deals with the performance of the two methods through a set of real data. In
section 5, a simulation study is performed for the comparison of both methods usingin
various sample sizes.

2 Joint models for degradation and failure time

Assume that the degradation of an item is given by stochastic process Z(t). We denote the
true degradation path of particular unit by g(t), but the observed degradation processes
is a degradation path plus error: Z(t) = g(t, A) + e, where A is a vector of unknown
parameters. Bagdonavicus[1] has studied a linear degradation model with multiple failure
modes.

Suppose the life time T 0 is the first time of crossing a ultimate threshold z0 for Z(t).
If we denote h for the inverse function of g and h′ for its partial derivative then: T 0 =
h(z0, A). Let T 1 be traumatic failure time. Thus the moment of the observed failure is:
T = min(T 0, T 1).

Suppose the random variable T 1 has the intensity λ(1)(z) and the cumulative intensity
Λ(1)(z), depending on the degradation level. The conditional survival function of T 1 given
A is:

S(1)(t|A) = exp
{
−
∫ t

0
λ(1)(g(y, a))dy

}
= exp

{
−
∫ g(t,a)

0
h′(z, a)dΛ(1)(z)

}
.

We can obtain the survival function of the random variable T :

S(t) =

∫
g(t,a)<z0

exp
{
−
∫ g(t,a)

0
h′(z, a)dΛ(1)(z)

}
dπ(a) (1)

where π is the distribution function of A.

3 Estimation of the reliability functions

Suppose the data are collected from n unit: (T1, Z1, δ1), . . . , (Tn, Zn, δn) where Ti is the
failure time, Zi is the degradation level and δi is the indicator of the failure modes. In the
parametric method, we set a distribution on A and the parameters are estimated using
MLE. However in the nonparametric method, the estimators are given by the following:
The estimation of the distribution function and the cumulative hazard function:

π̂(a) =
1

n

n∑
i=1

1{Ai≤a} , Λ̂(z) =
∑

Zi≤z,δi=1

1∑
j,Zj≤Zi

h′(Zj , Ai)

4 Estimation by real data

The real data are the wear and failure time data of 79 bus tires. The critical tire wear
value is z0 = 15mm. Set g(T,A) = T/A. We have used the Exponentiated Weibull family
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Table 1: Maximum Likelihood Estimators: Exponentiated Weibull distribution and inten-
sity functions

Parameter Estimation
β 1.4836
σ 1.4772
θ 130.439
α1 0.0425
ν1 6.4332

as the parametric family of π and let λ(1)(z) = (α1z)
ν1 . The MLE of the parameters are

summarized in Table 1.

We obtain a parametric estimation of survival function by substituting parameter
estimates in (1). In addition, we calculate the nonparametric estimation. Figure 1 gives
graphs of empirical cdf of A and the estimators of S(t).

Figure 1: (Left) Empirical cdf of A; (Right) parametric(solid line) and nonparamet-
ric(dotted line) estimators of S(t)

5 Simulation study

Example 1. In this example, we compare the parametric and nonparametric estimations
by using small, moderate, and large sample sizes. We have generated vector A from the
Weibull distribution with parameters (5, 2) and set z0 = 10.

Figure 2: Parametric(dotted line) and nonparametric(solid line) estimators of S(t) in
different sample sizes

Example 2. We consider simulations of n=100 degradation curves Z(t, θ1, θ2) = eθ1(1 +
t)θ2 , t ∈ [0, 12] with a hazard rate in the degradation space of Weibull-type(α = 5, β = 2.5)
and A = (θ1, θ2) is a Gaussian vector with mean (-2,2) and V arθ1 = V arθ2 = 0.12.
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Figure 3 shows the distribution function of θ2 and the nonparametric estimation of the
cumulative hazard rate.

Figure 3: (Left) Empirical cdf of θ1; (Right) Nonparametric hazard rate and 95% confi-
dence band
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Determining the Warranty Period Using Pitman Measure
of Closeness
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Abstract

In this paper, we study the determination of the warranty period in view of a war-
ranty policy where the manufacture accept to minimally repaired the failure product.
To do this, the problem of predicting the time of minimal repair based on a progressive
Type-II censored sample is considered. We utilize the property of Pitman measure of
closeness and propose a method to find the closest predictor. Since, over-predication
may be more important in a warranty problem, asymmetry loss is also considered in
the probability of closeness.

Keywords: Pitman measure of closeness, Prediction, Warranty period, Progressively
Type-II censored order statistics, Minimal repair.

1 Introduction

A warranty is a contractual agreement in which the manufacturer accept to rectify all
failures occurring up to a given amount of time (warranty period) from the date of pur-
chase. Manufacturers offer many types of warranties to promote their products such as
repair, replacement or cash refund. Offering warranty leads to additional costs to the
manufacturer, so choosing the best policy reduces the servicing costs of manufacturer. A
detailed discussion of various issues related to warranties can be found in [5].

In this paper, we consider a policy where warranty is not renewed on product failure
but it is minimally repaired. This means that, on repair, the failure rate of the item
remains the same as just prior to failure. Such policies are suitable for complex and
expensive products where repair typically involves a small part of the product. We are
interested to predict the time of ith minimal repair to determine the perfect warranty
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period. Moreover, the minimal repair times have the same joint distribution as record (R)
values (see [2]), so to simplify the notation, in the rest of this paper, let Ri be the ith R,
which has the same distribution as the ith minimal repair times.

Now, consider a life testing experiment involving n experimental units. Suppose m
complete failure are to be observed, such that when the ℓth failure is observed, ai items are
randomly removed from the test. The vector (a1, · · · , am) is fixed prior to the experiment.
Let Xℓ:m:n denotes the ℓth progressively Type-II censored (PTC) order statistic (OS) of
the observed sample. We want to use this information to predict the minimal repair times.
Statistical prediction play an important role in determining the warranty length. Many
researches consider the prediction of a subset of ordered data based on an independent
observed sample of ordered data and different methods are considered in the literatures,
for more details see [3]. Here, the concept of Pitman’s measure of closeness (PMC) is used
to proposed a method for prediction.

The concept of PMC was introduced by [6] and faced a considerable attention in
ordered data topics after [1]. For more review about the PMC, see the monograph by [4].
More formally, the PMC in prediction context is defined as follows.

Definition 1. If T1 and T2 are two predictors of a random variable Y , then T1 is a Pitman
closer predictor than T2, under loss function L(·, ·), if Pr[L(T1, Y ) < L(T2, Y )] ≥ 1

2 .
Moreover, let Λ = {T1, T2, ..., Tn} be a non-empty class of predictors of Y . Then, Ti is
the Pitman-closest predictor if, for every Tj ∈ Λ such that i ̸= j, we have Pr[L(Ti, Y ) <
L(Tj , Y )] ≥ 1

2 .

Depending on the situation of problem, one can use different loss functions in the
probability of PMC. Absolute loss function, i.e., L(T, Y ) = |T − Y |, is the most common
loss in PMC concept. However, in many warranty problem, under-prediction is more
important than over-prediction or vice versa. So, apart from absolute loss function, in
this paper, we consider the following loss function

L1(T, Y ) =

{
0, T < Y ;
T − Y, T > Y .

In the rest of this paper, we formulate the warranty issue as a prediction problem and
study the PMC of OSs from current PTC sample to R values from a future sequence.
Considering two loss functions in the probability of PMC, results have been compared.

2 Main result

LetXℓ:m:n denote the ℓth OS from a PTC sample with an absolutely continuous cumulative
distribution function F (·) and probability density function f(·) and Ri be the ith R with
the same parent distribution as Xℓ:m:n. Since PMC has the transitivity property in a class
of ordered data, we consider the PMC of two adjacent OSs, i.e.,

PMC(Xℓ:m:n, Xℓ+1:m:n|Ri) = Pr(|Xℓ:m:n −Ri| < |Xℓ+1:m:n −Ri|), (1)

The exact expression for (1) is given as follows

PMC (Xℓ:m:n, Xℓ+1:m:n|Ri) = Pr(Xℓ:m:n +Xℓ+1:m:n > 2Ri)

= Pr(Xℓ:m:n > Ri) + Pr(Xℓ:m:n < Ri, Xℓ:m:n +Xℓ+1:m:n > 2Ri)

=

ℓ∑
t=1

cRℓ−1a
R
t (ℓ)

{
1

γRt

(
1

γRt + 1

)i+1

+
1

γRℓ+1

B(t, i)

}
,
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where

B(t, i) =

∫ 1

0

∫ 1

y

uγ
R
t −γR

ℓ+1−1[F̄ (2F−1(1− y)− F−1(1− u))]γ
R
ℓ+1

{− log y}i

i!
dudy.

PMC depends on the parent distribution of OSs. In the next section, we will find the
result for exponential distribution.
Now, let us consider the problem of prediction using PMC with L1(·, ·). Given a PTC
sample, the PC probability to a R from a future independent sequence, under loss function
L1(·, ·), is given by

Pr(L1(Xℓ:m:n, Ri) < L1(Xℓ+1:m:n, Ri)) =
ℓ+1∑
t=1

cRℓ a
R
t (ℓ+ 1)

{
1

γRt

(
1

γRt + 1

)i+1
}
.

It is important to note that, in the case of L1(·, ·), PMC is non-parametric. In the next
section, we will compare this results.

3 Example

We present our result in the previous section for the standard exponential in the case of
absolute loss function. Then, the probability of closeness is compared with the results of
non-parametric PMC.

Let the parent distribution be standard exponential, then B(t, i) in the case of expo-
nential is given as below

B(t, i) =


1

γRt −2γRℓ+1

{(
1

1+2γRℓ+1

)i+1

−
(

1
1+γRt

)i+1
}
, γRt ̸= 2γRℓ+1,

(i+ 1)

(
1

1+2γRℓ+1

)i+2

, γRt = 2γRℓ+1.

Table 1 present the PMC of PTC OSs with censoring scheme R = (20, 0, 0, 0, 0, 0, 0, 0, 0, 0)
to the first 6 Rs of future sequence. Table 2 is the non-parametric PMC when the loss
function is L1(·, ·).

Table 1: PMC for standard exponential. Table 2: Non-parametric PMC for L1(·, ·).
i i

ℓ 0 1 2 3 4 5 0 1 2 3 4 5
1 0.038 0.002 0.000 0.000 0.000 0.000 0.129 0.014 0.001 0.000 0.000 0.000
2 0.135 0.015 0.002 0.000 0.000 0.000 0.226 0.037 0.005 0.001 0.000 0.000
3 0.233 0.040 0.006 0.001 0.000 0.000 0.323 0.073 0.014 0.002 0.000 0.000
4 0.331 0.077 0.015 0.003 0.000 0.000 0.419 0.123 0.029 0.006 0.001 0.000
5 0.430 0.129 0.032 0.007 0.001 0.000 0.516 0.188 0.056 0.014 0.003 0.001
6 0.530 0.199 0.061 0.016 0.004 0.001 0.613 0.273 0.099 0.031 0.009 0.002
7 0.631 0.292 0.110 0.036 0.011 0.003 0.710 0.382 0.170 0.066 0.023 0.008
8 0.739 0.421 0.199 0.082 0.031 0.011 0.806 0.524 0.288 0.140 0.062 0.026
9 0.871 0.639 0.405 0.228 0.118 0.056 0.903 0.713 0.501 0.320 0.191 0.109

To find the Pitman closest OS for the specific R value, find the first ℓ which PMC is
greater than 0.5. For example X6:10:20 is the Pitman closest predictor for the first R when
the loss function is absolute error. From Table 1 and 2, it can be seen that by ignoring
the under-predict error, smaller OSs get closer to R value comparing with the time that
we use absolute loss function.
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Abstract

In this paper, we discuss the Bayesian estimation problem for the Rayleigh distri-
bution based on upper record ranked set samples. The Bayes estimators are obtained
with respect to two different loss functions. We also obtain the Bayes confidence inter-
vals for the parameter of the Rayleigh distribution. Finally, we present a simulation
study for the purpose of numerical comparison.

Keywords: General entropy loss function, Maximum likelihood estimator, Simu-
lation.

1 Introduction

The record ranked set sampling scheme has been introduced recently by [2]. Here, we
describe this sampling scheme, briefly, according to [2] as follows: Suppose that we have
m independent sequences of continuous random variables. If Ri,i denotes the i-th record
value in the i-th sequence for i = 1, ...,m, then i-th sequence sampling is terminated when
Ri,i is observed. Then, the only available observations, which are called record ranked
set sample (RRSS), include R1,1, · · · , Rm,m. These data can be minimal repair times of
some reliability systems as mentioned in [2]. The Rayleigh distribution plays a key role in
reliability analysis and therefore estimation of its parameter is important. In this paper,
we consider the point and interval estimation problem for the Rayleigh distribution based
on observed upper RRSSs. Main results are given in Section 2 and a simulation study is
presented in Section 3.
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2 Main Results

We say that X has a Rayleigh distribution if its pdf is given by

f(x) =
x

σ2
exp

(
− x2

2σ2

)
, x > 0, σ > 0. (1)

Let U = (U1,1, · · · , Um,m) be an upper RRSS from the Rayleigh distribution with pdf
given in (1), then the likelihood function for the parameter σ given u = (u1,1, · · · , um,m)
is (see [2])

L(σ|u) = =

m∏
i=1

{− log(1− F (ui,i))}i−1

(i− 1)!
f(ui,i)

=

exp

(
−

∑m
i=1 u

2
i,i

2σ2

)
σm(m+1)2m(m−1)/2

m∏
i=1

u2i−1
i,i

(i− 1)!
, (2)

where ui,i > 0 for i = 1, ...,m and σ > 0. The maximum likelihood estimator (MLE) of σ
is readily obtained to be

σ̂ML =

√∑m
i=1 U

2
i,i

m(m+ 1)
. (3)

For the Bayesian estimation, we take the conjugate prior

π(σ) ∝ σ−2b−1 exp(−a/2σ2), σ > 0, (4)

where a and b are positive hyperparameters. Note that for a = b = 0, we arrive at the
non-informative prior. Now, from Equations (2) and (4), the posterior distribution of σ,
given u, becomes

π(σ|u) = 2wb+m(m+1)/2 exp(−w/σ2)
Γ
(
b+m(m+ 1)/2

)
σ2b+m(m+1)+1

, (5)

where Γ(·) is the complete gamma function, W =
a+

∑m
i=1 U

2
i,i

2
, and w is the observed

value of W .

Let σ̂ be an estimator of σ, then the squared error loss (SEL) function is defined as
L1(σ, σ̂) = (σ̂ − σ)2. The Bayes estimator of σ under SEL function, based on RRSS, is
the mean of the posterior density (5)

σ̂BS =
Γ
(
b+ [m(m+ 1)− 1]/2

)√
W

Γ
(
b+m(m+ 1)/2

) .

The SEL function is symmetric namely it assigns equivalent dimensions to underestimation
and overestimation. But in many real situations, overestimation and underestimation have
different consequences. Therefore, we consider a useful asymmetric loss function, called
the general entropy loss (GEL) function, introduced by [1], which is defined as

L2(σ, σ̂) = (σ̂/σ)q − q log(σ̂/σ)− 1, q ̸= 0.
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The sign and magnitude of parameter q must be determined properly. The positive values
of q cause the overestimation to get more serious than underestimation and vice versa.
The Bayes estimator of σ under GEL function, based on RRSS, is

σ̂BG =
[
E(σ−q|U)

]−1/q
=

[
Γ
(
b+ [m(m+ 1) + q]/2

)
Γ
(
b+m(m+ 1)/2

) ]−1/q√
W, (6)

provided that b+ [m(m+ 1) + q]/2 > 0.
Next, we want to find Bayesian confidence intervals for σ. From (5), we see that

Q1 = w/σ2|u ∼ G
(
b+m(m+1)/2, 1

)
, where G(λ1, λ2) stands for the gamma distribution

with the shape parameter λ1 and scale parameter λ2. Let ξγ(λ1, λ2) denote the upper
γ-th quantile of G(λ1, λ2), that is P (V > ξγ(λ1, λ2)) = γ where V ∼ G(λ1, λ2). Then, a
100(1−α)% two-sided equi-tailed Bayesian confidence interval (TEB CI) for σ is given by(√

W

ξα/2(b+m(m+ 1)/2, 1)
,

√
W

ξ1−α/2(b+m(m+ 1)/2, 1)

)
.

We also derive the highest posterior density intervals (HPDIs) for σ. For unimodal poste-
rior distributions, the HPDIs are the same as their corresponding shortest credible inter-
vals. Since the posterior pdf of σ given in (5) is unimodal, it can be easily verified that a
100(1− α)% HPDI for σ, given W = w, possesses the form (σL, σU ) such that

Γ(A(b,m), w/σ2U , w/σ
2
L)

Γ(b+m(m+ 1)/2)
= 1− α, and

(
σU
σL

)2A(b,m)+1

= ew(σ
−2
L −σ−2

U ),

where A(b,m) = b + m(m + 1)/2 and Γ(ν, u1, u2) =
∫ u2
u1
tν−1e−tdt is the generalized

incomplete gamma function.

3 A simulation study

In this section, we performed a simulation in order to compare the point and interval
estimators. In this simulation, we randomly generated M = 10000 upper RRSSs of size
m = 6 from the Rayleigh distribution with σ = 1. We considered 3 cases for the prior
distribution described as follows:
Case I: Non-informative prior with a = b = 0.
Case II: Informative prior with prior information E(σ) = 1 =true value, and V ar(σ) = 2
and from (4), we have a = 0.9115 and b = 1.1519.
Case III: Informative prior with prior information E(σ) = 1 and V ar(σ) = 0.5 which
corresponds to a = 1.6989 and b = 1.5663.
We then obtained the MLEs and the Bayes estimators of σ under SEL and GEL (for
q = −2, 2) functions, which are denoted by σ̂ML(i), σ̂BS(i) and σ̂BG(i), in the i-th
iteration, respectively. The estimated risks (ERs) of the estimators were obtained using
the relations ERS(σ̂BS) =

1
M

∑M
i=1[σ̂BS(i)−σ]2, and ERG(σ̂BG) =

1
M

∑M
i=1[(σ̂BG(i)/σ)

q−
q log(σ̂BG(i)/σ)− 1]. We calculated the ER of each Bayes estimator according to its own
loss function. For the MLEs, we calculated both kinds of ERs, i.e. ERS and ERG to
compare them with their corresponding Bayes estimators. We also obtained 95% TEB
CIs as well as 95% HPDIs for σ and calculated the coverage probabilities (CPs) and the
average widths (AWs) of the CIs over 10000 replications. The results are presented in
Table 1.
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From Table 1, we observe that the ERs of the Bayes estimators, especially the ones
obtained under the informative cases, are smaller than the ERs of the corresponding MLEs
which reveals the superiority of the Bayesian methods as compared with the likelihood
ones. Moreover, Case III contains the smallest ERs and the shortest CIs which is quite
reasonable as Case III has the smallest prior variance and therefore is the most informative
case. We also observe that the HPDIs are shorter than their corresponding TEB CIs.

Table 1: The results of the simulation.
ERS ERG TEB CI HPDI

q = −2 q = 2 AW CP AW CP
MLE 0.0119 0.0260 0.0240 – – – –
Case I 0.0124 0.0248 0.0240 0.4437 0.9500 0.4364 0.9493
Case II 0.0114 0.0242 0.0235 0.4243 0.9484 0.4177 0.9426
Case III 0.0110 0.0232 0.0227 0.4201 0.9510 0.4137 0.9446
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Abstract

In this paper, we study the estimation problem for the exponential-geometric dis-
tribution under type II progressive censoring with binomial removals. The maximum
likelihood estimators as well as the asymptotic confidence intervals for the parameters
are derived. Finally, a real data example is presented to illustrate the results of the
paper.

Keywords: Asymptotic confidence interval, Binomial censoring scheme, Type II pro-
gressive censoring.

1 Introduction

The exponential-geometric (EG) distribution was first introduced by [1], whose probability
density function (pdf) and cumulative distribution function (cdf), are given by

f(x|θ) = (1− θ)e−x(1− θe−x)−2, x > 0, θ > 0, (1)

and

F (x|θ) = (1− e−x)(1− θe−x)−1, (2)

respectively. In what follows, we focus on estimation for this model under type II progres-
sive censoring with binomial removals.
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2 Main results

Let X = (X1:m:n, X2:m:n, ..., Xm:m:n) denote a progressively type II right censored sample
of size m extracted from a sample of size n, where lifetimes have an EG distribution
with pdf given in (1). At the i-th failure, Ri = ri, i = 1, ...,m − 1 units are removed
randomly from the experiment. When the m-th failure is observed, the remaining rm =
n−m−

∑m−1
j=1 rj are all removed. Supposing that the R = (R1, ..., Rm−1) is predetermined,

the conditional likelihood function becomes (see for example [2])

L(θ,x|R = r) = C
m∏
i=1

f(xi)[1− F (xi)]
ri

= C(1− θ)ne−
∑m

i=1 xi(1+ri)
m∏
i=1

(1− θ exp(−xi))−(ri+2),

where C is the normalizing constant and x is the observed vector of X. Now assume
that Ri’s are discrete random variables such that R1 follows Bin(n −m, p) and Ri|R1 =
r1, ..., Ri−1 = ri−1 follows Bin(n −m −

∑i−1
j=1 rj , p) for i = 2, ...,m − 1, where Bin(n, p)

denotes for the binomial distribution with parameters n and p. Assume further R =
(R1, ..., Rm−1) and X are independent. Therefore, the joint likelihood function of X and
R is

L(θ, p;x, r) = L(θ,x|R = r)P (R1 = r1)
m−1∏
i=2

P (Ri = ri)

= A(1− θ)n
m∏
i=1

(1− θ exp(−xi))−(ri+2)

×p
∑m−1

i=1 ri(1− p)(m−1)(n−m)−
∑m−1

i=1 (m−i)ri ,

where A = C(n−m)!e−
∑m

i=1 xi(1+ri)/{
∏m−1
i=1 ri!(n − m −

∑m−1
i=1 ri)!}, does not depend

on the parameters. Let ℓ(θ, p) = logL(θ, p;x, r) be the log-likelihood function. Then the
maximum likelihood estimators (MLEs) of the parameters will be obtained by maximizing
ℓ(θ, p) with respect to θ and p. Upon differentiating ℓ(θ, p) with respect to p, the MLE of
p, denoted as p̂MLE , is obtained to be

p̂MLE =

∑m−1
i=1 ri

(m− 1)(n−m)−
∑m−1

i=1 (m− i− 1)ri
,

and the MLE of θ, denoted as θ̂MLE , is the solution of the following equation

∂ℓ(θ, p)

∂θ
= − n

1− θ
+

m∑
i=1

(ri + 2)e−xi

1− θe−xi
= 0.

Next, we derive the asymptotic confidence intervals of the unknown parameters α = (θ, p)
based on the idea of large sample approximation. The inverse of the observed information
matrix is given by

I−1(α) =

[
−∂2ℓ(θ,p)

∂θ2
−∂2ℓ(θ,p)

∂θ∂p

−∂2ℓ(θ,p)
∂θ∂p −∂2ℓ(θ,p)

∂p2

]−1

=

[
V ar(θ̂MLE) Cov(θ̂MLE , p̂MLE)

Cov(θ̂MLE , p̂MLE) V ar(p̂MLE)

]
.
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The elements of I−1(α) are

−∂
2ℓ(θ, p)

∂θ2
=

n

(1− θ)2
−

m∑
i=1

(ri + 2)e−2xi

(1− θe−xi)2
, −∂

2ℓ(θ, p)

∂θ∂p
= 0,

−∂
2ℓ(θ, p)

∂p2
=

∑m
i=1 ri
p2

+
(m− 1)(n−m)−

∑m−1
i=1 (m− i)ri

(1− p)2
.

Under the regularity conditions that are fulfilled for the parameters (see [3], pp. 461-463),
the asymptotic joint distribution of (θ̂, p̂), as n → ∞, is a 2-variate normal distribution
with mean (θ, p) and variance-covariance I−1(α). Unknown parameters which may appear
in the elements of I−1(α) may be substituted by their corresponding MLEs. Therefore,
the asymptotic 100(1 − γ)% two-sided equi-tailed confidence intervals (TE CIs) for the
parameters θ and p, respectively, are given by

θ̂MLE ± zγ/2

√
̂

V ar(θ̂MLE), and p̂MLE ± zγ/2

√
̂V ar(p̂MLE),

where zγ/2 is the upper γ/2 quantile of the standard normal distribution.

3 A real data example

In this section, we consider a real data example, discussed by [4], regarding n = 23 deep-
groove ball bearing failure times. The data are:
0.1788, 0.2892, 0.3300, 0.4152, 0.4212, 0.4560, 0.4848, 0.5184, 0.5196, 0.5412, 0.5556,
0.6780, 0.6864 ,0.6864, 0.6888, 0.8412, 0.9312, 0.9864, 1.0512, 1.0584, 1.2792, 1.2804,
1.7340.
These observations are the number of revolutions (in hundred of millions) to failure for
each ball bearing. The Kolmogorov-Smirnov test showed that the EG distribution with
θ̂ = 0.0677 is acceptable for these data (p-value>0.165). Here, we analyze the data from
the perspective of progressive type II censoring with binomial removals. We take m = 18
and use several values of p to generate different removal schemes. These removal schemes
are presented in Table 1. For each scheme, we randomly extracted a progressively type II
censored sample with binomial removals from the ball bearing data and then obtained the
MLEs as well as the asymptotic 95% TE CIs for θ and p based on the extracted samples.
The results are presented in Table 2. Note that the CIs for θ, marked by ∗, are the ones
whose lower bounds are obtained less than zero and therefore are replaced with zero as
θ > 0. In addition, the CI for p, marked by ∗∗, is the one whose upper bound is obtained
more than one and therefore is replaced with one.

Table 1: The censoring schemes.

Number p scheme
1 0.2 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
2 0.5 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0.7 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0.9 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 2: The MLEs and the asymptotic 95% CIs for the parameters based on the extracted
samples.

scheme p̂MLE CI(p) θ̂MLE CI(θ)
1 0.2631579 (0.06515356, 0.4611622) 0.03888371 (0*, 0.6644923)
2 0.4545455 (0.1602879, 0.748803) 0.002534581 (0*, 0.6577489)
3 0.625 (0.2895199, 0.9604801) 0.03231922 (0*, 0.6728525)
4 0.8333333 (0.5351288, 1**) 0.01659866 (0*, 0.6601827)
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Abstract

In this paper, we focus on the problem of estimation for the scale and shape pa-
rameters of the weighted exponential distribution. The probability weighted moments
method has been developed for estimating the parameters. A real data example ends
the paper.

Keywords: Maximum likelihood estimator, Probability weighted moment method,
Weighted exponential distribution.

1 Introduction

The weighted exponential (WE) distribution was first introduced by [3] and has the fol-
lowing probability density function (pdf)

f(x) =
α+ 1

α
λe−λx(1− e−λαx), x > 0, α > 0, λ > 0. (1)

The corresponding cumulative distribution function (cdf) is given by

F (x) = 1− α+ 1

α
e−λx +

1

α
e−λ(1+α)x, x > 0.

The WE distribution can be applicable in reliability and therefore estimation of its param-
eters are important in this field. Recently, Dey et al. [1] investigated different methods
of estimation for this distribution, including the moment, maximum likelihood (ML),
weighted least-squares and percentile methods. But they did not consider one of the well-
known methods known as the probability weighted moments (PWM) method. In what
follows, we review the procedure of finding the moment and ML estimators of the parame-
ters and then discuss how to obtain PWM estimators. Section 2 contains the main results
and a real data example is given in Section 3.
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2 Main Results

Let X1, · · · , Xn be a random sample of size n from the WE distribution with pdf given in
(1). In this section, we discuss the moment, ML and PWM methods for estimation of the
parameters.

2.1 Moment Estimation

In this method, the estimators of the parameters are obtained by equating the population
moments with the sample moments. For the WE distribution, the moment estimators
(MEs) of the parameters are (see [3])

α̂ME =
−(X

2 − 2S2) +

√
(X

2 − 2S2)2 − 2(X
2 − S2)(X

2 − 2S2)

X
2 − S2

,

and λ̂ME =
1

X

(
1 +

1

1 + α̂ME

)
, where X = 1

n

∑n
i=1Xi is the sample mean and S2 =

1
n

∑n
i=1X

2
i − X

2
is the sample variance. It can be proved that the MEs exist and are

feasible if and only if S2 < X
2
< 2S2, see [3].

2.2 Maximum Likelihood Estimation

The log likelihood function for the WE distribution, given an observed random sample of
size n, is given by
ℓ(α;λ, x) = n ln(α+ 1)− n lnα+ n lnλ− λ

∑n
i=1 xi +

∑n
i=1 ln(1− e−λαxi).

The ML estimators will be obtained by maximization of the log likelihood function with
respect to the parameters. Upon differentiating the log likelihood function with respect
to the parameters and equating them with zero, we have

∂ℓ

∂α
=

n

α+ 1
− n

α
+ λ

n∑
i=1

xie
−λαxi

(1− e−λαxi)
= 0,

∂ℓ

∂λ
=

n

λ
−

n∑
i=1

xi + α
n∑
i=1

xie
−λαxi

1− e−λαxi
= 0.

Numerical techniques may be applied to solve the equations.

2.3 Probability weighted moments method

The PWM method was first introduced by [2]. For an arbitrary random variable X with
cdf F (x), the probability weighted moment of order (l, k, r) is defined as

Ml,k,r = E[Xk{F (X)}k{1− F (X)}r],

where l, k and r are real numbers. Clearly, the quantities Ml,0,0, l = 1, 2, ... are the usual
noncentral moments. In the context of estimation, it is preferable to use eitherM1,k,0, k =
0, 1, 2, ... orM1,0,r, r = 0, 1, 2, ... depending on the structure of the cdf of X, see [4] for more
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related details. Landwehr et al. [5] emphasized that an unbiased estimator ofMr ≡M1,0,r,
when r is a nonnegative integer number, based on a random sample of size n, is

M̂r =
1

n

n∑
i=1

Xi

(
n− i

r

)/(
n− 1

r

)
.

Therefore, one can obtain the PWM estimators of the unknown parameters by equating
Mr with M̂r for r = 0, 1, ..., s where s + 1 is the number of parameters. For the WE
distribution, M0 = E(X) = λ−1(1 + 1

1+α) and

M1 = E[X{1− F (X)}] =
∫ ∞

0
x

(
α+ 1

α
e−λx − 1

α
e−λ(α+1)x

)
×α+ 1

α
λe−λx(1− e−λαx)dx

=
α+ 1

λα2

(
α+ 1

4
− 1

α+ 2
+

1

4(α+ 1)2

)
.

Thus, we can obtain the PWM estimators of λ and α by solving the equations: M0 = X
and M1 = 1

n(n−1)

∑n
i=1(n− i)Xi, simultaneously. From these equations, we can see that,

for a given α, the PWM estimator of λ is

λ̂PWM (α) =
1

X

(
1 +

1

1 + α

)
, (2)

and the PWM estimator of α can be obtained as a solution of the following fixed-point
type equation

(α+ 1)2

(α+ 2)α2

(
α+ 1

4
− 1

α+ 2
+

1

4(α+ 1)2

)
=

1

n(n− 1)X

n∑
i=1

(n− i)Xi.

Once we get the PWM estimator of α, the PWM estimator of λ can be obtained from (2).

3 A real data example

Here, we consider a real data set, reported by [3, page 632], which is the marks of the
slow pace students in Mathematics in the final examination in 2003. For these data, the
Moment, ML and the PWM estimators of the parameters are: α̂ME = 0.4384, λ̂ME =
0.0655, α̂MLE = 0.2919, λ̂MLE = 0.0685, α̂PWM = 0.0007764, λ̂PWM = 0.0772.

The following codes in R 3.1.2 were used to find the PWM estimators of the parameters.

library(nleqslv)

x=c(29,25,50,15,13,27,15,18,7,7,8,19,12,18,5,21,15,86,21,15,14,

39,15,14,70,44,6,23,58,19,50,23,11,6,34,18,28,34,12,37,4,60,20,

23,40,65,19,31)

z=c()

for(i in 1:n) z[i]=(n-i)*x[i]

MODEL=function(u){

v=numeric(1)

v[1]=(u[1]+1)^2/(u[1])^2/(u[1]+2)*( (u[1]+1)/4-1/(u[1]+2)

+1/4/(u[1]+1)^2)-1/sum(x)/(n-1)*sum(z)

v
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}

RES=nleqslv(c(2),MODEL)

alph=RES$x[1]

lamb=1/mean(x)*(1+1/(alph+1))
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Survival Modeling of Spatially Correlated Data
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Abstract

Identifying risk sources of survival data are given special emphasis in survival anal-
ysis. Identifiable risk factors can be modeled by available covariates using some models
like Cox proportional hazards model. However some risk factors are often unidentifi-
able or immeasurable. The spatial correlation of data is one of these factors that is
rarely noticed. In this paper a spatial survival model is introduced for such data. A
simulation study is performed to show the high performance of the model parameter
estimations for the proposed model. Results validate our approach.

Keywords: Proportional hazards model, Unknown risk factors, Spatial random ef-
fect, Spatial survival model.

1 Introduction

Survival models are usually used to analyze the realizations of a response variable which is
the waiting time until the occurrence of a well-defined event. Suppose that the observations
are censored, in the sense that for some units the event of interest has not occurred at the
time the data are analyzed, and also there are some explanatory variables whose effects
on the waiting time we wish to assess.

In many applications, there are some unknown risk factors effecting survival times.
For instance, gender, age, race, level of welfare of children and living environments can
affect on duration of seizures due to asthma in asthmatic children. While the location of
children lodging can also be one of the risk factors. The time of seizures for children living
in downtown areas with more polluted air, is greater than for whom living in areas with

1mohsen-m@modres.ac.ir
2kmotarjem@modares.ac.ir
3a.abyar@modares.ac.ir

107



First Seminar on Reliability Theory and its Applications 108

less pollution. Due to various concentration of air pollution in different parts of a city, the
survival times should be modeled using the location of children lodging.

The most common model for fitting the independent survival data is the Cox pro-
portional hazard function. But in many cases data are correlated. Using this model for
correlated survival data, may lead to inappropriate analysis. This paper is aimed to show
that the regular state of art modeling methods and analyzing the spatial survival data
may not be applicable due to the correlated nature of spatial data.

The Cox proportional hazard function is defined as h(t|X) = h0(t)e
β′X where X is a

q × 1 vector of covariates, β denotes the vector of regression coefficient parameters and
h0(·) is the baseline hazard function that describes the risk for individuals with X = 0.
This model does not include the unknown risk factors. Thus, the frailty model which is
a generalization of the proportional hazards model and includes unknown risk factor as a
random variable is introduced by [2]. This model is given by h(t|X) = Wh0(t) exp(β

′X)
where W is a random variable with positive support.

Let D1, . . . , Dm arem geographic regions (e.g., census blocks) in a zone or a city and sj
denotes a representative position or the center of the region Dj . Suppose in each region, n
subjects are followed until failure or censoring, whichever comes first. For each individual
i = 1, . . . , n, along with the survival time Tij of the ith subject in the jth region Dj , a
length-q covariate vector Xij are also observed. In the following exposition, the covariate
Xij is assumed to be time independent, although, it should be straightforward to extend
the results to accommodate time-dependent covariates. Suppose the random field Z(sj)
denotes the random effect of the region Dj . The model proposed by Li and Ryan [3]
specifies that, conditional on the covariates Xij and the region-specific random effect
Z(s), the survival time Tij is independent and has the following spatial hazard function

h(sj , tij |Xij , Z(sj)) = h0(tij) exp(β
′Xij + Z(sj)) (1)

The model (1), which is introduced for lattice data, may not be able to reflect all
correlation information of data. Thus we consider the geographical coordinates of each
subject instead of region representative. To accomplish this goal and using the model (1)
for a set of N = nm geostatistical data, the spatial hazard function would be derived as

h(sk, tk|Xk, Z(si)) = h0(tk) exp(β
′Xk + Z(sk)), k = 1, . . . , N (2)

Using model (2) the likelihood function is obtained as bellow,

L(β, θ) =

∫ N∏
k=1

{ exp(β′Xk + Z(sk))∑N
k′=1 yk′(tk) exp(β

′Xk′ + Z(sk′))
}δkdFθ(Z(s1), . . . , Z(sN ))

where θ is the vector of spatial covariance parameters,

yk′(tk) =

{
1, tk′ ≤ tk
0, tk′ > tk

is an indicator function illustrating the subjects which did not fail until time ti and δi
shows the censoring of the ith subject. In next section the random effects are modeled
by a spatial covariogram. Also a simulation study is performed to compare the precision
of parameter estimations for different proportional hazards, frailties and spatial survival
data.
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2 Simulation Study

In order to investigate the performance of our model, a spatial survival data set including
49 survival times located in a 7 × 7 square is simulated. Bender et al. [1] proposed a
method to generate survival time. Here, we generalize this method to generate spatial
survival data. Consider the Gaussian covariogram function,

C(d) = σ2 exp(−d
2

a2
), σ > 0, a > 0

where d is the distance of two locations, σ2 is the sill and a is the range of the random
field. In this study, it is assumed that σ2 = 1 and a = 1. The survival times are modeled
by (1) where Z(s) is a Gaussian random field at site s, X is a covariate generated from
standard Normal distribution and β is the regression coefficient, assumed to be equal to 1.
The simulated data are first censored, then applied by proportional hazards rate, frailty
and spatial survival models. The results of Mean Square Error (MSE) and Mean Absolute
Percentage Bias (MAPB) of parameter estimators are reported in Tables 1 and 2.

Table 1: Estimated β and errors for proportional hazards and frailty models
Iteration

Percentage 100 500
Model Censor Estimate MAPB MSE Estimate MAPB MSE

Proportional 20 0.719 28.710 0.120 0.749 25.300 0.111
Hazards 80 0.871 19.572 0.144 0.900 23.866 0.145

Frailty 20 0.864 18.546 0.080 0.898 21.219 0.086
80 0.932 19.680 0.151 0.971 24.968 0.170

Table 2: Estimated parameters and errors for spatial survival model
Iteration

Percentage 100 500
Censor Parameter Estimate MAPB MSE Estimate MAPB MSE

β 1.063 6.268 0.075 1.107 10.728 0.048
20 σ2 0.898 10.157 0.120 0.987 1.278 0.054

a 1.091 9.148 0.072 0.998 0.183 0.041

β 1.195 19.516 0.120 1.188 18.777 0.071
80 σ2 1.149 14.887 0.123 1.070 7.011 0.101

a 1.089 8.864 0.145 1.148 14.828 0.077

The results in Table 1 show that by increasing the censoring percentage of data, the
precision of the parameter estimates is reduced. On the other hand, the regression pa-
rameter in frailty model is estimated with more accuracy than the proportional hazard
model. The results in Table 2 show that considering the spatial correlation of data in the
spatial survival model provides higher accuracy of parameter estimations than the other
two models.

3 Discussion and Results

In this paper, spatial survival model for analysis of spatially correlated survival data is
introduced. A simulation study is carried out comparing the performances of proportional
hazards, frailty models with our model. We showed that the frailty model due to consid-
ering unknown risk factors is more accurate than proportional hazards model. Detection
of spatial correlation of the survival data can be a potential subject of further study.
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Estimation of P (X > Y ) Using Imprecise Data in the
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Abstract

Classical estimation procedures of the stress-strength parameter R = Pr(X > Y )
are based on precise data. However, in real world situations, some collected data
might be imprecise and are represented in the form of fuzzy numbers. In this paper,
we obtain the maximum likelihood estimation of the parameter R when X and Y are
independent Lindley random variables, and the available data are reported in the form
of fuzzy numbers. A Monte Carlo simulation study is carried out in order to assess
the accuracy of the proposed method.

Keywords: Stress-Strength model, Fuzzy data analysis, Maximum likelihood esti-
mation.

1 Introduction

Extensive research has been conducted on the stressstrength model. This model involves
two independent random variables X and Y , and the parameter of interest is the prob-
ability R = P (X > Y ). A comprehensive account of this topic is given by Kotz et al.
(2003). The developments in this field covered a variety of data types including complete
data, censored data as well as data with explanatory variables. However, in real world
situations, the results of an experimental performance can not always be recorded or mea-
sured precisely, but each observable event may only be identified with a fuzzy subset of
the sample space. Our aim in this paper is to develop an inferential procedure for the
stress-strength model in the situation where the stress measurements and the strength
measurements are both in terms of fuzzy numbers. We will construct maximum likelihood
estimation for the stress-strength reliability assuming two independent samples from Lind-
ley distribution. In Section 2, We first introduce a generalized likelihood function based
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on fuzzy data and then discuss the maximum likelihood estimation of the parameter R.
A Monte Carlo simulation study is presented in Section 3, in order to assess the accuracy
of the proposed method. For a review about the main definitions of fuzzy sets see Pak et
al. (2014) and the references therein.

We use the following notation. A Lindley distribution with the parameter θ, will be
denoted by Lindley(θ) and the corresponding probability density function is as follows;

f(x; θ) =
θ2

1 + θ
(1 + x)e−θx; x > 0; θ > 0. (1)

2 Maximum likelihood estimation

Let the strength X and stress Y follow Lindley(θ1) and Lindley(θ2), respectively, and
they are independent. Then, it can be easily shown that

R = Pr(Y < X)

= 1− θ21[θ
2
1(θ1 + 1) + θ2(θ1 + 1)(θ1 + 3) + θ22(2θ2 + 3) + θ22]

(θ1 + 1)(θ2 + 1)(θ1 + θ2)3
. (2)

Suppose that partial information about the stress and strength are available in the
form of fuzzy numbers x̃ and ỹ with the Borel measurable membership functions µx̃(x)
and µỹ(y). Then, the corresponding observed-data log likelihood function can be obtained
as:

LO(x̃, ỹ; θ1, θ2) = n log

(
θ21

1 + θ1

)
+

n∑
i=1

log

∫
(1 + x)e−θ1xµx̃i(x)dx

+ m log

(
θ22

1 + θ2

)
+

m∑
j=1

log

∫
(1 + y)e−θ2yµỹj (y)dy.

To compute the maximum likelihood estimate (MLE) of R, we need to compute the
MLEs of θ1 and θ2, say θ̂1 and θ̂2, respectively. The MLE R̂ of R can then be obtained
by substituting θ̂k in place of θk, in (2.1) for k = 1 and 2.

Since the observed fuzzy data x̃ and ỹ can be viewed as incomplete specifications of the
complete data vectors x and y, respectively, the EM algorithm is applicable to obtain the
MLEs of the unknown parameters.

To perform the E-step of the algorithm, we need to compute the conditional expectation
of the complete-data log-likelihood function conditionally on the observed data x̃ and ỹ
as follows:

n log

(
θ21

1 + θ1

)
+m log

(
θ22

1 + θ2

)
− θ1

n∑
i=1

E
θ
(h)
1

(Xi | x̃i)− θ2

m∑
j=1

E
θ
(h)
2

(Yj | ỹj) (3)

where

E
θ
(h)
1

(Xi | x̃i) =
∫
x(1 + x)e−θ

(h)
1 xµx̃i(x)dx∫

(1 + x)e−θ
(h)
1 xµx̃i(x)dx

, i = 1, ..., n,
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E
θ
(h)
2

(Yj | ỹj) =
∫
y(1 + y)e−θ

(h)
2 yµỹj (y)dy∫

(1 + y)e−θ
(h)
2 yµỹj (y)dy

, j = 1, ...,m.

The M-step of the algorithm involves maximizing (2.2) with respect to θ1 and θ2, which
yields

θ
(h+1)
1 =

1

2
(αh − 1) +

[
(1− αh)

2 + 8αh
]
,

θ
(h+1)
2 =

1

2
(βh − 1) +

[
(1− βh)

2 + 8βh
]

where

αh =
n

n∑
i=1

E
θ
(h)
1

(Xi | x̃i)
, βh =

m
m∑
j=1

E
θ
(h)
2

(Yj | ỹj)
.

The MLEs of θ1 and θ2 can be obtained by repeating the E-step and M-step until conver-
gence occurs.
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Figure 1: Fuzzy information system used to encode the simulated data

3 Simulation study

In order to assess the accuracy of the proposed method, we have carried out a Monte Carlo
simulation study. First, for different sample sizes and a set of parameter values, namely
(θ1, θ2) = (1.0, 2.0), we have generated random samples from Lindley distribution. Then,
each realization of the random samples was fuzzified using the fuzzy information system
shown in Fig.1 and the estimate of the parameters θ1, θ2 and R for the fuzzy samples
were computed using the maximum likelihood procedure. The average values (AV) and
mean squared errors (MSE) of the ML estimates over 1000 replications are presented in
Table 1. From the experiments, we found that the performance of the ML estimates are
quite satisfactory and as the sample size increases, the MSEs of the estimates decrease as
expected.
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Table 1: AVs and MSEs of the ML estimates θ̂1, θ̂2 and R̂ for different sample sizes.

(n,m) θ̂1 θ̂2 R̂
AV MSE AV MSE AV MSE

(20,20) 1.1931 0.0827 2.2180 0.1721 0.7025 0.0136
(20,30) 1.1827 0.0640 2.2039 0.1432 0.7003 0.0113
(30,20) 1.1838 0.0644 2.2057 0.1454 0.6891 0.0081
(30,30) 1.1210 0.0492 2.1863 0.1197 0.6678 0.0069
(30,50) 1.0731 0.0313 2.1625 0.0893 0.6653 0.0052
(50,30) 1.0690 0.0307 2.1597 0.0822 0.6672 0.0057
(50,50) 1.0248 0.0238 2.1139 0.0517 0.6319 0.0031
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Stress-strength system with non-identical exponentiated
exponential distribution
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Abstract

A multicomponent stress-strength system is considered, while the stress and the
strength system have non-identical exponentiated exponential distributions with dif-
ferent parameters. The estimation of stress-strength reliability parameter is studied.

Keywords: Stress-strength reliability, Uniformly minimum variance unbiased esti-
mator, Maximum likelihood estimator

1 Introduction

The problem of increasing reliability of any system is now a well-recognized and rapidly
developing branch of engineering. Stress-strength reliability the probability that the ran-
dom variable X (stress) is exceeded by its strength which is a realization of a random
variable Y which is equal to R := P (X < Y ). The problem of estimation of R has been
discussed in the literature extensively. Multicomponent stress-strength reliability also has
been studied by several authors, see for examples, Bhattacharyya and Johnson (1974),
Pandey et al. (1992) and Eryilmaz (2008b). Nguimkeu et al. (2014) proposed a procedure
to obtain accurate confidence intervals for the stress-strength reliability R = P (X > Y )
when (X,Y ) is a bivariate normal distribution with unknown means and covariance ma-
trix. Cha and Finkelstein (2015) studied a dynamic stress-strength model under external
shocks.
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2 Main aim of the paper

In the present paper, we consider the following multicomponent stress-strength:

• A parallel system of n1 components having stress following n1 independently and
non-identically distributed random variables Xi for i = 1, . . . , n1 with cdf Fi(x) =
[1− exp(−γx)]α(i), where γ and α(i) are positive constants.

• The strengths of the components are independent but non-identical random variables
Yj for j = 1, ..., n2 with cdf Gj(y) = [1−exp(−βy)]ν(j), where β and ν(j) are positive
constants.

The aforementioned cdfs Fi and Gj are known as exponentiated exponential distribu-
tion in the literature, see for example Gupta and Kundu (2001). As one can see, we can
assume that the stress system consist n1 parallel systems where the ith system contains
α(i) parallel components with independent and identical cdf F (x) = 1 − exp(−γx), for
i = 1, . . . , n1. Under these assumptions, we find

R = P

(
max

1≤j≤n2

Yj > max
1≤i≤n1

Xi

)
= P (W > Z) =

∫ ∞

0
FZ(w)gW (w) dw, (1)

where W = max
1≤j≤n2

Yj and Z = max
1≤i≤n1

Xi. Then, we have

fZ(z) = γe−γz
n1∑
i=1

α(i)(1− e−γz)

n1∑
i=1

α(i)−1
(2)

and

gW (w) = βe−βw
n2∑
j=1

ν(j)(1− e−βw)

n2∑
j=1

ν(j)−1

. (3)

By substituting (2) and (3) into (1), and doing some calculations, we obtain

R =

∫ 1

0

1−
1− u

1
n2∑
j=1

ν(j)


γ
β


n1∑
i=1

α(i)

du. (4)

In what follows, we will study the estimation of R in (4).

3 Estimation of R

We obtain two common point estimators of R, namely MLE and UMVUE.

MLE: Let Z1, . . . , Zn be a random sample of size n from Z with pdf in (2) andW1, . . . ,Wm

be a random sample of size m from each distributed as W with pdf in (3). Using the
invariance property of MLE, the MLE of R is given by

R̂M =

∫ 1

0

[
1−

(
1− x

U
m

) γ
β

] n
T

dx, (5)
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where U = −
m∑
s=1

log(1− e−βWs) and T = −
n∑
r=1

log(1− e−γZr).

UMVUE: To obtain the UMVUE of R noting that U and T are complete sufficient statis-

tics for
n2∑
j=1

ν(j) and
n1∑
i=1

α(i) and are independent and each distributed as Γ

(
m,

n2∑
j=1

ν(j)

)
and Γ

(
n,

n1∑
i=1

α(i)

)
, respectively. By doing some calculations, we have

R̂U =

∫ ∞

− 1
γ
ln(1−e−t)

(m− 1)βe−βw1

u(1− e−βw1)

(
1 +

ln(1− e−βw1)

u

)m−2(
1 +

ln(1− e−γw1)

t

)n−1

dw1

= (m− 1)

n−1∑
r=0

(
n− 1

r

)
1

tr

∫ 1

1+ 1
u
ln

(
1−(1−e−t)

γ
β

) sm−2
(
ln(1− (1− eu(s−1))

γ
β )
)r

ds. (6)

if − 1
γ ln(1− e−t) ≥ − 1

β ln(1− e−u) and

R̂U =

∫ ∞

− 1
β
ln(1−e−u)

(m− 1)βe−βw1

u(1− e−βw1)

(
1 +

ln(1− e−βw1)

u

)m−2(
1 +

ln(1− e−γw1)

t

)n−1

dw1

= (m− 1)
n−1∑
r=0

(
n− 1

r

)
1

tr

∫ 1

0
sm−2

(
ln(1− (1− eu(s−1))

γ
β )
)r

ds, (7)

if − 1
γ ln(1− e−t) < − 1

β ln(1− e−u).

The performance of MLE and UMVUE are compared in the next section, by using
the mean squared error (MSE), through generated many sample sizes by using simulation
technique.

4 Numerical studies and conclusions

Our goal in this section is to compare the presented estimators, numerically when R
changes from 0.01 to 0.99. For this purpose, we assume that γ = 2, n1 = n2 = 5,
α(i) = (1 + θ1)

i−1 for i = 1, . . . , n1, ν(j) = (1 + θ2)
j−1 for j = 1, . . . , n2 and values (5,5),

(5,10), (10,5),(10,10) for (m,n). we consider three different values for (θ1, θ2) as (1,1) and
(1, 3). For each of them, we obtain MSE and bias of UMVU and ML estimators. The
results are displayed in Figures 1 and 2.
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Figure 1: MSE(R̂M ) and MSE(R̂U ) for θ1 = θ2 = 1.
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Figure 2: MSE(R̂M ) and MSE(R̂U ) for θ1 = 1, θ2 = 3.
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A New Investigation About Parallel (2, n− 2) System Using
FGM Copula

Parsa, M. 1 and Jabbari, H. 2

Depertment of Statistics, Ferdowsi University of Mashhad

Abstract

Redundancy is a highly used technique to increase the systems lifetimes and avail-
ability. Recently, employing standby units in systems has received great attention.
Here, parallel system of n units and two-unit parallel system supported by (n − 2)
cold standbys are considered where units lifetimes are assumed to be dependent in
terms of Farlie-Gumbel-Morgenstern copula structure. Applicable formulas of mean
time to system failure are given and the impact of dependence parameter on systems
lifetimes are investigated.

Keywords: Cold standby FGM copula Mean time to system failure Parallel system.

1 Introduction

Parallel systems are known as the first redundant systems, later application of standby
units extended redundant models. In recent studies correlated units lifetimes are also
assumed. Papageorgiou and Kokolakis [3] evaluated reliability of two-unit parallel system
supported by (n−2) standbys. Papageorgio and Kokolakis [4] extended the main results of
their previous study and developed the system reliability and mean time to system failure
(MTSF). Eryilmaz and Tank [1] employed copula function to model the reliability and
MTSF of a series system with a single cold standby unit. Here, we use copula function
to express the reliability and MTSF of two-unit parallel system supported by (n− 2) cold
standbys which is briefly expressed as parallel (2, n−2) system. The results are specifically
given in terms of Farlie-Gumbel-Morgenstern (FGM) copula.
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2 Parallel system with dependent units

Assuming T1, T2, . . . , Tn represent the lifetimes of n units of the parallel system and Ti:n,
i = 1, 2, . . . , n, denotes the ith ordered unit lifetime, Tn:n implies the parallel system
lifetime, i.e., TP,n = Tn:n. We expect that, failure of one unit leads more pressure to
active ones, therefore, the sooner one unit fails the second unit failure occurs earlier, and
this process is expected to be continued. Based on this issue, units lifetimes are considered
to be positively dependent. The following proposition presents the reliability of a parallel
system with dependent units lifetimes. The reliability of a parallel system containing n
units with dependent lifetimes is

RP,n(t) = P (TP,n > t) = 1− C(F1(t), F2(t), . . . , Fn(t)),

where Fi(t), i = 1, 2, . . . , n is the df of ith unit lifetime and C is a n-copula family
which models the appropriate positive dependence structure of units lifetimes.

The next proposition delivers the general form of reliability and MTSF of parallel
system while the relationship between units lifetimes is modelled via FGM n-copula which
has been introduced by Johnson and Kotz [2]. Suppose that lifetimes of n units in a
parallel system are identically distributed and the units lifetimes can be modelled via FGM
n-copula with the same non-negative dependence parameters. Then, reliability function
of the system is,

RP,n(t) = 1− Fn(t)

[
1 + α

n∑
i=2

(
n

i

)
F̄ i(t)

]
, 0 ≤ α ≤ 1.

The following example illustrates the reliability and MTSF of parallel system containing
different numbers of units.

Example 1. Let F (t) = 1 − e−λt, λ, t > 0. Then under the assumptions of Proposition
2, one easily concludes the following formulas.

(i) If n = 2; MTSFP,2 =
∫∞
0 RP,2(t)dt =

1
λ(

3
2 − α

12).

(ii) If n = 3; MTSFP,3 =
∫∞
0 RP,3(t)dt =

1
λ(

11
6 − α

6 ).

(iii) If n = 4; MTSFP,4 =
∫∞
0 RP,4(t)dt =

1
λ(

25
12 − 29α

120 ).

The trend of MTSFs are decreasing in terms of dependence parameter α. Figure 1
shows the trend of MTSFs for different possible values of dependence parameter α while
λ = 0.1 in marginal df.

3 Parallel (2,n-2) system with dependent units

Consider a parallel (2, n− 2) system which in fact is a two-unit parallel system supported
by (n − 2) cold standbys where n ≥ 3, is a fixed number of non-repairable units. The
failed active unit is replaced upon its failure instantaneously by one of the standbys. This
process is continued until all the standbys are used in the system and the system operates
if at least one unit is active. Assume that Ti, i = 1, 2, represents the lifetime of the ith
initial active unit and Sj , j = 1, · · · , n− 2, represents the jth cold standby lifetime in the
system. The next trivial proposition investigates this system lifetime. Parallel (2, n− 2)
system lifetime, TP,(2,n−2), for some n is expressed as follows.
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Figure 1: MTSF trend of parallel system for different possible values of dependence pa-
rameter α.

Let n = 3; TP,(2,1) = min(T1, T2)+max(T ∗
1 , S1), where T

∗
1 is the residual life of T1 after

the first unit is failed.

Let n = 4; TP,(2,2) = min(T1, T2) + min(T ∗
1 , S1) + pmax(T ∗∗

1 , S2) + (1− p)max(S∗
1 , S2),

where S∗
1 is defined similarly as T ∗

1 ; and T
∗∗
1 is the residual life of T ∗

1 .

Let C be a copula that models the joint distribution of units lifetimes. Then we have

MTSFP,(2,1) = 2

∫ ∞

0
F̄ (t)dt+

∫ ∞

0
C(F (t), F (t))dt−

∫ ∞

0
C(F ∗(t), F (t))dt,

and

MTSFP,(2,2) = 3

∫ ∞

0
F̄ (t)dt−

∫ ∞

0
F ∗(t)dt+

∫ ∞

0
C(F (t), F (t))dt

+ p

∫ ∞

0

[
C(F ∗(t), F (t))− C(F ∗∗(t), F (t))

]
dt.

The following example presents the MTSFs of parallel (2, n − 2) system for some n
and specific marginal distribution.

Example 2. Let F (t) = 1− e−λt, λ, t > 0, and dependence structure of units lifetimes is
modelled by FGM 2-copula. Hence, the corresponding MTSF of parallel (2, n− 2) system
is attained as follows.

(i) If n = 3; MTSFP,(2,1) =
1
λ(2−

α
9 − α2

180 − 22α3

945 ).

(ii) If n = 4; MTSFP,(2,2) =
1

22680λ(α2+5α−45)2

[
114817500−alpha(29342250+3402000p)−

α2(2835000+1256850p)+α3(689850+38430p)+α4(37800− 28620p)−α5(1890+951p)+

120pα6 + 31pα7

]
.

The MTSFs are decreasing in terms of dependence parameter α. For better intuition,
see Figure 2 where λ = 0.1 in marginal df.
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Figure 2: MTSF trend of parallel (2, 1) system (left) and parallel (2, 2) system (right) for
different possible values of dependence parameter α and probabilities p.
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On Mean Residual Life Ordering Among
Weighted-k-out-of-n Systems

Rahmani, R. 1 , Izadi, M. 2 and Khaledi, B. 3

Department of Statistics, Razi University

Abstract

Consider a system consisting of n binary components with different contributions
(weights) on determining the state of the system. The system is known as weighted-k-
out-of-n system when it works iff the total weight of working components are greater
than a pre-specified value k. Suppose that this system has the property that, with
probability 1, operates as long as at least n−s+1 components operate (s ≤ n). In this
paper, we compare two such systems with respect to their mean residual life function
under the condition that n− r + 1 components (r ≤ s) of the systems are working at
time t.

Keywords: Weighted-k-out-of-n system, Mean residual life, Usual stochastic order.

1 Introduction

Consider a system consisting of n binary components with different contributions on de-
termining the state of the system. Let wi, i = 1, . . . , n, be the positive weight of the
component i. The system is known as weighted-k-out-of-n system when it works iff the
total weight of working components are greater than a pre-specified value k, that is,∑n

i=1wiXi ≥ k where Xi is the state of the component i, i = 1, . . . , n. The weighted-k-
out-of-n system was introduced by Wu and Chen (1994) and studied by many researchers
including Higashiyama (2001), Chen and Yang (2005), Samaniego and Shaked (2008) and
Eryilmaz and Bozbulut (2014).
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One of the most important characteristics of a system in the reliability theory is the
mean residual life (MRL) function. Let T be the random lifetime of a system with survival
function F̄ . Then, the MRL function of the system at time t is given by

m(t) = E(T − t|T > t) =

∫∞
t F̄ (x)dx

F̄ (t)
, t > 0.

We refer the reader to Kotz and Shanbhag (1980), Guess and Proschan (1988), Shaked
and Shanthikumar (2007) and Asadi and Goliforushani (2008) for some results regarding
the MRL function.

Now, consider a weighted-k-out-of-n system consisting of n components with lifetimes
T1, . . . , Tn and the weight vector w = (w1, . . . , wn). Suppose that this system has the
property that, with probability 1, operates as long as at least n−s+1 components operate
(s ≤ n). We denote this sytem by s-weighted-k-out-of-n system. Under the condition that
at time t at least (n− r + 1) components (r ≤ s) are alive, the residual life of the system
is

(Tw − t|T(r) > t), r = 1, . . . , s

where Tw is the lifetime of the system and T(r) is the rth order statistics of T1, . . . , Tn.
The MRL function of the above system can be defined as

mr,s
w (t) = E[Tw − t|T(r) > t]. (1)

In this paper, we are interested in the comparison of such weighted-k-out-of-n systems
(described above) with respect to their mean residual life function defined in (1).

We end this section by recalling the signature vector of a system and the usual stochas-
tic order that will be use later in the paper. Consider a system with lifetime T whose
component lifetimes T1, . . . , Tn are independent and identically distributed. Samaniego
(1985) defined the signature vector of the system as a probability vector q = (q1, . . . , qn)
with

qi = P{T = T(i)}, i = 1, . . . , n.

Let X and Y be two random variables with survival function F̄ and Ḡ, respectively. X is
said to be less than Y in the usual stochastic order (denoted by X ≤st Y ) if F̄ (x) ≤ Ḡ(x)
for all x ∈ R.

2 Main results

Let Tw and Tw′ be the lifetime of two weighted-k-out-of-n systems with independent
and identically distributed component lifetimes T1, ..., Tn and T ′

1, . . . , T
′
n, weight vectors

w = (w1, . . . , wn) and w′ = (w′
1, . . . , w

′
n) and signature vectors q = (q1, . . . , qn) and

q′ = (q′1, . . . , q
′
n), respectively.

Our first result is in the following theorem.

Theorem 1. Consider two weighted-k-out-of-n systems as above. If w ≤ w′, i.e. wi ≤
w′
i, i = 1, . . . , n, then q ≤st q

′.
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Proof. It is enough to show that
∑n

i=j qi ≤
∑n

i=j q
′
i, for j = 1, . . . , n.

n∑
i=j

qi = P (Tw ≥ T(j))

=
∑

{(i1,...,in);
∑n

h=j wih
≥k}

P (Ti1 ≤ · · · ≤ Tin)

≤
∑

{(i1,...,in);
∑n

h=j w
′
ih

≥k}

P (Ti1 ≤ · · · ≤ Tin)

=
∑

{(i1,...,in);
∑n

h=j w
′
ih

≥k}

P (T ′
i1 ≤ · · · ≤ T ′

in)

= P (Tw′ ≥ T ′
(j))

=

n∑
i=j

q′i.

Now, consider an s-weighted-k-out-of-n system (introduced in Section 1) with independent
and identically distributed component lifetimes T1, . . . , Tn. It is obvious that such a system
has the signature vector of the form q = (0, . . . , 0, qs, qs+1, . . . , qn) . If T1, . . . , Tn are
distributed according to a common continuous distribution F, then

mr,s
w (t) =
n∑
i=r

r−1∑
u=0

i−1∑
v=u

qi

(n
u

)(n−u
v−u

)∫∞
t F u(t)(F (x)− F (t))v−uF̄n−v(x)dx∑r−1

u=0

(n
u

)
F u(t)F̄n−u(t)

(2)

Theorem 2. Consider two s-weighted-k-out-of-n systems with weight vectors w and w′,
signature vectors q and q′, both based on components with independent and identical
lifetimes with common distribution F. Let mr,s

w (t) and mr,s
w′(t) be their respective mean

residual life functions defined in (1). If q ≤st q
′, then mr,s

w (t) ≤ mr,s
w′(t).

Proof. By interchanging the order of the summations in (2), we have that,

mr,s
w (t) =

r−1∑
u=0

r−1∑
v=u

( n∑
i=r

qi

)(n
u

)(n−u
v−u

)∫∞
t F u(t)(F (x)− F (t))v−uF̄n−v(x)dx∑r−1

u=0

(n
u

)
F u(t)F̄n−u(t)

+
r−1∑
u=0

n−1∑
v=r

( n∑
i=v+1

qi

)(n
u

)(n−u
v−u

)∫∞
t F u(t)(F (x)− F (t))v−uF̄n−v(x)dx∑r−1

u=0

(n
u

)
F u(t)F̄n−u(t)

≤
r−1∑
u=0

r−1∑
v=u

( n∑
i=r

q′i

)(n
u

)(n−u
v−u

)∫∞
t F u(t)(F (x)− F (t))v−uF̄n−v(x)dx∑r−1

u=0

(n
u

)
F u(t)F̄n−u(t)

+

r−1∑
u=0

n−1∑
v=r

( n∑
i=v+1

q′i

)(n
u

)(n−u
v−u

)∫∞
t F u(t)(F (x)− F (t))v−uF̄n−v(x)dx∑r−1

u=0

(n
u

)
F u(t)F̄n−u(t)

= mr,s
w′(t).

The inequality follows from the assumption q ≤st q
′.
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The following corollary follows from Theorems 1 and 2.
Corollary 1. Consider two s-weighted-k-out-of-n systems given in Theorem 2. If w ≤ w′,
then mr,s

w (t) ≤ mr,s
w′(t).
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Use Weibull Distribution in Accelerated Life Testing for
Computing MTTF Under Normal Operating Conditions

Ramezani, R. 1

Department of Statistics, University of Damghan

Abstract

The intensity of the global competition for the development of new products in a
short time. Testing under normal operating conditions for compute reliability quati-
ties, requires a very long time. This has led to the development of accelerated life
testing (ALT). In this article, We compute MTTF of Bourdon tubes (used as a part of
pressure sensors in avionics) in stress conditiion. The failure is leak in the tube. Base
on Anderson-Darling test Weibull distribution is appropriate for fitting data under
stress condition. We determine MTTF of Bourdon tubes in operating condition base
on arrhenius model and mean of Weibull distributions.

Keywords: Acceleration test, Arrheinus model, Mean time to failure , Anderson-
Darling test, Weibull distribution.

1 Introduction

The intensity of the global competition for the development of new products in a short time
has motivated the development of new methods. Testing under normal operating condi-
tions requires a very long time. This has led to the development of accelerated life testing
(ALT), where units are subjected to a more severe environment (increased or decreased
stress levels) than the normal operating environment so that failures can be induced in a
short period of test time. Information obtained under accelerated conditions is then used
in estimate the characteristics of life distributions at normal operating conditions.
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2 Design of Accelerated Life Testing Plans

A detailed test plan is usually designed before conducting an accelerated life test. The
plan requires determination of the type of stress, methods of applying stress, stress levels,
the number of units to be tested at each stress level, and an applicable accelerated life
testing model that relates the failure times at accelerated conditions to those at normal
conditions. Stress in ALT can be applied in various ways as decrease, increase, constant or
Synthetic. In [2] provide extensive tables and practical guidelines for planning an ALT. In
[1] introduce theoritcal discssion on ALT. Three department of sumsung company result
of them research in case one pump in washing machine represent in [3].
Assumed that the components are tested at different accelerated stress levels s1, s2, . . . ,
sn. The failure times at each stress level are then used to determine the most appropriate
failure time probability distribution, along with its parameters. Under the parametric
statistics-based model assumptions, the failure times at different stress levels are linearly
related to each other. Thus

to = CAts

where to is the failure time under operating conditions, ts is the failure time under stress
conditions, and CA is the acceleration factor.

3 Acceleration Model for the Weibull Model

The relationships between the failure time distributions at the accelerated and normal
conditions base on weibull distribution can be derived the following:

Rs(t) = e−(t/βs)αs
t ≥ 0, αs ≥ 0, β > 0

where αs is the shape parameter of the Weibull distribution under stress conditions and
βs is the scale parameter under stress conditions. The CDF under normal operating
conditions is

Ro(t) = Rs(
t

CA
) = e−(t/CAβs)

αs
= e−(t/βo)αo

The underlying linearity assumption αs = αo , and βo = CAβs . If the shape parameters
at different stress levels are significantly different, then either the assumption of true linear
acceleration is invalid or the Weibull distribution is inappropriate to use for analysis of
such data. Let αs = αo = α ≥ 1. Then the probability density function under normal
operating conditions is

fo(t) = (
1

CA
)fs(

t

CA
) =

α

CAβs
(

t

CAβs
)α−1e−(t/CAβs)

α
, t ≥ 0, βs ≥ 0

The MTTF under normal operating conditions is

MTTFo = βoΓ(1 +
1

α
)

The failure rate under normal operating conditions is

ho(t) = (
1

CA
)hs(

t

CA
) =

α

CAβs
(

t

CAβs
)α−1 =

hs(t)

CαA
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4 Case study

A manufacturer of Bourdon tubes (used as a part of pressure sensors in avionics) wishes
to determine its MTTF. The manufacturer defines the failure as a leak in the tube. The
tubes are manufactured from 18 Ni (250) maraging steel and operate with dry 99.9fluid as
the internal working agent. Tubes fail as a result of hydrogen embrittlement arising from
the pitting corrosion attack. Because of the criticality of these tubes, the manufacturer
decides to conduct ALT by subjecting them to different levels of pressures and determining
the time for a leak to occur. The units are continuously examined using an ultrasound
method for detecting leaks, indicating failure of the tube. Units are subjected to three
stress levels of gas pressures and the times for tubes to show leak are recorded. Determine
the mean lives and plot the reliability functions for design pressures of 80 and 90 psi.
Solution. The result of fit the failure times to Weibull distributions shows in table 1. Base
on Anderson-Darling test at level 0f 0.05 error, Weibull distribution is good for fit failure
time at every 3 level of stress pressure. P-Value at every 3 level in this test are greater of
0.25.

Table 1: Parameters estimation of weibull distribution in different pressure
parameter 100 psi 120 psi 140 psi

α 2.87 2.67 2.52
β 10392 5375 943

Table 2: Mean of time failure in different pressure
100 psi 120 psi 140 psi

mean 9236 4777 838

Since α1 = α2 = α3
∼= 2.65, then the Weibull model is appropriate to describe the

relationship between failure times under accelerated conditions and normal operating con-
ditions. We determine the mean time of the population fails as

t = βΓ(1 +
1

α
)

The mean of life time at every 3 level of stress are shown in table 2.
The relationship between the failure time t and the applied pressure P can be assumed to
be similar to the Arrhenius model; thus

t = kec/P

where k and c are constants. By making a logarithmic transformation, the above expression
can be written as

ln(t) = ln(k) +
c

P

Using a linear regression model, we obtain k = 3.391 and c = 811.400.The estimated mean
at 80 psi and 90 psi are 86131 h and 27980 h respectively. The corresponding acceleration
factors are 9.33 and 3.03. The failure rates under normal operating conditions are

h80(t) =
2.65

1.63847× 1013
t1.65, h90(t) =

2.65

8.31909× 1011
t1.65
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The MTTFs for 80 and 90 psi are calculated as

MTTF80 = βΓ(1 +
1

α
) = (1.63847× 1013)1/2.65Γ(1 +

1

2.65
) = 85807h

and

MTTF90 = 31488× 0.885 = 27867h
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On Properties of Progressively Type-II Censored
Conditionally N-Ordered Statistics Arising from a

Non-Identical and Dependent Random Vector

Rezapour, M. 1
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Abstract

In this paper, we investigate progressively Type-II censored conditionally N-ordered
statistics arising from a system with identical as well as non-identical but depen-
dent components, jointly distributed according to an Archimedean copula with com-
pletely monotone generator (PCCOSDNARCM-N). Our results generalized the results
in Bairamov (2006) and is more flexible than those in practice, because of considering
the dependency between components that is a common fact for real data.

Keywords: Archimedean copula, Order statistics, Progressive censoring, Progres-
sively Type-II censored order statistics, Reliability systems.

1 Introduction

An experimenter may wish to reduce the size of a life test after having gained often
critical early knowledge, while still obtaining information on later failures. The items
removed make space for other experiments and reduce costs. Since in the real life we
are face with dependent and non-identical data, we consider progressively Type-II right
censored order statistics (PCOS-II) from a vector with a copula as the joint distribution
function. In this case the marginal distributions are arbitrary and we are free to consider
any desirable univariate distribution. Therefore, the marginal distribution of PCOS-II
order statistics arising from dependent and non-identical sample according to copulas are
applicable in real life. When we have a parallel system, the lifetime of the system equals
the maximum of the lifetimes of the components. If we just record the lifetime of the
system we ignore the information due to the components which can be used to obtain a
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more precise lifetime analysis. Hence a progressively Type-II right censored conditionally
N -ordered statistics (PCCOS-N) sampling scheme is recommended. In this paper, we
shall consider the PCCOS-N sampling scheme for systems that are neither identical nor
independent. For example a common shock may affect the efficiency of the components or
some stressful environment may lead dependency between components. We shall consider
the dependency between systems using Archimedean copulas with completely monotone
generators. These copulas have many desirable properties, for example,

• The class of Archimedean copulas with completely monotone generators contain
several other such known copulas, see for example P.375 and 376 and 377 Joe [3].

• This family of copulas is MTP2, i.e. it has positive dependence property, (see e. g.
[4] Muller and Scarsini, 2005), which is a suitable for lifetime data.

• Some goodness of fit tests exists for Archimedean copulas. In fact, we can consider
which Archimedean copulas with completely monotone generator is best fit to a data
set. (see e.g. [2]).

Recall that a function ψ : R+ → [0, 1] is said to be d-monotone if (−1)kψ(k) ≥ 0 for
k ∈ {1, . . . , d− 2} and (−1)d−2ψ(d−2) is a decreasing and convex function, where ψ(k), the
k-th derivative of the function ψ, exists for k = 1, 2, . . . , d− 2. If a function is d-monotone
for all d ∈ N, then it is said to be completely monotone. If a copula Cψ has the form

Cψ(u1, . . . , un) = ψ

(
n∑
i=1

ψ−1(uj)

)
, (1)

where ψ : R+ → [0, 1] is an n-monotone (n ≥ 2) function such that ψ(0) = 1 and
limx→∞ ψ(x) = 0, it is called an Archimedean copula with generator function ψ (see
[3, 6, 5]). In this work, we concentrate on Archimedean copulas with completely monotone
generator function. This family of copulas have applications in reliability theory in [7, 8].
Let G(u) = exp

{
− ψ−1(u)

}
, u ∈ [0, 1], and Mψ be a distribution function with Laplace

transform ψ. Then, an equivalent representation for (1) is given by

Cψ(u1, . . . , un) =

∫ ∞

0

n∏
i=1

Gα(ui)dMψ(α). (2)

This representation is the key to the ensuing developments. Furthermore, we assume
that ψ is strictly increasing and its inverse function ψ−1 is differentiable. Now, let us
consider the PCCOS-N arising from either independent or dependent random vectors
X1, . . . ,Xn. We assume that for i = 1, . . . , N , Xi = (X1

i , X
2
i , . . . , X

n
i ) are absolutely

continuous, iid random vectors and let T (Xi) be the life time of the vector XR
1:m:N . Then

T (·) is a measurable Rp \R function. Under the PCCOS-N sampling scheme, X1, . . . ,XN

are place on a life test. The first system to fail will be denoted by XR
1:m:N . We have

T (XR
1:m:N ) = min(T (X1), . . . , T (XN )). We now remove R1 system at random from the

surviving set {X1, . . . ,XN} \ XR
1:m:N . After the ith failure, occurring at N(XR

i:m:N ), Ri
surviving systems are removed at random. The procedure terminates at the mth step,
where R1 + · · · + Rm + m = N . Bairamov [1] showed that the joint pdf of the first r
PCCOS-N, r = 1, 2, . . . ,m, can be represented as follows

fXR
1:m:N ,...,X

R
r:m:N

(x1, . . . ,xr)

=
( r∏
j=1

γj

)
f(xr)

(
H̄(xr)

)γr−1
r−1∏
j=1

f(xj)
(
H̄(xj)

)Rj

, (3)
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where γj = n−
∑j−1

v=1(Rv+1) =
∑m

v=j(Rv+1), 1 ≤ v ≤ m, γ1 = n , andH(x) = P{T (X) ≤
T (x)} . Here, we consider progressively Type-II censored conditionally N-ordered statistics
arising from a system with identical as well as non-identical but dependent components,
jointly distributed according to an Archimedean copula with completely monotone gener-
ator
(PCCOSDNARCM-N).

2 Main results

In this section, we obtain the joint and marginal density function of PCCOSDNARCH-N
arising from a random vector X = (X1, . . . ,XN ) with joint survival function

P (X > x) =

∫ ∞

0

N∏
i=1

Gα(F̄i(xi))dMψ(α) , (4)

where F̄i(x) = P (Xi > x) is the joint survival function of Xi, i = 1, . . . , n. For this
purpose, let H̄i(x) = P{T (Xi) > T (x)} , then for k = 1, . . . , n − 1 the following identity
is obvious.

P (T (X1) > T (x1), . . . , T (Xk) > T (xk),Xk+1 > xk+1, . . . ,Xn > xn)

= ψ

(
k∑
i=1

ψ−1(H̄i(xi)) +
n∑

i=k+1

ψ−1(F̄i(xi))

)
. (5)

We can obtain the joint density function of XR
1:m:N , . . . ,X

R
m:m:N using the following theorem.

Theorem 1. For n ∈ N, let Sn be the set of all permutations π of (1, 2, . . . , N) . For brevity,
let ρr = R1 + · · · + Rr, 1 ≤ r ≤ m, with ρ0 = 0 and ρm = N − m. Then, the joint density of
XR

1:m:N , . . . ,X
R
m:m:N is given by

fXR(t1, . . . , tm) =

∫ ∞

0

1

(N − 1)!

( m∏
j=2

γj

) ∑
π∈Sn

m∏
j=1

fπ(j)(tj , α)

×
( m+ρj∏
r=m+ρj−1+1

Ḡπ(r)(tj , α)
)
dMψ(α) , (6)

where T (t1) ≤ · · · ≤ T (tm) and π(i) is the i-th component of the permutation vector π ∈ Sn, 1 ≤
i ≤ N and γj =

∑m
i=j(Ri + 1).
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Characterization of Bivariate Distribution by Mean
Residual Life and Quantile Residual Life

Shafaei-Noughabi, M. 1
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Abstract

Nair and Nair (1989) showed that bivariate mean residual life function character-
izes the distribution uniquely. The subject of this paper is to verify how closely the
bivariate quantile residual life function determines the distribution. It has been shown
that like univariate case, two suitable bivariate quantile residual life can characterize
the underlying distribution uniquely.

Keywords: Bivariate distribution function, Bivariate α-quantile residual life, Bi-
variate mean residual life

1 Introduction

When we deal with dependent components, extending reliability concepts to bivariate and
multivariate seems inevitable. Same shocks on the components or excessive load survivors
bear after their partners fail may cause their dependency. Many authors have introduced
and studied bivariate or multivariate reliability concepts, e.g., Basu (1971) and Johnson
and Kotz (1973) considered different versions of multivariate failure rate functions, Nair
and Nair (1989) studied the mean residual life (MRL) concept for two possibly dependent
components, and Roy (1994) studied multivariate aging classes and derived the chain of
implications between them.

It is well-known that the MRL function determines the distribution function uniquely
in the univariate case. Nair and Nair (1989) proved that the BMRL function uniquely
determines the distribution function. Gupta and Longford (1984) determined the class of
all distribution function F with the α-quantile residual life (α-QRL) function qα(t). Song
and Cho (1995) showed that in the class of continuous and strictly increasing distributions,
two α-QRL functions qα(t) and qβ(t) which

ln ᾱ
ln β̄

is irrational characterize the distribution

function uniquely. Lin (2009) proved the result in the broader class of continuous models.
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2 The bivariate mean residual life

Assume the non-negative random vector X = (X1, X2) be lifetimes of two possibly depen-
dent components. Let X follows absolutely continuous distribution F in the first quadrant
of R2, Q = {(x1, x2);xi ≥ 0}. Briefly, let x = (x1, x2) and X ≥ x stand for Xi ≥ xi,
i = 1, 2. The well-known reliability function is R(x) = P (X ≥ x). The partial conditional
reliability function for the ith component is

R(i)(x;x) = P (Xi − xi > x|X ≥ x), x > 0, x > 0, i = 1, 2. (1)

The BMRL function can be written as

m(x) = E(X− x|X > x) = (m1(x),m2(x)). (2)

It can be verified that m1(x)R(x) =
∫∞
x1
R(t, x2)dt, and with differentiation

−∂ lnR(x)
∂x1

= (1 +
∂m1(x)

x1
)

1

m1(x)
. (3)

Similar equation holds in x2 direction, and in turn by the fundamental theorem of line
integrals, the integral

∫ b
a − lnR(x)dx is independent of the path joining a to b and∫ b

a
∇(− lnR(t)) · dt = lnR(a)− lnR(b),

in which ∇(− lnR(t)) = (−∂ lnR(x)
∂x1

,−∂ lnR(x)
∂x2

). More specifically,∫ x

0
∇(− lnR(t)) · dt = lnR(0)− lnR(x) = − lnR(x).

Nair and Nair (1989) considered the particular paths (0, 0) to (x1, 0) and (x1, 0) to (x1, x2)
to evaluate the left hand side of this equation, and obtained

R(x) =
m1(0, 0)m2(x1, 0)

m1(x1, 0)m2(x1, x2)
exp

{
−
∫ x1

0

dt1
m1(t1, 0)

−
∫ x2

0

dt2
m2(x1, t2)

}
.

3 The bivariate quantile residual life

The ith partial α-QRL function can be defined by

q(i)α (x) = inf{ti : R(i)(ti;x) = ᾱ}, x ∈ R+2
, (4)

Taking i = 1, it simplifies to

q(1)α (x) = R−1
1 (ᾱR(x1, x2);x2)− x1, x ∈ R+2

,

in which R−1
1 (p;x2) = inf{x1 : R(x1, x2) = p}. Similarly

q(2)α (x) = R−1
2 (ᾱR(x1, x2);x1)− x2.

The α-BQRL function can be constructed by gathering these two partial functions in a

vector as qα(x) = (q
(1)
α (x), q

(2)
α (x)), x ∈ R+2

. Johnson and Kotz (1973) considered the
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bivariate failure rate function r(x) = (r1(x), r2(x)), x ∈ R2 in which ri(x) = − ∂
∂xi

lnR(x)

represents the ith partial failure rate function. As univariate case,∫ x1+q
(1)
α (x)

x1

r1(t, x2)dt = − ln ᾱ, (5)

and ∫ x2+q
(2)
α (x)

x2

r2(x1, t)dt = − ln ᾱ, (6)

and consequently we have

1 +
∂

∂x1
q(1)α (x) =

r1(x1, x2)

r1(x1 + q
(1)
α (x1, x2), x2)

, (7)

and

1 +
∂

∂x2
q(2)α (x) =

r2(x1, x2)

r2(x1, x2 + q
(2)
α (x1, x2))

, (8)

respectively. As a result, ∂
∂xi
q
(i)
α (x) ≥ −1 for i = 1, 2. If ri(x) be increasing (decreasing)

in xi, then q
(i)
α (x) decreases (increases) in xi.

4 Characterization by bivariate quantile residual life

Here, we are interested to investigate how closely the α-BQRL determines the distribution
function. This leads us to solve the system of functional equations{

R(φ1(x), x2) = ᾱR(x),
R(x1, φ2(x)) = ᾱR(x),

(9)

where φi(x) = xi + q
(i)
α (x), i = 1, 2.

It can be shown that every solution R of (9) can be written as

R(x) = R0(x)h
∗(
lnR0(x)

ln ᾱ
− 1), x ∈ R+2, (10)

or equivalently
R(x) = R0(x)K(− lnR0(x)), x ∈ R+2, (11)

in which R0 is one special solution of (9) and K is a periodic function with period − ln ᾱ.
Clearly, K(0) = 1 and it must be restricted so that R be a reliability function.

Theorem 1. Two BQRL functions qα(x) and qβ(x) which ln ᾱ
ln β̄

is irrational uniquely

determine the underlying distribution, namely F , in the class of continuous and strictly
increasing bivariate distributions.

Example 1. It is simple to verify that the reliability function

R0(x) = exp{−λ1x1 − λ2x2}, λ1, λ2 > 0,x ∈ R+2, (12)

accommodate global constant BQRL function. Thus, by (11), the class of reliability func-
tions

R(x) = exp{−λ1x1 − λ2x2}(1 + ϵ sin(aλ1x1 + aλ2x2)), x ∈ R+2, |ϵ| < 1√
2
, a > 0,

have global constant BQRL function for α = 1− e−
2kπ
a , k = 1, 2, ... .
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Distribution-Free Comparison of Mean Residual Life
Functions of Two Populations

Sharafi, M. 1

Department of Statistics, Razi University

Abstract

At any age the mean residual life function gives the expected remaining life at
that age. This function can be useful in life-testing experiments in biological as well
as industrial settings. In this paper, we first propose a nonparametric test to com-
pare mean residual life functions based on two independent samples. Next, in order
to assess the power properties of the proposal test statistic, we examine its empirical
power properties, through a Monte Carlo simulation study under different lifetime
distributions.

Keywords: Empirical distribution function, Mean residual life ordering, Power.

1 Introduction

In many fields such as reliability, survival analysis and actuarial studies, statistical in-
ference based on the remaining lifetimes would be intuitively more appealing than the
popular hazard function defined as the risk of immediate failure, whose interpretation
could be sometimes difficult to be grasped. Common summary measures for the remain-
ing lifetimes have been the mean and median residual lifetimes.

Definition 1. Let X denote the lifetime of an item having a continuous distribution
function F such that F (0) = 0 and let F̄ (t) = 1 − F (t). The mean residual life (MRL)
function is defined by

mF (t) =

∫ ∞

t
F̄ (u)du/F̄ (t), if F̄ (t) > 0.
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For a detailed discussion and statistical applications of the MRL function, you can refer
to [2]. In reliability engineering, it is interest to study of mean residual life (MRL) because
the MRL function plays a key and important role in decision making, such as optimizing
burn-in tests ([1]), planning accelerated life tests ([6], [4] ), establishing warranty policies
([9]), and making maintenance decisions ([5], [7], [8]).

In this paper, we interest to compare the mean residual life functions from two popu-
lations or treatment groups.

Let X and Y be the lifetimes of two units with distribution functions F and G, survival
functions F̄ and Ḡ, and mean residual life functions mF (t) and mG(t), respectively. We
consider of testing the null hypothesis

H0 : mF (t) = mG(t)

against

H1 : mF (t) ≤ mG(t) (t > 0) (1)

with strict inequality over a set of nonzero probability.
Therefore, we first propose a new distribution-free test for testing H0 againt H1. Next,
we examine the performance of this test procedure under some statistical distributions
through Monte Carlo simulations and compare it with a known test in the literature.

2 Main Result

In a particular life-testing experiment, suppose n units with independent lifetimesX1, · · · , Xn

from X and m units with independent lifetimes Y1, · · · , Ym from Y put on the test. On
the basis these samples, we want to test H0 versus H1.
It can be show that H1 holds if and only if, for all t ≥ 0,

δ(t) = F̄ (t)

∫ ∞

t
Ḡ(u)du− Ḡ(t)

∫ ∞

t
F̄ (u)du ≥ 0, (2)

Taking t = 0, in 2, we find that H1 implies the different means.

with using 2, we define the following measure as

∆(F,G) =

∫ ∞

0
δ(t)d(pF (t) + (1− p)G(t)). (3)

It should be noted that under H0, ∆(F,G) = 0 while under H1, ∆(F,G) > 0.
For p = 1

2 ,

∆(F,G) =
1

2

∫ ∞

0

∫ ∞

t
F̄ (u)duḠ(t)dF (t)− 1

4

∫ ∞

0
Ḡ2(u)F̄ (u)du+

1

4
µF

−
[
1

2

∫ ∞

0

∫ ∞

t
Ḡ(u)duF̄ (t)dG(t)− 1

4

∫ ∞

0
F̄ 2(u)Ḡ(u)du+

1

4
µG

]
, (4)

where µF and µG are mean values of X and Y respectively.

Let us now assume that we have two independent samples of sizes n and m from the
distributions F and G respectively. Furthermore, let Fn denote the empirical distribution
function based on a random sample of size n from distribution F and similarly Gm denote
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the empirical distribution function based on a random sample of size m from distribution
G. Then, under this setting, we propose the test statistic

T =
1

2m2n

m−1∑
i=1

m∑
j=i+1

(Yj:m − Yi:m)(m− i)(n−RYi:m + i)− 1

4mn

m−1∑
i=1

(Yi+1:m − Yi:m)

× (1− i

m
)2(n−RYi:m + i) +

1

4
Ȳ −

 1

2n2m

n−1∑
i=1

n∑
j=i+1

(Xj:n −Xi:n)(n− i)

×(m−RXi:n + i)− 1

4mn

n−1∑
i=1

(Xi+1:n −Xi:n)(1−
i

n
)2(m−RXi:n + i) +

1

4
X̄

]
(5)

where the kth and lth order statistic of Xi′s and Y i′s by Xk:n and Yl:m, k = 1 · · · , n and
l = 1, · · · ,m . Also RYi:m and RXi:n denote the rank of Yi:m and Xi:n in the combined
increasing arrangement of X and Y respectively.

2.1 Empirical power study

We evaluate the performance of the proposed test and compare its power properties with
kochar’s test statistic. Kochar(1981) introduced the K statistic for comparing two hazard
rate functions as:

K =
1

nm

 n∑
j=1

ajRXi:n −
n∑
j=1

jaj

 (6)

where aj =
1
2 + log{1− j

n+1}.
Therefore, the empirical power values were obtained for the tests T and K through Monte
Carlo simulations for the exponential, Weibull and Lomax distributions. We generated
10000 sets of data for equal sample sizes 10 and 30 in which the empirical power results
thus determined are all presented in Tables 1. From Table, we see that the power of
the introduced test increases with increasing sample sizes as well as increasing parameter.
Furthermore, with using the power values, we find that of the proposed test is better than
kochar’s test.
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Table 1: Empirical near 5% critical values and power values for the proposed test and
kochar’s test.

n1 = n2 = 10
stat. q0.95 θ0 θ1 θ2

n1 = n2 = 30
stat. q0.95 θ0 θ1 θ2

exp(θ0 = 3)
... .. 3 5 10
T 0.357 0.051 0.248 0.614
K -0.255 0.055 0.254 0.753

... .. 3 5 10
T 0.707 0.051 0.592 1.00
K -0.374 0.052 0.577 0.996

exp(θ0 = 5)
.. .. 5 10 20
T 0.253 0.051 0.293 0.611
K -0.255 0.049 0.137 0.297

.. .. 5 10 20
T 0.524 0.050 0.744 0.995
K -0.376 0.052 0.454 0.861

weibull(θ0 = 3,0.7)
... .. 3 6 15
T 0.252 0.047 0.340 0.743
K -0.254 0.052 0.138 0.341

... .. 3 6 15
T 0.49 0.054 0.811 0.999
K -0.374 0.049 0.430 0.896

weibull(θ0 = 4,2)
... .. 2 10 20
T 0.606 0.047 0.415 0.689
K -0.255 0.05 0.194 0.394

... .. 2 10 20
T 1.18 0.052 0.926 1.000
K -0.373 0.049 0.598 0.937

lumax(θ0 = 0.3,3)
... .. 0.3 5 10
T 0.244 0.051 0.936 0.993
K -0.254 0.0496 0.486 0.514

... .. 0.3 5 10
T 0.453 0.050 0.964 0.989
K -0.375 0.053 0.982 0.991

lumax(θ0 = 3,10)
... .. 3 10 15
T 0.367 0.051 0.577 0.741
K -0.254 0.050 0.253 0.354

... .. 3 10 15
T 0.642 0.052 0.805 0.914
K -0.376 0.053 0.792 0.913
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Recent Advances in Comparisons of Coherent Systems
Based on Inactivity Times
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Department of Statistics, University of Isfahan

Abstract

The purpose of the talk is to study the inactivity time of failed components of a
coherent system consisting of n identical components with statistically independent
lifetimes. Different aging and stochastic properties of this conditional random variable
are obtained. Also we investigate stochastic properties of the inactivity time in the
case where the component lifetimes are dependent random variables. Some results
are extended to the case where the system has an arbitrary coherent structure with
exchangeable components.

Keywords: Exchangeability, Joint reliability function, Signature, Likelihood ratio
order.

1 Introduction

In the study of the reliability of engineering systems, the k-out-of-n structure plays a key
role. A system with n components has a k-out-of-n structure if it operates as long as
at least k of its components operate. The class of k-out-of-n systems is a special case
of a class of systems which is known in the literature as coherent systems. A structure
consisting of n components is known as a coherent system if the structure function of
the system is monotone in its components, and each component of the system is relevant;
see [2]. The concept of the signature of a coherent system, introduced by Samaniego [6],
has become quite useful in studying the properties of coherent systems, and in comparing
different systems. For a coherent system with lifetime T whose components’ lifetimes
X1, X2, ..., Xn are statistically independent and identically distributed (i.i.d.) random
variables with continuous distribution function F , the signature vector of the system is
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defined as a probability vector s = (s1, s2, ..., sn) with si = P{T = Xi:n}, i = 1, 2, ..., n,
where Xi:n is the ith order statistic among X1, X2, ..., Xn; see [5], [6], [7].

Let X denote the lifetime of an alive unit having distribution F . Assuming that
the unit has failed at or before time t, the inactivity time (IT) of X is defined as the
conditional random variable (t −X | X ≤ t), which, in this context, represents the time
that has elapsed since the failure of the unit. Among the researchers who have extended
this concept to the coherent system, we can refer to [1], [4], [9].

On the basis of the structure of the coherent system, if the failure times of the com-
ponents are not monitored continuously, then the exact failure times of some components
of the system are unknown. Hence it might be important for reliability engineers and
system designers to have some information about the time that has elapsed from a failure
in the system. Suppose that an (n − k + 1)-out-of-n system is equipped with a warning
light that comes up at the time of the failure of the jth component, j < k. The system is
still working then, but the operator may now consider some maintenance or replacement
policies. In this paper, we first study the time that has elapsed from the ith failure in the
system, i = 1, 2, ..., j, given that the component with lifetime Xj:n has failed at or before
time t, but the system is working at time t; that is, the random variable

(t−Xi:n | Xj:n ≤ t < Xk:n), for i = 1, 2, ..., j, and j < k.

This random variable is called the conditional IT of the component with lifetime Xi:n.
Now, assume that a coherent system (with lifetime T ) is alive at time t, and at least
j components have failed by time t. We then define the conditional IT of the failed
component with lifetime Xi:n as (t−Xi:n | Xj:n ≤ t < T ). In what follows, we investigate
several interesting properties of the IT of Xi:n for both (n− k + 1)-out-of-n and coherent
systems.

We also investigate the properties of inactivity time of the components of a (n−k+1)-
out-of-n system in the case where the components of the system are dependent. Let the
vector X = (X1, X2, ..., Xn) denote the lifetimes of the components and assume that X
has an arbitrary joint distribution function F (t1, t2, ..., tn). Assume that the system has
failed at or before time t. Following the notation in [9], we define the inactivity time of the
component with lifetime Xr:n, r = 1, 2, ..., k, at the system level as (t−Xr:n | Xk:n ≤ t).

2 Main results

Consider two (n−k+1)-out-of-n systems S1, and S2 with i.i.d. components X1, X2, ..., Xn,
and Y1, Y2, ..., Yn, respectively. The following result shows that, when the components of
two systems are ordered in terms of reversed hazard rates, then the corresponding systems
are stochastically ordered in terms of their IT [11]. For definitions of different stochastic
orders, see [8].

Theorem 1. Let X1 ≤rhr Y1. Then for any t ≥ 0, and 1 ≤ i ≤ j < k ≤ n,

(t− Yi:n|Yj:n ≤ t < Yk:n) ≤st (t−Xi:n|Xj:n ≤ t < Xk:n).

It can be shown that the condition about the rhr -order in Theorem 1 cannot be replaced
by similar properties on hr -order.

Theorem 2. Let X1 ≤lr Y1. Then for any t ≥ 0, 1 ≤ i ≤ j < k ≤ n, and 1 ≤ i ≤ p < q ≤
m,

(t− Yi:n | Yj:n ≤ t < Yk:n) ≤lr (t−Xi:m | Xp:m ≤ t < Xq:m),
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whenever n ≤ m, j ≤ p, and k ≤ q.

Let T be the lifetime of a coherent system with n i.i.d. components and signature
vector s = (s1, s2, ..., sn), and let X1, X2, ..., Xn be the lifetimes of the components with
a common absolutely continuous distribution F . We now present a result regarding the
likelihood ratio ordering of the IT (t−Xi:n | Xj:n ≤ t < T ) with respect to j.

Theorem 3. If the distribution function F is absolutely continuous, then for 1 ≤ i ≤ j <
n, we have

(t−Xi:n | Xj:n ≤ t < T ) ≤lr (t−Xi:n | Xj+1:n ≤ t < T ).

In the next theorem, we examine the implication of likelihood ratio and hazard rate
orderings of the signature vectors of two systems.

Theorem 4. Let T1 and T2 be the lifetimes of two coherent systems with common i.i.d.
components X1, X2, ..., Xn, and signature vectors s(1) and s(2), respectively. If s(1) ≤lr

(≤hr)s
(2), then for any t ≥ 0,

(t−Xi:n | Xj:n ≤ t < T1) ≤lr (≤hr)(t−Xi:n | Xj:n ≤ t < T2).

The reversed hazard rate function is an important measure in the study of engineering
systems. LetX be an absolutely continuous random variable with the distribution function
F (t), and the probability density function f(t). The reversed hazard rate function of X is
defined as r(t) = f(t)/F (t), for all t such that F (t) > 0. We say that X has a decreasing
reversed hazard rate (DRHR) distribution if r(t) is a decreasing function; for more details,
see [3], [8]. In [11], it is shown that, when the component lifetimes of the system are
DRHR, then the IT (t−Xi:n | Xj:n ≤ t < Xk:n) is stochastically increasing in t.

Now consider a (n − k + 1)-out-of-n system consisting of n components and assume
that the components of the system are dependent with lifetimes X1, X2, . . . , Xn.

Theorem 5. If the density function of the exchangeable random vector (X1, X2, ..., Xn)
satisfies the MTP2 property, then

(t−Xr:n | Xk:n ≤ t) ≤st (t−Xr:n | Xk+1:n ≤ t),

for any t ≥ 0 and 1 ≤ r ≤ k < n.

For definition of MTP2 functions, we refer the reader to [8]. One can show that if the
MTP2 assumption in Theorem 5 is removed, then the conclusion of the theorem does not
remain valid [10]. Tavangar and Asadi [10] derived some other results regarding the IT of
a system with exchangeable components.
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Abstract

In this paper, we present some results on applications of mean vitality function to
comparisons of coherent systems. We also obtain an upper bound for the mean vitality
function of coherent system when the lifetimes of components are independent and
identically distributed.

Keywords: Coherent System, IFRA, MVF, Stochastic Orders, System Signature.

1 Introduction

Let X be a random lifetime of a system or a component having the cumulative distribution
function (cdf) F with a finite moment. The mean residual life (MRL) function is defined
as

m(t) = E(X − t|X > t) =

∫∞
t F̄ (x)dx

F̄ (t)
,

where F̄ (t) = 1 − F (t) is the survival (reliability) function of F . If the cdf F has the
probability density function (pdf) f , then

m(t) = v(t)− t, (1)

where v(t) = E(X|X > t) =
∫∞
t xf(x)dx/F̄ (t) is called vitality function (VF) or life

expectancy; see, Kupka and Loo [5]. The functions VF and MRL play an important role
in engineering reliability, biomedical sciences and survival analyzes; see e.g., Bairamov et
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al. [2], Kotz and Shanbhag [4], Ruiz and Navarro [7] and the references therein. For a
continuous random variable X with the pdf f , the Shannon [10] entropy of X is defined as
H(X) = −E[log f(X)] where “ log ” stands for the natural logarithm. Recently, Rao et al.
[6] introduced a new measure of information, called cumulative residual entropy (CRE)
and is defined by

E(X) = −
∫ ∞

0
F̄ (x) log F̄ (x)dx. (2)

In this paper, we obtain some results about the expectation of vitality function of
coherent systems. A system is said to be coherent if every component of the system
is relevant and the structure function of the system is monotone. Let T denote the
lifetime of a coherent system consisting of n independent and identically distributed (i.i.d.)
components with lifetimes X1, · · · , Xn which follow the common cdf F . It follows that
(see e.g., Samaniego [8])

F̄T (t) := P (T > t) =

n∑
i=1

siF̄i:n(t), t > 0, (3)

where F̄i:n(t) is the survival function of Xi:n. The vector of coefficients s = (s1, · · · , sn)
in (3) is called the signature of the system where si = P (T = Xi:n), for 1 ≤ i ≤ n, is the
probability that the i-th failure causes the system failure.

2 Main results

Here, we use the concept of mean vitality function (MVF) order to comparisons of coherent
systems based on the signature of the system. The results is considered by Toomaj and
Doostparast [11].

Definition 1. Let X and Y be random variables with finite MVF’s E(v(X)) and E(v(Y )),
respectively. Then X is said to be smaller than Y in the MVF order, denoted by X ≤mvf Y ,
if E(v(X)) ≤ E(v(Y )).

Since E(X) = E(m(X)) (see, Asadi and Zohrevand [1]), therefore, from (1) the MVF
of a random variable X with finite mean µ = E(X) is

E(v(X)) = E(m(X)) + E(X) = E(X) + µ. (4)

It can be applied the concept of MVF to comparison of coherent systems. Therefore, we
have the following corollary. Let T be the lifetime of the coherent system with signature
s = (s1, · · · , sn) consisting of n i.i.d. component lifetimes X1, · · · , Xn coming from the
cdf F . Then

E(v(X1:n)) ≤ E(v(T )) ≤ E(v(Xn:n)). (5)

Corollary 2 says that the MVF of coherent systems are between the MVF’s of the series
and parallel systems. Hence, Expression (5) motivates the comparison of coherent systems
based on MVF measure.
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Example 1. Let T1 and T2 be lifetimes of two coherent systems with signatures s1 =
(0, 37 ,

4
7) and s2 = (0, 38 ,

5
8), respectively, having n = 3 i.i.d. component lifetimes coming

from the standard exponential distribution. It is easy to verify that E(v(T1)) = 2.48 and
E(v(T2)) = 2.55 and hence T1 ≤mvf T2. □

Now, we have the following proposition given by Toomaj and Doostparast [11]. To see
the definition of usual stochastic order, we refer the reader to Shaked and Shanthikumar
[9].

Let T1 and T2 be the lifetime of two coherent systems consisting of n i.i.d. component
lifetimes from the cdfs F and G with signatures s1 and s2, respectively. If s1 ≤st s2 and
X ≤st Y , then T1 ≤mvf T2.

Example 2. Let s1 = (14 ,
1
4 ,

1
2 , 0) and s2 = (0, 0, 14 ,

3
4) be signatures of two systems consist-

ing n = 4 i.i.d. components with the common cdf F . Let T1 and T2 be the corresponding
lifetimes of the systems. It is easy to verify that s1 ≤st s2. Then Proposition 2 implies
that T1 ≤mvf T2.

In the sequel, we provide an upper bound for the MVF of a random variable by
implementing some additional information. To see the definition of increasing failure rate
average (IFRA), we refer the reader to Barlow and Proschan [3].

Let X be IFRA with the pdf f . Then, we have

E(X) ≤ µ. (6)

Proof. Since X is IFRA, it implies that(
− log F̄ (t)

t

)′
≥ 0, t > 0.

Hence, for all t > 0 we have

−F̄ (t) log F̄ (t) ≤ tf(t), t > 0,

and the desired result follows.

If T denote the lifetime of a coherent system consisting of n i.i.d. components which
are IFRA, then it is known that T is IFRA, see Barlow and Proschan [3]. Hence from
Equation (4) and Lemma 2, we have the following corollary. If T denote the lifetime of
a coherent system consisting of n i.i.d. components which are IFRA, then

E(v(T )) ≤ 2µT ,

where µT = E(T ) =
∑n

i=1 siµi:n and µi:n for i = 1, · · · , n stands for the expected lifetimes
of the order statistics.
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Reliability Analysis of Multi-State k-out-of-n Systems with
Components Having Random Weights
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Abstract

This paper is concerned with reliability modeling of multi-state k-out-of-n systems
consisting of multi-state components. It is also assumed that each component of the
system has an integer-valued random weight (capacity). A recursive algorithm is pre-
sented for reliability evaluation of this model. Some illustrative examples are also
provided.

Keywords: Multi-state system, k-out-of-n system, Recursive algorithm.

1 Introduction

If a binary system with n components works if and only if at least k components work, the
system is called k-out-of n:G system. In a binary k-out-of-n:F system, the system fails if
and only if at least k components fail. There are many situations that each component
of the system has different contribution to the system. Then, the system reliability is
not defined only based on its structure and the total contribution of the components
must be also considered. In the literature, these systems are well-known to weighted
systems. Recently, the reliability of the weighted systems have extensively studied by the
researchers, see [1]-[6]. Wu and Chen [6] explored the reliability of a k-out-of-n:G system
whose components have unequal weights. This system works if and only if at least k
components are working and the total weight of working components is at least k. Wu
and Chen [6] and Higashiyama [3] presented algorithms for computing the reliability of
such a system. Samaniego and Shaked [5] studied relations between the coherent systems
and systems with weighted components. The reliability of multi-state k-out-of-n systems
consisting of multi-state weighted components have been studied in [1], and [4]. In all
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of aforementioned research works, it is assumed that the weights of components are pre-
specified constants. Eryilmaz [2] studied multi-state k-out-of-n systems with two-state
components having random weights.

In this paper we consider a system with n components and assume that each component
and the system may be in M + 1 possible states: 0, 1, . . . ,M . J =M denotes the highest
performance level of the system. J = M − 1, M − 2, . . . denote system states in the
process of its gradual deterioration. State J = 0 corresponds to the total failure of the
system. We propose a model to describe reliability of a multi-state k-out-of-n system with
the above assumptions and the components having random weights. The proposed model
is illustrated by some numerical examples.

2 Main results

Consider a system with n components. The system and each component of the system
have M + 1 possible states (0, 1, 2, . . . ,M). When component i, i = 1, . . . , n, is in state j
(0 ≤ j ≤ M), has a weight (utility value) of Wi,j . Wij is a discrete random variable with
the support [aij , bij ], 0 < aij < bij <∞. The system is defined to be in state j if the total
weight of components which are in state j is greater than or equal to a pre-specified value
cj , j = 0, 1, . . . ,M . Define random variable Xij , i = 1, 2, . . . , n, j = 0, 1, . . . ,M , as

Xij =

{
1, if component i is in state j;
0, o.w.

The components are independent and Wij ’s are assumed to be independent of Xij ’s. If ϕ
denotes the structure function of the system, the system is in state l, {ϕ(X) = l}, if and
only if

{
n∑
i=1

Xil ≥ k,

n∑
i=1

WilXil ≥ cl}.

To evaluate the reliability of the system, a recursive algorithm is given. Let us first
introduce the following notations.

n the number of components

M the best state of the system

pij the probability that component i is in state j

Wij the weight of component i when it is in state j

cl the minimum total weight required to make certain that the system is in state l

It can be proved the following theorem.

Theorem 1. If Rl(cl, k, n) denotes the reliability for the system to be in state l, then

Rl(cl, k, n) =pnl
∑
w≥anl

Rl(cl − w, k − 1, n− 1)P(Wnl = w)

+ (1− pnl)Rl(cl, k, n− 1)

In the sequel, we give an example that the system reliability is calculated based on
recursive algorithm presented in Theorem 1.
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Example 1. Consider a system with 5 components. Assume the system and each compo-
nent may be in three states (M = 2). J = 2 denotes complete performance of the system
(up state), J = 1 corresponds to partial performance, and J = 0 corresponds to complete
failure (down state). Let pij be the ij-th array of matrix P and consider

P =


0.4 0.3 0.3
0.3 0.5 0.2
0.4 0.2 0.4
0.4 0.3 0.3
0.2 0.3 0.5


Suppose that random variable Wij, i = 1, 2, . . . , 5, j = 0, 1, 2, denotes the utility value of
component i when it is in state j and have the following probability mass function:

P(Wij = w) = awij(1− aij)
w−1, w = 1, 2,

where aij is the ij-th array of matrix A considered as

A =


0.3 0.3 0.4
0.5 0.8 0.4
0.25 0.3 0.4
0.4 0.3 0.6
0.2 0.3 0.2


Tables 1-3 show the reliability of the system in each state for c = 2, 4, 6. The computer
program is developed in Matlab 8.0.

Table 1: Probability that the system is in down state

c0 R0(c0, 1, 5) R0(c0, 2, 5) R0(c0, 3, 5) R0(c0, 4, 5) R0(c0, 5, 5)
2 0.8790 0.5550 0.2166 0.0454 0.0038
4 0.4084 0.2970 0.1320 0.0314 0.0031
6 0.1354 0.1468 0.0753 0.0193 0.0018

Table 2: Probability that the system has partial performance

c1 R1(c1, 1, 5) R1(c1, 2, 5) R1(c1, 3, 5) R1(c1, 4, 5) R1(c1, 5, 5)
2 0.8628 0.5149 0.1845 0.0351 0.0027
4 0.3628 0.2688 0.1129 0.0232 0.0019
6 0.0875 0.0937 0.0549 0.0153 0.0013

Table 3: Probability that the system is in up state

c2 R2(c2, 1, 5) R2(c2, 2, 5) R2(c2, 3, 5) R2(c2, 4, 5) R2(c2, 5, 5)
2 0.8824 0.5562 0.2140 0.0438 0.0036
4 0.4832 0.3511 0.1508 0.0333 0.0029
6 0.1100 0.1047 0.0518 0.0125 0.0012

As can be seen from Tables 1-3, Rl(cl, k, n) is decreasing with respect to each of the
parameters cl and k.
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Abstract

The concept of joint signatures which first defined by Navarro et al. [1] are useful
tools for investigating the reliability of two systems with shared components. When
several coherent systems share some components and the components have indepen-
dent and identically distributed (i.i.d.) lifetimes, we obtain a pseudo-mixture repre-
sentation for the joint distribution of the lifetimes of the systems based on a general
notion of joint signatures. We present an R program to find the mentioned joint sig-
nature for any number of systems and components.

Keywords: Coherent system, Order statistic, Signature.

1 Introduction

This paper is a continuation of Navarro et al. [1] in which the joint behavior of several
systems with at least one shared component is investigated. The joint distribution function
of the system lifetimes is obtained generally in a theorem and then various illustrated
examples are also provided.

An example of systems with shared components, which is used often, is in networked
computing in which a server is used at the same time with several computers. A central
server stores almost all of the files for the department’s computers. If the central server
breaks, some of the computers will not work at all and some will have limited capabilities.
The performance of any given pair of PCs will depend on the performance of the shared
components and that of its own individual components. Navarro et al. [1] found the
joint distribution of the lifetimes of the computers when all component lifetimes are i.i.d.
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random variables. They used a measure called signature which was defined previously in
Samaniego [2], [3]. The signature of a coherent system with n i.i.d. components is defined
as the probability vector s = (s1, s2, ..., sn), where si is the probability that the system
fails when the i-th component fails. Hence, si = P (T = Xi:n), for i ∈ {1, 2, ..., n}, where T
is the system’s lifetime and X1:n, X2:n, ..., Xn:n are the order statistics corresponding to the
n component lifetimes. A system’s signature is useful and interesting specially because it
is distribution-free. Using the signatues is an efficient method to find the precise features
that influence the performance of a system’s design.

Navarro et al. [1] proposed joint signatures by considering two systems sharing some
components. We want to generalize this concept. Suppose we have a cluster of systems,
some sharing components with some others. Then, we study how to define a very general
notion of joint signatures. The following scenario can be imagined. Suppose we have
three systems. Then, we can split the case into components that are shared by all three,
components that are common only for 1 and 2, components that are common only for 1
and 3, and components that are common only for 2 and 3. By this setting, we obtain a
pseudo-mixture representation for the joint distribution function of the lifetimes of three
systems based on distributions of order statistics of component lifetimes and then develop
a general notion of joint signatures. This will then generalize to more than three systems
in the cluster.

In this article, we obtain the joint distribution of lifetimes of more than two cohorent
systems with n i.i.d. components. The definition of signature in our representations is
related to the one defined in Navarro et al. [1], but it is more general. We present R
programs to obtain the multidimensional distribution of the lifetimes of at least three
systems. Our programs give a signature matrix which provides, in fact, the coefficients
of the distribution functions of the order statistics of the n iid component lifetimes in the
representation of the multidimensional distribution function of the systems.

2 Main results

Suppose thatX1, X2, . . . , Xn are non-negative independent random variables with common
distribution function F . Consider three systems with lifetimes T1 = ϕ1(Y1, Y2, . . . , Yn1),
T2 = ϕ2(Z1, Z2, . . . , Zn2), and T3 = ϕ3(W1,W2, . . . ,Wn3). Let {Y1, Y2, . . . , Yn1}, {Z1, Z2, . . . , Zn2},
and {W1,W2, . . . ,Wn3} be subsets of {X1, X2, . . . , Xn}. If we denote the joint distribution
function of T = (T1, T2, T3) by G(t1, t2, t3) = P(T1 ≤ t1, T2 ≤ t2, T3 ≤ t3), the following
theorem is obtained.

Theorem 1. Let {i1, i2, i3} be a permutation of {1, 2, 3}. Then the joint distribution
function of T, denoted by G, is written as

G(ti1 , ti2 , ti3) =

n∑
k=0

n∑
j=0

n∑
i=1

s
(i1,i2,i3)
i,j,k Fi:n(ti1)Fj:n(ti2)Fk:n(ti3)

for ti1 ≤ ti2 ≤ ti3 . (1)

Proof. The proof is removed because of the restriction on the number of the pages of the
paper.

If we have m coherent systems with respective lifetimes T1, T2, . . . , Tm, then, for ti1 ≤
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ti2 ≤ · · · ≤ tim ,

G(ti1 , ti2 , . . . , tim) =

n∑
i1=1

n−i1∑
i2=0

· · ·
n−

∑m−1
j=1 ij∑

im=0

ci1,i2,...,im

m∏
j=1

F ij (tij ),

where ci1,i2,...,im are integers which do not depend on the underlying distribution function
F .

In the following remark, we present a matrix form for the joint distribution function
of T. We use the notation B = {bi}n for a matrix B with n rows Bi, i = 1, ..., n. Define
a′ti1

= (F1:n(ti1), . . . , Fn:n(ti1)), and

a′tij
= (F0:n(tij ), F1:n(tij ), . . . , Fn:n(tij )), j = 2, 3.

The joint distribution function of T in (1) can be rewritten as G(t1, t2, t3) = a′ti1
W ,

with W = {a′ti2S
(i1,i2,i3)
l ati3}n and S

(i1,i2,i3)
l = {s(i1,i2,i3)l,j,k }(n+1)×(n+1), l = 1, 2, . . . , n. De-

fine A = {
in times︷ ︸︸ ︷
0, . . . , 0 a′t2

n(n−i) times︷ ︸︸ ︷
0, . . . , 0 }n+1 and S(i1,i2,i3) = {S(i1,i2,i3)

i }n, then, G(t1, t2, t3) =
a′t1ASat3 .

Example 1. Let X1, X2, X3 be i.i.d. random variables with common distribution function
F . Consider three coherent systems with lifetimes T1 = max{X1, X2}, T2 = max{X1, X3},
and T3 = max{X1, X4}. Thus the systems have one shared component. Then the joint
distribution function of T1, T2, and T3, for t1 ≤ t2 ≤ t3, is written as

G(t1, t2, t3) =F2:2(t1)F1:1(t2)F1:1(t3).

The signature of order 4 of X2:2 and X1:1 are obtained, respectively, as (0, 16 ,
1
3 ,

1
2) and

(14 ,
1
4 ,

1
4 ,

1
4). Hence, by some calculations, the joint signature S

(1,2,3)
1 is obtained as a 4× 5

zero matrix and S
(1,2,3)
2 , S

(1,2,3)
3 and S

(1,2,3)
4 are 4× 5 matrices with the first row and first

column all zero’s and the rest a constant which are respectively 1
96 ,

1
48 , and

1
32 .

Then, by letting

a′t1 = (F1:4(t1), F2:4(t1), F3:4(t1), F4:4(t1)),

and

a′ti = (F0:4(ti), F1:4(ti), F2:4(ti), F3:4(ti), F4:4(ti)), i = 2, 3,

one obtains G(t1, t2, t3) = a′t1W , where W = {a′t2S
(1,2,3)
n at3}n.

For any permutation (i1, i2, i3) of {1, 2, 3} such that ti1 ≤ ti2 ≤ ti3 , the distribution
function G is followed same as the case where t1 ≤ t2 ≤ t3.

Example 2. Consider three systems with lifetimes T1 = max{X1, X2}, T2 = max{X2, X3},
and T3 = max{X3, X4}.

Using the same procedure as the previous example, we obtain S
(1,3,2)
1 which is a 5×5 zero

matrix. Also, S
(1,3,2)
2 , S

(1,3,2)
3 and S

(1,3,2)
4 are 5× 5 matrices with all elements zero except

for the last three rows of the first column which are respectively ( 1
36 ,

1
18 ,

1
12), (

1
18 ,

1
9 ,

1
6), and

( 1
12 ,

1
6 ,

1
4).
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We have written an R pacakge to find the joint distribution of T1, ..., Tm, for general
m > 2. Our package takes as input m matrices, each n × n, containing the relation
between each Ti and (X1, ..., Xn), i = 1, ...,m. Then by running our program, we receive
the following outputs for each permutation of 1, ...,m: The joint distribution function of
the systems in terms of F (ti)’s, i = 1, ...,m, and also in terms of Fj:n(ti)’s, i = 1, ...,m,,
j = 1, ..., n, a matrix of the coefficients of Fj:n(ti)’s, i = 1, ...,m,, j = 1, ..., n, and the
general joint signature matrix S, which is an (m+ 1)(n+ 1)× (n+ 1) matrix. Hence, for

example 1, this matrix binds all the matrices S
(1,2,3)
i ’s, i = 1, ..., 4 in rows and it is a 20 ×

5 matrix.
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