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Preface

Continuing the series of workshops on “Reliability Theory and its Applications” in Ferdowsi
University of Mashhad and two Seminars in University of Isfahan (2015) and University of
Tehran (2016), we are pleased to organize the 3rd Seminar on “Reliability Theory and its
Applications” during 16-17 May, 2017 at the Department of Statistics, Ferdowsi University of
Mashhad. On behalf of the organizing and scientific committees, we would like to extend a very
warm welcome to all participants, hoping that their stay in Mashhad will be happy and fruitful.
Hope that this seminar provides an environment of useful discussions and would also exchange
scientific ideas through opinions. We wish to express our gratitude to the numerous individuals
and organizations that have contributed to the success of this seminar, in which around 100
colleagues, researchers, and postgraduate students have participated.

Finally, we would like to extend our sincere gratitude to the administration of Ferdowsi
University of Mashhad and Faculty of Mathematical Sciences, the Iranian Statistical Society,
the Ordered and Spatial Data Center of Excellence, the Scientific Committee, the Organizing
Committee and the students of the Department of Statistics at Ferdowsi University of Mashhad
for their kind cooperation.

Jafar Ahmadi (Chair)
May, 2017
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A note on estimation based on joint progressively
first-failure-censored data

Ahmadi, M. V. 1

Department of Statistics, University of Bojnord

Abstract

In this paper, a new life test plan called a joint progressive first-failure-censoring scheme
is introduced. The maximum likelihood estimates and the Bayes estimates for the parameters
of two exponential distributions are discussed for the new censoring scheme. Moreover, the
Bayes estimates are investigated under symmetric and asymmetric loss functions. Finally, a
simulation study is performed and an illustrative example is also given.

Keywords: Bayes estimation, Joint progressive first-failure-censoring scheme, Exponential
distribution, LINEX loss function, General entropy loss function.

1 Introduction

Censoring is usual in lifetime data due to time and cost restrictions. There are various types of
censoring in survival analysis and progressive censoring is one of the most common for consideration.
This censoring allows the experimenter to remove the units from a life test at various stages during
the experiment. For a comprehensive review of theory, methods and applications of the progressive
censoring, we refer the reader to Balakrishnan and Aggarwala [1] and the references contained
therein. Progressive first-failure censoring, introduced by Wu and Kuş [9], is a type of progressive
censoring in which n disjoint groups with k identical units within each group are placed on a
life-testing experiment at time zero. The experimenter terminates the life testing when r failures

1mv.ahmadi@ub.ac.ir
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occur. When the i-th failure occurs (i = 1, . . . , r − 1), randomly selected Ri groups and the group
including the i-th failure are withdrawn from the experiment. When the r-th failure occurs, all of
the remaining groups are withdrawn from the experiment. For k = 1, the progressive first-failure
censoring is reduced to the case of progressive Type-II censoring. If R1 = · · · = Rr = 0, we have
the first-failure censoring. If k = 1, R1 = · · · = Rr−1 = 0 and hence Rr = n − r, this censoring is
reduced to the Type-II censoring and finally, if k = 1, R1 = · · · = Rr = 0, we have the complete
sample.

Almost all of the types of censoring are concerned with the one-sample problems. But, there
are situations in which the experimenter plans to compare different populations. In such problems,
the joint censoring scheme has been suggested in the literature. Suppose the products are being
manufactured by two different lines within the same facility, and that two independent samples of
sizes m and n are selected from these lines, denoted by L1 and L2, and put simultaneously on a
life-testing experiment. Then, to save time and money, the experimenter follows a joint progressive
Type II censoring scheme and terminates the life testing when r failures occur. Immediately
following the first failure, R1 of the surviving units are randomly selected and withdrawn from
the experiment (we can partition R1 into S1 and T1 such that S1 and T1 are the the number of
units withdrawn at the time of the i-th failure that belong to lines L1 and L2, respectively, and
hence R1 = S1+T1). Then, immediately following the second failure, R2 of the surviving units are
randomly selected and withdrawn from the experiment (R2 = S2 + T2) and so on. When the r-th
failure occurs,all of the remaining Rr = m+n− r−R1− · · · −Rr−1 surviving units are withdrawn
from the experiment. Note that if R1 = · · · = Rr−1 = 0, then Rr = m+ n− r, which corresponds
to the joint Type-II censoring. Also, if R1 = · · · = Rr = 0, then r = m+ n, which corresponds to
the complete sample.

Statistical inferences on the basis of joint censoring have been considered in the literature.
Under the joint progressive Type-II censoring scheme, Rasouli and Balakrishnan [7] studied the
exact likelihood inference for two exponential populations, while Doostparast et al. [4] investigated
the Bayesian inference for two Weibull populations. Recently, Balakrishnan et al. [2] generalize the
work of Rasouli and Balakrishnan [7] from the two-sample to the r-sample situation and discuss
the exact likelihood inference under the r exponential populations.

In this paper, we will combine the concepts of joint progressive Type-II censoring and progressive
first-failure censoring to develop a new life test plan called a joint progressive first-failure-censoring
scheme. The rest of this paper is organized as follows. In Section 1.2, we describe the formulation
of a joint progressive first-failure-censoring scheme. In Sections 1.3 and 1.4, we discuss the
maximum likelihood estimates and the Bayes estimates for the unknown parameters based on
a joint progressively first-failure-censored sample coming from two exponential distributions. In
Section 3, a simulation study is conducted on the basis of the Monte Carlo method for comparing
the estimated risks of the estimates obtained in Sections 1.3 and 1.4. Finally, an illustrative example
is given in Section 4.
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2 A joint progressive first-failure-censoring scheme

In this section, progressive first-failure censoring is combined with joint progressive Type-II
censoring. Suppose that products are being manufactured by two different lines L1 and L2 under
the same conditions. Also, suppose that m independent groups with k1 units within each group
and n independent groups with k2 units within each group have been selected randomly from
the two lines L1 and L2, respectively. Moreover, consider the distribution functions of the two
populations as F (·) and G(·), respectively. All N = m + n groups are placed on a life-testing
experiment at time zero and the experiment is terminated as soon as r failures are observed. In
order to carry out the experiment according to a joint progressive first-failure-censoring scheme,
immediately following the first failure, randomly selected R1 groups and the group in which the
first failure is observed, are withdrawn from the experiment. The R1 withdrawn groups are divided
by two types according to the populations L1 and L2 and so S1 and T1 denote the number of
withdrawn groups belonging to the populations L1 and L2, respectively. It is clear that S1 and
T1 are random quantities and S1 + T1 = R1. Then, immediately following the second failure,
randomly selected R2 groups (S2 groups from L1 and T2 groups from L2) and the group in which
the second failure is observed, are withdrawn from the experiment an so on. When the r-th failure
occurs, all remaining Rr = m+ n− r −R1 − · · · −Rr−1 groups (including Sr groups from L1 and
Tr groups from L2) and the group in which the r-th failure is observed are withdrawn from the
experiment. In this joint censoring scheme R = (R1, . . . , Rr) and r are pre-determined. Similar
to the usual joint progressive Type-II censoring, the available data consist of (W,Z,S) where
W = (W1:r:N , . . . ,Wr:r:N ) and Z = (Z1, . . . , Zr) with Zi = 1 if the i-th failure is from population
L1 and Zi = 0, otherwise, and S = (S1, . . . , Sr). By assuming F̄ (·) = 1−F (·) and Ḡ(·) = 1−G(·),
the joint density function of (W,Z,S) is

f∗(w, z, s) = C

r∏
i=1

f(wi)
zig(wi)

1−ziF̄ (wi)
k1(si+zi)−ziḠ(wi)

k2(ti+1−zi)−(1−zi) (2.1)

where C = D1D2,

D1 = km1
1 km2

2

r∏
j=1

[{
m−

j−1∑
i=1

zi −
j−1∑
i=1

si

}
zj +

{
n−

j−1∑
i=1

(1− zi)−
j−1∑
i=1

ti

}
(1− zj)

]
,

D2 =

r∏
j=1

(
m−

∑j
i=1 zi−

∑j−1
i=1 si

sj

)(n−∑j
i=1(1−zi)−

∑j−1
i=1 ti

tj

)
(N−j−

∑j−1
i=1 Ri

Rj

) ,

with m1 =
∑r

i=1 zi, m2 = r −m1, ti = Ri − si (i = 1, . . . , r) and w1 < · · · < wr. It need to be
mentioned here:

1. If k1 = k2 = 1, the joint progressive first-failure censoring reduces to the joint progressive
Type-II censoring.

2. If R1 = · · · = Rr = 0, the joint progressive first-failure censoring corresponds to the joint
first-failure censoring.
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3. If k1 = k2 = 1 and R1 = · · · = Rr−1 = 0, then Rr = N − r and the joint Type-II censoring is
obtained.

4. If k1 = k2 = 1 and R1 = · · · = Rr = 0, the joint progressively first-failure-censored data are
reduced to complete sample.

Obviously, it can be seen that the progressively first-failure-censored sample (W,Z,S) can be
viewed as a progressively Type-II censored sample coming from two populations with distribution
functions 1−F̄ (·)k1 and 1−Ḡ(·)k2 . Therefore, all statistical inferences based on the joint progressive
Type-II censoring can be extended to those based on the joint progressive first-failure censoring.
However, the joint progressive first-failure censoring is worth to be used in terms of reducing test
time and a saving of resources especially for product with long lifetime but low price.

3 Maximum likelihood estimation

Suppose that the lifetimes of units produced by L1 follow a one-parameter exponential distribution,
denoted by Exp(θ1), with the density and distribution functions as

f(x) = θ1 exp (−θ1x) and F (x) = 1− exp (−θ1x), x > 0, (3.1)

respectively. Similarly, Suppose that the lifetimes of units produced by L2 follow another one-
parameter exponential distribution, denoted by Exp(θ2), with the density and distribution functions
as

g(x) = θ2 exp (−θ2x) and G(x) = 1− exp (−θ2x), x > 0, (3.2)

respectively. Now, by substituting Equations (3.1) and (3.2) into Equation (2.1), the likelihood
function of (θ1, θ2) is reduced to

L(θ1, θ2;w, z, s) = C θm1
1 θm2

2 exp
{
− (θ1u1 + θ2u2)

}
, (3.3)

where

u1 = k1

r∑
i=1

wi(zi + si) = k1

(
m1∑
i=1

x(i) +

r∑
i=1

wisi

)
,

and

u2 = k2

r∑
i=1

wi(1− zi + ti) = k2

(
m2∑
i=1

y(i) +
r∑
i=1

witi

)
,

while x(1) < · · · < x(m1) and y(1) < · · · < y(m2) are the order statistics of the failure times
w1 < · · · < wr from L1 and L2, respectively.

The ML estimates of the parameters θ1 and θ2 are obtained by maximizing the likelihood
function in Equation (3.3) with respect to θ1 and θ2, respectively. After some algebraic
computations, the ML estimates of θ1 and θ2 are derived as

θ̂i,ML =
Mi

Ui
, i = 1, 2. (3.4)
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Remark 3.1. From the ML estimates θ̂1 and θ̂2 in Equation (3.4), it can be seen immediately that
when M1 =

∑r
i=1 Zi = 0 or r, θ̂1 and θ̂2 does not exist. Hence, θ̂1 and θ̂2 are only conditional ML

estimates, conditioned on 1 ≤Mr ≤ r− 1. We, therefore, need to discuss the properties of the ML
estimates θ̂1 and θ̂2 only conditional on 1 ≤Mr ≤ r − 1.

4 Bayes estimation

Statistical inference based on the Bayesian approach is fundamentally different from the non-
Bayesian one. The Bayesian approach allows one to incorporate prior subjective knowledge or
technical information concerning the lifetime parameters into the inferential procedures. In lifetime
data analysis, such prior knowledge is usually summarized into a prior density, denoted by π(·). In
what follows, we assume that the the paramaters θ1 and θ2 are two independent random variables
with gamma prior distributions Gamma(a1, b1) and Gamma(a2, b2), respectively. Then, the joint
prior distribution of (θ1, θ2) is

π(θ1, θ2) = π1(θ1)π2(θ2), θ1 > 0, θ2 > 0, (4.1)

where

πi(θi) =
baii

Γ(ai)
θai−1
i exp (−biθi), i = 1, 2,

and Γ(·) denotes the complete gamma function. On the basis of the observed censored sample
(w, z, s), the joint posterior density function of (θ1, θ2) is obtained from Equations (3.3) and (4.1)
as

π(θ1, θ2|w, z, s) = π1(θ1|w, z, s)π2(θ2|w, z, s), θ1 > 0, θ2 > 0, (4.2)

where

πi(θi|w, z, s) =
(ui + bi)

mi+ai

Γ(mi + ai)
θmi+ai−1
i exp (−θi(ui + bi)), i = 1, 2.

From Equation (4.2), we see that the joint posterior density function of (θ1, θ2) is a product of two
gamma density functions. So the posterior density functions of θ1 and θ2 are Gamma(m1+a1, u1+
b1) and Gamma(m2 + a2, u2 + b2), respectively.

4.1 Loss function

In the Bayesian setup, the choice of a loss function is an integral part. A wide variety of loss
functions have been discussed in the literature. One of the most popular loss functions is the
Squared Error (SE) loss defined by L(δ, θ) = (δ − θ)2, where δ is an estimate of θ. But, the
SE loss function is justified only when losses are symmetric in nature. The symmetric nature
of this loss function gives equal weight to overestimation as well as underestimation, while in
practice, overestimation may be more serious than underestimation or vice versa. Such conditions
are very common in engineering, medical and biomedical sciences. In this case, an asymmetric loss
function might be more appropriate. A suitable alternative to the SE loss function is a convex but
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asymmetric loss function, known as the LINear-EXponential (LINEX) loss function, proposed by
Varian [8] and defined by

L(δ, θ) ∝ exp
{
τ(δ − θ)

}
− τ(δ − θ)− 1, τ ̸= 0,

where τ is the shape parameter. Obviously, the nature of the LINEX loss function changes
according to the choice of τ . The sign and magnitude of the shape parameter τ represents the
direction and degree of symmetry, respectively. ( τ > 0 means overestimation is more serious than
underestimation and τ < 0 means the opposite). The LINEX loss converges to the SE loss as τ → 0.
Since the Bayes estimate of θ is the value that minimizes the posterior mean of L(δ, θ); therefore,
it is easy to verify that the Bayes estimate of θ under the LINEX loss function is obtained as

δBL,τ = −1

τ
lnE

(
exp(−τθ)|X

)
, (4.3)

provided that the expectation E
(
exp(−τθ)|X

)
exists.

Another useful asymmetric loss function is the General Entropy (GE) loss, proposed by Calabria
and Pucini [3], defined by

L(δ̂, δ) ∝
(
δ̂/δ
)η − η log

(
δ̂/δ
)
− 1,

where η is the shape parameter. This loss is a generalization of the entropy loss used by several
authors where the shape parameter η = 1. The parameter η reflects the departure from symmetry.
When η > 0, overestimation is considered to be more serious than underestimation and vice versa.

It is easy to verify that the value of δ that minimizes E(L(δ, θ)|X) under the GE loss is

δBE,η =
(
E(θ−η|X)

)− 1
η , (4.4)

provided that E(θ−η|X) exists. Note that if we put η = −1 in δBE,η, it provides the Bayes estimate
under the SE loss function.

4.2 Bayes estimation under the LINEX and GE loss functions

From Equations (4.3) and (4.4), the Bayes estimates of θ1 and θ2 under the LINEX and GE loss
functions with respect to the joint prior density in Equation (4.1) can be shown that

θ̂i,BL,τ = τ−1(Mi + ai) ln

(
1 +

τ

Ui + bi

)
, i = 1, 2, (4.5)

and

θ̂i,BE,η =

[
Γ(Mi + ai − η)

Γ(Mi + ai)

]− 1
η

(Ui + bi)
−1, i = 1, 2, (4.6)

respectively. As a special case of (4.6), the Bayes estimates of θ1 and θ2 under the SE loss function
are

θ̂i,BS =
Mi + ai
Ui + bi

, i = 1, 2. (4.7)

Note that θ̂i,BL,τ , θ̂i,BE,η and θ̂i,BS in Equations (4.5), (4.6) and (4.7), respectively, are the unique
Bayes estimates of θ1 and θ2 under the LINEX, GE and SE loss functions, respectively, with respect
to the proper density (4.1) and hence are admissible; see, for example, Lehmann and Casella [5, p.
323].
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Table 1: Air-conditioning systems data.

Plane Ordered failure times

7914 3 5 5 13 14 15 22 22 23 30 36 39 44 46
50 72 79 88 97 102 139 188 197 210

7913 1 4 11 16 18 18 18 24 31 39 46 51 54 63
68 77 80 82 97 106 111 141 142 163 191 206 216

5 Simulation study

To study the performance of of the ML and the Bayes estimates discussed in the preceding
sections, we simulated 10, 000 joint progressively first-failure-censored samples from two exponential
distributions with the values of parameters (θ1, θ2) = (2, 3) and different combinations of (k1, k2),
N , r, (n,m) and (R1, . . . , Rr). We also obtained the results for some other choices of (θ1, θ2), but
as the findings were quite similar, we present here only the results corresponding to (θ1, θ2) = (2, 3)
for the sake of brevity. For these cases, we computed the ML and the Bayes estimates of θ1 and
θ2 under the SE, LINEX and GE loss functions under the hyperparameters (a1, b1) = (2, 1.1) and
(a2, b2) = (5, 1.2). Then, the estimated risks (ERs) for the estimates of θ1 and θ2 are calculated by
using the root mean square error. The results are not presented for brevity.

From the simulation results, we concluded that the ERs of the Bayes estimates on the basis
of the LINEX and GE loss functions are smaller than those of the ML estimates and the Bayes
estimates on the basis of the SE loss function. We also observe that the ERs of all the estimates
decrease with increasing r when all other components are kept fixed. Moreover, the ERs of the
Bayes estimates based on the LINEX and GE loss functions are sensitive with respect to the shape
parameters τ and η, respectively.

6 Illustrative example

Proschan[6] presented data on intervals between failures (in hours) of the air-conditioning system
of a fleet of 13 Boeing 720 jet airplanes. After analyzing the data, Proschan[6] observed that the
failure distribution of the air-conditioning system for each of the planes was well approximated by
exponential distributions. For illustration purposes, we chose here the planes “7913” and “7914”
and the corresponding failure time data are presented in Table 1.

By employing a joint progressive first-failure-censoring scheme with m = 6, n = 9, k1 = 4,
k2 = 3, r = 7 and (R1, . . . , R7) = (1, 1, 1, 1, 1, 1, 2), the data presented in Table 2 were obtained.
Using the data in Table 2 and Equations (3.4), (4.5), (4.6) and (4.7) with (a1, b1) = (1, 1) and
(a2, b2) = (2, 2), we can get the ML and Bayes estimates of the parameters θ1 and θ2. These
estimates present in Table 3 .
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Table 2: The joint progressive first-failure-censoring scheme with m = 6, n = 9,
k1 = 4, k2 = 3, r = 7 and (R1, . . . , R7) = (1, . . . , 1, 2), employed on air-conditioning
systems data.

w 1 4 14 15 16 24 30
z 0 0 1 1 0 0 1
s 1 1 1 0 0 0 0
t 0 0 0 1 1 1 2

Table 3: The estimates of θ̂1 and θ̂2.

ML BS BL BE

τ = −2 τ = 2 η = −2 η = 2

θ̂1 0.00962 0.01278 0.01282 0.01247 0.01429 0.01345

θ̂2 0.00833 0.01245 0.01274 0.01242 0.00783 0.00928
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Univariate stochastic ordering for near-records based on different
classes of life time distributions

Akbari, M. 1

Department of Statistics, Mazandaran University

Abstract

The observations between the nth and (n+ 1)th upper record value that fall in the interval
(XU (n) − a,XU (n)), where XU (n) is upper record value and a > 0 is a constant, are called
the observations near the nth upper record value. In this paper, is obtained some stochastic
orderings for number of observations near the nth upper and lower k−records based on different
classes of life time distributions. Also, It is shown that only in exponential distribution is
possible that the number of observations near the nth and mth upper k−record or lower
k−record be equal in distribution.

Keywords: Near-records, Stochastic ordering, Exponential distribution.

1 Introduction

Let X1, X2, ... be a sequence of independent and identically distributed (iid) random variables
with continuous cumulative distribution function (cdf) F and the probability density function (pdf)
f . The statistics X1:n < X2:n < ... < Xn:n denote the order statistics from above random sample.
So far, a lot of results are provided about of properties and applications of order statistics from kind
of different distributions. The reader is referred to Arnold et al. (2008) and David and Nagaraja
(2003). Also, many studies of record statistics that are extreme order statistics in partial sequence
of a sample have been obtained. Xi is called an upper record value if Xi > max{X1, ..., Xi−1}. Let
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us recall the sequences of upper k−record times, TU (n, k), and upper k−record values, XU (n, k),
which are defined as follows: TU (1, k) = k, XU (1, k) = X1:k and for n ≥ 2

TU (n, k) = min{j : j > TU (n− 1, k), Xj > XTU (n−1,k)−k+1:TU (n−1,k)},

and the nth upper k−record is defined by

XU (n, k) = XTU (n,k)−k+1:TU (n,k), for n ≥ 1.

For k = 1, usual records are recovered. The pdf of XU (n, k) is given by

fXU (n,k)(x) =
kn[− log(F̄ (x))]n−1

(n− 1)!
{F̄ (x)}k−1f(x), x ∈ SX , (1.1)

where F̄ (x) = 1− F (x). Lower k−record statistics are defined similarly. We denote the nth lower
k−record time and lower record value by TL(n, k) and XL(n, k), respectively. See Arnold et al.
(1998) and Nevzorov (2001) for more details on the theory and applications of record values.
It is well known that plain records are scarce in some states but they have some serious implications.
For example, in destructive industrial stress - testing when specimens to be tested are expensive,
in climatological or financial phenomena, and in insurance business. So in these cases, the record
sequence are quite short and it is not good for statistical method. Gouet et al. (2011) show
that near-record are simple to obtain and have longer series than records mostly. Near-record is
introduced by Balakrishnan et al. (2005) for first time. They defined the number of observations
near the nth upper record value as follows

ξn(a) = #{j : TUn < j < TUn+1, Xj ∈ (XU (n)− a,XU (n)]}, (1.2)

where a > 0 is a constant. In fact, near-record observations are not real records, but by considering
small values of a > 0, they have larg values as record values and can be considered as records.
So far, several researchers pay attention to properties and applications of ξn(a) for example Pakes
(2007), Gouet et al. (2007), (2011), (2012a) and (2012b).
In this paper, some stochastic orderings for near-records when parent population is one of life time
distribution with increasing, decreasing or constant hazard rate are gotten. The related results are
stated in two sections auxiliary results and main results.

1.1 Auxiliary results

Similar (1.2), it can be defined ξn(a, k) as the number of observations near the nth upper
k−record as follows

ξn(a, k) = #{j : TU (n, k) < j < TU (n+ 1, k), Xj ∈ (XU (n, k)− a,XU (n, k)]}, (1.3)

where a > 0. It’s pmf is given by (see Balakrishnan et al. (2005))

P (ξn(a, k) = j) =

∫
βU (x, a)(1− βU (x, a))

jfXU (n,k)(x)dx, (1.4)
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where βU (x, a) =
F̄ (x)

F̄ (x−a) . Similarly, the number of observations near the nth lower k−record can

be expressed as

ηn(a, k) = #{j : TL(n, k) < j < TL(n+ 1, k), Xj ∈ [XL(n, k), XL(n, k) + a)}, (1.5)

and it’s pmf is given by

P (ηn(a, k) = j) =

∫
βL(x, a)(1− βL(x, a))

jfXL(n,k)(x)dx, (1.6)

where βL(x, a) =
F (x)

F (x+a) . Using (1.4) and (4), a closed form of survival functions of ξn(a, k) and

ηn(a, k) can be provided easily which are mentioned below, respectively

P (ξn(a, k) ≥ j) = E(1− F̄ (XU (n, k))

F̄ (XU (n, k)− a)
)j , (1.7)

and

P (ηn(a, k) ≥ j) = E(1− F (XL(n, k))

F (XL(n, k) + a)
)j . (1.8)

Equations (1) and (1.8) are used in the next section to get main results.
The stochastic orderings and inequalities are useable in more fields such as probability, reliability
theory, economic, insurance and so on. Now, some of agin notions and stochastic orderings that
will use to get new results are remined shortly. See Barlow and Proshan (1981) and Shaked and
Shantikumar (2007) for more details on aging properties and stochastic ordering, respectively.

Definition 1. Let X and Y be continuous random variables with cdf’s F and G, respectively.
Then

(a) The random variable X is said to be stochastically less than or equal to Y , denoted by X ≤st Y ,
if F̄ (t) ≤ Ḡ(t), for all t. Also, its equivalent condition is as follows

E(ϕ(X)) ≤ E(ϕ(Y )), for every increasing function ϕ(·). (1.9)

(b) A random variable X is said to have increasing [decreasing] failure rate (IFR)[(DFR)] if its

failure rate function r(t) = f(t)
F̄ (t)

is increasing [decreasing] for t > 0.

(c) A random variable X is said to have increasing [decreasing] reverse hazard rate

(IRHR)[DRHR] if its reverse hazard rate function r̃(t) = f(t)
F (t) is increasing [decreasing] for

t > 0.

(d) Let X and Y be two random variables with hazard rate functions r and q, respectively, such
that

r(t) ≥ q(t), ∀t ∈ R.
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Then X is said to be smaller than Y in the hazard rate order, denoted as X ≤hr Y . Also, its
equivalent condition is as follows

Ḡ(t)

F̄ (t)
increasing in t.

(e) Let X and Y be two random variables with reversed hazard rate functions r̃ and q̃, respectively,
such that

r̃(t) ≤ q̃(t), ∀t ∈ R.

Then X is said to be smaller than Y in the reversed hazard rate order, denoted as X ≤rh Y .

(f) Let X and Y be continuous [ discrete] random variables with densities [ discrete densities] f
and g, respectively, such that

g(t)

f(t)
indreases in t

Then X is said to be smaller than Y in the likelihood ratio order, denoted as X ≤lr Y .

The above stochastic orderings are connected to each other as follows:

X ≤lr Y =⇒ X ≤hr Y

⇓ ⇓
X ≤rh Y =⇒ X ≤st Y

2 Main results

It is well known that there are several parameter models that have successfully served as population
models for failure times arising from a wide range of products and failure mechanisms. For example,
exponential, weibull, extreme value and so on. We can divide the family of life time distributions
into three classes based on increasing, decreasing and constant failure rate functions. In this section,
it is obtained some stochastically monotone properties for ξn(a, k) and ηn(a, k), based on different
groups of life time distributions which are stated in the following theorems.

Proposition 2.1. Let XU (n, k) and XL(n, k) be the nth upper and lower k−record value from
a sequence of iid random variables with common distribution function F . Then, for any n ≤ m,
following statements hold

(a) XU (n, k) ≤lr X
U (m, k)

(b) XL(m, k) ≤lr X
L(n, k)
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Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of iid random variables with common distribution
function F . If F is IFR, then

ξn(a) ≤st ξm(a), for n < m.

Proof. From Proposition 2.1 (a), we have

XU (n, k) ≤st X
U (m, k) (2.1)

Also, it can be shown easily that the function F̄ (x)
F̄ (x−a) is decreasing in x, when x is IFR. By this

fact and equations (1.9) and (2.1), it is concluded that

E

(
1− F̄ (XU (n, k))

F̄ (XU (n, k)− a)

)j
≤ E

(
1− F̄ (XU (m, k))

F̄ (XU (m, k)− a)

)j
, (2.2)

for j ≥ 1. Then from (1), ξn(a, k) ≤st ξm(a, k), for any n < m. It completes the proof.

Remark 2.3. Assume the assumptions of Theorem 1 hold, and F is DFR. Then

ξm(a, k) ≤st ξn(a, k), for n < m.

Proof. The proof is the same as the proof of Theorem 1.

Theorem 2.4. Let {Xn, n ≥ 1} be a sequence of iid random variables with common cdf F that its
support is (0,∞). Then F has constant failure rate c if and only if

P (ξn(a, k) = 0) = e−ca,

for any a > 0 and n ≥ 1.

Proof. It is well known that failure rate function is constant among continuous distribution functions
if and only if exponential distribution be the distribution of the population. So, for necessity, it is
assumed that Xi’s have exponential distribution with parameter c. Then

P (ξn(a, k) = 0) =

∫
e−cx

e−c(x−a)
dFXU (n,k)(x).

= e−ca

To proof of the sufficiency, suppose that

P (ξn(a, k) = 0) = e−ca.

From (1.4), it is concluded∫ ∞

a

F̄ (x)

F̄ (x− a)
dFXU (n,k)(x) = e−ca

= e−ca
∫ ∞

0
dFXU (n,k)(x)
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By simplification of above equality, is concluded

lim
a−→0

∫ ∞

0
{ e−u

F̄ (F−1(1− e−u)− a)
− e−ca}un−1e−kudu = 0.

Following result is based on property of completeness of the sequence {un−1}:

lim
a−→0

{ e−u

F̄ (F−1(1− e−u)− a)
− e−ca} = 0 (2.3)

Equation (2.3) results in

F̄ (t)

F̄ (t− a)
= e−ca. (2.4)

The most general solution of (2.4) is the function F̄ (x) = e−cx. This completes the proof.

The reader is referred to Higgins (2004) for details about complete sequence function and Aczél
(1966) for functional equations.

Theorem 2.5. Let {Xn, n ≥ 1} be a sequence of iid random variables with common cdf F and
constant failure rate c. Then

ξn(a, k)
d
= ξm(a, k), m ̸= n.

Proof. Suppose that X has exponential distribution with parameter c because the failure rate is
assumed constant. Then can be obtained

P

(
ξn(a, k) ≥ j

)
− P

(
ξn+1(a, k) ≥ j

)

=

∫ ∞

0

(
1− F̄ (x)

F̄ (x− a)

)j{kn{− log F̄ (x)}n−1

(n− 1)!

}
F̄ k−1(x)f(x)dx

−
∫ ∞

0

(
1− F̄ (x)

F̄ (x− a)

)j{km{− log F̄ (x)}m−1

(m− 1)!

}
F̄ k−1(x)f(x)dx

= (1− e−ac)j{
∫ ∞

0

kn

(n− 1)!
yn−1e−kydy −

∫ ∞

0

km

(m− 1)!
ym−1e−kydy

= (1− e−ac)j(1− 1) = 0. (2.5)

From (2.5), it is concluded that ξn(a, k)
d
= ξm(a, k). Then the proof is completed.

In the next theorem, it is shown the same results as ξn(a, k) for ηn(a, k).

Theorem 2.6. Let {Xn, n ≥ 1} be a sequence of iid random variables with continuous cdf F . Then
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(a) ηn(a, k) ≤st ηm(a, k), for n < m, when F is DRHR.

(b) ηm(a, k) ≤st ηm(a, k), for n < m, when F is IRHR.

Proof. The proof is similar to the proof of Theorem 1.

As mentioned in Balakrishnan et al. (2005), an important use of near-records is in the insurance
companies. They defined following quantity that it measures the sume of insurance claims close in
value to an unusually large claim XU (n, k)

Sn(a, k) =

TU
n+1−1∑

i=TU
n +1

XiI(Xi ∈ (XU (n, k)− a,XU (n, k))). (2.6)

Corollary 2.7. Let {Xn, n ≥ 1} be a positive sequence of iid random variables with common cdf
F that has infinite upper end point. Then

(a) ξn(a, k)
a.s.∼ Sn(a,k)

XU (n,k)

(b) Sn(a, k) ≤st Sm(a, k), for n < m and F is IFR

(c) Sm(a, k) ≤st Sn(a, k), for n < m and F is DFR

Proof. In view of positivity of random variables, is obtained following inequality

ξn(a, k)(X
U (n, k)− a) ≤ Sn(a, k) ≤ ξn(a, k)X

U (n, k) (2.7)

It is well known that XU (n, k)
a.s.−→ ∞. This fact and inequality (2.7) complete the proof of part

(a). To prove part (b), observe that

P (Sn(a, k) ≤ t) = P (
Sn(a, k)

XU (n, k)
≤ t

XU (n, k)
)

≥ P (
Sm(a, k)

XU (m, k)
≤ t

XU (n, k)
)

= P (Sm(a, k) ≤ t
XU (m, k)

XU (n, k)
)

≥ P (Sm(a, k) ≤ t), (2.8)

where first inequality is concluded from Theorem 1. It completes the proof (b). Similarly, part (c)
can be proved.

Theorem 2.8. Suppose that {Xn, n ≥ 1} and {Yn, n ≥ 1} be two sequences of continuous random
variables with cdfs F and G, respectively. If X ≤hr Y and F is DFR, then

ξXn (a, k) ≤st ξ
Y
n (a, k),

where ξXn (a, k) denotes the number of observations near the nth upper k− records when F is parent
distribution.
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Proof. From Ahmadi and Arghami (2001) is concluded that

XU (n, k) ≤st Y
U (n, k) (2.9)

Equation (2.9) and DFR property of F will result in

E(1− F̄ (XU (n, k))

F̄ (XU (n, k)− a)
)j ≥ E(1− F̄ (Y U (n, k))

F̄ (Y U (n, k)− a)
)j (2.10)

From equivalent condition of hazard rate ordering, the following inequality holds

E(1− F̄ (Y U (n, k))

F̄ (Y U (n, k)− a)
)j ≥ E(1− Ḡ(Y U (n, k))

Ḡ(Y U (n, k)− a)
)j (2.11)

Equations (2.10) and (2.11) result in

E(1− F̄ (XU (n, k))

F̄ (XU (n, k)− a)
)j ≥ E(1− Ḡ(Y U (n, k))

Ḡ(Y U (n, k)− a)
)j (2.12)

From (2.12), the proof is completed.

Example 2.9. Assume that X and Y be continuous random variables with pareto(2,1) and
pareto(1,1), respectively. Then, one can easily show that X ≤hr Y . Also, X has DFR property.
Thus based on Theorem 2.8, ξXn (a, k) ≤st ξ

Y
n (a, k).

Theorem 2.10. Suppose that {Xn, n ≥ 1} and {Yn, n ≥ 1} be two sequences of continuous
random variables with cdfs F and G, respectively. If X ≤rh Y and F is DRHR, then

ηXn (a, k) ≤st η
Y
n (a, k),

Example 2.11. Assume that X and Y be continuous random variables with following density
functions f and G, respectively

f(x) = 1, 0 < x < 1 and g(x) = 2x, 0 < x < 1.

Then, one can easily show that X ≤rh Y . Also, X has DRHR property. Thus based on Theorem
2.10, ηXn (a, k) ≤st η

Y
n (a, k).

Conclusion

Because of complex form of pmfs of ξn(a, k) and ηn(a, k), it is difficult to obtain some stochastic
orderings. But, it is shown usual stochastic ordering in special class of life time distribution. Also,
as mentioned in Balakrishnan et al. (2005), an important use of near-records is in the insurance
companies. So, the results of this paper can be used in insurance analysis.
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Selection of the least risky minimal repair system
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Abstract

Bayesian selection rule is proposed for selection of the subset of the least risky systems
based on minimal repair times of repairable systems. The Weibull distribution is considered as
the lifetime distribution of the systems. The Laplace approximation is used for computation
of the Bayesian selection rule. It is observed through a simulation study that selection of the
least risky system results to a high level of accuracy and efficiency.

Keywords: Computational Bayes, Qualifying index set, Ranking, Reliability, Time interval
between failures.

1 Introduction

Around 50 productive years of statistical ranking, selection and multiple comparison theories from
mid-50’s has witnessed a wide range of methods for selection of the best population and multiple
comparisons of populations based on the random and censored samples. For an overview of methods
and the key references, one can refer to Dudewicz, 1980, Balakrishnan et al., 2007 and Gupta and
Berger, 2012.

There are yet many complications for utilizing the ranking, selection and multiple comparison
methods in the reliability theory of the systems. There are several criteria for comparing the
systems, including reliability, the hazard rate, and the mean time to failure. Based on the type of the
life experiment or the usage of the system, there might be different types of lifetime data available,
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including failure times, repair times, censored samples, degradation measurements, step-stress, and
experimental data. The best fitted distribution for the lifetime of the underlying system is much
more complicated than the usual exponential or gamma distributions, studied in the literature.
These complications urge the need for certain customized computational methods.

In this paper, we consider the problem of Bayesian selection of the least risky system based on
the available minimal repair times of the systems, when the weibull distribution is considered as
the lifetime distribution of the systems.

2 The model

In the sequel, the Weibull distribution is assumed for the underlying lifetime distribution of the
systems. The two-parameter Weibull distribution plays a central role in reliability analysis, mainly
due to its flexibility and the ability to capture a wide variety of shapes. If X is a Weibull distributed
random variable with scape and shape parameter α and β, respectively, it will be denoted by
X ∼ Weib(α, β). The associated probability density function (pdf) is given by

g(x|α, β) = β

α

(x
α

)β−1
exp

[
−
(x
α

)β]
, x > 0, α > 0, β > 0 . (2.1)

The corresponding reliability and hazard rate functions are R(x|α, β) = exp
[
−
(
x
α

)β]
and

h(x|α, β) = β
α

(
x
α

)β−1
, respectively, while the mean time to failure is µ(α, β) = αΓ(1 + β−1).

The minimal repair, is a repair process such that, after a failure, the system is put back into
operation in the same state as immediately before the failure. Consider k independent minimal
repair systems Si, i = 1, . . . , k, and for each of them, let Ti(1), Ti(2), . . . , denote minimal repair times
from some absolutely continuous distribution function G(·|θi) with probability density function
g(·|θi) and the reliability function R(·|θi) = 1 − G(·|θi), in which θi is the associated parameter
vector of the ith system, i = 1, . . . , k. It is well known that the minimal repair times possess the
same joint distribution as upper record values from the underlying G. For details one may refer to
Arnold et al. (1998, p. 10) and Kamps (1995, p.31). Thus, the joint density function of the first
mi minimal repair times of the i-th system, Ti = (Ti(1), . . . , Ti(mi)), for some mi ∈ N, is given by

fTi(ti|θi) = g(timi |θi)
mi−1∏
j=1

g(tij |θi)
R(tij |θi)

, 0 ≤ ti1 ≤ . . . ≤ timi

=
βmi
i

(∏mi
j=1 tij

)βi−1

αmiβi
i

exp{−
(
timi

αi

)βi
}, i = 1, . . . , k, (2.2)

where ti = (ti1, . . . , tim1) with 0 ≤ ti1 ≤ . . . ≤ timi .

3 Bayesian selection of the least risky system

Let S1, . . . , Sk be k reliable systems, such that the lifetime of Si has pdf fi(·;θi), mean time to
failure µi(θi) and the hazard rate h(t0|θi) at a given time point t0, i = 1, . . . , k, where θi is the
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parameter vector associated to the lifetime of ith system. Considering the prespecified control value
h0 and define the qualifying set

Qh = {i ∈ {1, . . . , k}; h(t0|θi) ≤ h0, µ(θi) ≥ µ0}.

The system Si is considered as the least risky system at time t0, if it simultaneously satisfies

(i) i ∈ Qh, and

(ii) h(t0|θi) ≤ h(t0|θj), ∀j ∈ Qh.

One may mimic the loss function introduced by Lai et al. (2012) and consider

L(δ′, θ̃|t0) =
k∑
j=0

δ′jh
′(t0|θj)− min

0≤i≤k
h′(t0|θi),

where
h′(t0|θi) = h(t0|θi)I{µ(θi)≥µ0} + (h0 + ϵ)I{µ(θi)<µ0},

for a small enough positive number ϵ and h′(t0|θ0) = h0. Then, the Bayes risk of the decision δ,
for a given prior π, is obtained in a similar way as

r(δ, π|t0) =
∫
T

k∑
i=0

δ′i(t̃)ϕ
′
i(t̃)m(t̃) dt̃− C ′,

where C ′ is a constant, ϕ′0(t̃) = h0 + ϵ and for i = 1, . . . , k,

ϕ′i(t̃) = (h0 + ϵ)Pr(µ(θi) ≤ µ0|t̃) +
∫
Θi

h(t0|θi)π(θi|ti)I(µ(θi) > µ0) dθi. (3.1)

Hence, a selection rule for selection of the least risky system with minimum Bayes risk would
be

δ′
B1
i (t̃) =

{
1, i = min{j; ϕ′j(t̃) ≤ ϕ′h(t̃), ∀ 0 ≤ h ≤ k}
0, otherwise,

i = 0, 1, . . . , k. (3.2)

However, if there are systems with equal values of ϕ′i(t̃), then selection of the first system with
maximum value of ϕ′i(t̃), as in (3.2), is not appropriate. In such a situation, one might be interested
in selection of all systems, which their value of ϕi(t̃) is equal to max1≤j≤k ϕj(t̃), that is

δB2
i (t̃) =

{
1, ϕ′i(t̃) = max0≤j≤k ϕ

′
j(t̃)

0, otherwise,
i = 0, 1, . . . , k. (3.3)

For the selection rule (3.3) to be well-defined, the restrictions
∑k

i=0 di = 1 in the decision space as

well as
∑k

i=0 δi(t̃) = 1 for the selection rules must be relaxed, and instead of a selection rule δ with
minimum Bayes risk r(δ, π), we are interested in the selection rule δ, such that

r(δ, π) <
#{i ∈ {1, . . . , k}; δi = 1}
#{i ∈ {1, . . . , k}; δ′i = 1}

r(δ′, π). (3.4)

The inequality (3.4) guarantees that if there are more than one system with maximum Bayes risk,
then the selection rule δ selects all of them. The selection rule (3.3) satisfies the inequality (3.4)
and thus is is the optimal Bayes selection rule based on the criterion (3.4).
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Table 1: Simulation results for different values of parameters.

c ϵ (h0, µ0, t0) p1 p2 p3 p4 p5 p6 p7
0.1 0.001 (20,110,150) 0.92 0.61 0.61 0.32 0.08 0.32 0.32

(10,100,200) 0.98 0.91 0.91 0.07 0.02 0.00 0.00
0.01 (20,110,150) 0.97 0.59 0.59 0.37 0.03 0.27 0.27

(10,100,200) 0.96 0.85 0.85 0.12 0.04 0.00 0.00
0.1 (20,110,150) 0.94 0.56 0.56 0.38 0.06 0.26 0.26

(10,100,200) 0.93 0.80 0.80 0.13 0.07 0.00 0.00
0.5 0.001 (20,110,150) 0.95 0.57 0.57 0.38 0.05 0.25 0.25

(10,100,200) 0.98 0.88 0.88 0.10 0.02 0.00 0.00
0.01 (20,110,150) 0.96 0.57 0.57 0.38 0.04 0.26 0.26

(10,100,200) 0.98 0.89 0.89 0.09 0.02 0.00 0.00
0.1 (20,110,150) 0.97 0.57 0.57 0.40 0.03 0.27 0.27

(10,100,200) 0.97 0.89 0.89 0.08 0.03 0.00 0.00
1 0.001 (20,110,150) 0.97 0.57 0.57 0.40 0.03 0.27 0.27

(10,100,200) 0.99 0.92 0.92 0.07 0.01 0.00 0.00
0.01 (20,110,150) 0.97 0.58 0.58 0.38 0.40 0.23 0.23

(10,100,200) 0.98 0.90 0.90 0.08 0.02 0.00 0.00
0.1 (20,110,150) 0.97 0.57 0.57 0.40 0.04 0.25 0.25

(10,100,200) 0.99 0.92 0.92 0.07 0.01 0.00 0.00
2 0.001 (20,110,150) 0.96 0.57 0.57 0.39 0.04 0.27 0.27

(10,100,200) 0.99 0.91 0.91 0.08 0.01 0.00 0.00
0.01 (20,110,150) 0.96 0.58 0.58 0.38 0.04 0.25 0.25

(10,100,200) 0.99 0.90 0.90 0.09 0.01 0.00 0.00
0.1 (20,110,150) 0.97 0.53 0.53 0.44 0.03 0.25 0.25

(10,100,200) 0.99 0.90 0.90 0.08 0.01 0.00 0.00

4 Simulation study

In order to examine the performance of the proposed method, we perform a simulation study by
considering k = 10 repairable systems, with m = (m1, . . . ,m10) = (4, 6, 3, 8, 5, 3, 6, 7, 4, 5) observed
minimal repair times. We have generated the minimal repair times under Weibull populations,
with paramaters θ1 = (110, 15), θ2 = (120, 10), θ3 = (100, 20), θ4 = (105, 12), θ5 = (130, 15),
θ6 = (140, 10), θ7 = (120, 20), θ8 = (110, 30), θ9 = (125, 25) and θ10 = (100, 25). Thus, the mean
failure times vector of the systems, (µ(θ1), . . . , µ(θ10)) is as follows

(106.22, 114.16, 97.35, 100.62, 125.54, 133.19, 116.82, 108.00, 122.30, 97.84).

The algorithm is repeated for N = 104 times and the following probabilities are estimated

p1 = P (S ∋ i∗), p2 = P (S ⊂ QR), p3 = P (i∗ ∈ S ⊂ QR), p4 = P (i∗ ∈ S ̸⊂ QR),

p5 = P (i∗ ̸∈ S ̸⊂ QR), p6 = P (i∗ ∈ S = QR), p7 = P (S = QR),

where S is the selected subset.

Here, we have chosen the hyperparameter c to take different values c = 0.1, 0.5, 1, 2 and d =

c/(β̂i/α̂i(τ̂i/α̂i)
β̂i−1, where θ̂i = (α̂i, β̂i) is the MLE of θi = (αi, βi) and τ̂i = µ(θ̂i). These values

are chosen so that the mean of the prior distribution be fix and its variance vary by c.

Table 1 presents the values of the estimated p1 − p7 for c = 0.1, 0.5, 1, 2, ϵ = 0.1, 0.01, 0.001 and
(h0, µ0, t0) = (20, 110, 150), (10, 100, 200).

It is observed from Table 1, that c = 1 results in the best values of p1−p3, while c = 2 results in
the best values of p4, p5, and c = 0.1 and ϵ = 0.001 results in best values of p6 and p7. Furthermore,
(h0, µ0, t0) = (10, 110, 200) results in better selection rules.
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Abstract

In this paper, we investigate stochastic properties of the smallest order statistics from
independent heterogeneous Chen’s random variables with different parameters.

Keywords: Series system, Heterogeneous components, Stochastic comparisons.

1 Introduction

Order statistics play an important role in statistical inference, life testings, reliability theory and
many other areas. Let X1, ..., Xn be n random variables and let Xi:n denotes their ith order
statistic, i = 1, ..., n. In reliability theory, the kth order statistic Xk:n corresponds to the lifetime
of a (n− k + 1)-out-of-n system. Parallel and series systems are the special ceses of such coherent
systems, wherein the lifetime of a series system corresponds to the smallest order statistic X1:n and
the lifetime of a parallel system corresponds to the largest order statistic Xn:n.

Many authors have studied stochastic comparisons of lifetimes of series and parallel systems
with s-independent heterogeneous distribution; for example, [5] considered paralle system with
heterogeneous exponentiated Weibull distribution, [7] and [4] considered series system with
heterogeneous Weibull distribution, [8] considered parallel system with heterogeneous exponenetial
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distribution, [9] and [10] considered parallel system with heterogeneous gamma distribution. The
references [3] and [2] investigated stochastic comparisions for series and paralle systems with
heterogeneous lower truncated Weibull and exponenetial-weibull distributions, respectively.

Chen [1] proposed a two-parameter distribution with bathtub shape or increasing failure rate
function. The probability density function (PDF) and cumulative distribution function (CDF) are
respectively of the form,

fX(x;α, β) = αβxβ−1exp{α(1− ex
β
) + xβ}, x > 0, α > 0, β > 0,

FX(x;α, β) = 1− exp{α(1− ex
β
)}, x > 0.

In fact fX(x;α, β) has a bathtub shaped hazard function when β < 1 and when β ≥ 1, it has an
increasing hazard function. The case α = 1 corresponds to the exponential power distribution.

In this work, we investigate the stochastic properties of the smallest order statistics from Chen’s
distributions.

Before proceeding the main results, let us first recall some stochastic orders that will be used
in the sequel.

Definition 1. Let X and Y be two nonnegative random variables having support (0,+). Then:

(i) X is said to be smaller than Y in the hazard rate order if hX(x) ≥ hY (x), or equivalently,
if Ḡ(x)/F̄ (x) is increasing in x, and denoted by X ≤hr Y ;

(ii) X is said to be smaller than Y in the likelihood ratio order if g(x)/f(x) is increasing in x,
and denoted by X ≤lr Y ;

(iii) X is said to be smaller than Y in the usual stochastic order if F̄ (x) ≤ Ḡ(x), and denoted
by X ≤st Y .

Definition 2. Let x = (x1, ..., xn) and y = (y1, ..., yn) be two real vectors, denote x(1) ≤ ... ≤ x(n)
the increasing arrangement of x1, ..., xn. x is said to be majorized by y (denoted as x ⪯m y) if∑n

i=1 xi =
∑n

i=1 yi and
∑j

i=1 x(i) ≥
∑j

i=1 y(i) for all j = 1, ..., n− 1.

2 Main results

Theorem 2.1. Let X1, X2, ..., Xn be independent random variables with Xi ∼ Chen(αi, β) where
αi > 0, i = 1, ..., n. Let Y1, Y2, ..., Yn be another set of independent random variables with Yi ∼
Chen(θi, β) where θi > 0, i = 1, ..., n. Then

∑n
i=1 αi ≤ (≥)

∑n
i=1 θi implies that X1:n ≥hr (≤hr)Y1:n

for all β > 0.

Proof. It is well-known that for the series system, hX1:n(x) =
∑n

i=1 hi(x), where, hi(x) is the hazard
rate function of random variable Xi. Hence, for the Chen’s distribution we have

hX1:n(x) =

n∑
i=1

αiβx
β−1ex

β
= βxβ−1ex

β
n∑
i=1

αi (2.1)
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Now

hX1:n(x) = βxβ−1ex
β

n∑
i=1

αi

≤ (≥) βxβ−1ex
β

n∑
i=1

θi

= hY1:n(x)

Theorem 2.2. Let X1, X2, ..., Xn be independent random variables with Xi ∼ Chen(αi, β) where
αi > 0, i = 1, ..., n. Let Y1, Y2, ..., Yn be another set of independent random variables with Yi ∼
Chen(θi, β) where θi > 0, i = 1, ..., n. Then X1:n ≤hr Y1:n ⇔ X1:n ≤lr Y1:n.

Proof. For series system we have fX1:n(x) =
∏n
i=1 F̄i(x)

∑n
i= hi(x), therefore,

fY1:n(x)

fX1:n(x)
=

∏n
i=1 F̄Yi(x)∏n
i=1 F̄Xi(x)

∑n
i=1 hYi(x)∑n
i=1 hXi(x)

=
F̄Y1:n(x)

F̄X1:n(x)

∑n
i=1 θi∑n
i=1 αi

Hence,
fY1:n (x)

fX1:n
(x) is increasing in x iff

F̄Y1:n
(x)

F̄X1:n
(x)

is increasingin x.

It will be interesting to see whether the above result can be changed to the case that under
some conditions on the shape parameter, the series system lifetimes can be ordered. The following
example show that the popular condition (β1, ..., βn) ⪯m (β∗1 , ..., β

∗
n) does not conclude X1:n ≤st

Y1:n.

Example 2.3. Let (X1, X2) be a vector of heterogeneous Chen random variables, Chen(α, βi)
with α = 0.2 and shape parameter vector (1.5, 2). Let (X∗

1 , X
∗
2 ) be a vector of heterogeneous Chen

random variables, Chen(α, β∗i ) with α = 0.2 and shape parameter vector (1, 2.5).It can be easily
shown that (1.5, 2) ⪯m (1, 2.5) however X1:2 and X∗

1:2 are not ordered in the stochastic order as
can be seen in Figure 1.

At the following theorem, we compare the series systems with heterogeneous and homogeneous
components, in likelihood ratio order.

Theorem 2.4. Consider a series system with heterogeneous components with lifetimes Xi ∼
Chen(αi, β) for i = 1, ..., n and a series system with i.i.d. components following the common
distribution Zi ∼ Chen(α, β) for i = 1, ..., n. Then (i) 1/n

∑n
i=1 αi ≤ α implies that X1:n ≥lr Z1:n

and (ii) 1/n
∑n

i=1 αi ≥ α implies that X1:n ≤lr Z1:n.

Proof. As denoted above, the first order statistics, X1:n, has the density function fX1:n(x) =∑n
i=1 αiβx

β−1e{(1−e
xβ )

∑n
i=1 αi+x

β}, and similarly Z1:n has the density function gZ1:n(x) =
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Figure 1: plot of reliability functions of X1:2, X
∗
1:2

nαβxβ−1enα(1−e
xβ )+xβ . Then ln(x) =

fX1:n
(x)

gZ1:n
(x) =

∑n
i=1 αi

nα e(
∑n

i=1 αi−nα)(1− ex
β
) satisfies

∂ln(x)

∂(x)
=

∑n
i=1 αi
nα

(

n∑
i=1

αi − nα)(−exβ )βxβ−1e(
∑n

i=1 αi−nα)(1− ex
β
)

(i) If 1
n

∑n
i=1 αi ≤ α then ∂ln(x)

∂(x) ≥ 0 for all x > 0 and hence
fX1:n

(x)

gZ1:n
(x) increases in all x > 0, that

is X1:n ≥lr Z1:n.

(ii) If 1
n

∑n
i=1 αi ≥ α then ∂ln(x)

∂(x) ≤ 0 for all x > 0 and hence
gZ1:n

(x)

fX1:n
(x) increases in all x > 0, and

hence X1:n ≤lr Z1:n.

At the continue, we compare series systems with multiple-outlier model for Chen’s distribution
with different parameters.

Theorem 2.5. Let (X1, ..., Xn) be a vector of independent Chen random variables such that Xi ∼
Chen(α1, β1) for i = 1, ..., p and Xj ∼ Chen(α2, β2) for j = p+ 1, ..., n. Let (Y1, ..., Yn) be another
vector of independent Chen random variables such that Yi ∼ Chen(θ1, β1) for i = 1, ..., p and
Yj ∼ Chen(θ2, β2) for j = p+ 1, ..., n. If

min(α1, α2) ≤ min(θ1, θ2) ≤ max(α1, α2) ≤ max(θ1, θ2)

then X1:n ≥hr Y1:n for any β1, β2 > 0.

Proof. Without loss of generality, let us assume that α1 ≤ α2 and θ1 ≤ θ2. We then get α1 ≤ θ1 ≤
α2 ≤ θ2. We have to prove that hX1:n(x) ≤ hY1:n(x) for x ≥ 0, i.e.,

pα1β1x
β1−1ex

β1
+ qα2β2x

β2−1ex
β2 ≤ pθ1β1x

β1−1ex
β1

+ qθ2β2x
β2−1ex

β2
,

where, q = n− p. It can be seen that the desired result holds.
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Theorem 2.6. Let (X1, ..., Xn) be a vector of independent Chen random variables such that Xi ∼
Chen(α1, β1) for i = 1, ..., p and Xj ∼ Chen(α2, β2) for j = p+ 1, ..., n. Let (Y1, ..., Yn) be another
vector of independent Chen random variables such that Yi ∼ Chen(θ1, β1) for i = 1, ..., p and
Yj ∼ Chen(θ2, β2) for j = p+ 1, ..., n. If

min(α1, α2) ≤ min(θ1, θ2) ≤ max(α1, α2) ≤ max(θ1, θ2)

and min(α1,α2)
max(α1,α2)

≥ min(θ1,θ2)
max(θ1,θ2)

then X1:n ≥lr Y1:n for any β1, β2 > 0.

Proof. Without loss of generality, let us assume that α1 ≤ α2, θ1 ≤ θ2 and β1 ≤ β2. We then get
α1 ≤ θ1 ≤ α2 ≤ θ2 and

α1
α2

≥ θ1
θ2
. From Theorem 2.5, we know that X1:n ≥hr Y1:n for any α1, α2 > 0.

From Theorem 1.c.4(a) of Shaked and Shanthikumar [8], it is enough to prove that the function

ϕ(x) =
hX1:n(x)

hY1:n(x)
=
pα1β1x

β1−1ex
β1 + qα2β2x

β2−1ex
β2

pθ1β1xβ1−1ex
β1 + qθ2β2xβ2−1ex

β2

is increasing in x ≥ 0. After some mathematical computations, it can be shown that under the
assumptions, ϕ(x) is increasing in x > 0 and then the theorem is proven.

Theorem 2.7. Let (X1, ..., Xn) be a vector of independent Chen random variables such that Xi ∼
Chen(α, β1) for i = 1, ..., p and Xj ∼ Chen(γ, β2) for j = p + 1, ..., n. Let (Y1, ..., Yn) be another
vector of independent Chen random variables such that Yi ∼ Chen(ω, β1) for i = 1, ..., p and
Yj ∼ Chen(γ, β2) for j = p+ 1, ..., n. If α ≤ ω and β1 ≤ β2 then X1:n ≥lr Y1:n for any β1, β2 > 0.

Proof. Note that Xj =
st Yj for j = p+ 1, ..., n. It can be shown that for the Chen’s distribution if

α ≤ ω then Xi ≥hr Yi for i = 1, ..., p. Then, we have that X1:n ≥hr Y1:n since the hazard rate order
is closed under the operation of ordering. From Theorem 1.c.4(a) of Shaked and Shanthikumar [8],
it is enough to prove that the ratio of their hazard rate functions is increasing, i.e.

ϕ(x) =
hX1:n(x)

hY1:n(x)
=
pαβ1x

β1−1ex
β1 + qγβ2x

β2−1ex
β2

pωβ1xβ1−1ex
β1 + qγβ2xβ2−1ex

β2

After some mathemartical computations, it can be shown that ∂ϕ(x)
∂x = (α− ω)((β1 + β1x

β1)−
(β2+β2x

β2)), which in nonnegative under the assumptions of the theorem, hence, ϕ(x) is increasing
in x > 0 and then theorem is proven.
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A shock-based preventive maintenance model for three-state
systems

Ashrafi, S. 1
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Abstract

In this paper, we consider a three-state system with states up, partial performance and
down. We assume that this system is subject to shocks. As a result of each shock more
than one component may fail and the state of the system may change. We assume that the
preventive maintenance is performed at the occurrence time of the shocks, and investigate an
optimal shock number in which the mean cost per unit of time is minimized.

Keywords: Two dimensional tie-signature, Optimal shock, Emergency repair.

1 Introduction

The preventive maintenance (PM) is one of the noteworthy areas in the reliability that is first
studied by Barlow and Hunter [1] in 1960. After this work, a large number of papers and books
have been written in this area. One of the important problems that have been considered in PM is
the optimization problem. In many models that are presented until now, it is usually assumed that
the PMs have been done periodically at the specified or random time instants T1, T2, .... In each
period of time (Ti−1, Ti], if the system fails the emergency repair (ER) is performed and otherwise
a PM is performed at Ti. Therefore, in each interval (Ti−1, Ti], some costs of repairing the system
and rewards for its operating are considered. In such a situation one of the interesting problem is
to find the best T1, T2, . . . that minimize the mean costs per unit of time.
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Many papers in PM area have been considered a component or a simple system consists of
some components. Recently, Finkelsteina and Gertsbakh [3] studied a PM model for any binary
complex system. They assumed that the system is subject to shocks in which as a result of each
shock exactly one component fails. Then, they investigated an optimal shock number that after it,
the PM should be performed. Finkelsteina and Gertsbakh [4] generalized this model to the case
where at each shock one component fails with probability p. Zarezaded and Ashrafi [6], investigated
the problem of finding the optimal shock number for the case that at each shock more than one
component may fail. Finkelsteina and Gertsbakh [5], studied some PM models for the multi-state
systems having binary components under the assumption that at each shock exactly one component
fails. In this paper, we present a PM model for the three-state systems in the case where at each
shock more than one component may fail.

Consider a three-state system with binary components having three states, K = 0, 1, 2 in which
K = 2 denotes the up state, K = 1 denotes the partial performance state and K = 0 denotes the
down state. Let the random variable T1 denote the time that system enters into state K = 1 and
T the time that system enters into state K = 0. Assume that the system is subject to shocks that
appear according to a counting process at random time instants ϱ1, ϱ2, . . . . At the occurrence time
of each shock, more than one component may fail, and consequently, the system states change as
one of the following cases:

(a) The state of system is changed from K = 2 to K = 1 at one shock and from K = 1 to K = 0
at another shock, that is T1 < T .

(b) The system state is changed from K = 2 to K = 0 at one shock. In such a situation,
transitions from K = 2 to K = 1 and from K = 1 to K = 0 happen simultaneously, that is
T1 = T .

Suppose that transitions from K = 2 to K = 1 and from K = 1 to K = 0 occur at two different
shocks i.e. T1 < T . Let the r.v. M1 (M2) denote the least number of the components whose
failures change the system state from K = 2 to K = 1 (K = 1 to K = 0). Now, assume that
the system state changes from K = 2 to K = 0 at one shock. Let M3 denote the least number of
components whose failures change the state of system from K = 2 to K = 0. Ashrafi and Zarezadeh
[1], introduced a new variant of the notion of two dimensional signature, called two dimensional
tie-signature (t-signature), to introduce the model in which it is possible to fail more than one
component at each time instant as

sτi,j =
ni,j
n∗

, 1 ≤ i < j ≤ n,

and

sτi,i =
ni
n∗
, i = 1, . . . , n,

where ni,j is the number of cases which the components fail such that M1 = i and M2 = j and ni
is the number of cases which the components fail such that M3 = i. Also, n∗ denotes the number



Third Seminar on Reliability Theory and its Applications 40

of all ways that the components of system may fail. The value of n∗ has been computed in Lemma
1 of [6] as

n∗ =

n∑
l=1

l∑
i=0

(
l

i

)
(−1)i(l − i)n.

The notion of two dimensional t-signature is a combinatorial property of the system. It does not
depend on the mechanism that the components fail and only depends to the system structure.

Consider a three-state system consists of n binary components that is subject to shocks. Let
the shocks appear according to the counting process {ζ(t), t > 0} at random times ϱ1, ϱ2, . . . .
Assume that the components fail independently with probability p and the number of components
which have failed at the ith shock, Vi, i = 1, 2, . . . depends on V1, . . . Vi−1 via

∑i−1
j=1 Vj . Consider

q = 1 − p and S̄τi,j =
∑n

k=i+1

∑n
l=max{i,j+1} s

τ
k,l. Ashrafi and Zarezadeh [1] obtained the joint

reliability function of T1 and T as

P (T1 > t1, T > t) =

∞∑
k=0

∞∑
l=k

η∗k,lP (ζ(t1) = k, ζ(t) = l)

=

∞∑
k=1

∞∑
l=k

c∗k,lP (ϱk > t1, ϱl > t),

where for k = 0, 1, . . . , l = k, k + 1, . . . , we have

η∗k,l =
n−1∑
r1=0

n−1∑
r2=r1

S̄τr1,r2
n!

r1!(r2 − r1)!(n− r2)!
(1− qk)r1(qk − ql)r2−r1q(n−r2)l

and

c∗k,l = η∗k−1,l−1 − η∗k−1,l − η∗k,l−1 + η∗k,l, k < l;

= η∗k−1,k−1 − η∗k−1,k, k = l.
(1.1)

In this paper, we investigate a PM model for the three-state system under conditions that are
described. We perform the optimal preventive maintenance after the mth shock or the emergency
repair after the failure of the system, whichever happens first. Due to the costs of the PM or ER
of the system, we are going to find the optimal shock number in which the PM is performed.

2 Shock-based Preventive Maintenance

Consider a three-state system that is subject to shocks that occur according to a counting process.
Assume that as a result of each shock each component fail with probability p independently from
the other components and hence at each shock some components may fail. Let R2 (R1) denote the
mean reward per unit of time when the system is operating at state K = 2 (K = 1). Also, assume
that c0 denotes the cost of replacement a failed component with a new one. In the shock-based
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PM, it is assumed that either after the occurrence of one of the shocks PM is performed or at the
failure time of the system an emergency repair is done, whichever happens first. In PM (ER), all
failed components are replaced with new ones and cPM (cER) denotes the incurred cost by PM
(ER). It is clear that cPM > cER. Hence, we define the renewal cycle as one the following cases

(1) The system is failed before or at the mth shock and at the failure time of the system the
state of the system is changed from K = 2 into K = 0 that is T1 = T . In such a situation,
the expected cost is obtained as

C1(m) =

m∑
i=1

P (T = ϱi, T1 = T )(E(

i∑
k=1

Vk)c0 − iR2 + cER).

Also, the mean length of cycle is

L1(m) =

m∑
i=1

iP (T = ϱi, T1 = T ).

(2) The system is failed before or at the mth shock and at the failure time of the system the
state of the system is changed from K = 1 into K = 0, that is T1 < T . In such a situation,
the expected cost is obtained as

C2(m) =

m∑
i=1

m∑
j=i+1

P (T1 = ϱi, T = ϱj , T1 < T )(E(

j∑
k=1

Vk)c0 − iR2 − (j − i)R1 + cER).

Also, the mean length of cycle is

L2(m) =
m∑
i=1

m∑
j=i+1

jP (T1 = ϱi, T = ϱj , T1 < T ).

(3) At the mth shock the system is in state K = 1. In such a situation, the expected cost is
obtained as

C3(m) =

m∑
i=1

∞∑
j=m+1

P (T1 = ϱi, T = ϱj , T1 < T )(E(

m∑
k=1

Vk)c0 − iR2 − (m− i)R1 + cPM ).

Also, the mean length of cycle is

L3(m) = m

m∑
i=1

∞∑
j=i+1

P (T1 = ϱi, T = ϱj , T1 < T ).

(4) At the mth shock, the system is in state K = 2. In such a situation, the expected cost is
obtained as

C4(m) = P (T1 > ϱm)(E(

m∑
k=1

Vk)c0 −mR2 + cPM ).
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Also, the mean length of cycle is

L4(m) = mP (T1 > ϱm).

It can be seen that P (T = ϱi, T1 = T ) = c∗i,i and P (T1 = ϱi, T = ϱj , T1 < T ) = c∗i,j , where c
∗
i,j is

defined in (1.1); see [1]. Hence,

P (T1 > ϱm) = P (T1 > ϱm, T1 < T ) + P (T1 > ϱm, T1 = T )

=
∞∑

i=m+1

∞∑
j=i+1

c∗i,j +
∞∑

i=m+1

c∗i,i

=
∞∑

i=m+1

∞∑
j=i

c∗i,j .

Zarezadeh et al. showed that
∑i

k=1 Vk has binomial distribution with parameters n and 1 − qi.
Hence, E(

∑i
k=1 Vk) = n(1− qi). From the above argument, it can be seen that mean cost per cycle

is

Csh(m) =

5∑
i=1

Ci(m)

=
m∑
i=1

m∑
j=i

c∗i,j(n(1− qj)c0 − iR2 − (j − i)R1 + cER)

+
∞∑
i=1

∞∑
j=max{i,m+1}

c∗i,j(n(1− qm)c0 + cPM )

−
m∑
i=1

∞∑
j=m+1

c∗i,j(iR2 + (m− i)R1)−mR2

∞∑
i=m+1

∞∑
j=i

c∗i,j .

The length of each cycle is

L(m) =
5∑
i=1

Li =
m∑
i=1

m∑
j=1

jc∗i,j +m
∞∑
i=1

∞∑
j=max{i,m+1}

c∗i,j .

Therefore, the average cost per unit of time is obtained as

C(m) =
Csh(m)

L(m)
, m = 1, 2, . . .

Thus the optimal shock is the shock that minimizes C(m). Now, we present an example.

Example 2.1. Suppose a network has 4 nodes, 4 links and terminals set {a, b, d} with the graph
presented in Figure 1. We define three states for the network. It is in up state if three terminals
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a

b

c

d

1

2

3

4

Figure 1: Network with 4 nodes and 4 links.

(a) (b)

(c)

Figure 2: the plot of C(m) when (a) p = 0.15, (b) p = 0.05, (c) p = 0.01

are joined, partial performance if just two terminals are joined, and down state if all terminals are
disjoined.

Assume that the nodes are absolutely reliable and only the links may fail. The two dimensinal
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t-signatures of this network are obtained as

sτ2,3 =
33

75
, sτ2,4 =

20

75
, sτ3,3 =

13

75
, sτ3,4 =

6

75
, sτ4,4 =

3

75
.

In this example, we investigate the optimal shock that minimizes the mean cost per unit of
time,C(m), when

R1 = 500, R2 = 1000, c0 = 2, cPM = 200, cER = 250.

We consider three values for p, p = 0.15, p = 0.05, p = 0.01. The Plots 1, 2 and 3 presents the
plots of C(m) for the cases p = 0.15, p = 0.05 and p = 0.01, respectively. It can be seen that the
optimal numbers of shock are m = 3, m = 5 and m = 11 when p = 0.15, p = 0.05 and p = 0.01,
respectively. Then, when p increases the optimal shock number decreases i.e. when the probability
of failure of the components in each shocks increases the PM should be performed earlier.
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Abstract

In this paper, we propose the use of Bayesian quantile regression for the analysis of
survival data with mixed discrete-continuous distribution with a point mass at C, where these
observations of the response variable may be censored at C, where these observations may be
right censored or true C. The censoring mechanism is assumed random and possibly dependent
on the covariates. Quantile regression allow us to permit covariates to affect survival at different
stages in the follow up period, so providing a comprehensive study of the survival distribution.
We take a Baysian quantile regression approach for continuous part by considering the quantile
process as a linear combination of covariates. Also the probability of being censored given that
the observed value is equal to C, will be analyzed. We build up a Markov Chain Monte Carlo
method from related models in the literature to obtain samples from the posterior distribution.
We demonstrate the suitability of the model to analyze this censoring probability with a
simulated study.

Keywords: Asymmetric Laplace distribution, Bayesian quantile regression, Right
censoring, Survival analysis, Two-part model.

1 Introduction

Survival data analysis typically relies on a parametric assumption about the relationship between
the covariates and the survival distribution, for example, the proportional hazards, proportional
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2z saberi@cc.iut.ac.ir
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odds, or accelerated failure time models. In this paper, we consider a regression model where the
error term is assumed to follow a type of asymmetric Laplace distribution. The linear quantile
regression model assumes that each quantile of the survival (or log survival) distribution is a linear
combination of the covariates. Koenker and Bassett (1978) developed quantile regression, where
include the following advantages: it makes no distributional assumptions about the regression
error term; its inference is invariant to monotone transformations of the outcome variable; in
the presence of outlying values, it can be more efficient than ordinary least squares; and most
importantly, it permits thorough inference on the entire shape of the conditional distribution
and not just the mean. In this study, we consider inference on quantiles of a response variable
conditional on a set of covariates when the observations on the life time as a response variable
may be censored. The censoring mechanism is assumed random and possibly dependent on the
covariates. Peng and Huang (2008) developed a new quantile regression method for survival data
subject to conditionally independent censoring. Wang and Wang (2009) proposed to overcome
the global-linearity assumption by directly estimating the conditional censoring distribution non-
parametrically using the local Kaplan-Meier method. In this paper, for a Bayesian setting, the
asymmetric Laplace distribution can be useful in obtaining posterior conditional quantile estimates.
Yu and Moyeed (2001) proposed the use of this distribution in order to introduce a Bayesian quantile
regression model. In this paper we propose a Bayesian parametric quantile regression model for
right censored survival data. In Section 2, we introduce the Laplace method, in Section 3, we show
the Bayesian model using quantile regression for censored survival data. In Section 4, we show
the Bayesian two-part model using quantile regression for the continuous part, with its prior and
posterior setting, we extend the two-part model to allow that C observations are either censored
or are true C. In Section 5, we present the suitability of the method using a simulated study.

2 Laplace regression

The quantile regression model proposed by Koenker and Bassett (1978) was based in the following
linear model:

yi = x′
iβ(τ) + εi, i=1,...,n

where εi
,s are the error terms assumed to have the τth quantile equal to zero. Then, the quantile

regression estimator is obtained by minimizing

n∑
i=1

ρτ (yi − x′
iβ(τ)), (2.1)

where the check function ρτ (.) is defined as ρτ (u) = u(τ − I(u < 0)). It is important to note that,
initially, there was no distribution assumption made for the response variable.

Santos and Balfarine(2015) proposed the use of the asymmetric laplace distribution for reponse
variable in quantile regression. We used the equivariance property of the quantile regression to
model a transformed response to meet the limited support of survival data to the real line support
of the asymmetric laplace distribution. The probability density function of asymmetric laplace



Aslani Akhore Oleiayi, N., Saberi, Z. 47

distribution with location prameter µ ∈ R, scale prameter σ > 0, skewness parameter τ ∈ [0, 1],
can be written as,

f(y | µ, σ, τ) = τ(1− τ)

σ
exp{−ρτ (

y − µ

σ
)}, y ∈ R. (2.2)

In quantile regression, the τth conditional quantile of yi given xi is then modeled by,

qτ (yi | xi) = x′
iβ(τ), (2.3)

now, for limited response variable, let h(.) be a nondecreasing function on R, then for any limited
random variable Y such a survival data, we have,

qτ (h(yi) | xi) = h(qτ (yi | xi)), (2.4)

where qτ (y | x) represents the τth conditional quantile of Y given X. Then, we could assume that
the τth quantile of transformed response variable follows the linear model, such as,

qτ (h(yi) | xi) = x′
iβ(τ). (2.5)

Now, let Ti, i = 1, ..., n, be independent response variables of interest and xi
,s k-dimensional

vectors of observed covariates. Suppose that Ti may be censored and instead of Ti, we observe
Yi = min{Ti, Ci} where the censoring variable Ci may depend on xi but, conditionally on xi, is
independent of Ti. We assume that Ci has no information about the parameters of interest. We
define δi = I(Ti ≤ Ci), where I(A) is the indicator function of the set A.

Suppose that there exists a fixed k-dimensional parameter vector β(τ) such that

Ti = x′
iβ(τ) + εi

where τ ∈ (0, 1) is a fixed and given probability and εi an independent and identically distributed
residual whose τth quantile equals zero, i.e. P (εi ≤ 0 | xi) = τ . Model (2.1) is equivalent to
assuming that x′

iβ(τ) is τth quantile of the conditional distribution of Ti given xi, i.e. P (Ti ≤
x′
iβ(τ) | xi) = τ .
A desirable property of the conditional quantile x′

iβ(τ) is that it is equivariant to non-decreasing
transforms h of the variable Ti simply because P (Ti ≤ x′

iβ | xi) = P (h(Ti) ≤ h(x′
iβ) | xi).

Accelerated failure time (AFT) models, for example, typically model the logarithm of time, i.e.
h(Ti) = log(Ti). Now, in the next section, we introduce Bayesian quantile regression for transformed
survival data.

3 Bayesian Laplace regression

Yu and Moyeed (2001) proved that the posterior distribution obtained is proper and suggested a
MetropolisHasting algorithm to sample from the posterior distribution of the regression parameters.
Kozumi and Kobayashi (2011) considered a location-scale mixture representation of the asymmetric
Laplace distribution to introduce a Gibbs sampling method for Bayesian quantile regression. We
can say that if h(Y ) = log(Y ) is distributed according to an asymmetric Laplace distribution with
parameters {µ, σ, τ}, then we have,
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h(Y )|ν ∼ N(µ+ θν, ψ2σν),

ν ∼ Exp(σ),

where θ = 1−2τ
τ(1−τ) , ψ

2 = 2
τ(1−τ) . Then, we assume that the τth quantile of transformed response

variable follows the linear model:

qτ (h(yi) | xi) = x′
iβ(τ),

so the likelihood function can be written as

L(β(τ), σ,ν) ∝ σn/2(

n∏
i=1

ν
1/2
i ) exp{

n∑
i=1

(h(yi)− x′
iβ − θνi)

2ψ2σν
}, (3.1)

following, to complete the Bayesian specication, we assume normal priors for β(τ), inverse Gamma
for σ as in Kozumi and Kobayashi(2011). The hierarchical structure for Bayesian quantile regression
for transformed survival data can be summarized as,

h(yi) | νi,β(τ), σ ∼ N(x′
iβ(τ) + θνi, ψ

2σνi),

where,

νi ∼ E(σ),

β(τ) ∼ N(b0,B0),

σ ∼ IG(n0, s0),

the posterior distribution and a Gibbs sampling algorithm to obtain samples from the posterior
follow from Kozumi and Kobayashi (2011).

4 Two-part model

In this section, we assume that conditionally on xi, log(Yi) follows a form of asymmetric Laplace
distribution with probability density function

f(log(yi) | xi) = τ(1−τ)
σ(τ) exp{[I(log(yi) ≤ x′

iβ(τ))− τ ]
log(yi)−x′

iβ(τ)
σ(τ) },

and cumulative distribution function

F (log(yi) | xi) = {τ − I(log(yi) > x′
iβ(τ))}

exp{[I(log(yi) ≤ x′
iβ(τ))− τ ]

log(yi)−x′
iβ(τ)

σ(τ) }+ I(log(yi) > x′
iβ(τ)),

where β(τ) ∈ Rk and σ(τ) ∈ (0,∞). In the presence of censored observations, Yi is observed in
place of Ti, and the likelihood function is proportional to
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L(β(τ), σ(τ) | y,xi) =
n∏
i=1

(f(log(yi) | xi))δi(1− F (log(yi) | xi))1−δi

=
n∏
i=1

(h(log(yi) | xi))δis(log(yi) | xi),

that h(.) is hazard function and s(.) is survival function.
If we consider the possibility of modeling the response variable by a mixture of two distributions,

a point mass distribution at c and a continuous distribution for the survival data, we can write the
probability density function of Y as

g(y | x, z) = pI(Y = c) + (1− p)f(y | x)I(y < c), (4.1)

where p = P (Y = c | z). Consider the interest in modelling P (Y = c | z), as a function of covariates
as well, then we can use a link function η(.), η : (0, 1) → R, and write

η(pi) = z′iγ.

If we dene the sets J = {yi : yi = c} and K = {yi : yi < c}, the likelihood function for the
two-part model considering the location-scale mixture of the asymmetric Laplace distribution, can
be defined as

L(β(τ), σ,γ) =
∏
yi∈J

η−1(z′iγ)
∏
yi∈K

(1− η−1(z′iγ))f(yi),

(4.2)

To complete the Bayesian specication, we assume priors distributions for the parameters,

h(Yi)|νi ∼ piI(yi ∈ J) + (1− pi)N(x′
iβ + θνi, ψ

2σνi)I(yi ∈ K),

νi ∼ E(σ),

β(τ) ∼ N(b0,B0),

σ ∼ IG(n0, s0),

γ ∼ N(g0,G0).

The full conditional distributions for all parameters, after we combine the likelihood with the
prior information, are

β(τ) | h(y),ν, σ,γ ∼ N(b1,B1),

νi | h(y),β(τ), σ,γ ∼ GIG(12 , δ̂i, ξ̂i),

σ | h(y),ν,β(τ),γ ∼ IG( ñ2 ,
s̃
2),

π(γ | h(y),ν,β(τ), σ) ∝
∏
i∈J

η−1(z′iγ)
∏
i∈K

(1− η−1(z′iγ)) exp{−1
2(γ − g0)

′G−1
0 (γ − g0)},
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the posterior distribution for γ has not a recognizable distribution, so we suggest a random walk
Metropolis-Hastings algorithm, where we can use as proposal a multivariate normal distribution
centered at the current value of γ. Then at the kth step of the MCMC, we draw γ(k) from
N(γ(k−1), σ

2
γΩγ), and γ(k) is accepted with probability

α(γ(k),γ(k−1)) = min{1, π(γ(k)|h(y),ν,β(τ),σ)
π(γ(k−1)|h(y),ν,β(τ),σ)

},

where σ2γ is a tuning parameter that should be chosen carefully to give acceptance probabilities
between 0.15 and 0.50 (see Gelman et al., 2003). We define Ωγ as the identity matrix, but other
options could be considered.

In this paper, we considered censored observations, in this case, we should rewrite the density
in (4.1) as,

g(y) = [p+ (1− p)(1− F (c))]I(y = c) + (1− p)f(y)I(y < c), (4.3)

where F (.) is the cdf of the continuous part. For the complete cases, dene the sets C = {yi : yi =
c, δi = 1}, D = {yi : yi = c, δi = 0} and K = {yi : yi < c}. Then the likelihood function for
ξ = (β(τ), σ,γ), without writing the conditional parameters for F (.) and f(yi|νi) for notational
simplicity, can be written as

L(β(τ), σ,γ) =
∏
yi∈D

η−1(z′iγ)
∏
yi∈C

(1− η−1(z′iγ))(1− F (c))∏
yi∈K

(1− η−1(z′iγ))f(yi|νi)f(νi)
(4.4)

5 Simulation Study

We consider a model with just two covariates and the following structure as

log( pi
1−pi ) = γ0 + γ1zi1 + γ2zi2,

log(Ti) = β0 + β1xi1 + β2xi2 + εi,

where εi ∼ N(0, 0.52), β = 3 and γ0 = 1, γ1 = −4 and γ2 = 1, we consider xij = zij , j = 1, 2,
that these produce from a uniform distribution and we use the same covariates for both parts
of the model. We believe that after taking into account the simulated studies throughout the
literature of Bayesian quantile regression, this simple design could give a reasonable assessment of
the performance of the MCMC proposed for the two-part model, as from the likelihood in Equation
(4.4) the inference for each part can be made separately. For the prior hyperparameters, we assumed
the b0 = g0 = 0 and B0 = G0 = 100I, where I is the identity matrix, and for σ we considered
IG(3/2, 0.1/2), as in Kozumi and Kobayashi (2011). Our sample size in this study is 100 and we
report our results for 10,000 replications of this model that for each parameter, we calculate the
posterior mean from 10,000 draws, where we discard the first 3000 for burn-in. In Table 1, we
show the summaries from the posterior means for each parameter obtained from 100 replications
of this simulation. We observe that all mean and median estimates are reasonably close to their
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true values, while the 95% credible interval composed by the posterior means from the replications
always contain the true value.

Fig.2 shows the posterior histograms of β(0.5) and posterior trace of β(0.5) that shows of
convergence parameter to true value.

Table 1: Summaries from posterior estimates regarding 100 replications of
simulation.

Sample size Parameter True Mean Median SD 2.5% 97.5%
n=100 γ0 1 1.043 0.894 0.59 -0.229 2.04

γ1 -4 -4.996 -4.505 1.08 -6.84 -2.52
γ2 1 1.529 1.00 0.88 0.35 3.78

τ = 0.1 β0 3 2.71 2.747 0.23 2.14 3.09
β1 3 2.86 2.826 0.20 2.55 3.38
β2 3 3.07 3.084 0.23 2.58 3.51

τ = 0.5 β0 3 3.28 3.276 0.17 2.95 3.62
β1 3 2.75 2.761 0.17 2.41 3.07
β2 3 2.68 2.671 0.16 2.38 3

τ = 0.9 β0 3 3.48 3.474 0.15 3.22 3.78
β1 3 2.99 2.998 0.20 2.64 3.27
β2 3 2.76 2.769 0.19 2.43 3.07
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Figure 1: The posterior histograms of β(0.5) and posterior trace of β(0.5).
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Abstract

This paper extends a random preventive maintenance scheme, called repair alert model,
when there exist environmental variables which effect on system lifetimes. It can be used for
implementing age-dependent maintenance policies on engineering devices. The new model is
flexible to including covariates with both fixed and random effects. The problem of estimating
parameters is also investigated in details. To do this, it is assumed that the system lifetime
distribution belongs to the log-location-scale family of distributions. A real data set is also
analysed on the of the results obtained.

Keywords: Random signs censoring, Repair alert model, Log-location-scale family, Fixed
and random effects.

1 Introduction

Suppose a device works for a job with random working times. The device is replaced at random
time Z (0 < Z ≤ ∞) or at failure time X, whichever occurs first, where Z is a random variable with
a general distribution function (DF) FZ(z) = P (Z ≤ z) and is usually assumed to be independent
of the failure time X. This policy is called random age replacement maintenance; See Chapter 2 in
Nakagawa [10] for more information. Hence, one observes only the pair (Y, δ), where Y = min(X,Z)
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and δ = I(X < Z) is the indicator function of the event {X < Z}. When Z and X are independent,
the marginal DFs of X and Z, denoted by FX and FZ respectively, are identifiable on the basis
of the joint DF (Y, δ); See Theorem 1 in Cook [5] for more details. The maintenance engineer
may have some information on the state of the device performance during the operation time
and use it to (heuristically) do maintenance (replacement) for avoiding more costly random device
failures. It is therefore reasonable to expect a (positive) dependence between the failure time X
and the preventive maintenance (PM) time Z; See Lindqvist et al. [7] for more details. But from
the competing risk theory, the marginal DFs are generally nonidentifiable from the observed (Y, δ)
without making assumptions on the dependence between X and Z (Tsiatis [11]). Cook [6] proposed
the concept of random signs censoring (called also age-dependent censoring by Cook [5]), in which
the marginal DF of the failure time X is identifiable. As mentioned by Cook [5], in the random signs
censoring (age-dependent censoring) the probability of a device being censored is independent of its
age, but given that it is censored, the time at which it is censored may depend on its age. In other
words, the random sign censoring means that the event that the failure of the device is preceded by
PM is not influenced by the time X at which the device fails without PM; See Lindqvist et al. [7]
for a greater detail. Lindqvist et al. [7] introduced the repair alert model (RAM) for analysing the
mentioned PM scheme. The RAMs have been studied in literature; See for example, Christen et
al. [4] and Atlekhani and Doostparast [2]. According to the authors knowledge the RAM has been
investigated without considering the environmental factors such as temperature, voltage, pressure
and etc. As mentioned by Meeker and Escobar [9], a model with explanatory variables sometimes
explains or predicts why some units fail quickly and other units survive a long time. This paper
considers the RAM with explanatory variables. The general idea of a given RAM with covariates
is to express the failure-time distribution as a function of the explanatory variables. To do this,
we allow one or more of the elements of the model parameter vector, say Θ = (θ1, · · · , θk) where r
is the number of parameters, to be a function of the explanatory variables. Therefore, the rest of
this paper is organized as follows. The mixed RAMs which include both fixed and random effects
are discussed in Section 2. A real data set on transmission belt lifetimes in a production line is
analysed in Section 3 using the obtained results in the preceding sections. Section 4 concludes.

2 RAMs with mixed effects

In Table 1 notations and acronyms are used throughout the paper. Some basic definitions to
introduce RAMs are now given.

Definition 1 (Cook [6]). Let X and Z be lifetime variables with Z = X − ξ, where ξ is a
random variable, ξ ≤ X, P (ξ = 0) = 0, whose sign is independent of X. The random vector
(min({X,Z}, I(X < Z)) is called “random signs censoring of X by Z”.

Definition 2. The sub-DFs of X and Z are defined by F ∗
X(x) = P (X ≤ x,X < Z), and F ∗

Z(z) =
P (Z ≤ z, Z < X), respectively. The conditional DFs of X and Z are defined by F̃X(x) = P (X ≤
x|X < Z), and F̃Z(z) = P (Z ≤ z|Z < X), respectively.

Lindqvist et al. [7] provided the following formal definition of RAMs.
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Table 1: Notations and acronyms

Notations and acronyms Description

X The system lifetime
Z The repair time

FX(x) P (X ≤ x), distribution function of X
FZ(z) P (Z ≤ z), distribution function of Z
F ∗
X(x) P (X ≤ x,X < Z), sub distribution function of X
F ∗
Z(z) P (Z ≤ z, Z < X), sub distribution function of Z

F̃X(x) P (X ≤ x|X < Z), conditional distribution function of X

F̃Z(z) P (Z ≤ z|Z < X), conditional distribution function of Z
RAM Repair alert model
RSCD Random sign censoring data
PM Preventive maintenance
LF Likelihood function
LLF Log-likelihood function
ML Maximum likelihood

CRAF Cumulative repair alert function
DF Distribution function
RAF Repair alert function

Definition 3. The pair (X,Z) satisfies the requirements of the RAM if

(i) Z is a random signs censoring of X; i.e. the event {Z < X} is stochastically independent of X,

(ii) There exists an increasing function G defined on [0,∞) with G(0) = 0, such that for all x > 0

P (Z ≤ z|Z < X,X = x) =
G(z)

G(x)
, 0 < z ≤ x. (2.1)

Theorem 2.1. (Lindqvist et al. [7].) Suppose that the pair (X,Z) follows a RAM with parameters
FX(x), G(t) and q = P (Z < X). Then, for t > 0,

F̃X(t) = FX(t), (2.2)

F ∗
X(t) = (1− q)FX(t), (2.3)

F̃Z(t) = FX(t) +G(t)

∫ ∞

t

fX(y)

G(y)
dy, (2.4)

f̃Z(t) = g(t)

∫ ∞

t

fX(y)

G(y)
dy, (2.5)

F ∗
Z(t) = P (Z ≤ t, Z < X) = qF̃Z(t). (2.6)
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A natural approach to incorporate the covariates in the performance of a component lifetime is
to allow some parameters of the RAM be a function of the covariates. To do this, we assume that
the lifetime X belongs to the well-known log-location-scale family.

Definition 4. A random variable X belongs to the log-location-scale family of distributions if

FX(t) = P (X ≤ t) = Φ

(
log(t)− µ

σ

)
, ∀ t > 0, (2.7)

where Φ is a baselines DF and does not depend on µ and σ.

Suppose that in addition to the fixed effects, there are some random effects. In the location-
scale family, we can consider the location parameter µ in Equation (2.7) is a linear function of
the fixed and random effects. Let there exist r fixed and b random effects, denoted by w1, · · · , wr
and U1, · · · , Ub, respectively. Conditionally on the random effects (U1, · · · , Ub) = (u1, · · · , ub), we
have µ =

∑r
i=1wiβi +

∑b
j=1 uj . For a given RSCD, let µ = wβ + α1u1 + · · · + αbub where

µ = (µ1, . . . , µN )
T , β = (β1, . . . , βr)

T and [[wij ]]1≤i≤N, 1≤j≤r is the known model matrix for the
fixed effects w1, · · · , wr, ui = (ui1, · · · , uipi)T , for 1 ≤ i ≤ b, denotes the observed levels of the
i-th random effects Ui and αi stands for the corresponding matrix model. In sequel, we need the
following definition.

Definition 5. The triple (X,Z,U) is called the conditional RAM (CRAM) on u if

(i) The event {Z < X|u} is stochastically independent of X|u;

(ii) There exists an increasing function G(.|u) defined on [0,∞) with G(0|u) = 0, such that for all
x > 0,

P (Z ≤ z|Z < X,X = x,U = u) =
G(z|u)
G(x|u)

, 0 < z ≤ x. (2.8)

Proposition 2.2. (Atlekhani and Doostparast [3].) Suppose that the triple (X,Z,U) follows a
CRAM then, for t > 0. Then

F̃X|u(t|u) = FX|u(t|u), (2.9)

F ∗
X|u(t|u) = (1− qu)FX|u(t|u), (2.10)

F̃Z|u(t|u) = FX|u(t|u) +G(t|u)
∫ ∞

t

fX|u(x|u)
G(x|u)

dx, (2.11)

f̃Z|u(t|u) = g(t|u)
∫ ∞

t

fX|u(x|u)
G(x|u)

dx, (2.12)

F ∗
Z|u(t|u) = quF̃Z|u(t|u). (2.13)
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2.1 Weibull family

For sake of brevity, it is assumed that there exist only one fixed effect and one random effect,
denoted by w and U , respectively. Then r = b = 1. Given U = u, the system lifetime X follows
the Weibull distribution. For a given RSCD, the response variable can be represented as

ylj = xljδlj + zlj(1− δlj) j = 1, . . . , Nl, l = 1, . . . , p, (2.14)

where δlj = 1 if xlj < zlj and 0 if otherwise. Here, it is assumed that the covariates are not
censored and are independent of the censoring mechanism. Thus, observations are {(ylj , wlj), j =
1, . . . , Nl, l = 1, . . . , p}. Here ylj = min(xlj , zlj) so that the form of data is {(xli, wli), i =
1, . . . ,ml} and {(zlj , wlj), j = 1, . . . , nl}, where ml + nl = Nl, l = 1, . . . , p, and Nl is the number
of observation in the l-th level of the random effect. Note that

∑p
l=1Nl = N . Hence, for the j-th

observation (for 1 ≤ j ≤ Nl) at the l-th level of the random effect U , the location parameter is

µlj = β0 + β1wlj + ul, 1 ≤ j ≤ Nl, 1 ≤ l ≤ p. (2.15)

Here the random effects ul are independent and E(ul) = 0 and V ar(ul) = σ2u for l = 1, · · · , p; See
e.g. McCulloch et al. [8]. In order to calculate the LF from Equations (2.9)-(2.13) we have

F̃X|u(t|u) = 1− exp

(
− exp

(
log(t)− µ

σ

))
, (2.16)

F ∗
X|u(t|u) = (1− qu)

(
1− exp

(
− exp(

log(t)− µ

σ
)

))
, (2.17)

F̃Z|u(t|u) = 1− exp

(
− exp

(
log(t)− µ

σ

))
+G(t|u)

∫ ∞

t

exp( log x−µσ − exp( log x−µσ ))

σxG(x|u)
dx, (2.18)

f̃Z|u(t|u) = g(t|u)
∫ ∞

t

exp

(
log x−µ

σ − exp( log x−µσ )

)
σxG(x|u)

dx, (2.19)

F ∗
Z|u(t|u) = quF̃Z|u(t|u), (2.20)

where g(t|u) = ∂
∂tG(t|u). For the conditional CRAF, let G(t|ul) = ult

k where k is a integer. From
Equations (2.16)-(2.20), the likelihood contribution from an observation xli for l = 1 . . . p and
i = 1, . . . ,m is

f∗X|u(xli|ul) = (1− qul)
1

σxli
exp

{
log xli − µli

σ
− exp

{
log xli − µli

σ

}}
(2.21)

=
exp(−µ

σ )(1− qul)

σ
x

1
σ
−1

li exp

{
− x

1
σ
li . exp(−

µli
σ
)

}
,
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while the contribution from zlj is

f∗Z|u(zlj |ul) = kqululz
k−1
lj

∫ ∞

zlj

exp

{
log x−µlj

σ − exp

{
log x−µlj

σ

}}
ulxkσx

dx (2.22)

= kqulz
k−1
lj exp(−

µlj
σ

)
1

σ

∫ ∞

zlj

x
1
σ
−(k+1) exp

{
− x

1
σ . exp(−

µlj
σ

)

}
dx,

for j = 1, . . . , n. If ul is independent and identically distributed normal random variables with mean
0 and variance σ2u then the associate LFF of the available RSCD is

l(β, σ, σ2u, qu;x, z,w,u) = −p log(
√
2πσu) +

p∑
l=1

nl log k − (ml + nl) log σ

+

p∑
l=1

log

(∫ ∞

−∞
(1− qul)

mlqnl
ul

ml∏
i=1

exp(−µli
σ
)x

1
σ
−1

li exp

{
− x

1
σ
li exp(−

µli
σ
)

}
(2.23)

nl∏
j=1

zk−1
lj exp(−

µlj
σ

)

∫ ∞

zlj

x
1
σ
−(k+1) exp

{
− x

1
σ . exp(−

µlj
σ

)−
u2l
2σ2u

}
dxdul

)
.

Note that the maximum of (1− qul)mlqnl
ul

is q̂ul =
nl

nl+ml
. There is no explicit expression for the ML

estimates and one may use numerical methods.

3 Transmission belt data set

A case study was carried out in one of the production lines in a processing industry in Malaysia
(Amad et al 2011). This production line comprises a series of processing machines that
perform different operations such as rewinding, embossing, cutting and packaging. In this serial
configuration, a breakdown in at least in one of the machines will cause the production line to
stop. Currently, the main problem with this setup is the high rate of machine breakdowns due to
“unplanned maintenances”. Many cases of unplanned maintenances are due to component failures.
Ahmad et al. [1] reports that the highest record of component failures is on the transmission
belt. Table 2 presents the failure data set of the transmission belt with censored and uncensored
classification. This data set is analysed in this section to determine the failure distribution
parameters and here to estimate the effects of some covariates on the transmission belt failure.
Three covariates, namely dust factor (DUST), related component factor (RCOMP) and product
type factor (PRODT), that may influence the transmission belt failure are identified
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Table 2: Failure times of the transmission belt and the codified values of the
influencing covariates

No. of failure Belt lifetime Censored = 0 and Dust RCOMP PRODT
uncensored= 1

1 28 1 −1 −1 0.6

2 52 1 +1 +1 0.4

3 42 0 +1 −1 0.4

4 8 1 −1 −1 0.3

5 14 1 −1 −1 0.6

6 13 1 −1 −1 0.6

7 47 1 +1 +1 0.5

8 38 1 −1 +1 0.6

9 25 1 −1 +1 0.4

10 12 1 −1 −1 0.8

11 50 0 −1 +1 0.6

12 42 1 −1 −1 0.6

Dust factor (DUST) with coding −1 (bad condition) means the component exposed to extreme
dust condition without any preventive action (cleaning) and +1 means the component is recorded for
cleaning activity. The related component factor (RCOMP) with coding −1 (bad condition) stands
for the related component (e.g. the bearing in a pulley for supporting the belt operation) is NOT
replace together with the component (transmission belt) and +1 denotes the related component (e.g.
the bearing in a pulley for supporting the belt operation) is replace together with the component
(transmission belt). The product type factor (PRODT) was formulated in continuous form and it
is based on the product types which are hard and soft. For example, assume that the failure time
of the component (transmission belt) is 10 days, then the types of product that produce at each
day (failure time = 10 working days) is recorded. For example, 3 days have produced soft types of
products and 7 days have produced hard types of product. Therefore, this covariate (PRODT) is
codified as 0.7 (%), referred to hard type product. It is because, the transmission belt needs more
force (more risk to fail) to process the hard type product compared to the soft type product.

In this example, “Dust” considered as a random effect and “PRODT ” as a fixed effect. We
consider the component follows the Weibull distribution and the conditional CRAF be G(t|ul) =
ult

k as in Subsection 2.1. The ML estimates of the parameters, derived by maximizing the LLF
(2.23), are given in Table 3. The Akaike’s information criterion (AIC) is given by AIC = −2L̂LF +

2M , where L̂LF is the LLF at the ML estimates and M is the number of the parameters of the
model. From Table 3, the model with k = 8 has the lowest Akaike. So the RAMs with the
conditional CRAF G(t|ul) = ult

8 is the best among the considered models. On the other hand,
it can be seen that the “PRODT” with the negative coefficient is effective for the lifetime of the
belt. Therefore the harder product the less lifetime. Consider the following problem of hypothesis
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Table 3: ML estimates for transmission belts data

k β̂0 β̂1 σ̂ σ̂u LLF AIC

1 2.51 −1.09285 0.483172 0.8915 −58.7881 127.576

2 3.0658 −1.35247 0.5158 3.5656 −58.7785 127.557

3 3.5108 −1.14828 0.501579 1.98 −58.2825 126.565

4 3.55803 −2.28736 0.49 3.65 −58.2865 126.573

5 3.47849 −1.10249 0.49 1.98 −57.8294 125.659

6 2.64467 −0.562965 0.49 3.60708 −57.8056 125.611

7 2.41858 −0.115864 0.458149 3.19141 −58.3604 126.721

8 2.87199 −1.02092 0.4765 3.6889 −57.5749 125.15

9 2.26947 0.336346 0.484392 3.47709 −58.0514 126.103

10 2.17317 0.229668 0.582577 3.32856 −58.21 126.42

testing {
H0 : β1 = 0,
H0 : β1 ̸= 0.

The generalized likelihood ratio (GLR) test rejects H0 at level α if −2 log
L∗
0

L∗
1
> χ2

1,1−α where χ2
ν,1−α

is (1 − α)-th quantile of the chi-square distribution with ν degrees of freedom. For β1 = 0, we
derived for Equation (2.23) logL∗

0 = −63.6372. Also, from Table 3 we get

−2 log
L∗
0

L∗
1

= −2(logL∗
0 − logL∗

1) = −2× (−63.6372 + 57.5749) = 12.1246.

The p-value is P (χ2
1 > 12.1246) = 0.0004976 and therefore the null hypothesis H0 is rejected at

the significant level α = 0.05. In summarize, “PRODT” has effect on the component lifetime as we
expected.

4 Conclusions

This paper generalized the repair alert model when there are some additional environmental
variables which may effect the system lifetime. Both random and fixed effect covariates were
considered in the proposed model. The problem of estimating parameters was studied in details.
It was assumed that the distribution of the system lifetime belongs to the log-location-scale family
of distributions. The results of this paper may be extended in some directions. For example, one
may consider other families of lifetime distributions such as log-Gamma distributions. Also, the
problem of estimating parameters via a Bayesian approach is worth.
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Abstract

In this paper, we derive new results on stochastic comparisons of series and parallel systems
with independent heterogeneous generalized exponential components. These comparisons are
with respect to the usual stochastic ordering, the reversed failure rate ordering and the failure
rate ordering. The result established here strengthens and generalizes some of the results of
Balakrishnan et al. (2015).

Keywords: Generalized exponential distribution, Stochastic ordering, Majorization,
Parallel system, Series system.

1 Introduction

Consider a distribution function F , and let α > 0. We know that G(x) = (F (x))α is also a
distribution function and is known as exponentiated distribution. It is also known as proportional
reversed hazard rate model (PRHRM). A flexible model which belongs to the exponentiation family,
is the exponentiated Weibull (EW) distribution proposed by Mudholkar and Srivastava [9]. The
EW distribution is quite adequate for modeling non-monotone failure rates, including the bathtub
shaped hazard rate, which are quite common in reliability and biological studies.

1e.bashkar@stu.yazd.ac.ir
2htorabi@yazd.ac.ir
3adolati@yazd.ac.ir

62



Bashkar, E., Torabi, H., Dolati, A. 63

Recently, a sub-model of the EW distribution, called the generalized exponential (GE)
distribution, has been discussed extensively. Recall that, a random variable X is said to be
distributed according the generalized exponential distribution, and will be denoted by X ∼
GE(α, λ), if the distribution function is given by

G(x) = (1− exp{−λx})α , x > 0,

where α > 0 is a shape parameter and λ > 0 is a scale parameter. It can be shown that the GE
has increasing hazard rate (IHR), if α > 1, constant hazard rate (CHR), if α = 1, and decreasing
hazard rate (DHR) if α < 1 [4].

To fit a model to lifetime data sets, it is observed in the literature that the generalized
exponential distribution can be used as an alternative to the gamma, Weibull, and log-normal
distributions. So, it is of interest to consider this distribution as the lifetimes of components of
reliability systems. Balakrishnan et al. [1] examined the problem of the stochastic comparison
of series and parallel systems with heterogeneous GE components. In this paper, we derive new
results on stochastic comparisons of series and parallel systems with independent heterogeneous
generalized exponential components. These comparisons are with respect to the usual stochastic,
the reversed failure rate and the failure rate orderings. The result established here strengthens and
generalizes some of the results of [1].

Let X1:n ≤ . . . ≤ Xn:n denote the order statistics arising from random variables X1, . . . , Xn.
Order statistics play important rules in statistical inference, reliability theory, life testing, operations
research and other related areas. In reliability theory, the kth order statistic coresponds to
the lifetime of a (n − k + 1)-out-of-n system. In particular, X1:n and Xn:n correspond to the
lifetimes of series and parallel systems, respectively. Various researchers have studied the stochastic
comparisons for the lifetimes of the series and parallel systems, for example, see [3, 5, 6, 7, 11, 12]
and references cited therein for details on these comparisons. To continue further we need some
definitions which are standard in the literature. The terms such as increasing and decreasing will
be used for non-decreasing and non-increasing, respectively throughout the paper.

Let X and Y be two univariate random variables with distribution functions F and G, density
functions f and g, the survival functions F̄ = 1−F and Ḡ = 1−G, hazard rate functions rF = f/F̄
and rG = g/Ḡ, and reverse hazard rate functions r̃F = f/F and r̃G = g/G, respectively. Random
variable X is said to be smaller than Y in the

(i) hazard rate order, denoted by X ≤hr Y , if rF (x) ≥ rG(x) for all x;

(ii) reversed hazard rate order, denoted by X ≤rh Y , if r̃F (x) ≤ r̃G(x) for all x;

(iii) stochastic order, denoted by X ≤st Y , if F̄ (x) ≤ Ḡ(x) for x.

For a comprehensive discussion on various stochastic orders, one can see [10].

The concept of majorization is quite useful in dealing with various reliability related optimization
problems. For preliminary notations and terminologies on majorization theory, we refer the reader
to [8]. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two real vectors and x(1) ≤ . . . ≤ x(n) be the
increasing arrangement of the components of the vector x.
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Definition 1. The vector x is said to be

(i) weakly submajorized by the vector y (denoted by x ⪯w y) if
∑n

i=j x(i) ≤
∑n

i=j y(i) for all j =
1, . . . , n,

(ii) weakly supermajorized by the vector y (denoted by x
w
⪯ y) if

∑j
i=1 x(i) ≥

∑j
i=1 y(i) for all j =

1, . . . , n,

(iii) majorized by the vector y (denoted by x
m
⪯ y) if

∑n
i=1 xi =

∑n
i=1 yi and

∑j
i=1 x(i) ≥

∑j
i=1 y(i) for

all j = 1, . . . , n− 1.

Clearly, x
m
⪯ y implies both x

w
⪯ y and x ⪯w y.

Another interesting weaker order regarding to the majorization order introduced by [2] is the
p-larger order which is defined as follows:

Definition 2. A vector x in Rn+ is said to be p-larger than another vector y in Rn+ (denoted by

x
p

⪰y) if
j∏
i=1

x(i) ≤
j∏
i=1

y(i), j = 1, . . . , n,

where Rn+ = {(x1, ..., xn)|xi ≥ 0, i = 1, ..., n}.

It is known that for any two non-negative vectors x and y,

x
m
⪯y =⇒ x

p

⪯y.

Balakrishnan et al. [1] had studied the stochastic comparisons of parallel (series) systems having
heterogeneous GE components. In section 2, we derive new results on stochastic comparisons of
series and parallel systems with independent heterogeneous generalized exponential components.

2 Main result

In the following theorem, we compare series systems with independent heterogeneous GE
components when one of the parameters is fixed, and the results are then developed with respect
to the other parameter. This result generalizes the corresponding result in Theorem 15 of [1]. In
particular the majorization assumption is relaxed to the weak supermajorization.

Theorem 2.1. Let X1, . . . , Xn (X∗
1 , . . . , X

∗
n) be independent random variables with Xi ∼

GE(αi, λ) (X
∗
i ∼ GE(α∗

i , λ)), i = 1, ..., n. Then, for any λ > 0, we have

(α1, . . . , αn)
w
⪰(α∗

1, . . . , α
∗
n) =⇒ X1:n ≤hr X

∗
1:n.



Bashkar, E., Torabi, H., Dolati, A. 65

Proof. Fix x > 0. Then the hazard rate of X1:n is

rX1:n(x,α, λ) =

n∑
i=1

αiλe
−λx(1− e−λx)αi−1

1− (1− e−λx)αi
= λe−λx

n∑
i=1

φ(αi),

where φ(α) =
α(1− e−λx)α−1

1− (1− e−λx)α
, x ≥ 0, λ ≥ 0. From Theorem 3.A.8 of [8] it suffices to show that,

for each x > 0, rX1:n(x,α, λ) is Schur-convex and decreasing in αi’s. By taking t = 1 − e−λx in
Lemma 7 of [1], we see that φ(α) is convex in α ≥ 0 and it is easy to show that is a decreasing
function, then the hazard rate function of X1:n is decreasing and convex in each αi.

So, from Proposition 3.C.1 of [8], the Schur-convexity of rX1:n(x,α, λ) follows from convexity
of φ(α).This completes the proof of the required result.

The following result considers the comparison on the lifetimes of series systems in terms of the
usual stochastic order when two sets of scale parameters weakly majorize each other.

Theorem 2.2. Let X1, . . . , Xn (X∗
1 , . . . , X

∗
n) be independent random variables with Xi ∼

GE(α, λi) (X
∗
i ∼ GE(α, λ∗i )), i = 1, ..., n. If 0 < α ≤ 1(α ≥ 1) and (λ1, . . . , λn)

w
⪰ (⪰w)(λ

∗
1, . . . , λ

∗
n),

then X1:n ≥st (≤st)X
∗
1:n.

Proof. For a fixed x > 0, the survival function of X1:n can be written as

FX1:n(x,λ) =
n∏
i=1

(
1− e−λix

)α
. (2.1)

Now, using Theorem 3.A.8 of [8], it is enough to show that the function FX1:n(x,λ) given in
(2.1) is Schur-convex (Schur-concave) and decreasing in λi’s.

The partial derivatives of FX1:n(x,λ) with respect to λi is given by

∂FX1:n(x,λ)

∂λi
= −xFX1:n(x,λ)q(α, 1− e−λix),

where q(α, t) = α
(1− t)tα−1

1− tα
≥ 0, 0 < t < 1. So, we have that FX1:n(x,λ) is decreasing in each λi.

From Theorem 3.A.4. in [8] the Schur-convexity (Schur-concavity) follows if we prove that, for
any i ̸= j,

(λi − λj)

(
∂FX1:n(x,λ)

∂λi
− ∂FX1:n(x,λ)

∂λj

)
≥ (≤)0,

that is, for i ̸= j,

xFX1:n(x,λ)(λi − λj)

(
q(α, 1− e−λjx)− q(α, 1− e−λix)

)
≥ (≤)0. (2.2)

According to Lemma 3 of [1], q(α, t) is decreasing (increasing) in 0 < t < 1 for any 0 < α ≤ 1
(α ≥ 1), which in turn implies that the function q(α, 1 − e−λix) is decreasing (increasing) in
λi, i = 1, . . . , n for any 0 < α ≤ 1 (α ≥ 1). This completes the proof of the required result.
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Note that (λ1, . . . , λn)
m
⪰ (λ∗1, . . . , λ

∗
n) implies both (λ1, . . . , λn)

w
⪰ (λ∗1, . . . , λ

∗
n) and

(λ1, . . . , λn) ⪰w (λ∗1, . . . , λ
∗
n), Theorem 2.2 substantially improves the corresponding ones provided

by [1], in the sense that the majorization is relaxed to the weak majorization. Naturally,
one may wonder whether the following statement are actually also true: For 0 < α ≤ 1,

(λ1, . . . , λn)
p
⪰ (λ∗1, . . . , λ

∗
n) gives rise to the usual stochastic order between X1:n and X∗

1:n. The
following example gives negative answer to this conjecture.

Example 2.3. Let (X1, X2) ((X∗
1 , X

∗
2 )) be a vector of independent heterogeneous GE random

variables. Set α = 0.6. For (λ1, λ2) = (1, 5.5)
p
⪰ (2, 3) = (λ∗1, λ

∗
2), X1:2 ≤st X

∗
1:2; however, for

(λ1, λ2) = (1, 2.25)
p
⪰ (1.1, 2.14) = (λ∗1, λ

∗
2), X1:2 ≥st X

∗
1:2. So, (λ1, λ2)

p
⪰ (λ∗1, λ

∗
2) implies neither

X1:2 ≤st X
∗
1:2 nor X1:2 ≥st X

∗
1:2 for 0 < α ≤ 1.

In the next theorem, we compare parallel systems in the case when two sets of scale parameters
weakly majorize each other that generalizes the corresponding result in Theorem 10 (ii) of [1]. In
particular the majorization assumption is relaxed to the super-majorization.

Theorem 2.4. Let X1, . . . , Xn be independent random variables with Xi ∼ GE(α, λi) and
X∗

1 , . . . , X
∗
n be another set of independent random variables with X∗

i ∼ GE(α, λ∗i ), i = 1, ..., n.
Then for any α > 0,

(λ1, . . . , λn)
w
⪰(λ∗1, . . . , λ

∗
n) =⇒ Xn:n ≥rh X

∗
n:n. (2.3)

Proof. Fix x > 0. Then the reverse hazard rate of Xn:n is

r̃Xn:n(x,λ) =
n∑
i=1

αλir̃(λix) =
α

x

n∑
i=1

φ(λix),

where φ(x) = xr̃(x), and r̃(x) =
e−x

1− e−x
, x ≥ 0. From Theorem 3.A.8 of [8] it suffices to show

that, for each x > 0, r̃Xn:n(x,λ) is Schur-convex and decreasing in λi’s.

It is easy to see that, φ(x) is decreasing and convex in x, then the reverse hazard rate function
of Xn:n is decreasing and convex in each λi.

Now, from Proposition 3.C.1 of [8], Schur-convexity of r̃Xn:n(x,λ) follows from convexity of
φ(x). This completes the proof of theorem.

3 Conclusions

In this paper, we derived new results on stochastic comparisons of series and parallel systems
with independent heterogeneous generalized exponential components. The result established here
strengthens and generalizes some of the results of [1].



Bashkar, E., Torabi, H., Dolati, A. 67

References

[1] Balakrishnan, N. , Haidari, A. and Masoumifard, K. (2015), Stochastic comparisons of
series and parallel systems with generalized exponential components, IEEE Transactions on
Reliability, 64, 333-348.
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Abstract

Choosing the sample size is a problem faced by anyone doing a survey of any type. In
this paper, we study this problem by considering two criteria, the total cost of experiment
and mean squared prediction error in prediction problem. Towards this end, we discuss the
problem of Bayesian predicting a future progressive censored order statistic from an exponential
distribution based on an observed progressive censored order statistics.

Keywords: Optimal sample size, Prediction, Progressive censoring.

1 Introduction

The scheme of progressive Type-II censoring is an important method of obtaining data in lifetime
studies. Suppose n units are placed on a lifetime test. At the ith failure time, ri surviving items
are randomly withdrawn from the test, where ri = n −m −

∑i−1
j=0 rj , i = 1, · · · ,m, where r0 = 0.

Then the failure times X1:m:n, · · · , Xm:m:n are called progressively Type-II censored order statistics
(PCOs). In what follows we focus on finding optimal values for m based on a prediction problem
for the exponential distribution under progressive Type-II censoring.
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2 Main results

Let x̃ = (x1:m1:n1 , · · · , xm1:m1:n1) be observed PCOs with censoring scheme (r1, · · · , rm1) from the
one parameter exponential distribution with the probability density function (pdf)

f(x) = θe−θx, x > 0, θ > 0. (2.1)

Then, the likelihood function takes the form (see [3])

L(θ, x̃) = C

m∏
i=1

(1− F (xi))
ri f(xi) = Cθm1 exp(−θT ),

where C =
∏m
j=1(n−

∑j−1
i=0 ri − j + 1) and T =

∑m1
i=1(1 + ri)xi.

The conjugate prior for θ is considered as

π(θ) =
ba

Γ(a)
θa−1e−bθ, θ > 0, a, b > 0.

Therefore, the posterior distribution of θ is obtained to be

π(θ|x̃) = (b+ T )a+m1

Γ(a+m1)
θa+m1−1e−θ(b+T ),

respectively, where Γ(·) is the complete gamma function.

Let Ys:m2:n2 be the sth future PCO with censoring scheme (r′1, · · · , r′m2
) from the same

exponential distribution with the pdf given in (2.1). Then, the marginal pdf of Ys:m2:n2 , (1 ≤
s ≤ m2) is (see [3])

fYs:m2:n2
(y) = θc′s−1

s∑
i=1

a′i,s exp{−θγ′iy}, y > 0,

where γ′i = n2 − i + 1 −
∑i−1

j=1 r
′
j , c

′
s−1 =

∏s
j=1 γ

′
j and a′i,s =

s∏
j=1,j ̸=i

1

γ′j − γ′i
, 1 ≤ i ≤ s ≤ m2. So,

the predictive density function for Ys:m2:n2 is

f∗Ys:m2:n2
(y|x̃) = c′s−1

s∑
i=1

a′i,s
(b+ T )a+m1

Γ(a+m1)

∫ ∞

0
θa+m1e−θ(b+T+γ

′
iy)dθ

= c′s−1(a+m1)(b+ T )a+m1

s∑
i=1

a′i,s
(b+ T + γ′iy)

a+m1+1
.

Define the functions g and h as

g(s, r̃s, n) =

s∑
l=1

1

n−
∑l−1

k=0 rk − l + 1
and h(s, r̃s, n) =

s∑
l=1

1(
n−

∑l−1
k=0 rk − l + 1

)2 ,
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where r̃s = (r0, r1, · · · , rs−1). Then, we can write (see [6])

E(Ys:m2:n2) =
1

θ
g(s, r̃′s, n2) and V (Ys:m2:n2) =

1

θ2
h(s, r̃′s, n2),

where r̃′s = (r′0, r
′
1, · · · , r′s−1) and r

′
0 = 0.

The point predictor for Ys:m2:n2 , 1 ≤ s ≤ m2, under squared error loss (SEL) function is

Ŷs:m2:n2 = c′s−1

s∑
i=1

a′i,s
(b+ T )a+m1

Γ(a+m1)

∫ ∞

0

∫ ∞

0
yθa+m1e−θ(b+T+γ

′
iy)dydθ

=
(b+ T )

(a+m1 − 1)
c′s−1

s∑
i=1

a′i,s

γ′i
2 =

(b+ T )

(a+m1 − 1)
g(s, r̃′s, n2),

where the last equality is obtained by using the following identity

c′s−1

s∑
i=1

a′i,s

γ′i
2 = g(s, r̃′s, n2).

Since in many real applications, no prior knowledge is available about θ, we may take a = b = 0,
i.e. the non-informative prior for θ. Therefore

E(Ŷs:m2:n2) =
1

θ

m1

m1 − 1
g(s, r̃′s, n2) and V (Ŷs:m2:n2) =

1

θ2
m1

(m1 − 1)2
g2(s, r̃′s, n2).

We obtain the mean squared prediction error (MSPE) of Ŷs:m2:n2 as

MSPE(Ŷs:m2:n2) =
1

θ2

{
h(s, r̃′s, n2) + g2(s, r̃′s, n2)

m1 + 1

(m1 − 1)2

}
. (2.2)

Another criterion considered in this paper is the total cost of test, which plays an important role
in practice. The total cost associated with the information sample x̃ = (x1:m1:n1 , · · · , xm1:m1:n1), is
given by

TC = c0 + ctXm1:m1:n1 + cun1,

where c0, ct and cu are the sampling set-up cost or any other related cost involved in sampling,
cost of total time on test and cost per unit, respectively. We consider the expected of cost function
which is

E(TC) = c0 + ctE(Xm1:m1:n1) + cun1

= c0 +
ct
θ
g(m1, r̃m1 , n1) + cun1, (2.3)

which depends on the unknown parameter θ. One may replace θ with its preliminary estimate
obtained based on past experiments.

We try to find optimal values for m1 such that MSPE(Ŷs:m2:n2) ≤ κ and E(TC) ≤ c, where κ

and c are pre-fixed values. From (2.2), MSPE(Ŷs:m2:n2) ≤ κ, if and only if m1+1
(m1−1)2

≤ θ2κ−h(s,r̃′s,n2)
g2(s,r̃′s,n2)

.
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Moreover, by using (2.3), E(TC) ≤ c is equivalent to g(m1, r̃m1 , n1) ≤
(c−c0−n1cu)θ

ct
. Note that we

expect g(m1, r̃m1 , n1) to be an increasing function of m1 when n1 is kept fixed regardless of the
set r̃m1 . If so, then assuming θ2κ > h(s, r̃′s, n2), we readily find that the optimal value for m1, say
m1opt , satisfies the following inequality

max{2,m0} ≤ m1opt ≤ m′
1, (2.4)

where m′
1 is the largest integer value such that

g(m′
1, r̃m′

1
, n1) ≤

(c− c0 − n1cu)θ

ct
,

and m0 is the smallest integer value such that

m0 ≥ 1 +
1 +

√
8T ∗ + 1

2T ∗ and T ∗ =
θ2κ− h(s, r̃′s, n2)

g2(s, r̃′s, n2)
.

From the relation (2.4), we see that the upper bounds for m1opt can be determined based on the
total cost of time and the lower bounds can be obtained based on the MSPE. Let us consider the
censoring schemes as (r1, r2, · · · , rmj ) = (0, 0, · · · , nj −mj) for j = 1, 2, then Table 1 consists of
values of m1opt for some selected values of s, c and κ when m2 = 10, n1 = n2 = 20, c0 = ct = 1,
cu = 0.2 and θ = 1. The computations were obtained by the codes written in R [3].

Table 1: Values of m1opt for some selected values of s, c and κ when m2 = 10, n1 =

n2 = 20, c0 = ct = 1, cu = 0.2 and θ = 1.

s 1 3 5 8 10
c κ
5.5 0.1 {2, · · · , 8} {2, · · · , 8} {3, · · · , 8} {6, 7, 8} −

0.2 {2, · · · , 8} {2, · · · , 8} {3, · · · , 8} {4, · · · , 8} {6, 7, 8}
0.3 {2, · · · , 8} {2, · · · , 8} {2, · · · , 8} {3, · · · , 8} {4, · · · , 8}

6 0.1 {2, · · · , 12} {2, · · · , 12} {3, · · · , 12} {6, · · · , 12} {12}
0.2 {2, · · · , 12} {2, · · · , 12} {3, · · · , 12} {4, · · · , 12} {6, · · · , 12}
0.3 {2, · · · , 12} {2, · · · , 12} {2, · · · , 12} {3, · · · , 12} {4, · · · , 12}

7 0.1 {2, · · · , 17} {2, · · · , 17} {3, · · · , 17} {6, · · · , 17} {12, · · · , 17}
0.2 {2, · · · , 17} {2, · · · , 17} {3, · · · , 17} {4, · · · , 17} {6, · · · , 17}
0.3 {2, · · · , 17} {2, · · · , 17} {2, · · · , 17} {3, · · · , 17} {4, · · · , 17}

In Table 1, dash (-) means that there is no m1opt which satisfies condition (2.4). Because in this
case the lower bound in (2.4) is greater than the corresponding upper one. From Table 1, we can
state the following findings:

• As one would expect, the lower bounds for m1opt increases as s increases when all other
components are held fixed.

• For fixed values of s and κ, the maximum value ofm1opt is an increasing function of c. Because
enhancing the total cost of test leads to a greater value for m1opt .

• The MSPE is a decreasing function of m1opt . So, for fixed values of s and c, the minimum
value of m1opt is a decreasing function of κ.
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• When c and κ are kept fixed, then the minimum values of m1opt for the lower order statistics
are smaller than those for the upper order statistics but they have the same maximum value
of m1opt .

From Table 1, we can see that m1opt is not unique. In practice, the engineer may request only
one value of m1. So, this question arises for a practitioner that which m1opt must be chosen in a
practical situation. We respond that it depends on which criterion is more important for that user.
If the cost of an experiment is more important than the MSPE, then the lower bound for m1opt can
be considered. On the other hand, as expected intuitively, if we consider the MSPE as the most
important criterion, then we must prefer the upper bound for m1opt .
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Abstract

Reliability engineers often need to work with systems having elements connected in parallel
and series, and to calculate their reliability. The concepts of inequality measures play an
important role in economic, social sciences and other areas. In this paper, we study the
relationship between a mean life time of system consisting of n identical and independents
having parallel or series structure and some measures of income inequality. The Gini index and
generalized Gini index are two particular member of general class of dispersion measures. It is
natural to try to relate Gini indices to mean life time of system.

Keywords: Mean residual life function, Reliability, Lorenz curve, Gini index.

1 Introduction

Recently, reliability theoretic ideas and methods have been used successfully in several other areas
of investigation with a view towards exploiting concepts and tools, such as demography, queueing
theory and economics. Reliability engineers often need to work with systems having elements
connected in parallel and series, and to calculate their reliability. In recent years, various inequality
curves have been developed or investigated as the descriptors of income inequality. The Bonferroni
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curve and the Zenga-2007 curve appear to be essentially the functions of the Lorenz curve. Arnold
[2] showed, they each determine the parent distribution up to scale factor, and they each, yield
an inequality partial order that is equivalent to the Lorenz order. The Lorenz curve is considered
as a very useful tool of economic due to its significant role in the measurement of the inequality
of income distributions and wealth. Several authors have discussed relationships between income
and wealth inequality measures and some central notions used in reliability theory and survival
analysis. Chandra and Singpurwalla [7] illustrated the connection between Lorenz curves and Gini
index in economics and total time on test and mean residual life in reliability. Klefsjo [11] derived
more results along the same lines and presented reliability interpretations of some more concepts
from economics. Giorgi and Crescenzi [8] proved some relationships between the total time on test
and Bonferroni curve and showed how the Bonferroni curve may be applied in reliability theory.
Singpurwalla [16] noted the relationship between the survival function in reliability and the asset
pricing formula of fixed income instrument such as a risk-free zero coupon bond.
The aim of this article is to answer the question What is the relationship between the lifetime of a
system and inequality indices?

2 Definitions and notations

Throughout this paper, X and Y are two non-negative continuous random variables with finite
and positive means. We consider F and G for the distribution functions and use the symbols
f and g to denote respective probability (density) distributions, if they exist. The survival
function of F is denoted by F = 1 − F and the quantile function will be denoted by F−1(u) =
inf{x : F (x) ≥ u, u ∈ (0, 1)}, where F−1(0) and F−1(1) are the lower and upper bounds of the
support of F (SF ) respectively, for G analogously. Here mF (x) =

∫∞
x F (t)dt/F (x), x ≥ 0 stands

for the mean residual life function of F . All other functions are notated by similar notations. Let
us give some definitions that will be used in this article.
A system is a collection of components, subsystems and/assemblies arranged to a specific design
in order to achieve the desired functions with acceptable performance and reliability. The types of
components, their qualities, their quantities and the way in which they are set inside the system
have direct effect on system reliability. Coherent systems are often considered in reliability theory
to describe the structure and the performance of complex systems. For example, k-out-of-n systems,
and series and parallel systems in particular, are coherent systems. Series and parallel structures
are the basis for building more complicated structures which use redundancy to increase system
reliability.

Definition 1. A Series system is a configuration such that, if any one of the system components
fails, the entire system fails i.e. the series system fails as long as any one of the components fails.
Some applications of series system are in some computer networks, chains, multi-cell batteries and
decorative tree-lights. When components fail independently the system reliability as

F s(t) = F 1(t)F 2(t) · · ·Fn(t) =
n∏
i=1

F i(t) (2.1)
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Its clear that the system reliability can not be greater than the smallest component reliability. It
is important for all components to have a high reliability, especially when the system has a large
number of components. If the times-to-failure of the components behave according to the exponential
p.d.f, then the overall p.d.f of times-to-failure is also exponential. The mean residual life function
of a series system is defined by the conditional expectation of residual life length

φn(t) = E(X1:n − t|X1:n > t), (2.2)

Definition 2. A Parallel system is a system in which components are connected in parallel and the
system does not fail, even one component is in good working condition i.e the system fails only when
all components have failed. A parallel system works as long as any one of the components works.
Conceptually, in a parallel configuration the total system reliability is higher than the reliability of
any single system component. Jet engines, Braking systems, Tires in trucks and Projector light
bulbs are applications of parallel system. For parallel systems, it is easier to work with failure
probability than reliability because

Fs(t) =
n∏
i=1

Fi(t) (2.3)

and therefore

F s(t) = 1−
n∏
i=1

1− F i(t) (2.4)

The system reliability can not be less than the largest component reliability. The conditional
expectation of residual life length of the parallel system is called the mean residual life function
of parallel system

ψn(t) = E(Xn:n − t|X1:n > t), (2.5)

Bairamov et al. [3] showed ψn(t) =
n

F
n
(t)

∫∞
t y[F (y)− F (t)]n−1f(y)dy − t and they obtained

F (x) = exp{−1

n

∫ x

0

ψ′
n(t) + 1

ψn(t)− ψn−1(t)
dt}.

Lorenz curve provides a useful graphical method to analyse income inequality for about one
hundred years since they were designed. The Gini coefficient has been found useful to study the
inequality of incomes. The value of Gini coefficient reveals the degree of income inequality. The
Lorenz curve was first defined by Lorenz (1905).

Definition 3. Let X be a non-negative random variable with finite and positive mean, the Lorenz
curve of X is given by

LX(p) =
1

E(X)

∫ p

0
F−1(u)du, 0 ≤ p ≤ 1. (2.6)

It should be mentioned that LX has the following properties:

• Lorenz curve is a distribution function, twice differentiable, convex (and hence also star-
shaped), increasing and is continuous.
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• L(0) = 0 and L(1) = 1 on [0; 1].

• limp→1L
′(p)(1− p) = 0, LX(p) ≤ p.

• Moreover function possessing these properties is the Lorenz curve of a certain statistical
distribution.

The most famous measure of income inequality is the Gini coefficient. It is certainly a relative
measure of income inequality, and is given as twice the area between the equality line and Lorenz
curve:

G = 2

∫ 1

0
(p− L(p))dp = 1− 2

∫ 1

0
L(p)dp.

Kakwani [10] proposed a one-parameter family of generalized Gini indices by introducing different
weighting functions for the area under the Lorenz curve as,

Gn = 1− n(n− 1)

∫ 1

0
L(p)(1− p)n−2dp, n ≥ 1,

can be written as

Gn = 1− 1

µ

∫ ∞

0
F
n
(x)dx = 1− E(X1:n)

E(X)
. (2.7)

The Gini coefficient is obtained for n = 2.
It may also be of interest to note that the piesch measure

P =

∫ 1

0
3t(t− L(t))dt (2.8)

The Bonferroni curve BX(p) is a relatively minor modification of the Lorenz curve. It is defined
by:

BX(p) =
L(p)

p
, 0 < p < 1. (2.9)

Consequently, we cannot say in general that Bonferroni curve starts from the original of the
orthogonal plane, as it depends on the definition ofX [8]. The Bonferroni curve is strictly increasing
and could be convex in some parts and concave in the others.
One of the another measure of income inequality is Zenga index. The Zenga curve Z(p) is the ratio
of the mean income of the poorest 100p in the distribution to that of the rest of the distribution,
namely the 100(1− p) richest. It is defined by:

ZX(p) = 1− L(p)

p
· 1− p

1− L(p)
p ∈ (0, 1).

The Zenga index, can be written as:

Z =

∫ 1

0
Z(p)dp.
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Inequality partial orders are defined for each of the four inequality curves.
We say that X is smaller than Y in the Lorenz order (X ≤L Y ), Bonferroni order (X ≤B Y )
or Zenga order (X ≤Z Y ) iff LY (p) ≤ LX(p), BY (p) ≤ BX(p) or ZY (p) ≤ ZX(p) respectively.
These orders are invariant with respect to scale transformation. The Lorenz order is the natural
mathematical abstraction of Lorenz’s (1905) comparison of income distributions via nested Lorenz
curves [1]. From definitions of the Zenga and Bonferroni curves and definitions of the Zenga,
Bonferroni and Lorenz orders immediately conclude that

X ≤B Y ⇐⇒ X ≤L Y ⇐⇒ X ≤Z Y

3 Main results

In here, we present some of the important results about the relationship between mean life of a
system and some measure of income inequality. As our first main result, the following theorems
exhibit some new connections between mean residual life function of a parallel system and Lorenz
order.

Theorem 3.1. Let ψ(t) be the mean residual life function of a parallel system consisting of 2
identical and independent components with continuous life distribution function F . Then the
following identity holds

L(F (t)) =
1

µ

(
F (t)(ψ(t) + t)− [ψ′(t) + 1](F (t))2

2f(t)

)
Proof. For simplest case n = 2 we have the equation

ψ(t) = ψ2(t) =
2
∫∞
0 x[F (x)− F (t)]f(x)dx

F
2
(t)

− t,

differentiating with respect to t we have

[ψ′(t) + 1]F
2
(t)− 2f(t)F (t)(ψ(t) + t)

= −2f(t)

∫ ∞

t
xf(x)dx,

after some derivation we have

L(F (t)) =
1

µ

(
F (t)(ψ(t) + t)− [ψ′(t) + 1](F (t))2

2f(t)

)

Remark 3.2. The integral in equation 2.7 can be interpreted as the mean life of a series system
consisting of n independent components each of which has a time to failure distributed according
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to F [11]. The mean life of a parallel system consisting of n independent component each of which
has a time to failure with distribution function F can be denoted as∫ ∞

0
1− Fn(x)dx.

Which has closely related to the general family of the piesch measure in equation 2.8

The theorem below shows that, if X ≤L Y , then a parallel system of n components having
independent lifetimes which are copies of Y has a larger lifetime, in the sense of Lorenz order, than
a similar system of n components having independent lifetime which are copies of X.

Theorem 3.3. Let X1, X2, · · · , Xn be a collection of independent and identically distributed random
variables, and let Y1, Y2, · · · , Yn be another collection of i.i.d. random variables and these random
variables have a common mean. If X1 ≤L Y1, then Xn:n ≤L Yn:n for n ≥ 1.

Proof. Assume that X1 ≤L Y1. It suffices to consider only the case n = 2 for other cases are
similar. Let the survival functions of X1 and Y1 denote by F and G respectively, now 2.4 that
Fmax{X1,X2}(t) = 1 − F 2(t) and Gmax{Y1,Y2}(t) = 1 − G2(t). Now, from the assumed X1 ≤L Y1 it
follows that ∫ u

0
(F−1(t)−G−1(t))dt ≥ 0,

since F−1
max{X1,X2}(p) = F−1(

√
p) and G−1

max{Y1,Y2}(p) = G−1(
√
p) for p ∈ (0, 1), it follows that∫ u

0
F−1
max{X1,X2}(x)dx ≥

∫ u

0
G−1
max{Y1,Y2}(x)dx,

that is, Xn:n ≤L Yn:n.

Theorem 3.4. Let X1, X2, · · · , Xn be a collection of independent and identically distributed random
variables, and let Y1, Y2, · · · , Yn be another collevtion of i.i.d. random variables and these random
variables have a common mean. If X1 ≤Z Y1, then Xn:n ≤Z Yn:n for n ≥ 1.

Proof.

X1 ≤Z Y1 =⇒ ZX1(p) ≤ ZY1(p),

=⇒
∫ 1
p F

−1(t)dt− (1− p)E(X)

p
∫ 1
p F

−1(t)dt
≤
∫ 1
p G

−1(t)dt− (1− p)E(Y )

p
∫ 1
p G

−1(t)dt
,

=⇒ E(Y )

∫ 1

p
F−1(t)dt ≤ E(X)

∫ 1

p
G−1(t)dt,

=⇒
∫ 1

p
F−1(

√
t)dt ≤

∫ 1

p
G−1(

√
t)dt,

=⇒
∫ 1
p F

−1(
√
t)dt− (1− p)E(Xn:n)

p
∫ 1
p F

−1(
√
t)dt

≤
∫ 1
p G

−1(
√
t)dt− (1− p)E(Yn:n)

p
∫ 1
p G

−1(
√
t)dt

,

=⇒ ZXn:n(p) ≤ ZYn:n(p),

=⇒ Xn:n ≤Z Yn:n.
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Corollary 3.5. Recall that, a random variable X with mean µ is HNBUE, iff

X ≤L Y (3.1)

where Y denotes an exponential random variable with mean µ. Now consider a parallel system
of n components having i.i.d. HNBUE lifetimes X1, X2, · · · , Xn with the common mean µ. Let
Y1, Y2, · · · , Yn be i.i.d. exponential random variables with mean µ. From Theorem 3.3 we obtain
Xn:n ≤L Yn:n and consequently the lifetime of parallel system is also HNBUE. As Xn:n ≤L Yn:n we
have cv(Xn:n) ≤ cv(Yn:n). Kochar [12] obtained upper bounds on the mean and on the variance of
the lifetime of the parallel system then

cv(Xn:n) ≤

√√√√√
2
∑n

k=1
(−1)k+1

k2

(
n

k

)
−

(
n∑
k=1

1

k

)2
∑n

k=1
1
k
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Abstract

The residual entropy measures the concentration of the conditional probability distribution
and the uncertainty of the residual lifetime of a random phenomenon. In this paper, we find
some expressions for the entropy of residual lifetime of a coherent system under different
conditions on the status of the components. The obtained results can be applied to compare
the predictability of the system lifetimes, when we have some information about the component
lifetimes of the system at time t.

Keywords: Coherent system, Residual entropy, Signature vector.

1 Introduction

The concept of Shannon entropy, introduced by Shannon [1], is used for measuring of the uncertainty
associated with its probability in behavior of a random variable. In fact, it is used to measure the
predictability of a random phenomenon. Let X be a non-negative absolutely continuous random
variable with probability density function (pdf) f . The Shannon entropy is defined as

H(X) = −
∫ ∞

0
f(x) log(f(x))dx, (1.1)
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where log(·) stands for the natural logarithm. This measure might be of interest to engineers and
system operators for decision making, because a unit with great uncertainty is less reliable than a
unit with low uncertainty.

Frequently, in survival analysis and life testing, one has information about the current age of
the system. In such cases, the age must be taken into account to measure uncertainty. Obviously,
the measure H(X) in (1.1) is unsuitable in such situations and must be modified to take the age
into account. Ebrahimi [2] proposed the residual entropy of the random variable X as follows:

H(X; t) = −
∫ ∞

t

f(x)

F̄ (t)
log

f(x)

F̄ (t)
dx. (1.2)

Note that H(X; t) measures the concentration of the conditional probability distribution i.e. the
distribution of Xt = (X − t|X > t).

In this paper, we consider a coherent system with lifetime T which is working at time t and we
have some information about the lifetimes of its components. We consider three cases of conditional
lifetimes and then we obtain explicit expressions for the residual entropy of the system in each cases.

2 Main results

Consider a coherent system with lifetime T, consisting of n i.i.d. component lifetimes X1, . . . , Xn

having a common cumulative distribution function (cdf) F . Also, suppose that X1:n, . . . , Xn:n

denote the associated order statistics of the component lifetimes. Let us assume that the system
has the property that, with probability one, it is alive as long as at least n−s+1 (s ≤ n) components
are alive. Such systems must have a signature vector of the form

p = (0, 0, . . . , 0, ps, ps+1, . . . , pn). (2.1)

More details on the system signature is given in [3]. Some examples of coherent systems of order 4
with signature vector of the form (2.1) are given by:

T1 = max(X1,min(X2, X3, X4)),

T2 = max(X1,min(X2, X3),min(X3, X4)),

T3 = max(X2:3, X4),

T4 = max(X1, X2, X3, X4),

where their respective signature vectors are p1 = (0, 12 ,
1
4 ,

1
4), p2 = (0, 16 ,

7
12 ,

1
4), p3 = (0, 0, 34 ,

1
4)

and p4 = (0, 0, 0, 1).

Now, consider the situation that at time t, the system is working and we have some information
about the number of failed components in the system. We are interested in studying the measure
of uncertainty of the system residual lifetime. The following cases are considered.

Case I: Suppose that at time t the system is alive and we know that exactly ℓ (ℓ ≤ s − 1)
components of the system are failed. The residual lifetime of this system may be presented as

T tℓ,ℓ+1 = (T − t|Xℓ:n ≤ t < Xℓ+1:n), ℓ = 1, 2, . . . , s− 1. (2.2)
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The survival function of T tℓ,ℓ+1 can be found as

F̄T t
ℓ,ℓ+1

(x) = Pr(T > t+ x|Xℓ:n ≤ t < Xℓ+1:n)

=

n∑
k=s

pk Pr(Xk:n > t+ x|Xℓ:n ≤ t < Xℓ+1:n)

=
n∑
k=s

pk Pr(Xk−ℓ:n−ℓ > x+ t|X1:n−ℓ > t), (2.3)

where the last equality follows from Remark 2.2 of Goliforushani and et al. [4]. In the next theorem,
we find an expression for the entropy of T tℓ,ℓ+1.

Theorem 2.1. Let T tℓ,ℓ+1 for ℓ = 1, 2, . . . , s− 1 be the residual lifetime of a system with signature

vector of the form (2.1). The entropy of T tℓ,ℓ+1 can be found as

H(T tℓ,ℓ+1) = H(Vℓ,ℓ+1)−
n∑
k=s

pkE(log(ft(F̄
−1
t (Wk−ℓ:n−ℓ)))), (2.4)

where gVℓ,ℓ+1
(x) =

∑n
k=s pkgWk−ℓ:n−ℓ

(x), and Wk−ℓ:n−ℓ has a beta distribution with parameters
n− k + 1 and k − ℓ.

Proof. The results can be found by implementing probability integral transformation Vℓ,ℓ+1 =

F̄t(T
t
ℓ,ℓ+1), where F̄t(x) =

F̄ (t+x)
F̄ (t)

and the entropy transformation formula given by Ebrahimi et al.

[5].

Since entropy is a concave function of the density function, we can find a lower bound for the
entropy of T tℓ,ℓ+1 as

H(T tℓ,ℓ+1) ≥
n∑
k=s

pkH(Xt
1,k−ℓ,n−ℓ) = HL(T

t
ℓ,ℓ+1), (2.5)

where Xt
1,i,n = (Xi:n − t|X1:n > t). Using the results of Chahkandi and Toomaj [6], we have the

next result.

Lemma 2.2. If F is DFR (IFR), then H(T tℓ,ℓ+1) is an increasing (decreasing) function of t, for a
given ℓ and n.

The next example is given to clarify the results of Theorem 2.1 and Lemma 2.2.

Example 2.3. Suppose that X follows a Weibull distribution with the survival function

F̄ (t) = e−t
α
, t > 0, α > 0. (2.6)

Let us consider a coherent system with system signature p = (0, 0, 0.75, 0.25). It is easy to see that
H(V1,2) = −0.8075. It is not difficult to verify that

E(log ft(F̄
−1
t (Wi:n))) = logα+ E[logWi:n] +

α− 1

α
E[log(tα − logWi:n)],
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Figure 1: Exact values of H(T t
1,2) for α = 0.2 (black line) and α = 2 (blue line).

and hence

H(T t1,2) = H(V1,2)− logα−
n∑
k=s

pkE[logWk−1:n−1]−
α− 1

α

n∑
k=s

pkE[log(tα − logWk−1:n−1)].

It is known that E[logWi:n] = ψ(i) − ψ(n + 1), where ψ(x) = dΓ(x)
dx . It is hard to obtain neat

analytical results for E[log(tα − logWi)] and therefore we are forced to proceed via numerical
computations. In Figure 1, we plotted the exact values of H(T t1,2) with respect to time t for
α = 0.2 and α = 2, respectively. It is well-known that when 0 < α < 1, then X is DFR and for
α > 1, X is IFR.

Case II) Now, consider the situation that we know at time t the system is working and the
minimum and maximum number of failed components are i and j, respectively, where 1 ≤ i < j ≤ s.
Then the residual lifetime of the system is

T ti,j = (T − t|Xi:n ≤ t < Xj:n) ; 1 ≤ i < j ≤ s.

Theorem 2.4. Under the condition that at time t at least i and at most j components of the system
are failed, where 1 ≤ i < j ≤ s, the entropy of the system residual lifetime is given by

H(T ti,j) = H(V t
i,j)−

j−1∑
ℓ=i

bℓ,i,j(t)E(log(ft(F̄
−1(Vℓ,ℓ+1)))),

where gV t
i,j
(x) =

j−1∑
ℓ=i

bℓ,i,j(t)gVℓ,ℓ+1
(x), bℓ,i,j(t) =

(nℓ)(ϕ(t))
ℓ

j−1∑
m=i

(n
m)(ϕ(t))

m
, 1 ≤ i ≤ ℓ < j ≤ n and ϕ(t) = F (t)

F̄ (t)

for t > 0.



Chahkandi, M., Toomaj, A. 85

The following lemma can be found immediately by implementing the concave property of
entropy.

Lemma 2.5. H(T ti,j) and H(T tℓ,ℓ+1) satisfy in the following inequality

H(T ti,j) ≥ HL(T
t
i,j) =

j−1∑
ℓ=i

bℓ,i,j(t)H(T tℓ,ℓ+1).

Case III) Under the condition that at time t at least n−r+1; r ≤ s components of the system
operate, the residual lifetime of the system is given by

T tr = (T − t|Xr:n ≥ t); r = 1, 2, . . . , s, s = 1, 2, . . . , n. (2.7)

Khaledi and Shaked [7] showed that the survival function of T tr can be expressed as

Pr(T tr > x) = Pr(T > t+ x|Xr:n > t)

=
n∑
k=s

pk Pr(Xk:n > t+ x|Xr:n > t). (2.8)

If we assume that Xi:n = 0 for i = 0, n ≥ 1, then bℓ,0,r(t) =
Pr(Xℓ:n≤t<Xℓ+1:n)

Pr(Xr:n>t)
. Therefore, the

entropy of T tr can be expressed as

H(T tr) = H(V t
r )−

r−1∑
ℓ=0

bℓ,0,r(t)E(log(ft(F̄
−1(Vℓ,ℓ+1)))),

where V t
r = F̄ (T tr).

In each cases, we can study the properties of the obtained residual entropy and find some bounds
for it. We can also compare the predictability of two systems’ residual lifetimes and extend the
results for the general case (T − t|T > t).
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Abstract

The article is discussed the k-record values from the half-normal distribution. The mean,
variance and covariance of k-record values are computed. The best linear unbiased estimators
for the location and scale parameters of the half-normal distribution are determined based on
k-record values.
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1 Introduction

A random variable X has the half-normal distribution, with the location parameter µ and the scale
parameter σ, denoted by X ∼ HN(µ, σ), it’s cumulative distribution function (cdf) is given by

FX(x;µ, σ) =

2Φ(
x− µ

σ
)− 1 x ≥ µ ,

0 x < µ

1dastbaravarde@yazd.ac.ir
2h.zaker@yazd.ac.ir
3fatemeh.shurije@gmail.com

87



Third Seminar on Reliability Theory and its Applications 88

Where Φ is the cdf of standard normal distribution. So, the probability density function (pdf) of
X is given by

fX(x;µ, σ) = 2 φ(
x− µ

σ
) ; x ≥ µ ,

where φ is the pdf of the standard normal distribution. The half-normal distribution is the left
truncated normal distribution at µ (see [6] and [7]).

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed (iid) random variables
with cdf FX(x). A k-record is defined based on the kth largest X yet seen. For a definition of
k-record, let the nth (k-record) times Tn(k) are defined by

T0(k) = k with probability 1

and, for n ≥ 1

Tn(k) = min
{
j : j > Tn−1(k), Xj > XTn−1(k)−k+1:Tn−1(k)

}
Where Xi:m denote the ith order statistic in a sample of size m. The nth k-records are then defined
by

Rn(k) = XTn(k)−k+1:Tn(k)
; n ≥ 0 , k ≥ 1.

For k = 1, the k-records are the ordinary records. So, the results for ordinary records can be
obtained as special case. Statistical inference problems based on k-records have been considered by
several authors, see, [5],[1], and [4].

The joint pdf of mth and nth k-record values for m < n is given by,

fRm(k),Rn(k) (rm, rn; θ) =
kn+1

[
−log

(
F̄X (rm; θ)

)]m
m!(n−m− 1)!

[
log

(
F̄X (rm; θ)

F̄X (rn; θ)

)]n−m−1

×
[
F̄X (rn; θ)

]k−1

F̄X (rm; θ)
fX (rm; θ) fX (rn; θ) ;−∞ < rm < rn <∞,

and the pdf of Rn(k), for n ≥ 0 is given by (see, [1] )

fRn(k) (rn; θ) =
kn+1

n!

[
−log

(
F̄X (rn; θ)

)]n [
F̄X (rn; θ)

]k−1
fX (rn; θ) ; rn ∈ R .

Records theory is a relatively new branch is growing in recent decades. This theory, in addition
to comments feature has important practical applications. Climate change, some traffic issues,
natural hazards such as wind and issues to determine the strength of materials and calculate the
probability of failure and so it is important applications.

In this paper, we consider k-record values from half-normal distribution. In Section 2, we
compute the means, variances and covariances of k-record values from half-normal distribution.
In Section 3, we determine the best linear unbiased estimators (BLUEs) of the location and scale
parameters of half-normal distribution based on k-record values.
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2 Mean, variance and covariance of the k-record values

Note that if Rn(k)
is the nth k-record from the half-nornal distribution with the location µ and

scale σ, then

Rn(k)
= µ+ σR∗

n(k)

Where R∗
n(k)

is the nth k-record from the standard half-normal distribution, HN(0, 1). Hence, it’s
enough we compute the mean, variance and covariance of the standard half-normal distribution.

Let R∗
0(k), R

∗
1(k), ..., R

∗
n(k) be the first (n + 1) upper k-record values arising from a sequence of

iid standard half-normal random variables. The joint pdf of mth and nth k-record values, R∗
m(k)

and R∗
n(k) for m < n is given by

f∗R∗
m(k),R∗

n(k)
(r∗m, r

∗
n) =

2kkn+1

m!(n−m− 1)!

[
−log

(
2Φ̄ (r∗m)

)]m [
log

(
Φ̄ (r∗m)

Φ̄ (r∗n)

)]n−m−1

×
[
Φ̄ (r∗n)

]k−1

Φ̄ (r∗m)
φ (r∗m)φ (r∗n) ; 0 < r∗m < r∗n ,

where φ(.) is density function of the standard normal distribution and Φ = 1− Φ. The pdf of nth
upper k-record value R∗

n(k) is given by

f∗R∗
n(k)

(r∗n) =
2kkn+1

n!

[
−log

(
2Φ̄ (r∗n)

)]n [
Φ̄ (r∗n)

]k−1
φ (r∗n) ; r∗n > 0 .

We define αn(k) := E(R∗
n(k)), αm,n(k) := E(R∗

m(k)R
∗
n(k)), βn,n(k) := V ar(R∗

n(k)) and βm,n(k) :=

Cov(R∗
m(k), R

∗
n(k)).

We have computed numerically the values of αn(k) and αm,n(k) for sample size up to 10. The
values of means, αn(k) for n = 0, ..., 9 and k = 1, ..., 5 are given in Table 1. From Table 1, we
see that the mean of k-record increases as n increases. But, it decreases as k increases, for fix n.
Also, we have computed the values of variances and covariances, βm,n(k) for 0 ≤ m ≤ n ≤ 9 and
k = 1, ..., 5 and are given in Table 1. From Table 1, we see that the variance of k-record decreases
as n increases. Also, we see that there is a positive corrolation between Rn(k)

and Rm(k)
, for all

values of m and n, and it decreases as |n−m| increases.

Table 1: Means of the upper k-record values from HN(0, 1) .

n
k 0 1 2 3 4 5 6 7 8 9
1 0.798 1.389 1.864 2.271 2.628 2.950 3.246 3.520 3.777 4.018
2 0.467 0.843 1.160 1.437 1.686 1.911 2.120 2.314 2.496 2.668
3 0.335 0.616 0.861 1.078 1.275 1.456 1.623 1.780 1.928 2.068
4 0.262 0.488 0.688 0.870 1.035 1.188 1.331 1.465 1.592 1.712
5 0.216 0.406 0.577 0.732 0.875 1.009 1.134 1.253 1.364 1.470
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3 Best linear unbiased estimation

Let R0(k), R1(k), ..., Rn(k) be the first (n + 1) k-record values from a half-normal distribution with
the location and scale parameters µ and σ, respectively. Then, we have

E
(
Rn(k)

)
= µ+ σ αn(k),

V ar
(
Rn(k)

)
= σ2 βn,n(k),

Cov
(
Rm(k), Rn(k)

)
= σ2 βm,n(k).

Suppose Rn(k) = [R0(k), ..., Rn(k)]
′ denote the vector of k-record values. Then,

E(Rn(k)) = µ1+ σα,

where α =
(
α0(k), α1(k), ..., αn(k)

)′
and 1 is a column vector of (n+1) ones. The variance-covariance

matrix of Rn(k) is given by V
(
Rn(k)

)
= Bσ2, where

B =
[
βi,j(k)

]
=


β00(k) β01(k) ... β0n(k)
β10(k) β11(k) ... β1n(k)

...
... ...

...
βn0(k) βn1(k) ... βnn(k)


Following the generalized least-squares approach, the BLUEs of µ and σ, denoted by µ̂B and

σ̂B, are given, respectively, by (see, [3], pp. 80-81)

µ̂B =

{
α′ B−1 α 1′ B−1 −α′ B−1 1 α′ B−1

(α′ B−1 α′) (1′ B−1 1)− (α′ B−1 1)2

}
Rn(k)

= α′∆′Rn(k)

=

n∑
i=0

ciRi(k),

and

σ̂B =

{
1′ B−1 1 α′ B−1 − 1′ B−1 α 1′ B−1

(α′ B−1 α′) (1′ B−1 1)− (α′ B−1 1)2

}
Rn(k)

= 1′∆Rn(k)

=

n∑
i=0

diRi(k),

Where ∆ is given by

∆ =

{
B−1 (1 α′ −α 1′)B−1

(α′ B−1 α) (1′ B−1 1)− (α′ B−1 1)2

}
.



Dastbaravarde, A., Zakerzadeh, H., Manouchehri, F. 91

Furthermore, the variances and covariance of the above estimators are given by (see, [3], pp. 80-81)

V ar (µ̂B) = σ2
{

α′ B−1 α

(α′ B−1 α′) (1′ B−1 1)− (α′ B−1 1)2

}
,

V ar (σ̂B) = σ2
{

1′ B−1

(α′ B−1 α′) (1′ B−1 1)− (α′ B−1 1)2

}
,

and

Cov (µ̂B, σ̂B) = σ2
{

−α′ B−1 1

(α′ B−1 α′) (1′ B−1 1)− (α′ B−1 1)2

}
.

By using of the values of means, variances and covariances presented in Tables 1 and Table 1, we
can compute the coefficients ai and bi, i = 0, 1, ..., n of BLUEs of µ and σ for n = 1, ..., 9; k = 1, ..., 5;
The coefficients of BLUEs of µ and σ are presented in Table 3 and Table 4, respectively. From
Table 3 and Table 4 , we see that as n increases the variances of µ̂B and σ̂B decreases.

4 Conclusion

In this paper, we discussed the k-record values arising from half-normal distribution. We provided
the best linear unbiased estimators for the location and scale parameters of half-normal distiribution
based on k-record values.
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Table 2: The variances and covariances of the upper k-record values from HN(0, 1).

m
k n 0 1 2 3 4 5 6 7 8 9
1 0 0.363

1 0.291 0.471
2 0.247 0.397 0.510
3 0.215 0.348 0.448 0.526
4 0.195 0.311 0.398 0.470 0.534
5 0.176 0.287 0.366 0.429 0.490 0.535
6 0.165 0.265 0.342 0.401 0.450 0.493 0.536
7 0.153 0.250 0.314 0.376 0.421 0.458 0.490 0.536
8 0.144 0.233 0.300 0.350 0.398 0.437 0.469 0.500 0.535
9 0.136 0.222 0.282 0.334 0.375 0.410 0.445 0.478 0.503 0.534

2 0 0.145
1 0.122 0.207
2 0.106 0.179 0.236
3 0.094 0.161 0.210 0.251
4 0.086 0.146 0.190 0.229 0.260
5 0.079 0.133 0.175 0.210 0.239 0.265
6 0.073 0.124 0.164 0.192 0.221 0.246 0.267
7 0.070 0.117 0.153 0.185 0.207 0.233 0.252 0.269
8 0.066 0.110 0.145 0.174 0.193 0.216 0.233 0.253 0.270
9 0.062 0.103 0.136 0.164 0.189 0.207 0.224 0.243 0.253 0.271

3 0 0.080
1 0.070 0.122
2 0.062 0.108 0.144
3 0.056 0.098 0.130 0.158
4 0.052 0.090 0.120 0.144 0.166
5 0.047 0.083 0.111 0.134 0.155 0.171
6 0.044 0.076 0.105 0.125 0.145 0.160 0.175
7 0.042 0.073 0.097 0.118 0.135 0.151 0.165 0.177
8 0.040 0.070 0.092 0.111 0.127 0.144 0.154 0.168 0.179
9 0.038 0.066 0.087 0.106 0.122 0.135 0.148 0.161 0.170 0.179

4 0 0.052
1 0.046 0.082
2 0.042 0.074 0.099
3 0.038 0.067 0.091 0.111
4 0.035 0.062 0.084 0.102 0.119
5 0.033 0.058 0.078 0.096 0.111 0.124
6 0.030 0.054 0.073 0.090 0.105 0.117 0.127
7 0.029 0.051 0.070 0.84 0.098 0.110 0.119 0.130
8 0.027 0.049 0.065 0.080 0.094 0.104 0.116 0.123 0.132
9 0.026 0.046 0.063 0.076 0.088 0.099 0.109 0.116 0.124 0.133

5 0 0.037
1 0.033 0.059
2 0.030 0.054 0.074
3 0.027 0.049 0.068 0.084
4 0.026 0.046 0.063 0.078 0.090
5 0.024 0.043 0.059 0.073 .085 .095
6 0.023 0.041 0.055 0.068 0.080 0.089 0.098
7 0.021 0.039 0.053 0.065 0.075 0.085 0.093 0.101
8 0.020 0.037 0.049 0.061 0.073 0.080 0.088 0.097 0.103
9 0.019 0.035 0.048 0.060 0.068 0.077 0.083 0.091 0.098 0.105
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Table 3: Coefficients of k-record values for µ̂B .

ci
k n 0 1 2 3 4 5 6 7 8 9
1 1 2.352 −1.352

2 1.674 0.170 −0.843
3 1.445 0.122 0.091 −0.658
4 1.313 0.115 0.060 0.106 −0.594
5 1.247 0.067 0.088 0.098 −0.001 −0.499
6 1.178 0.092 0.049 0.093 0.028 0.055 −0.495
7 1.136 0.084 0.045 0.080 0.050 0.026 0.055 −0.477
8 1.091 0.094 0.051 0.078 −0.006 0.069 0.054 0.039 −0.469
9 1.072 0.067 0.064 0.063 0.022 0.056 0.043 −0.015 0.111 −0.484

2 1 2.244 −1.244
2 1.622 0.113 −0.735
3 1.424 0.042 0.115 −0.580
4 1.310 0.046 0.068 0.061 −0.485
5 1.241 0.049 0.053 0.044 0.027 −0.415
6 1.192 0.024 0.086 0.007 0.030 0.089 −0.429
7 1.157 0.026 0.059 0.039 −0.019 0.131 −0.022 −0.372
8 1.123 0.024 0.061 0.037 −0.008 0.097 0.043 −0.046 −0.330
9 1.097 0.028 0.059 0.038 −0.009 0.102 −0.023 0.034 0.007 −0.331

3 1 2.193 −1.193
2 1.604 0.073 −0.677
3 1.402 0.056 0.049 −0.507
4 1.299 0.035 0.069 0.011 −0.414
5 1.232 0.035 0.052 0.014 0.056 −0.389
6 1.188 0.033 0.029 0.042 0.030 0.024 −0.346
7 1.154 0.022 0.037 0.043 0.023 −0.022 0.118 −0.375
8 1.130 0.024 0.032 0.021 0.026 0.036 0.037 −0.009 −0.298
9 1.111 0.018 0.027 0.038 0.013 0.032 0.019 0.030 −0.005 −0.283

4 1 2.159 −1.159
2 1.590 0.054 −0.644
3 1.390 0.045 0.045 −0.481
4 1.291 0.029 0.044 0.040 −0.403
5 1.230 0.012 0.047 0.036 0.038 −0.364
6 1.186 0.024 0.024 0.054 0.024 −0.027 −0.285
7 1.155 0.024 0.023 0.047 −0.004 0.034 −0.009 −0.270
8 1.133 0.005 0.044 0.015 0.032 −0.016 0.045 0.043 −0.302
9 1.114 0.009 0.025 0.036 0.027 −0.005 0.021 0.047 −0.039 −0.234

5 1 2.133 −1.133
2 1.559 0.079 −0.637
3 1.375 0.072 −0.011 −0.436
4 1.272 0.054 0.013 0.047 −0.386
5 1.218 0.054 −0.020 0.058 0.012 −0.324
6 1.176 0.037 −0.006 0.065 −0.007 0.046 −0.311
7 1.145 0.044 −0.014 0.048 −0.001 0.045 0.017 −0.283
8 1.124 0.039 −0.012 0.046 0.013 0.008 0.030 −0.007 −0.241
9 1.102 0.039 −0.018 0.063 −0.006 0.018 −0.015 0.055 0.031 −0.270
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Table 4: Coefficients of k-record values for σ̂B .

di
k n 0 1 2 3 4 5 6 7 8 9
1 1 −1.693 1.693

2 −0.880 −0.130 1.010
3 −0.622 −0.076 −0.048 0.745
4 −0.482 −0.068 −0.016 −0.063 0.628
5 −0.414 −0.019 −0.044 −0.054 0.016 0.515
6 −0.348 −0.042 −0.007 −0.049 −0.011 −0.013 0.471
7 −0.310 −0.036 −0.004 −0.038 −0.031 0.014 −0.023 0.429
8 −0.270 −0.044 −0.009 −0.036 0.018 −0.024 −0.022 −0.026 0.414
9 −0.254 −0.022 −0.020 −0.024 −0.005 −0.013 −0.013 0.019 −0.071 0.404

2 1 −2.663 2.663
2 −1.357 −0.187 1.544
3 −0.961 −0.046 −0.147 1.154
4 −0.743 −0.054 −0.057 −0.078 0.932
5 −0.614 −0.059 −0.029 −0.048 −0.020 0.771
6 −0.534 −0.019 −0.083 0.014 −0.025 −0.061 0.708
7 −0.476 −0.022 −0.038 −0.040 0.058 −0.131 0.028 0.620
8 −0.420 −0.019 −0.041 −0.037 0.041 −0.076 −0.075 0.095 0.532
9 −0.379 −0.024 −0.038 −0.038 0.042 −0.084 0.028 −0.029 0.006 0.518

3 1 −3.562 3.562
2 −1.827 −0.165 1.991
3 −1.255 −0.117 −0.065 1.437
4 −0.971 −0.059 −0.119 0.003 1.146
5 −0.796 −0.058 −0.076 −0.005 −0.071 1.006
6 −0.683 −0.054 −0.016 −0.077 −0.005 −0.056 0.892
7 −0.602 −0.028 −0.035 −0.080 0.013 0.052 −0.213 0.892
8 −0.548 −0.032 −0.024 −0.030 0.006 −0.080 −0.028 0.059 0.678
9 −0.504 −0.017 −0.013 −0.069 0.036 −0.070 0.014 −0.033 −0.011 0.665

4 1 −4.417 4.417
2 −2.266 −0.168 2.435
3 −1.534 −0.137 −0.088 1.759
4 −1.192 −0.079 −0.082 −0.043 1.397
5 −0.983 −0.021 −0.095 −0.030 −0.122 1.250
6 −0.830 −0.063 −0.013 −0.093 −0.074 0.089 0.983
7 −0.729 −0.063 −0.010 −0.069 0.018 −0.112 0.073 0.891
8 −0.665 −0.008 −0.072 0.023 −0.085 0.031 −0.084 −0.017 0.877
9 −0.606 −0.020 −0.011 −0.041 −0.071 −0.001 −0.007 −0.031 0.052 0.735

5 1 −5.257 5.257
2 −2.662 −0.218 2.880
3 −1.813 −0.187 −0.011 2.012
4 −1.373 −0.108 −0.115 −0.061 1.657
5 −1.145 −0.111 0.025 −0.109 −0.034 1.375
6 −0.973 −0.039 −0.030 −0.137 0.045 −0.137 1.271
7 −0.847 −0.069 0.002 −0.067 0.019 −0.131 −0.045 1.137
8 −0.768 −0.049 −0.008 −0.060 −0.033 0.010 −0.097 0.079 0.927
9 −0.690 −0.050 0.015 −0.121 0.032 −0.025 0.062 −0.141 −0.029 0.946
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The study of reliability or hazard functions is one of the major topics of interest in
biomedical studies and reliability engineering. Many parametric models have received
considerable attention in this regard, mainly for reasons of straightforward implementation
and ease of analysis. The model misspecification problem of parametric methods motivated
many researchers to develop nonparametric approaches in recent years, which demand fewer
restrictive assumptions for modeling lifetime data. Although some nonparametric approaches,
such as Kaplan-Meier and kernel-based methods, are popular tools for solving function
estimation problems, they suffer from some non-trivial issues like restrictions, difficulties with
bandwidth or tuning parameter selection. In contrast, one can avoid these issues at the cost of
enforcing some qualitative shape constraints. The current study compares the performance of a
nonparametric shape-constrained approach with some well-known parametric ones. Empirical
studies using simulated and real data sets indicate that the nonparametric shape-constrained
method outperforms the parametric counterparts in the case of exact data.

Keywords: Lifetime analysis, Nonparametric shape-constrained approach, Failure rate
function, Exact data.
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1 Introduction

The primary concern in the analysis of lifetime and reliability data is to estimate the distribution of
the event times of interest. Many statistical approaches study the direct estimation of the density
or the reliability function. However, assessing the risk of an item or subject at certain time, which
is called the hazard rate or failure rate function, has received considerable attention in recent
years. Fully parametric models with monotone hazard rate, in particular exponential, Weibull, and
Gompertz distributions, are commonly used to model lifetimes. For review of such distributions,
see, e.g., [6].

In many reliability engineering applications, the lifetime distribution of many mechanical and
electrical components has non-monotone hazard rate functions such as bathtub or U-shaped. A
bathtub-shaped failure rate function starts at optimum burn-in time at the beginning of a product
cycle and then remarkably decreases in the early stage toward an approximately constant hazard
rate during the useful life stage. Afterwards, the failure rate starts to increase with the onset of
wear-out.

The earliest parametric approach for modeling bathtub-shaped failure rates can be traced
back to Smith and Bain who proposed a new probability distribution function, known as the
exponential power, to fit real life data with bathtub-shaped failure rates. A comprehensive review
of such distributions that accommodate some of the forms of the risk function were studied in [8].
Recently, a new five-parameter distribution, called the beta modified Weibull (BMW) distribution,
was introduced by [9], which includes several important submodels, such as the exponentiated
Weibull (EW) distribution, the exponentiated exponential (EE) distribution, the modified Weibull
(MW) distribution, the beta Weibull (BW) distribution and the generalized modified Weibull
(GMW), among several others. Although the advantages of parametric models include the ease in
their computation, interpretation and prediction, the main limitation of parametric methods is the
necessity of the strict model assumptions. In order to avoid the essential assumptions with these
methods, one could employ nonparametric approaches to estimate a failure rate function.

In practice, some prior knowledge may often be available regarding the shape of the underlying
failure rate function; therefore, it may be reasonable to make use of this information in estimation.
In such situations, this former knowledge can be turned into restrictions on the shape of the true
underlying function. Therefore, shape-constrained nonparametric failure rate function estimator
create a balance between limited flexible and high restrictive parametric estimators and extremely
flexible unconstrained nonparametric estimators. Thus, the non-trivial issues of parametric and
nonparametric approaches like, respectively, restrictions and smoothing parameter selection can
be eliminated at the price of imposing some qualitative shape constraints on the true failure rate
function.

Despite the high incidence of uncensored lifetime data in reliability engineering, literature on
nonparametric estimation of a failure rate function under shape constraints is relatively sparse.
The nonparametric maximum likelihood estimator (NPMLE) and the least squares estimator of a
convex hazard function was studied by [5]. The maximum likelihood estimator (MLE) of a convex
hazard function was proved to be piecewise linear function with three segments as shown in [5].

Due to lack of manageable closed-form analytical solution for the NPMLE of a bathtub-shaped
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failure rate function, one has to use iterative algorithm. An iterative two-step optimization method
was proposed by [4]. More recenetly, [10] developed a fast and simple computational algorithm for
computing a failure rate function subject to shape constraints that can be adjusted to accommodate
for the case of exact data. This research assess and compare the performance of the nonaparametric
shape-constrained approach to some well-known parametric ones on some simulated and real data
sets.

The remainder of the paper is structured as follows. In Section 2, we lay out a framework for
nonparametric failure rate function estimation through imposing bathtub-shaped restriction in the
case of exact observations . Parametric and the shape-constrained nonparametric estimators of a
U-shaped failure rate function are compared via a simulation study that is reported in Section 3,
and a real-world application that is studied in Section 4.

2 Nonparametric MLE

Let T denote a non-negative continuous random variable with density f(t) representing the time
until some specified event occurs. The failure rate function of T is given by

h(t) =
f(t)

R(t)
=

f(t)

exp {−H(t)}

where R(t) = 1 − F (t) is the reliability function and H(t) denotes the cumulative hazard rate
function. Therefore,

f(t) = h(t) exp {−H(t)} = h(t) exp

{
−
∫ t

0
h(u) du

}
.

The main objective of this research is to regulate and compare the nonparametric shape-constrained
estimator proposed by [10] with the other existing parametric ones for the case of uncensored
observations.

In our general framework, the observed data for each item under study is uncensored (exact).
By uncensoring, we mean that the event time of interest is being observed exactly on all items
under study. Consider an independent and identically distributed (i.i.d.) random sample of items
or subjects T1, · · · , Tn from a homogeneous population with a continuous distribution F and density
f . Hence, the likelihood function in the case with exact observations can be written as

L(h) =
n∏
i=1

h(Ti) exp {−H(Ti)} . (2.1)

As suggested by [2] in the case when all the observations are uncensored, ℓ(h) can be made
arbitrarily large by increasing the value of h at the largest observed value T(n). Therefore, one
can simply maximize the following modified log-likelihood function

ℓ̃(h) =

n∑
i=1

Ti ̸=T(n)

log h(Ti)−
n∑
i=1

H(Ti), (2.2)
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where T(n) = max {T1, · · · , Tn}. In the end, the full NPMLE of a U-shaped hazard function is

obtained by additionally setting ĥ(T(n)) = ∞. [5] showed that the NPMLE of a bathtub-shaped
failure rate function is piecewise linear. It can hence be expressed as a piecewise linear function
with three parts as follows,

h(t) = α+
k∑
j=1

νj(τj − t)+ +
m∑
j=1

µj(t− ηj)+, (2.3)

where, for example,

(τj − t)+ =

{
(τj − t), if t < τj ,
0, if t ≥ τj .

Note that ν = (ν1, . . . , νk)
⊤ and µ = (µ1, · · · , µm)⊤ are the vector of non-negative masses changes

at τ = (τ1, · · · , τk)⊤ and η = (η1, · · · , ηm)⊤ for the decreasing and increasing segments [0, τk) and
[η1, T(n)), respectively.

This problem has no closed-form solution, and hence iterative methods must be used. [10]
proposed a new algorithm for computing a bathtub-shaped failure rate function that can be
adjusted to accommodate for the case of exact observations. The main idea of their solution
is to always maintain a constant hazard segment, even if its length is zero. Particularly, they
consider two situations, namely positive and zero length constant part, which are computationally
interchangeable during the computation of the algorithm. By applying this new idea, they reduce
the inevitable double looping method to a single loop and hence save a remarkable computation
cost.

3 Simulation studies

A simulation study is carried out to compare the performance of nonparametric bathtub-shaped
hazard (CNMBH) estimator with that of the parametric BMW, MW, EW, GMW, and BW models
in this section. To generate random samples from a bathtub-shaped failure rate function in the
simulation study, we applied the bathtub (BT) distribution, which was introduced by [3]. The
BT distribution has density function f(t) = 1+2β

2α
√
β2+(1+2β)t/α

for 0 ≤ t ≤ α. It is worth pointing

out that the BT distribution has bathtub-shaped failure rate function for −1/3<β<1. In our
implementation, we choose β = 0.3 and α = 100 to simulate a dataset similar to real human
mortality data.

Now, we first present a brief review of parametric methods which is used for this simulation
study. Let G be the cumulative distribution function (cdf) of a random variable. Hence, a
generalized class of distributions which known as the BMW distribution is as follows:

F (x) = IG(x)(a, b) =
1

B(a, b)

∫ G(x)

0
wa−1(1− w)b−1 dw, a > 0, b > 0, (3.1)

where Iy(a, b) = By(a, b)/B(a, b) is the incomplete beta function ratio and By(a, b) =
∫ y
0 w

a−1(1−
w)b−1 denotes the incomplete beta function GI2010. The corresponding density of (3.1) can be
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expressed as f(x) = 1
B(a,b)G(x)

a−1[1−G(x)]b−1g(x) where g(x) = dG(x)/dx is the density of the

baseline distribution. By replacing the probability density function (pdf) and the cdf of the three
parameters MW distribution that was proposed by [7], the general form of the BMW cdf and pdf
can be obtained.

Several well-known distributions can be considered as special cases of the BMW distribution,
e.g., it reduces to the MW distribution when a = 1 and b = 1, it becomes the EW distribution if
b = 1 and λ = 0, it simplifies to the case of the GMW distribution when b = 1, and it reduces to
the BW distribution for λ = 0.

In order to assess the performance of a density estimator, two loss functions, namely, the
integrated squared error (ISE) and the Hellinger distance HD are used, which are given by,
respectively,

ISE(f, f̂ ) =

∫
R

{
f(x)− f̂(x)

}2
dx, and HD(f, f̂ ) =

∫
R

{
f(x)

1
2 − f̂(x)

1
2

}2
dx,

where f̂ is an estimator of the true density f . The expectation of a loss function with regard to the
true density f is then applied to evaluate the performance of an estimator. For each entry in the
Table 1, we compute the ISE and HD values respectively for each combination of estimator and
replication. The mean integrated squared error (MISE) and mean Hellinger distance (MHD) are
eventually estimated by the average of these ISE and HD values.

For the BT distribution, the results of the simulation study based on 100 replications with
sample sizes 200, 500, and 1000 are summarized in Table 1. Each entry in the table is one of the
empirical MISE and MHD values with their corresponding standard errors in parentheses. Also,
the best expected loss value among density estimators for a given density is highlighted in boldface.

It can be seen from the results that the performance of the CNMBH estimator dominates
the other parametric ones. Broadly speaking, the nonparametric shape-constrained estimator
is superior to its parametric density estimators’ competitors in terms of the MISE and MHD.
Furthermore, one could also notice that the difference between nonparametric shape-constrained
estimator and the parametric estimators is more tangible in terms of both loss functions as the
sample size increases.

4 Real data example

A real data set named “Aarset Data” is now considered in our numerical study. The data in
Table 2 given by [1] contains of lifetimes of 50 devices (in weeks) and the superscripts represent the
frequency of duplicate values. In many reliability applications, an appealing graphical technique
called total time on test (TTT) transform is used to identify the failure rate shape appropriate to
a given data. It has been proved that the failure rate function has a bathtub-shaped if the scaled-
TTT curve changes once from convex to concave in (0, 1); see e.g., [1]. The scaled TTT-transform
plot indicates a U-shaped hazard rate in Figure 1 (a).

In the empirical studies based on real-world data, we do not have the knowledge of the true
underlying density function, and thus we can not exactly utilize the loss functions given in Section 3.
As a substitute, we replace the true density f with the empirical probability mass function f̂n based
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Table 1: Simulation results for the BT distribution in terms of the MISE
and MHD.

Estimator
Density

BT(0.2, 100)

n = 200

MISE MHD

CNMBH 0.0007 (0.0001) 0.0145 (0.0008)
BMW 0.0011 (0.0001) 0.0195 (0.0005)
MW 0.0009 (0) 0.0189 (0.0004)
EW 0.0008 (0) 0.0275 (0.0005)
GMW 0.0010 (0.0001) 0.0190 (0.0004)
BW 0.0008 (0) 0.0222 (0.0007)

n = 500

CNMBH 0.0003 (0) 0.0061 (0.0003)
BMW 0.0014 (0.0002) 0.0191 (0.0005)
MW 0.0008 (0) 0.0173 (0.0002)
EW 0.0007 (0) 0.0267 (0.0002)
GMW 0.0009 (0) 0.0173 (0.0002)
BW 0.0007 (0) 0.0210 (0.0006)

n = 1000

CNMBH 0.0002 (0) 0.0034 (0.0001)
MBW 0.0012 (0.0002) 0.0187 (0.0004)
MW 0.0007 (0) 0.0167 (0.0001)
EW 0.0007 (0) 0.0260 (0.0002)
GMW 0.0008 (0) 0.0166 (0.0001)
BW 0.0006 (0) 0.0200 (0.0005)

Table 2: Lifetimes of 50 devices.

0.1 0.2 1(5) 2 3 6 7 11 12 18(5) 21 32 36 40 45

46 47 50 55 60 63(2) 67(4) 72 79 82(2) 83 84(3) 85(5) 86(2)

on a test set of size n. Two loss functions, the ISE and the Kullback-Leibler (KL) divergence, are
computed for the case of uncensored data as below, respectively,

ISE(f̂n, f̂ ) =

∫
R

{
f̂(x)

}2
dx− 2

n

n∑
i=1

f̂(xi), and KL(f̂n, f̂ ) = − 1

n

n∑
i=1

log
{
f̂(xi)

}
.
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where f̂n denotes the empirical mass function from a test set of size n and f̂ the density estimate is
obtained from a training set. In addition, additive constants are excluded from the above formulas.
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Figure 1: For Aarst data: (a) Scaled TTT-transform; (b) Histogram and
fitted nonparametric and parametric pdfs; (c) Empirical and fitted survival
functions; (d) Fitted nonparametric and parametric hazard rate functions.

To assess the performance, we ran 2-fold cross-validation, with results produced by averaging
over 20 replications. Table 3 provides a brief summary of the estimation results for our
proposed nonparametric approach and the parametric ones. In addition, our shape-constrained
nonparametric and parametric density, survival and hazard rate estimates are displayed in Figure 1.
Overall, the CNMBH estimator provides the best fit to this data set by having the smallest values
in terms of both criteria: MISE and MKL. The results reveal that the shape-constrained estimator
is more accurate and outperforms the parametric ones for estimation of the failure rate function in
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Table 3: Cross-validation results for the nonparametric density estimator
and five different parametric estimators for the Aarset data in terms of the
MISE and MKL.

Method MKL MISE

CNMBH 4.2661 (0.0812) -0.0176 (0.0059)
MBW 4.565 (0.0451) −0.0031 (0.0071)
BW 4.6397 (0.0142) −0.0114 (0.0004)
GMW 4.5307 (0.035) −0.069 (0.0022)
MW 4.5753 (0.0379) −0.0089 (0.0020)
EW 4.8052 (0.0657) −0.0102 (0.0027)

the case of exact observations.
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[3] Haupt, E. and H. Schäbe (1997). The TTT transformation and a new bathtub distribution
model. Journal of Statistical Planning and Inference 60 (2), 229–240.

[4] Jankowski, H. K. and J. A. Wellner (2009a). Computation of nonparametric convex hazard
estimators via profile methods. Journal of Nonparametric Statistics 21 (4), 505–518.

[5] Jankowski, H. K. and J. A. Wellner (2009b). Nonparametric estimation of a convex bathtub-
shaped hazard function. Bernoulli 15 (4), 1010–1035.

[6] Kalbfleisch, J. D. and R. L. Prentice (2002). The statistical analysis of failure time data (2nd
ed.). John Wiley, New York.

[7] Lai, C. D., M. Xie, and D. N. P. Murthy (2003). A modified Weibull distribution. IEEE
Transactions on Reliability 52, 33–37.

[8] Pham, H. and C. D. Lai (2007). On recent generalizations of the Weibull distribution. IEEE
Transactions on Reliability 56, 454–458.

[9] Silva, G. O., E. M. Ortega, and G. M. Cordeiro (2010). The beta modified Weibull distribution.
Lifetime Data Analysis 16, 409–430.



Fani, S., Ghoreyshi, A. S. 103

[10] Wang, Y. and S. Fani (2017). Nonparametric maximum likelihood computation of a U-shaped
hazard function. Statistics and Computing .



Bayesian nonparametric goodness of fit test for survival data
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Abstract

The paper revisits two-sample hypothesis testing problems. We consider the problem in a
fully Bayesian nonparametric framework. Our results are expected to be useful in life testing
and survival analysis where classical methods are not quite suitable. Our purpose is to compare
two different Bayesian nonparametric methods, Dirichlet process and Pólya tree prior for these
problems. Infact, for given two sets of samples X and Y, with unknown cumulative distribution
F1 and F2, we show that when one of the two samples of life time data had heavier tail, then
the Pólya tree prior are better than Dirichlet process prior.

Keywords: Life testing, Bayesian nonparametric, Dirichlet process, Pólya tree.

1 Introduction

One of the important area of research, that has recently received considerable attention, is two-
sample Bayesian nonparametric hypothesis testing with various aplicability. For example, consider
X = (X1, ..., Xm1) and Y = (Y1, ..., Ym2) be two samples from F1 and F2 respectively, where F1

and F2 being unknown continuous cumulative distribution function. The problem is to evaluate
the evidence for testing hypothesis:

H0 : F1 ≡ F2 versuse H1 : F1 ̸= F2. (1.1)

1forough.fazeli@math.iut.ac.ir
2z saberi@cc.iut.ac.ir
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Such tests are encountered in various disciplines, for example they can useful in life testing and
survival analysis.

Bayesian nonparametric is a fast developing area in statistics but there has been little written on
two-sample Bayesian nonparametric hypothesis testing. For two-sample nonparametric hypothesis
test, we can point to the following works. Ma and Wong [8] propose the Coupling Optional Pólya
tree prior and used it in two-sample problems. Huang and Ghosh [5] used lehman alternative and
Pólya tree prior for lifetime testing. Two of the newest work has been done as follows: Al Labadi et
al. [1] proposed a way that is based on the Kolmogorov distance and approximate samples from the
Dirichlet process. As for the second way, Holmes et al. [6] used a Pólya tree prior centered on some
distribution G and calculated Bayes factor. In practice, we would like to know which one is better
in two-sample problems. In this article, our purpose is to compare the power of these two methods.
The outline of the remaining sections is as follows. The definition and basic properties of Dirichlet
process and Polya tree priors are reviewed in Section 2. Section 3 deals with the introduction of
two Bayesian nonparametric methods for two-sapmple problems that have been recently presented.
In section 4, we empirically compare the power of these two methods with each other. We illustrate
the importance of these Bayesian nonparametric hypothesis testing by means of ovarian cancer
data sets in section 5.

2 Prior distribution in Bayesian nonparametric

Putting an appropriate prior on spaces of probability measure with easy and simple calculations,
is the most important issue in Bayesian nonparametric problems. Two of these priors that will be
used in this article, are Dirichlet process and Pólya tree prior. In this section, Dirichlet process
prior and Pólya tree prior are presented for two sample Bayesian nonparametric testing.

2.1 Dirichlet Process priors

Dirichlet process is the most popular prior in Bayesian nonparametric problems with wide
applications that introduced by Ferguson [3]. let X be a space and A a σ − field of a subsets
of X . suppose P0 be a fixed probability measure on (X ,A) and α be apositive number. A
random probability P is said to be a Dirichlet process on (X ,A) with parameter P0 and α, if
for any finite measurable partion (A1, ..., Ak) of X , the random vector (P(A1),...,P(Ak)) has a
Dirichlet distribution with parameter (αP0(A1),...,αP0(Ak)), where K ≥ 2. We say P has a
Dirichlet process distribution with base distribution P0 and concentrate parameter α, and write
P ∼ DP (α,P0). If X1, ..., Xm is a sample from P such that P ∼ DP (α,P0), then the posterior
distribution of P given X1, ..., Xm is also a Dirichlet process on (X ,A) with parameter α′ = α+m

and P′
0 = α

α+mP0 +
m

α+m

∑m
i=1 δXi
m , where δX denotes the measure giving mass one to the point X.

with the increase in α, the posterior base distribution P′
0 gets close to the prior base measure P0.

An alternative definition of Dirichlet process is as follows [3]. For 1 ≤ i ≤ n + 1, consider νi be a
sequence of independent and identically distributed (i.i.d.) random variables from an exponential
distribution with rate 1 and ηi =

∑i
j=1 νj . Also, for 1 ≤ i ≤ n + 1, suppose that γii.i.d.P0 such

that γi’s are independent of ηi for each i. Ferguson [3], showed that the Dirichlet process with
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parameter α and P0 can be expressed as a normalized series representation

P(.) =

∞∑
i=1

N−1(ηi)∑∞
i=1N

−1(ηi)
δγi(.), (2.1)

where,

N(x) = α

∫ ∞

x
e−tt−1 dt, for x > 0. (2.2)

Working with (2.1) is difficult in practice because no closed form for the inverse of (2.2) exists.
One way to approximate (2.2) is as follows [9].

Consider Xn be a random variable with distribution Gamma(αn , 1). Define

Gn(x) = Pr(Xn > x) =

∫ ∞

x

1

Γ(αn )
e−tt

α
n
−1 dt. (2.3)

and
G−1
n = inf{x : Gn(x) ≥ y}, 0 < y < 1. (2.4)

Consider γi and ηi for each 1 ≤ i ≤ n+ 1 as before, then,

Pn =

n∑
i=1

G−1
n (ηi)∑n

i=1G
−1
n (ηi)

δγi , (2.5)

converges almost surely to P as n → ∞. One way to generate a sample from (A.2) is given in Al
labadi et al. [1]. Because of (2.1) Dirichlet process is a disceret measure with probability 1 [3].

2.2 Pólya Tree priors

Pólya trees form a class of distributions for a random probability measure P intermediate between
Dirichlrt process and tail-free processes [3]. Pólya tree can be constructed to give probability 1 to
the set of continuous praobability measures. Thus they are much more flexible than the Dirichlet
process. This prior is defined as follows.

Let E = {0, 1}, E0 = ϕ, let Em be the m-fold product E×E× ...×E and E∗ =
∪∞
m=0E

m. Let
X be a separable measurable space, let π0 = {X} and let Π = {πm : m = 0, 1, ...} be a separating
binary tree of partions of X ; that is, let π0, π1, ... be sequence of partions such that

∪∞
m=0E

m

generates the measurable sets. Let Bϕ = X and for all ϵm = ϵ1...ϵm ∈ E∗, let Bϵm0 and Bϵm1 be
the two pieces into which Bϵm is split. From Lavine [7], a random probability measure P on X is
said to have a Pólya tree distribution with parameter (Π,A), written P ∼ PT (Π,A), if there exist
nonnegative numbers A = {αϵm : ϵm ∈ E∗} and random variables Y = {βϵm : ϵm ∈ E∗} such
that the following hold:

1)All the random variables in Y are independent,
2)For every ϵm ∈ E∗, βϵm has a Beta distribution with parameters αϵ0 and αϵ1,
3)For every m=1,2,... and every ϵm ∈ E∗,

P(Bϵm) = (
m∏

j=1;ϵj=0

βϵj−1
)(

m∏
j=1;ϵj=1

(1− βϵj−1
)), (2.6)
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Lavine [7] presented a canonical construction of a Pólya tree. This construction is based on
some chosen distribution G so that E(P) = G. In this case we can choose A and Π such that
αϵm0 = αϵm1 = cm for every m=0,1,... and

Bϵm = (G−1(
k

2m
),G−1(

k + 1

2m
)], k = 0, ..., 2m − 1. (2.7)

For cm = m2, P is absolutely continuous with probability one [4]. If X = (X1, ..., Xn) is a sample
from P such that P ∼ PT (Π,A), then the posterior distribution of P given X is Pólya tree with
parameter Π and A∗ such that,

A∗ = {α∗
ϵm

: ϵm ∈ E∗} and α∗
ϵm

= αϵm + nϵm , (2.8)

where nϵm denotes the number of observations in X that lie in the partition Bϵm .

3 Two procedures for two-sample Bayesian nonparametric
hypothesis testing

3.1 Two-sample Bayesian nonparametric hypothesis by using Dirichlet process
prior

Let P∗
n1,m1 and Q∗

n2,m2 are approximations of the posterior distribution of the Dirichlet process
given the first and second sample that calculated by (A.2). Also let d:=d(P∗

n1,m1,Q
∗
n2,m2) be the

kolmogrov distance between P∗
n1,m1 and Q∗

n2,m2 [1]. This method is defined as follows:

Theorem 3.1. Dirichlet process test (DP test)
1) Set P0 as Normal(0,1) and α=1 in Dirichlet process.
2) Generate a random sample from P∗

n1,m1 and Q∗
n2,m2 by (A.2).

3) Compute kolmogorov distance d(P∗
n1,m1,Q

∗
n2,m2).

4) Repead steps (1)− (3) for r times.
5) Repead steps (1)− (4) to calculate the distance d0 between prior distributions of the Dirichlet

process, where α for the first and second sample are 1 + m1 and 1 + m2 respectively. Use 0.975
quantile of d0 as a critical value.

6) If the mean of d is greater than d0, we reject the null hypothesis in (1.1).

3.2 Two-sample Bayesian nonparametric hypothesis by using Pólya tree prior

In this method, we assume that under H0, (X,Y) ∼ PT (Π,A) and under H1, X and Y
independently draws from P ∼ PT (Π,A). Holmes et al. [6] calculated Bayes Factor base on
the marginal distribution under the two hypothesis. This Bayes factor is as follows:

BF =
Pr((X,Y)|Π,H0)

Pr(X,Y|Π,H0)
, (3.1)

where the marginal distribution in fraction (3.1) is computed in Holmes et al. [6].
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Theorem 3.2. Pólya tree test (PT test)

1) Set G as Normal(0,1) in costruction of pólya tree.

2) Compute log of BF in (3.1) as LBF.

3) Calculate Pr(H0|(X,Y)) =
1

1 + e−LBF
.

4) If Pr(H0|(X,Y)) < 0.5, we reject H0.

4 Power comparison

In this section, we present some simulation studies to compare the performance of two procedure
that describe in the previous section. We consider the following experiments designed to explore
various canonical depratures from the null such as mean and variance shift and tails:

Case 1: X ∼ N(0, 1) and Y ∼ N(1, 1)

Case 2: X ∼ N(0, 1) and Y ∼ N(1, 2)

Case 3: X ∼ N(0, 1) and Y ∼ t0.5
Case 4: logX ∼ N(0, 1) and logY ∼ N(1, 1).

In each of the above cases, we apply DP and PT tests for m = m1 = m2 = 5, 15, 30, 50, 100 in
1000 replications and calculate the percentage of rejecting the null hypothesis as the power of test.
Also, one may be interested to know, what is the advantage of bayesian nonparametric test than
the classical nonparametric test? In order to answer this question, we compare the power of the
Bayesian nonparametric tests with the Kolmogorov-Smirnof (K-S) test. The results of the power
of the hypothesis testing (1.1) for DP, PT and K-S test are presented in Table 1.

Table 1: Power of the DP, PT and K-S test.

Case m DP PT K-S Case m DP PT K-S

Case1 5 0.433 0.135 0.066 Case2 5 0.119 0.09 0.011
15 0.684 0.498 0.480 15 0.128 0.241 0.075
30 0.856 0.806 0.881 30 0.338 0.569 0.211
50 0.974 0.972 0.984 50 0.650 0.858 0.397
100 1 0.999 1 100 0.862 0.997 0.81

Case3 5 0.100 0.095 0.008 Case4 5 0.465 0.124 0.072
15 0.146 0.373 0.07 15 0.696 0.499 0.543
30 0.435 0.758 0.209 30 0.861 0.758 0.878
50 0.711 0.978 0.504 50 0.979 0.947 0.981
100 0.940 1 0.954 100 1 0.997 1

The results of Table 1 show that when the difference between two samples are because of mean
shift, then DP test is more efficient than the others but, if the difference between two samples are
because of shift variances or tails, then PT test is more better than the others. Also, for small
samples sizes (m=5, 15), the Bayesian nonparametric approaches, especially DP test, are more
powerful than classical aproach.
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5 Real aplication

We use the ovarian cancer data set as data example which was collected by Edmunson et al. [2].
The study include n = 26 patients with advanced ovarian carcinoma. Treatment of patients using
either cyclophosphamide alone (treatment1 with m1 = 13), or cyclophosphamide plus adriamycin
(treatment2 withm2 = 13), by i.v. injection every 3 weeks produced improvement in approximately
one third of the patient. The objective of the trial was to see if the two treatments diffrentiate
in prolonging the time of survival. Because the sample size is small, it is better to use Bayesian
nonparametric approaches to answer this problem. Since the measurments are positive, we use
weibull distribution with shape parameter a = 1.8501 and scale parameter b = 674.1266 as P0 and
G in DP and PT prior. Note that, a and b are the maximum likelihood estimation of shape and
scale parameter based on the combined sample. The results of method A and B are presented in
Table 1. Figure 2, shows probability density curve for this data set.The results of DP and PT test
are presented in Table 1.

Table 2: Results of method A and B for ovarian data set

d d0 Pr(H0|(X,Y ))

Method A 0.39 0.50 Method B 0.62

According to the results of Table 1, since d < d0 and Pr(H0|(X,Y )) > 0.5, for this particular
data set, there appears to be no evidence against H0 by using DP and PT test respectively, it means
that we can accept the impact of cyclophosphamide plus adriamycin on treatment of ovarian cancer
is not different with the impact of cyclophosphamide alone.
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Figure 1: Probability density curve of treatment1 and treatment2.
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Optimizing the step stress accelerated life test with two stress
variables under type-I progressive censoring

Hakamipour, N. 1

Department of Mathematics, Buein Zahra Technical University

Abstract

Due to cost and time consideration, it is difficult to observe all of the products lifetime
within a reasonable time period. Hence, censored lifetime data is usually collected in real
applications. Even when accelerated life tests are used, censoring is usually inevitable. The
main purpose of this paper is to consider the optimal design for simple step stress accelerated
life testing with Type-I progressive censoring. Sometimes, one stress variable does not yield
enough failure data. Thus, two stress variables are considered. The lifetime of the items follows
the exponentiated exponential distribution and a cumulative exposure model is considered.
The problem of choosing the optimal times is developed to minimize the asymptotic variance
of the reliability estimate at normal stress condition.

Keywords: Exponentiated exponential distribution, Step stress accelerated life test, Type-
I progressive censoring.

1 Introduction

Accelerated life testing (ALT) is a quick way to obtain information about the life distribution of a
material, component or product. In Accelerated life testing items are subjected to conditions that
are more severe than the normal ones, which yields shorter life but, hopefully, does not change the
failure mechanisms. Some assumptions are needed in order to relate the life at high stress levels to
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life at normal stress levels in use. Based on these assumptions, the life distribution under normal
stress levels can be estimated. Such way of testing reduces both time and cost [6].

Step stress accelerated life testing (SSALT) is an advanced case of ALT. In contrast, step stress
accelerated life testing allows the stress level of a test unit to be changed at prespecified times or
upon the occurrence of a fixed number of failures. This type of test has advantages of yielding
more failure data in a short period of time without necessarily applying a high stress to all test
units. The life data from the test are extrapolated through a life-stress relationship and a model
that relates the life distribution under a step stress to that under a constant stress. In this paper,
a log-linear relationship between the scale parameter of lifetime distribution and the stress are
assumed. Furthermore, we model the effects of changing stress as a cumulative exposure (CE)
function. The step stress procedure was first introduced, with the cumulative exposure model, by
Nelson [8]. Arefi and Razmkhah [1] considered the simple SSALT plan in a discrete set-up for which
the failure times at each level of stress are geometrically distributed. Hakamipour and Rezaei [4]
proposed an optimal design of simple SSALT with Type-I censored Frechet data.

Since accelerating just one variable does not result enough failure data, it is desirable to include
more stress variables. Li and Fard [7] studied SSALT for two stress variables with Weibull failure
times under Type-I censoring. Hakamipour and Rezaei [3] studied SSALT for two stress variables
with Gompertz failure times under Type-II censoring.

The main purpose of this study is to consider exponentiated exponential distribution for the
step stress model under the CE model formulation. Note that the exponentiated exponential
distribution is a particular member of the exponentiated Weibull distribution. It is observed in
[2] that the two-parameter exponentiated exponential distribution can be used quite effectively in
analyzing several lifetime data, particularly in place of two-parameter gamma or two parameter
Weibull distribution. If the shape parameter is one, then all the three distributions coincide with
the one parameter exponential distribution.

During the past two decades, the problem of optimal scheduling of the step stress test has
attracted great attention in the reliability literature. Optimal design of step stress tests could
also be based on other criteria chosen by the experimenter. The main focus of this paper is to
investigate the choice of optimal change points of the stress levels. The optimization criterion is to
minimize the asymptotic variance of the reliability estimate at a specified time ξ under a typical
operating condition. The rest of this paper is organized as follows. In Section 2, we describe the
model and some necessary assumptions. In Section 3, the problem of choosing the optimal change
times will be obtained by using the optimization criterion. In Section 4, some numerical studies
were conducted. Finally, some concluding remarks are made in Section 5.

2 Model and Assumption

We consider the bivariate SSALT, so that each stress variable has two levels. Let Slk be the kth
stress level of variable l, where l = 1, 2 and k = 0, 1, 2. The S10, S20 are stress levels at typical
operating conditions. Let all n units of experiment are initially placed at first step with stress
levels (S11, S21) for certain time, τ1, during which n1 failures will be observed. At time τ1, c1 units
are randomly removed from the remaining n − n1 surviving units and the first stress variable is
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increased from S11 to S12. The second step is continued until the predetermined time τ2, which n2
failures will be occured (units fail). In this time, c2 units are randomly removed from the remaining
n− n1 − c1 − n2. At the end of the second step, the other stress variable is increased from S21 to
S22. The test continues until the predetermined time of T , which n3 units have failed in this step.
At time T , the remaining surviving units c3 = n− n1 − c1 − n2 − c2 − n3 are all removed from the
test.

Notice that we could have also changed the stress level of the second variable, while keeping
the first variables stress level fixed. This would lead to a different result, but has no consequences
on the model.

The decision to choose one of the stress variables for a stress level change, while the other
stress variable remains constant, will lead to a different experimental result, but has no effect on
the model. The purpose of the experiment is to obtain failure test data at different stress level
combinations [7].

The cumulative distribution function of two parameters exponentiated exponential distribution
with shape parameter α and scale parameter λ given respectively by

F (t) = (1− e−
t
λ )α, t, α, λ ≥ 0

We proposed, the scale parameter λi at test step i, is a log-linear function of stress levels, for
i = 1, 2, 3:

Step1 : log (θ1) = β0 + β1S11 + β2S21,

Step2 : log (θ2) = β0 + β1S12 + β2S21,

Step3 : log (θ3) = β0 + β1S12 + β2S22. (2.1)

where β0, β1 , and β2 are unknown parameters depending on the nature of the product, and the
method of test.

The lifetime of a unit under SSALT, using CE model, can be written as

G(t) =


(
1− e

− t
λ1

)α
, 0 ≤ t < τ1,(

1− e
− τ1

λ1
− t−τ1

λ2

)α
, τ1 ≤ t < τ2,(

1− e
− τ1

λ1
− τ2−τ1

λ2
− t−τ2

λ3

)α
, τ2 ≤ t < T.

(2.2)

The corresponding probability distribution function (PDF) can be given as:

g(t) =



α

λ1

(
1− e

− t
λ1

)α−1
e
− t

λ1 , 0 ≤ t < τ1,

α

λ2

(
1− e

− τ1
λ1

− t−τ1
λ2

)α−1
e
− τ1

λ1
− t−τ1

λ2 , τ1 ≤ t < τ2,

α

λ3

(
1− e

− τ1
λ1

− τ2−τ1
λ2

− t−τ2
λ3

)α−1
e
− τ1

λ1
− τ2−τ1

λ2
− t−τ2

λ3 , τ2 ≤ t < T.

(2.3)
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Let tij , i = 1, 2, 3, j = 1, 2, . . . , ni denote the observation obtained form a Type-I progressively
censored sample with random removals in a bivariate SSALT. The number of units removed from
the test at each time follows a binomial distribution and any individual unit being removed is with
the same probability p.

P (C1 = c1) =

(
n− n1
c1

)
pc1(1− p)n−n1−c1

P (C2 = c2 | C1 = c1) =

(
n− n1 − n2 − c1

c2

)
pc2(1− p)n−n1−n2−c1−c2

Furthermore, suppose that Ci is independent of ti for all i. Then the joint likelihood function
can be found as

L(ti;λ1, λ2, λ3, α, p) = L1(ti;λ1, λ2, λ3, α, p | C = c).P (C = c), (2.4)

Here C = (C1, C2) and c = (c1, c2), and

P (C = c) = P (C2 = c2 | C1 = c1)P (C1 = c1),

and

L1(ti;λ1, λ2, λ3, α, p | C = c) =

3∏
i=1

g(ti)

3∏
i=1

(1−G(ti))
ci ,

where G(ti) and g(ti) will be replaced from equations (2.2) and (2.3). Finally, the likelihood
function is obtained with the placement of L1(ti;λ1, λ2, λ3, α, p | C = c) and P (C = c) in equation
(2.4). It is usually easier to maximize the logarithm of the likelihood function rather than the
likelihood function itself. The logarithm of the likelihood function is
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ℓ (t;λ1, λ2, λ3, α, p) ∝ (n1 + n2 + n3) logα− n1 log λ1 − n2 log λ2 − n3 log λ3

− 1

λ1

n1∑
i=1

ti −
1

λ2

n2∑
i=1

(ti − τ1)−
1

λ3

n3∑
i=1

(ti − τ2)

−n2τ1
λ1

− n3τ2
λ1

− n3(τ2 − τ1)

λ2
+ c1 log

(
1−

(
1− e

− τ1
λ1

)α)
+c2 log

(
1−

(
1− e

− τ1
λ1

− τ2−τ1
λ2

)α)
+ c3 log

(
1−

(
1− e

− τ1
λ1

− τ2−τ1
λ2

−T−τ2
λ3

)α)
+(α− 1)

n1∑
i=1

log(1− e
− ti

λ1 ) + (α− 1)

n2∑
i=1

log(1− e
− τ1

λ1
− ti−τ1

λ2 )

+(α− 1)

n3∑
i=1

log(1− e
− τ1

λ1
− τ2−τ1

λ2
− ti−τ2

λ3 ) + (c1 + c2) log p

+(2n− 2n1 − 2c1 − n2 − c2) log(1− p) + log

(
n− n1
c1

)
+ log

(
n− n1 − c1 − n2

c2

)
.

where

A = 1− e
− τ1

λ1 ,

B = 1− e
− τ1

λ1
− τ2−τ1

λ2 ,

and

C = 1− e
− τ1

λ1
− τ2−τ1

λ2
−T−τ2

λ3 ,

Di = e
− ti

λ1 ,

Ei = e
− τ1

λ1
− ti−τ1

λ2 ,

Fi = e
− τ1

λ1
− τ2−τ1

λ2
− ti−τ2

λ3 .

Maximum likelihood estimators (MLEs) of the parameters can be derived by maximizing the
above equation. Thus, the MLEs of λ1, λ2, λ3, α and p can be found by solving the equations of
the first order partial derivatives of the log likelihood function with respect to λ1, λ2, λ3, α and p.

3 Optimization Criterion

In this section, optimality criterion presented. In the SSALT plans, minimizing the asymptotic
variance (AV) of the MLE of any parameter of interest such as the mean life or some percentile life
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at a specified level of stress may be considered as a commonly used optimization criterion. Since
the reliability function and the mean time to failure (MTTF) are related together as MTTF =∫∞
0 R(t)dt, where R(ξ) stands for the reliability function at ξ, the optimization criterion could also
be defined as a function of reliability. Here, we minimize the AV of the reliability estimate at time
ξ under normal operating conditions to get the optimal values of the change times.

Let xi =
Si1−Si0
Si2−Si0

, i = 1, 2, then Si0 = Si1−xiSi2
1−xi , i = 1, 2. From log-linear relationship between

the scale parameter of lifetime distribution and the stress at typical operating condition, we can
obtain log(λ0) as follows:

log λ0 = β0 + β1S10 + β2S20,

= β0 + β1
S11 − x1S12

1− x1
+ β2

S21 − x2S22
1− x2

,

=
1

(1− x1)
log λ1 +

(x2 − x1)

(1− x1)(1− x2)
log λ2 −

x2
(1− x2)

log λ3.

Thus, we have

λ0 = λ
1

(1−x1)

1 λ
(x2−x1)

(1−x1)(1−x2)

2 λ
− x2

(1−x2)

3 . (3.1)

Thus, the reliability under typical operating conditions at time ξ is

R(S10,S20)(ξ) = 1−
(
1− e

− t
λ0

)α
(3.2)

with the placement of (3.1) in (3.2), MLE of R(S10,S20)(ξ) is

R̂(S10,S20)(ξ) = 1−
(
1− exp

{
− tλ

− 1
(1−x1)

1 λ
(x1−x2)

(1−x1)(1−x2)

2 − λ
− x2

(1−x2)

3

})α
.

The AV of the reliability estimate at time ξ under typical operating conditions can be obtained
as follows, using delta theorem:

AV(R̂(S10,S20)(ξ)) = H ′ F−1H, (3.3)

where F is Fisher information matrix, which is explained in section 3.1; and H is the row vector
of the first derivative of R̂(S10,S20)(ξ) with respect to λ̂1, λ̂2, λ̂3, α̂3 and p̂. i.e.,

H =
[∂R̂(S10,S20)(ξ)

∂λ̂1
,
∂R̂(S10,S20)(ξ)

∂λ̂2
,
∂R̂(S10,S20)(ξ)

∂λ̂3
,
∂R̂(S10,S20)(ξ)

∂α̂
,
∂R̂(S10,S20)(ξ)

∂p̂

]
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where

∂R̂(S10,S20)(ξ)

∂λ̂1
=

w(1− w)α−1ξαλ
− 1

(1−x1)
−1

1 λ
(x1−x2)

(1−x1)(1−x2)

2 λ
− x2

(1−x2)

3

(1− x1)
,

∂R̂(S10,S20)(ξ)

∂λ̂2
=

w(1− w)α−1ξα(x1 − x2)λ
− 1

(1−x1)

1 λ
(x1−x2)

(1−x1)(1−x2)
−1

2 λ
− x2

(1−x2)

3

(1− x1)(1− x2)
,

∂R̂(S10,S20)(ξ)

∂λ̂3
=

w(1− w)α−1ξαx2λ
− 1

(1−x1)

1 λ
(x1−x2)

(1−x1)(1−x2)

2 λ
− x2

(1−x2)
−1

3

(1− x2)
,

∂R̂(S10,S20)(ξ)

∂α̂
= −(1− w)α log(1− w),

∂R̂(S10,S20)(ξ)

∂p̂
= 0.

where, w = exp{−ξλ
− 1

(1−x1)

1 λ
(x1−x2)

(1−x1)(1−x2)

2 λ
− x2

(1−x2)

3 }.
The values τ∗1 and τ∗2 that minimizes AV

[
R̂S10,S20(ξ)

]
, given by equation (3.3), leads to the

optimal SSALT plan.

3.1 Fisher Information Matrix

As mentioned above, to estimate the AV
[
R̂S10,S20(ξ)

]
, the expected Fisher information matrix F

must be obtained. The Fisher information matrix plays a key role in the parameter estimation. Its
elements are obtained by taking the expected values of the negative second partial derivatives of
log likelihood function with respect to λ1, λ2, λ3, α and p. Then the expected Fisher information
matrix F is obtained as follows:

F =



−E(
∂2ℓ

∂λ21
) −E( ∂2ℓ

∂λ2∂λ1
) −E( ∂2ℓ

∂λ3∂λ1
) −E( ∂2ℓ

∂α∂λ1
) −E( ∂2ℓ

∂p∂λ1
)

−E(
∂2ℓ

∂λ2∂λ1
) −E( ∂

2ℓ
∂λ22

) −E( ∂2ℓ
∂λ3∂λ2

) −E( ∂2ℓ
∂α∂λ2

) −E( ∂2ℓ
∂p∂λ2

)

−E(
∂2ℓ

∂λ3∂λ1
) −E( ∂2ℓ

∂λ3∂λ2
) −E( ∂

2ℓ
∂λ23

) −E( ∂2ℓ
∂α∂λ3

) −E( ∂2ℓ
∂p∂λ3

)

−E(
∂2ℓ

∂α∂λ1
) −E( ∂2ℓ

∂α∂λ2
) −E( ∂2ℓ

∂α∂λ3
) −E( ∂

2ℓ
∂α2 ) −E( ∂2ℓ

∂p∂α)

−E(
∂2ℓ

∂p∂λ1
) −E( ∂2ℓ

∂p∂λ2
) −E( ∂2ℓ

∂p∂λ3
) −E( ∂2ℓ

∂p∂α) −E( ∂
2ℓ
∂p2

)


The above calculations have been done, but are not listed here because of the page restrictions.
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4 Simulation Study

In this section, we first present an artificial example to illustrate the proposed procedure in obtaining
the optimal SSALT plan with two stress variables. Then, to examine the effect of changes in the
initial parameters λ1, λ2, λ3, α and p on the optimal values of τ1 and τ2, a sensitivity analysis is
performed. Its objective is to identify the sensitive parameters, which need to be estimated with
special care to minimize the risk of obtaining an erroneous optimal solution. Toward this end, the
values of τ∗1 and τ∗2 are derived when one of the objectives λ1, λ2, λ3, α and p changes and the
others are fixed. To determine the values of τ∗1 and τ∗2 in this analysis, we assume that λ1 = 0.2,
λ2 = 0.4, λ3 = 0.6, α = 0.5, p = 0.5, n = 50, T = 0.3 and ξ = 0.5. For the initial values τ∗1 and τ∗2
are calculated 0.2409 and 0.2758, respectively.

Tables 1-5 present the sensitivity analysis for the different values of the parameters, λ1, λ2, λ3,
α and p, respectively. From these tables, we can see that as these parameters increase, the optimal
stress change times not change or very slightly increase. We see, these parameters have a too small
effect on the hold times. According to this criterion, the optimal hold times are not too sensitive.

Table 1: Optimal times τ∗1 and τ∗2 versus changes in λ1 with (λ2 = 0.4, λ3 =
0.6, α = 0.5, p = 0.5).

λ1 0.1 0.15 0.2 0.25 0.3
τ⋆1 0.2403 0.2407 0.2409 0.2413 0.2416
τ⋆2 0.2753 0.2754 0.2758 0.2761 0.2762

Table 2: Optimal times τ∗1 and τ∗2 versus changes in λ2 with (λ1 = 0.2, λ3 =
0.6, α = 0.5, p = 0.5).

λ2 0.3 0.35 0.4 0.45 0.5
τ⋆1 0.2408 0.2409 0.2409 0.2411 0.2415
τ⋆2 0.2753 0.2755 0.2758 0.2759 0.2760

Table 3: Optimal times τ∗1 and τ∗2 versus changes in λ3 with (λ1 = 0.2, λ2 =
0.4, α = 0.5, p = 0.5).

λ3 0.5 0.55 0.6 0.65 0.7
τ⋆1 0.2409 0.2409 0.2409 0.2411 0.2415
τ⋆2 0.2754 0.2755 0.2758 0.2760 0.2760

5 Conclusion

In this paper, we have proposed an optimum design for SSALT with two variables for exponentiated
exponential distribution based on Type-I progressive censoring. The optimization criterion is based
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Table 4: Optimal times τ∗1 and τ∗2 versus changes in α with
(λ1 = 0.2, λ2 = 0.4, λ3 = 0.6, p = 0.5).

α 0.4 0.45 0.5 0.55 0.6
τ⋆1 0.2407 0.2408 0.2409 0.2413 0.2415
τ⋆2 0.2754 0.2756 0.2758 0.2759 0.2761

Table 5: Optimal times τ∗1 and τ∗2 versus changes in p with
(λ1 = 0.2, λ2 = 0.4, λ3 = 0.6, α = 0.5).

p 0.4 0.45 0.5 0.55 0.6
τ⋆1 0.2407 0.2409 0.2409 0.2413 0.2416
τ⋆2 0.2753 0.2756 0.2758 0.2760 0.2760

on minimizing the AV of the reliability estimation. Furthermore, according to simulation studies,
we have found that since the optimal hold times are not too sensitive to the model parameters,
thus we anticipate that the proposed design is robust.
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On invariant test with sequential order statistics: An open
problem and some suggestions
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Abstract

In this paper, sequential order statistics (SOS) coming from heterogeneous exponential
populations are considered. On the basis of the observed multiple SOS samples the generalized
likelihood ratio test (GLRT) is derived for testing the homogeneity of the populations. It is
shown that the GLRT in this case is scale invariant. Some guidelines for deriving the uniformly
most powerful scale-invariant test (if exists) are also given.

Keywords: Hypotheses testing, Invariant test, Sequential order statistics.

1 Introduction

Let X1, · · · , Xn be independent and identically distributed (i.i.d.) random variables with a common

distribution function (DF), say F , and denoted by X1, · · · , Xn
i.i.d.∼ F . Denote in magnitude order

of X1, · · · , Xn by X1:n ≤ · · · ≤ Xn:n, which are called order statistics (OSs). In system reliability
analyses, lifetimes of r-out-of-n systems, say T , coincide to Xr:n in which X1, · · · , Xn stand for

component lifetimes. When the component lifetimes X1, · · · , Xn
i.i.d.∼ F , the OSs are used for

describing the system lifetime. Notice that failing a component does not change the lifetimes of
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the surviving components. Motivated by Cramer and Kamps [3, 4], the failure of a component
may results in a higher load on the remaining components and hence causes the distributions of
the surviving components change. Examples of such phenomena include automobile industries,
gas and oil transmission pipelines, etc. In these cases, the system lifetimes may be modelled by
SOSs. To see this, suppose that Fj , for j = 1, · · ·n, denotes the common DF of the lifetime
components when n− j+1 components are working. The components begin to work at time t = 0
independently with the common DF F1. When at time x1, the first failure occurs, the remaining
n−1 components work independently with the common DF F2. This process continues to n−r+1
components independently with the common DF Fr work until the r-th failure occurs at time xr
and hence the whole system fails. The mentioned system is called sequential r-out-of-n system
and the system lifetime is then r-th component failure time, denoted by X⋆

(r). In the literature,

(X⋆
(1), · · · , X

⋆
(n)) is called SOSs; See, Kamps [8, 9]. The problem of estimating parameters on the

basis of SOS has been considered in the literature. For example, Cramer and Kamps [3] considered
the problem of estimating the parameters on the basis of several independent SOS samples under a
conditional proportional hazard rates (CPHR) model. They considered defined by F̄j(t) = F̄

αj

0 (t)
for j = 1, · · · , r, where the baseline DF F0(t) is the exponential distribution, i.e.

F0(x;σ) = 1− exp
{
−
(x
σ

)}
, x > 0, σ > 0. (1.1)

In this case, the hazard rate function of the DF Fj , defined by hj(t) = fj(t)/F̄j(t) for t > 0 and
j = 1, · · · , n, is proportional to the hazard rate function of the baseline DF F0, i.e. hj(t) = αjh0(t)
where αj > 0; See Kamps [8, 9], Cramer and Kamps [3, 4, 5]. Statistical inferences on the basis
of multiply SOS from homogeneous populations have been considered in the literature; See, e.g.,
Hashempour and Doostparast [7], Esmailian and Doostparast [6], Beutner and Kamps [2], Bedbur
[1] and references therein.

Cramer and Kamps [5] considered independent SOS samples from different populations and
derived the maximum likelihood (ML) estimates of the parameters of interest under the CPHR
model. Moreover, hypotheses testing on the basis of multiple SOS arising from heterogeneous
populations have not been studied by the researchers in details. In this paper, we consider the
problem of comparing heterogeneous exponential populations on the basis of independent multiply
SOS samples coming from heterogeneous exponential populations under the CPHR model.

2 SOS-based likelihood analysis

We here assume that (s ≥ 2) independent SOS samples of equal size r from s heterogeneous
populations are available. The data may be represented by

x =

 x11 . . . x1r
...

. . .
...

xs1 . . . xsr

 , (2.1)
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where the i-th row of the matrix x in (2) denotes the SOS sample coming from the i-th population.
The LF of the available data given by (2.1) is then

L(F ;x) = As
s∏
i=1

r−1∏
j=1

f [i]j (xij)

(
F̄

[i]
j (xij)

F̄
[i]
j+1(xij)

)n−j f [i]r (xir)F̄
[i]
r (xir)

n−r

 , (2.2)

where A = n!/(n− r)!, F = {F [i]
j , i = 1, · · · , s, j = 1, · · · , r} and for i = 1, · · · , s, j = 1, · · · , r,

F̄j
[i]
(x) = 1−F [i]

j (x), and F
[i]
j calls for the common DF of component lifetimes of the i−th sequential

r-out-of-n system. For more details, see Cramer and Kamps [4, 5].
Upon substituting Equation (1.1) into Equation (2.2), under the earlier mentioned CPHR model,
when the baseline DF of the i-th population (i = 1, · · · , s) follows the one-parameter exponential
distribution with the mean σi, the LF of the available data reduces to

L(σ1, · · · , σs,α;x) = As

 r∏
j=1

αj

s(
s∏
i=1

1

σi

)r
exp

{
−

s∑
i=1

r∑
j=1

(xijmj

σi

)}
, (2.3)

where α= (α1, · · · , αr), and for j = 1, · · · , r, αj > 0, and mj = (n − j + 1)αj − (n − j)αj+1 with
convention αr+1 ≡ 0. The problem of non-Bayesian estimating the parameters of interest in this
case has been considered by Cramer and Kamps [4, 5]. We consider the problem of homogeneity
testing on the basis of independent SOS samples from different exponential populations, i.e.,

H0 : σ1 = · · · = σs v.s H1 : σi ̸= σj ∃i ̸= j. (2.4)

Remark 2.1. Notice that Bedbur [1] obtained the uniformly most powerful unbiased (UMPU)
tests for some elements of the parameter vector α under the CPHR model based on multiply
homogeneous SOS samples from a common exponential distribution.

Suppose that the vector parameter α in Equation (2.3) is known. By Theorem 8.1 in Cramer
and Kamps [5] and under the null hypothesis H0 in (2.4), the unique ML estimate of the common
mean of the s exponential populations, say σ0, is

σ̂0 =

∑s
i=1

∑r
j=1 xijmj

rs
=

∑s
i=1

∑r
j=1(n− j + 1)αjDij

rs
, (2.5)

where Dij = xij − xi,j−1, for j = 1, · · · , r. Here xi0 := 0 for i = 1, · · · , s. When the baseline
exponential populations are heterogeneous, Equation (2.5) yields the unique ML estimate of σi
(i = 1, · · · , s) as

σ̂i =

∑r
j=1 xijmj

r
=

∑r
j=1(n− j + 1)αjDij

r
. (2.6)

For more details, see Cramer and Kamps [4, 5].

Corollary 2.2. Under the CPHR with the one-parameter exponential baseline CDF,

Ti =

r∑
j=1

(n− j + 1)αjDij ∼ Γ(r, σi), i = 1, · · · , s, (2.7)

where Γ(a, b) calls for the gamma distribution with shape and scale parameters a and b, respectively.
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Remark 2.3. Notice that∑r
j=1 xijmj =

∑r
j=1(n− j + 1)αjDij , for i = 1, · · · , s.

Now consider the problem of hypotheses testing (2.4). The generalized likelihood ratio test (GLRT)
statistic for testing the problem (2.4) is (Lehman and Romano [10])

Λ1 =
supΩ0

L(σ1, · · · , σs;x)
supΩ L(σ1, · · · , σs;x)

=
s∏
i=1

(
σ̂i
σ̂0

)r
exp

{ s∑
i=1

r∑
j=1

( 1

σ̂i
− 1

σ̂0

)
mjxij

}
, (2.8)

where Ω = {(σ1, · · · , σs) : σi > 0, i = 1, · · · , s} =: R+s is the whole parameter space while
Ω0 = {(σ1, . . . , σs) : σ1 = · · · = σs} denotes the parameter space under the null hypothesis H0.
After some algebraic manipulations, the logarithm of the GLRT statistic Λ1 given by Equation
(2.8) simplifies to

log Λ1 = r

s∑
i=1

log

(
sTi∑s
j=1 Tj

)
, (2.9)

where Ti is defined by Equation (2.7) and “ log ” stands for the natural logarithm. Then, the null
hypothesis H0 in (2.4) is rejected if

A(T,α) > c, (2.10)

where T = (T1, · · · , Ts) and

A(T,α) = −
s∑
i=1

log

(
Ti∑s
j=1 Tj

)
.

The constant c in Equation (2.10) is obtained subject to the level of the test, say γ. To derive
the constant c, we need the joint distribution of the statistic T under the null hypothesis H0

in the problem (2.4). To do this, let Wi = Ti/
∑s

j=1 Tj , for i = 1, · · · , s − 1 and Ws =

−
∑s

i=1 log
(
Ti/
∑s

j=1 Tj

)
. The Jacobian transformation is then

J = exp{−ws}/
s−1∏
i=1

wi. (2.11)

The joint probability density function (PDF) of (W1, · · · ,Ws) under the homogeneity hypothesis
H0 is derived from Equations (2.7), (2.11) as

fW1,··· ,Ws
(w1, · · · , ws) =

Γ(sr)

Γ(r)s

(
s−1∏
i=1

wr−1
i

)
exp{−(r − 1)ws}∏s−1

i=1 w
r−1
i

exp{−ws}∏s−1
i=1 wi

=
Γ(sr)

Γ(r)s
exp{−rws}∏s−1

i=1 wi
, (2.12)
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for wi ≥ 0, and
∑s−1

i=1 wi +
exp{−ws}∏s−1

i=1 wi
= 1.Therefore, themarginalPDFofWs is readily obtained

from Equation (2.12) as

fWs(ws) =

A︷ ︸︸ ︷∫ ∫
· · ·
∫

Γ(sr)

Γ(r)s
exp{−rws}∏s−1

i=1 wi
dw1 · · · dws−1, (2.13)

where A =
{
(w1, · · · , ws−1)|wi ≥ 0,

∑s−1
i=1 wi + exp{−ws}/

∏s−1
i=1 wi = 1

}
.

In practice, one may use numerical methods such as Bootstrap and Monte Carlo simulation to
derive the threshold c in the rejection region (2.10).

3 Uniformly most powerful invariant test

It is easy to verify that the family of distribution (2.3) is invariant with respect to the group of the
scale transformations

G = {ga : ga(x) = ax = {ax⋆ij}1≤i≤s,1≤j≤r, a > 0}. (3.1)

Also, the problem of hypotheses testing (2.4) remains invariant under G since Ḡ(Ω) = Ω and
Ḡ(Ω0) = Ω0 where Ω = {(σ1, · · · , σs) : σi > 0, i = 1, · · · , s} = R+s, Ω0 = {(σ1, . . . , σs) : σ1 =
· · · = σs} and Ḡ = ḡa(σ1, · · · , σs) = a(σ1, · · · , σs) is the induced group of transformations on the
parameter space Ω by the group of transformations G in Equation (3.1).

Lemma 3.1. Let X⋆
1 , · · · , X⋆

r be a SOS sample under the CPHR model with the baseline standard
exponential distribution and Ui = X⋆

i /X
⋆
r , for i = 1, · · · , r− 1. The joint PDF of Ui = X⋆

i /X
⋆
r , for

i = 1, · · · , r − 1, is

f (u1, · · · , ur−1) =

 r∏
j=1

αj

 Γ(r)(
Σr−1
j=1ujmj +mr

)r , 0 < u1 < · · · < ur−1 < 1.

The problem of obtaining uniformly most powerful test among invariant tests, known as
uniformly most powerful invariant (UMPI) test, remains as an open problem.

3.1 First Suggest

Notice that, the maximal invariant statistic is M1 = [[uij ]] where uij = x⋆ij/x
⋆
ir for i = 1, · · · , s

and j = 1, · · · , r − 1. The PDF of the statistic M1 is easily derived from Lemma 3.1 which is
complicated for derivation of the UMPI test (if exists).
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3.2 Second Suggest

Another approach is first applying the concept of sufficiency and then deriving the UMPI test based
on the sufficient statistics. More precisely, from Equation (2.3), the (complete) sufficient statistics
in this case is T = (T1, · · · , Ts). The maximal invariant test with respect to the group of scale
transformations on T -space induced by G is

M2 =

(
T1
Ts
, · · · , Ts−1

Ts

)
.

Since T1, · · · , Ts are independent, by Equation (2.7), the PDF of the statistic M2 is easily derived
as

f(m1, · · · ,ms−1) =
1

Γ(r)s

(
s∏
i=1

1

σi

)r(s−1∏
i=1

mi

)r−1

× Γ(sr)

[m1/σ1 + · · ·+ms−1/σs−1 + 1/σs]sr
, (3.2)

for m1 > 0, · · · ,ms−1 > 0. By Theorem 6.5.3 of Lehmann and Romano [10], the UMPI test
based on the sufficient statistic M2 is also UMP test among all invariant test based on the original
data x given by (2.1).

Remark 3.2. Note that the observed Fisher Information (FI), denoted by i(σ̂1, · · · , σ̂s), on the basis
of available SOSs data is equal to minus of the Hessian matrix (HM) evaluated at the MLEs of the
parameters, i.e.

i(σ̂1, · · · , σ̂s) = [[(−∂2 log(L)/∂σi∂σj)1≤i,j≤s]]|σ1=σ̂1,··· ,σs=σ̂s .

It is well known that the unique MLEs have asymptotically the multivariate normal distribution
with mean vector (σ1, · · · , σs) and the variance-covariance matrix [i(σ̂1, · · · , σ̂s)]−1 (see, e.g.,
Lehmann and Romano, [10], 2005, Chap. 14). Therefore, an approximate equi-tailed confidence
interval for σi is (

σ̂i − zγ/2

√
σ̂2i
r
, σ̂i + zγ/2

√
σ̂2i
r

)
, (3.3)

where zγ stands for the γ-percentile of the standard normal distribution.
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Abstract

In this study,we introduce the family of lifetime distributions by compounding any proper
continuous lifetime distribution and truncated power-series (PS) distribution, named the
family of lifetime-power series distributions (FPS). This new family of distributions contains
several lifetime distributions such as generalized exponential (GE), generalized Weibull
(GW), generalized Rayleigh (GR), inverse Weibull (IW) and many continuous distributions
by compounding of PS distributions. The FPS distributions have decreasing, increasing,
decreasing-increasing failure rate. The properties of the proposed family are discussed. A
simple EM-type algorithm for iteratively computing maximum likelihood estimates is presented.
A formal equation for Fisher information matrix is derived in order to obtaining the asymptotic
covariance matrix. The experimental results are illustrated based on real data sets.

Keywords: Power-series distribution, EM algorithm, Hazard rate, Maximum likelihood
estimation.

1 Introduction

Multi-parameter distributions to model lifetime data have been introduced by compounding a
continuous lifetime and powerseries distributions. The Exponential Geometric (EG), Exponential
Poisson (EP) and exponential logarithmic distributions were introduced and studied by Adamidis
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and Loukas (1998), Kus (2007) and Tahmasbi and Rezaei (2008), respectively. Recently, Chahkandi
and Ganjali (2009) introduced the Exponential Power Series (EPS) distributions, which contain
these distributions. Lately, Alkarni and Oraby (2012), Alkarni (2012) obtained a class of truncated
Poisson and logarithmic distribution with any continuous lifetime distribution. In this article we
introduce a new lifetime distributions family, by combining a truncated at zero power series with
a class of several lifetime continuous distributions such as exponential, weibull, pareto, generalized
exponential and generalized weibull distributions and hence any mixture of continuous lifetime with
truncated Power Series distribution becomes a special case of this class. This family includes special
cases of lifetime distributions presented by Tahmasbi and Rezaei (2008), Chahkandi and Ganjali
(2009), Alkarni and Oraby (2012) and Alkarni (2012). This study is organized as follow. The
new class of Power Series lifetime (PSL) distributions with its properties are introduced in section
2.In Section 3 an estimation of the parameters with maximum likelihood via the EM algorithm is
presented.The information matrix of the parameters are also obtained.

2 The Family of FPS distribution and its properties

Let Y1, . . . , YZ be independent and identically distributed (iid) random variables with probability
density function (pdf) given by:

fY (y;β) ;β = (β1, . . . , βk), k ≥ 1

where Z is a random variable from power series distribution and is independent from Z. Power series
distribution are the family of distribution with probability function Pt(z; θ) =

azθz

A(θ) , z ∈ N∪{0}, θ >
0, A(θ) =

∑
z azθ

z. This family of distributions includes Binomial, Poisson,Geometric, Negative
binomial and Logarithmic distribution (vide, Johnson et al., 1993). We can define truncated at zero

power series distribution with probability function Pt(z; θ) = cazθ
z

A(θ)I{1,2,...}, θ > 0 where c = A(θ)
A(θ)−a0 .

Thus Pt(z; θ) =
azθz

A(θ)−a0 , z ∈ N, θ > 0 and A(θ)− a0 =
∑

z∈N azθ
z.

Let use X = min{Y1, . . . , Yz} then f(x|z;β) = zfβ(x)[1 − Fβ(x)]
z−1and the marginal probability

density function of X, if Z has truncated at zero power series distribution, is:

f(x; ξ) =
− ∂
∂xA[θ(1− Fβ(x))]

A(θ)− a0
(2.1)

where ξ = (θ, β). Hence the cumulative distribution function(cdf) of X is:

F (x; ξ) = 1−
(A[θ(1− Fβ(x))]− a0)

A(θ)− a0
(2.2)

In the sequel we will be referring to the unconditional distribution of X as Family of the Power
Series lifetime(FPS) distribution.This new class of distributions generalizes several distributions
which have been introduced and studied in the literature.
Survival function (also known as reliability function) and hazard function (also known as failure
rate function) of the FPS distribution are given, respectively, by:

S(x; ξ) = 1− F (x; ξ) =
(A[θ(1− Fβ(x))]− a0)

A(θ)− a0
(2.3)
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and

h(x; ξ) =
f(x; ξ)

S(x; ξ)
=

− ∂
∂x(A[θ(1− Fβ(x))]− a0)

(A[θ(1− Fβ(x))]− a0)
(2.4)

3 Special Cases of the FPS distributions

3.1 Generalized Exponential-PS ditribution

The random variable Y has a generalized exponential(GE)distribution(Gupta and Kundu,1999)
with parameters α and β if its cumulative distribution function(cdf) takes the form

FY (y) = (1− e−βy)α

where α > 0, β > 0.The corresponding probability density function(pdf)is

fY (y) = αβe−βy(1− e−βy)α−1

Given Z, Let X = min{Y1, . . . , YZ} and Z respectively be independent and identically distributed
(iid) random variables from GE and PS distributions according to cdf(1) pdf(2),the cdf and pdf of
X is given by

FX(x; ξ) = 1− A(θe−(βx)α)

A(θ)− a0
,

fX(x; ξ) = αβe−βx(1− e−βx)α−1

that it called Generalized exponential Power Series(GEPS) distribution. The associated hazard
rate and survival function are given respectively by

h(x) =
−θαβe−βx(1− e−βx)α−1A′(θe−(βx)α)

A(θe−(βx)α)

s(x) =
A(θe−(βx)α)

A(θ)− a0

Remark. When α = 1, we have a distribution which is known as exponential-power series
distributions introduce by chahkandi and Ganjali that table1 shows the probability ,cumulative
probability, survival and hazard functions.

3.2 Generalized Weibull-PS ditribution

Generalized Weibull(GW)distribution is special case of Life time distributons with parameters α
and β if its cumulative distribution function(cdf) takes the form

FY (y) = (1− e−(βy)γ )α

where α > 0, β > 0 and γ > 0.The corresponding probability density function(pdf)is

fY (y) = αγβγyγ−1e−(βy)γ (1− e−(βy)γ )α−1
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Figure 1: probability density and Hazard function of the GWPS distribution
for different value of parameters

Let X = min{Y1, . . . , YZ} and Z respectively be independent and identically distributed (iid)
random variables from GW and PS distributions according to cdf(1) pdf(2),the cdf and pdf of X
is given by

FX(x) = 1− A(θe−(βx)γ )α

A(θ)− a0

fX(x) = θαγβγxγ−1e−(βxy)γ (1− e−(βx)γ )α−1−A′(θe−(βx)γ )α

A(θ)− a0

that it called Generalized Weibull Power Series(GWPS) distribution that introduce by Mahmoudi
and Shiran(2012). The associated hazard rate and survival function are given respectively by

h(x) =
−θαγβγxγ−1e−(βx)γ (1− e−(βx)γ )α−1A′(θe−(βx)γ )α

A(θe(βx)γ )α

s(x) =
A(θe−(βx)γ )α

A(θ)− a0

The plots of probability density and hazard rate function of GW-PS for different value of parameters
are given in figure2.

Remark. When α = 1, we have a distribution which is known as Weibull-power series
distributions that table1 shows the probability ,cumulative probability, survival and hazard
functions.

3.3 Inverse Weibull-PS ditribution

The generalized Weibull distribution is one of life time distributions with parameters α and λ
if its cumulative distribution function(cdf) takes the formF (y) = e−λy

−α
,Where α > 0, λ > 0.
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The corresponding probability density function (pdf) is fY (y) = αλy−(α+1)e−λy
−α

Let X =
min{Y1, . . . , YZ} and Z respectively be independent and identically distributed (iid) random
variables from IW and PS distributions according to cdf(1) pdf(2),the cdf and pdf of X is given by

FX(x) = 1− A(θ(1− e−λx
−α

))

A(θ)− a0
.

fX(x) = θαλx−(α−1)e−λx
−α −A′(θ(1− e−λx

−α
))

A(θ)− a0

that it called inverse Weibull Power Series(IWPS) distribution. The associated hazard rate and
survival function are given respectively by

h(x) =
−θαλx−(α−1)e−λx

−α
A′(θ(1− e−λx

−α
))

A(θ(1− e−λx−α))

s(x) =
A(θ(1− e−λx

−α
)

A(θ)− a0

3.4 Generalized Rayleigh-PS ditribution

The generalized Rayleigh distribution is one of life time distributions with parameters α β γ if its
cumulative distribution function(cdf) takes the formFY (y) = (1 − e−(βy)2)α,Where α > 0, β > 0.
The corresponding probability density function (pdf) is fY (y) = 2αβ2e−(βy)2(1− e−(βy)2)α−1. Let
X = min{Y1, . . . , YZ} and Z respectively be independent and identically distributed (iid) random
variables from IW and PS distributions according to cdf(1) pdf(2),the cdf and pdf of X is given by

FX(x) = 1− A(θe−(βx)2)α

A(θ)− a0

fX(x) = 2θαβ2e−(βx)2(1− e−(βx)2)α−1−A′(θe−(βx)2)

A(θ)− a0

that it called inverse Weibull Power Series(IWPS) distribution. The associated hazard rate and
survival function are given respectively by

h(x) =
−2θαβ2e−(βx)2(1− e−(βx)2)α−1A′(θe−(βx)2)

A(θe−(βx)2)α

s(x) =
A(θe−(βy)2)

A(θ)− a0

The plots of probability density and hazard rate function of GR-PS for different value of parameters
are given in figure2.

Table1 shows the the properties of some others lifetime distributions. Some of the other lifetime
distributions are excluded from this table such as Gamma and lognormal distributions. Those
distributions do not have nice forms although they still can be applied in this class numerically.
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Figure 2: probability density and Hazard function of the GR-PS distribution
for different value of parameters

Table 1: PSL distribution and its properties

Distribution fx(x; ξ) Fx(x; ξ) Sx(x; ξ) hx(x; ξ)

Exponential
− ∂

∂x
A[θe−βx)]

A(θ)−a0 1− A[θe−βx]−a0
A(θ)−a0

A[θe−βx]−a0
A(θ)−a0

− ∂
∂x
A[θe−βx)]

A[θe−βx]−a0

Weibull
− ∂

∂x
A[θe−βxα )]

A(θ)−a0 1− A[θe−βxα )]−a0
A(θ)−a0

A[θe−βxα )]−a0
A(θ)−a0

− ∂
∂x
A[θe−βxα )]

A[θe−βxα )]−a0

Pareto
− ∂

∂x
A[θβαx−α)]

A(θ)−a0 1− A[θβαx−α)]−a0
A(θ)−a0

A[θβαx−α)]−a0
A(θ)−a0

− ∂
∂x
A[θβαx−α)]

A[θβαx−α)]−a0

Rayleigh
− ∂

∂x
A[θe

x2

2β2 ]

A(θ)−a0 1− A[θe
x2

2β2 ]−a0
A(θ)−a0

A[θe
x2

2β2 ]−a0
A(θ)−a0

− ∂
∂x
A[θe

x2

2β2 ]

A[θe
x2

2β2 ]−a0

4 Estimation of the parameters by maximum likelihood and its
related EM algorithm

4.1 Estimation by maximum likelihood

In this section we want to obtain the maximum likelihood estimates of parameters. Let X1, . . . , Xn

be a random sample with observed values x1, . . . , xn from a PSL distribution with parameters ξ =
(θ, β). The log-likelihood function based on the observed sample size of n,yobs = (xi, i = 1, . . . , n)
is obtained by:

ℓ(ξ; yobs) = −nℓ[A(θ)− a0]− nℓ(θ) +
∑

ℓf(xi;β) +
∑

ℓA′[θ(1− F (xi;β))]

where A′[θ(1− F (xi;β))] = A′(θ)|θ(1−F (xi;β)) and A
′(θ)is the derivation of A(θ) with respect to θ.

The partial derivations are found to be

∂ℓ

∂θ
= − nA′(θ)

A(θ)− a0
− n

θ
+
∑ [1− F (xi;β)]A

′′[θ(1− F (xi;β)]

A′[θ(1− F (xi;β))]
(4.1)
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where A′′[θ(1−F (xi;β)] = A′′(θ)|θ(1−F (xi;β) and A
′′(θ) is the second derivation of A(θ) with respect

to θ and

∂ℓ

∂β
=
∑ ∂f(xi;β)

∂β

f(xi;β)
+
∑ −θ ∂F (xi;β)

∂β A′′[θ(1− F (xi;β)]

A′[θ(1− F (xi;β)]
(4.2)

The Maximum Likelihood Estimates(MLE) of ξ, say ξ̂,is obtained by solving the nonlinear system
Un(ξ) = 0. The solution of this nonlinear system of equations has not a closed form, but can
be found numerically. For interval estimation and hypothesis tests on the model parameters, we
require the information matrix.The (k+1)×(k+1) information matrix is given by In(ξ) where, the
elements of In(ξ) are the second partial derivatives of (A.5) and (A.7). In the large sample, MLE of
ξ can be treated as being approximately multivariate normal with mean ξ and variance-covariance
matrix, which is the inverse of the expected information matrix Jn(ξ) = E(I; ξ) and the expectation
is to be taken with respect to the distribution of X.

4.2 EM algorithm

Based on the underlying distribution, the maximum likelihood estimation of the parameters can
be found analytically using an EM algorithm. NewtonRaphson algorithm is one of the standard
methods to determine the MLEs of the parameters. To employ the algorithm, second derivatives
of the log-likelihood are required for all iteration. EM algorithm is a very powerful tool in handling
the incomplete data problem. It is an iterative method by repeatedly replacing the missing data
with estimated values and updating the parameter estimates. It is especially useful if the complete
data set is easy to analyze. As pointed out by Little and Rubin (1983), the EM algorithm will
converge reliably but rather slowly (as compared to the Newton-Raphson method) when the amount
of information in the missing data is relatively large. Recently, EM algorithm has been used by
several authors such as Adamidis and Loukas (1998); Adamidis (1999); Chahkandi and Ganjali
(2009); Alkarni (2012).
To start the algorithm, hypothetical complete-data distribution defined with density function
f(x, z; ξ) =. Thus, it is straight forward to verify that the E-step of an EM algorithm requires
the computation of the conditional expectation of (Z|X; ξ), where ξ(h) = (θ(h), β(h)) is the current

estimate of ξ. Using f(z|x; ξ) = zazθfβ(x)[θ(1− Fβ(x))]
z−1[− ∂

∂xA[θ(1− Fβ(x))]
−1 , we have

E(Z|X; ξ) = 1 +
θ(1− Fβ(x))A

′′[θ(1− Fβ(x))]

A′[θ(1− Fβ(x))]

. The EM algorithm is completed with M-step, which is complete data maximum likelihood overξ
with the missing Z ′s replaced by their conditional expectations. Thus an EM iteration

θ(h+1)A′(θ(h+1))

A(θ(h+1) − a0)
=

∑
z
(h)
i

n

∑ ∂ ln f(xi;β
(h+1))

∂β(h+1)
=
∑

(1− z
(h)
i )

∂

∂β(h+1)
ln[1− F (xi;β

(h+1))]
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where z
(h)
i = 1 + θ(h)(1−F (x;β(h)))A′′[θ(h)(1−F (x;β(h))]

A′[θ(h)(1−F (x;β(h)))]
.

It can be seen that only a one-dimensional search such as NewtonRaphson is required for M-step
of an EM cycle.

4.3 Asymptotic variance and covariance of MLEs

Applying the usual large sample approximation, MLE of ξ can be treated as begin approximately
bivariate normal with mean ξ and variance-covariance matrix, which is the inverse of the expected
information matrix J(ξ) = E(I; ξ), where I = I(ξ; yobs) is the observed information matrix with

elements Iij = −∂2ℓ
∂ξi∂ξj

with i, j = 1, 2, . . . and the expectation is to be taken with respect to the

distribution of X. Differentiating (5) and (6), the elements of the symmetric, second-order observed
information matrix are found to be

I11 =
∂2ℓ

∂θ2
= −nA

′′(θ)[A(θ)− a0]− n[A′(θ)]2

[A(θ)− a0]2
+
n

θ2

−
∑ [1− F (xi;β)]

2A′′′[θ(1− F (xi;β)]− [1− F (xi;β)]
2[A′′[θ(1− F (xi;β))]]

2

A′[θ(1− F (xi;β))]

I12 = I21 = −
∑ ∂F (xi;β)

∂β

[A′′[θ(1− F (xi;β)]− θ(1− F (xi;β)A
′′′[θ(1− F (xi;β))]]

A′[θ(1− F (xi;β))]

−
∂F (xi;β)

∂β (1− F (xi;β))[A
′′[θ(1− F (xi;β))]]

2

[A′[θ(1− F (xi;β))]]2

I22 = −θ
∑ ∂2F (xi;β)

∂β2 A′′[θ(1− F (xi;β)]− θ(∂F (xi;β)
∂β )2A′′′[θ(1− F (xi;β))]

A′[θ(1− F (xi;β))]

+ θ[

∂F (xi;β)
∂β A′′[θ(1− F (xi;β))]

A′[θ(1− F (xi;β))]
]2

The elements of the expected information matrix J(ξ) are calculated by taking the expectations of
Iij , i,j=1,2 with respect to the distribution of X, i.e. this expectation is required: E(lnA′(θe−βxi)).
we can calculate this expectation for each element of power-series distributions.when we obtain
the expectations of Iij , i,j=1,2 we would have the matrix J(ξ), the inverse of J(ξ), evaluated
at ξ̂ provides the asymptotic variance-covariance matrix of MLEs. Alternative estimates can be
obtained from the inverse of the observed information matrix since it is a consistent estimator of
J−1(ξ).

5 Application of the F-PS distribution

In this section, we fit FPS distributions to real set. The data set is given by Leiblein and Zelen
(1956) on the endurance test of deep groove ball bearings discussed , which include the number of



Third Seminar on Reliability Theory and its Applications 136

Table 2: parameter estimates(with std.),K-S statistics, p-value, AIC and
BIC for Leiblein and Zelen data.

Distribution MLE(std) K − S P − V alue AIC BIC

GE-P α̂ = 4.72439289, β̂ = 0.03088544, θ̂ = −0.12983222 0.099518 0.972 214.2892 217.4228

GE-L α̂ = 4.68270010, β̂ = 0.03165577, θ̂ = −0.37921442 0.10167 0.9663 214.2862 217.4198

GE-G α̂ = 4.71243089, β̂ = 0.03108482, θ̂ = −0.09453810 0.10012 0.9705 214.2883 217.4219

GE-B α̂ = 0.77753509, β̂ = 0.02980041, θ̂ = −1.15228085 0.094042 0.9836 214.2617 217.3952

GW-P α̂ = 1.219593882, β̂ = 0.002151981, θ̂ = 0.919003139 0.1437 0.9162 189.275 190.9698
γ̂ = 0.98997699

GW-L α̂ = 1.191146389, β̂ = 0.002246758, θ̂ = 0.490502858 0.1428 0.9198 189.2264 190.9212
γ̂ = 1.3214322

GW-G α̂ = 1.3888842, β̂ = 0.0023155981, θ̂ = 0.534503249 0.1443 0.9153 189.269 190.9598
γ̂ = 0.98997699

GW-B α̂ = 1.191906470, β̂ = 0.002212253, θ̂ = 0.201947884 0.1462 0.9063 189.3061 191.001
γ̂ = 1.58339

GR-P α̂ = 1.31833516, β̂ = 0.01082137, θ̂ = 1.66560706 0.11583 0.9104 389.1759 392.3095

GR-L α̂ = 1.83379903, β̂ = 0.01059785, θ̂ = 0.95765106 0.090961 0.9884 388.6836 391.8172

GR-G α̂ = 1.4824384, β̂ = 0.0103635, θ̂ = 0.6954085 0.10344 0.9611 388.9392 392.0728

GR-B α̂ = 1.27819385, β̂ = 0.01103999, θ̂ = 0.42607813 0.11948 0.891 389.2563 392.3898

IW-P α̂ = 0.3776692, λ̂ = 27.7744343, θ̂ = −204.2402199 0.10613 0.972 214.2355 217.3691

IW-L α̂ = 2.4747970, λ̂ = 4835.1386466, θ̂ = 0.9517133 0.15134 0.7219 217.9702 221.1038

IW-G α̂ = 0.4284007, λ̂ = 41.8460927, θ̂ = −1146.7264757 0.092237 0.9941 217.1235 220.257

IW-B α̂ = 0.8477569, λ̂ = 77.4578973, θ̂ = −1.2914360 0.087796 0.9969 214.9114 218.045

revolutions (in millions) to failure for each of n=23 ball bearings under the life test. The MLEs
of the parameters (with std), the maximized log-likelihood, the kolmogorov-smirnov statistic with
its respective p-value, the AIC (Akaike Information Criterion) and BIC (Bayesian Information
Criterion) for the GEPS,GWPS, GRPS and IWPS models are given in Table1. The results for the
first models,GE-PS, show that the GE-P distribution yields the best fit among the GE-L,GE-G
and GE-B. For other model,we can choose the best fit by the K-S test, The K-S test statistic takes
the smallesd value with the largest value of its respective p-value for GR-L and IW-B distribution.
Also this conclusion is confirmed from the values of the AIC and BIC for the fitted models given
in Table1.
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Estimation of stress-strength reliability for the Pareto
distribution in the presence of outliers

Jabbari Nooghabi, M. 1

Department of Statistics, Ferdowsi University of Mashhad

Abstract

The present paper discussed the problem of estimating the stress-strength reliability
parameter R = P (X < Y ), where X and Y follow the Pareto distribution, independently.
Assuming X has the Pareto distribution in the presence of outliers and the random variable Y
is not contaminated with outliers. Different estimators of R were derived when only the shape
parameters are unknown. In particular, we obtain the maximum likelihood, moment method
and least squares estimator of the unknown parameters and derived estimates of R. Also, in
each situation the shrinkage estimation of the stress-strength reliability parameter is derived by
using a prior guess R0. Monte Carlo simulation study has been used to compare the different
methods of estimation in any situation.

Keywords: Shrinkage estimation, Pareto distribution, Maximum likelihood estimator,
Moment method, Least squares, Stress strength model, Outliers.

1 Introduction

The problem of estimating R = P (X < Y ) has been considered by several authors. Rezaei
et al. [11] prepared a history of work on this problem in parametric and non-parametric methods
when the variables are followed different types of distribution. A primary search shows that there
are only little papers for estimating R when outliers affected on the variable(s). But, in any actual

1jabbarinm@um.ac.ir
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example in the reliability and stress-strength area at least one of the variables may contaminated
by outliers. Because there are noise in the process or in the life testing. In some application of R,
we should obtain the treatment effect for a set of response variables which the statistical units are
divided by two groups as experiment and control because of removing any other unsuitable effects.
In this situation, may be some observations of the response variable (say k of n) are followed another
distribution ie. data are contaminated by outliers. For more details refer to Jabbari Nooghabi [6].
Gunasekera [5] considered that X and Y follow independently two-parameter Pareto distribution
and proposed several generalized variable method to estimate the reliability parameter. Based
on the p-value as a basis for hypothesis testing, he investigated the generalized size, generalized
adjusted and unadjusted powers of the test and generalized coverage probabilities by using the
simulation study. Mahmoud et al. [8] estimated R, when the variables follow the Lomax distribution
with common scale parameter. They presented the estimators of the reliability parameter in
the situation where the stress measurements and the strength measurements are both in terms
of records. Rezaei et al. [11] have been considered the estimation of R when X and Y are
two independent generalized Pareto distributions with different parameters. They obtained the
maximum likelihood estimator of R and its asymptotic distribution and also asymptotic confidence
interval of it. Afzal Beg and Singh [2] have estimated R = P (Y < X) where X and Y are
distributed from the Pareto distribution using censored samples. They have used the minimum
variance s-unbiased estimator, Bayesian and maximum likelihood methods. Odat [10] derived the
maximum likelihood estimator of P (X > Y ) and its asymptotical distribution when X and Y are
two independent Pareto distribution. Wong [12] used the interval estimation of P (Y < X) when X
and Y are independently followed generalized Pareto distribution with a common scale parameters.
Masoom Ali and Woo [9] considered estimation of the reliability for two independent exponentiated
Pareto distributions.
In addition, according to Jabbari Nooghabi and Khaleghpanah Nooghabi [7], the way of coping
with outliers was ignoring the cases which were out of data range, so it leads losing information.
In this paper, we assume that the response observations for the experiment group have ”good”
and outlier data and the other observations for control group have only ”good” data. Different
methods of estimation of R = P (X < Y ) when X follows the Pareto distribution in the presence
of outliers and Y independently has the homogenous case of the Pareto distribution are derived.
We assume that all the parameters of the two Pareto distribution are different instead of the
other researches which are mentioned above. The estimators are obtained when only the shape
parameters are unknown. Therefore, we derive the maximum likelihood, moment method and least
squares estimators the unknown parameters and obtain estimator of R. The different proposed
methods have been compared using Monte Carlo simulations and their results have been discussed.

2 Main results

Assuming an sample of size n from X is taken such that k of them distributed from the Pareto
distribution with pdf

f2(x;α, β, θ) =
α(βθ)α

xα+1
, 0 < βθ ≤ x, α > 0, β > 1, θ > 0, (2.1)
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and the remaining (n− k) random variables are distributed as:

f1(x;α, θ) =
αθα

xα+1
, 0 < θ ≤ x, α > 0. (2.2)

Then, according to the model of outliers the joint pdf of (X1, X2, ..., Xn) in the presence of k outliers
is given by

f(x1, x2, .., xn;α, β, θ) =
αnθnαβkα

C(n, k)
(

n∏
i=1

xi)
−(α+1)

×
n−k+1∑
A1=1

n−k+2∑
A2=A1+1

...

n∑
Ak=Ak−1+1

k∏
j=1

I(xAj − βθ), (2.3)

where I is the indicator function. Also, the marginal pdf of X can be obtained as:

f(x;α, β, θ) = b
α(βθ)α

xα+1
I(x− βθ) + b̄

αθα

xα+1
I(x− θ), α > 0, β > 1, θ > 0, (2.4)

where (X1, X2, ..., Xn) are not independent (refer to Dixit and Jabbari Nooghabi [3, 4] and Jabbari
Nooghabi and Khaleghpanah Nooghabi [7]). In the next section, the stress-strength reliability
parameter is derived.

2.1 The reliability parameter

Let X follows the Pareto distribution in the presence of outliers which is defined in the pervious
section and Y be an rv which are independently from X distributed from the homogenous case of
the Pareto distribution, ie.

f(y; ν, λ) =
νλν

yν+1
I(y − λ), ν > 0, λ > 0. (2.5)

So R = P (X < Y ) based on an sample of size n and m respectively from X and Y is as follows.

R = P (X < Y ) = 1− ν

α+ ν
(bβα + b̄)

(
θ

λ

)α
. (2.6)

Now, we would like to estimate R when only the shape parameter of the two random variables are
unknown.

2.2 Estimate R when only the shape parameters are unknown

Based on the application of the Pareto distribution, it is reasonable to assume that the shape
parameter of the Pareto distribution is unknown and the threshold parameter is known. For
example, in a motor insurance, a claim of at least θ as a compensation can be made and claims
below it are not entertained. So, the parameter θ is known and we can fit the Pareto distribution
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with parameters α and θ to the data of claims, where θ is known and α is unknown. For more details
refer to Dixit and Jabbari Nooghabi [3]. Therefore in the subsection, we assume that the shape
parameters α and ν are unknown and the parameters β, θ and λ are known. The ML estimator of
the shape parameters of the two random variables are as follows.

α̂ml1 =
n∑n

i=1 ln(Xi)− n ln(θ)− k ln(β)
,

n∑
i=1

ln(Xi) > ln(θnβk), (2.7)

and

ν̂ml1 =
m∑m

i=1 ln(Yi)−m ln(λ)
,

m∑
i=1

ln(Yi) > ln(λm). (2.8)

So, according to the invariant property of the ML estimators, the MLE of R is

R̂ml1 = 1− ν̂ml1
α̂ml1 + ν̂ml1

(bβα̂ml1 + b̄)

(
θ

λ

)α̂ml1

. (2.9)

Now, by using the guess R0, the first shrinkage estimator of R can be obtained when the mean
square error (MSE) of the estimator is became minimum. So, we use R̃11 = α11R̂ml1 +(1−α11)R0

where R0 is a prior estimate. Therefore, α11 is estimated such that minimized the MSE of R̃11, ie.

MSE(R̃11) = E(R̃11 −R)2 = E[(α11R̂ml1 + (1− α11)R0)−R]2, (2.10)

where

α11 =
(R−R0)[E(R̂ml1 −R0)]

E(R̂2
ml1)− 2R0E(R̂ml1) +R2

0

, 0 ≤ α11 ≤ 1. (2.11)

One should note that this value depends on the unknown parameter R. So substituting R̂ml1
instead of R, implies that

α̂11 =
(R̂ml1 −R0)[E(R̂ml1 −R0)]

E(R̂2
ml1)− 2R0E(R̂ml1) +R2

0

. (2.12)

Therefore, the first shrinkage estimator of R is found as

R̃11 = α̂11R̂ml1 + (1− α̂11)R0. (2.13)

Now, we have to find E(R̂ml1) and E(R̂2
ml1).
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Theorem 2.1. E(R̂ml1) and E(R̂2
ml1) are as follows.

E(R̂ml1) = 1− 2

Γ(n)Γ(m)
{b

∞∑
j=0

(−1)j
j∑
i=0

C(j, i)(nα)
n+i
2 [A1(β, θ, λ)]

n−i
2

× BesselK
(
−n+ i, 2

√
nαA1(β, θ, λ)

) j−i∑
l=0

C(j − i, l)(−1)j−i−l(mν)l+1Γ(m− 1− l)

+ b̄
∞∑
j=0

(−1)j
j∑
i=0

C(j, i)(nα)
n+i
2 [A2(θ, λ)]

n−i
2

× BesselK
(
−n+ i, 2

√
nαA2(θ, λ)

) j−i∑
l=0

C(j − i, l)(−1)j−i−l(mν)l+1Γ(m− 1− l)},

(2.14)

and

E(R̂2
ml1) = 1− 2E(R̂ml1) +

2

Γ(n)Γ(m)
{b2

∞∑
j=0

(−1)j(j + 1)

j∑
i=0

C(j, i)(nα)
n+i
2 [2A1(β, θ, λ)]

n−i
2

× BesselK
(
−n+ i, 2

√
2nαA1(β, θ, λ)

) j−i∑
l=0

C(j − i, l)(−1)j−i−l(mν)l+2Γ(m− 2− l)

+ 2bb̄

∞∑
j=0

(−1)j(j + 1)

j∑
i=0

C(j, i)(nα)
n+i
2 [A3(β, θ, λ)]

n−i
2

× BesselK
(
−n+ i, 2

√
nαA3(β, θ, λ)

) j−i∑
l=0

C(j − i, l)(−1)j−i−l(mν)l+2Γ(m− 2− l)

+ b̄2
∞∑
j=0

(−1)j(j + 1)

j∑
i=0

C(j, i)(nα)
n+i
2 [2A2(θ, λ)]

n−i
2

× BesselK
(
−n+ i, 2

√
nα2A2(θ, λ)

) j−i∑
l=0

C(j − i, l)(−1)j−i−l(mν)l+2Γ(m− 2− l)},

(2.15)

where A1(β, θ, λ) = [ln(λ)− ln(βθ)], A2(θ, λ) = [ln(λ)− ln(θ)], A3(β, θ, λ) = 2 ln(λ)−2 ln(θ)− ln(β)
and BesselK is the Bessel function of the second kind (see Abramowitz and Stegun [1]).

Proof. Proof is obvious by using some elementary algebra.

To get the second and third shrinkage estimators of R, we shall use the generalized likelihood
ratio test (GLRT) for testing H0 : R = R0 vs. H1 : R = R1. Then the p-value of the test and its
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square root can be estimators of the weight to obtain the second and third estimators of R.
The GLRT for testing H0 vs. H1 is of the form: reject H0 when Λ(x, y) < c1 or Λ(x, y) > c2, where

Λ(x, y) =
supH0

L(α, ν)

supH L(α, ν)
, and L(α, ν) ∝ αnθnαβkα

C(n, k)
(

n∏
i=1

xi)
−(α+1)νmλmν(

m∏
i=1

yi)
−(ν+1).

It is obvious thatH0 : R = R0 is equivalent toH0 : ν = α(1−R0)

(bβα+b̄)( θ
λ)

α−(1−R0)
and to find the maximum

likelihood estimator of α and ν under H0, one should replace the equation in the likelihood function
and maximized it respect to α and ν, respectively. It is not possible to find a closed form of the
ML estimator of α and ν under H0, but we can solve the following equation numerically to obtain
the MLE of α under H0.

h(α) =
n

α
+ k ln(β) + n ln(θ)−

n∑
i=1

ln(xi) +
m

α

−
m[bβα ln(β)

(
θ
λ

)α
+
(
θ
λ

)α
ln
(
θ
λ

)
(bβα + b̄)] + (1−R0)

(bβα + b̄)
(
θ
λ

)α − (1−R0)

−
[bβα ln(β)

(
θ
λ

)α
+
(
θ
λ

)α
ln
(
θ
λ

)
(bβα + b̄)]α(1−R0)[m ln(λ)−

∑m
i=1 ln(yi)]

[(bβα + b̄)
(
θ
λ

)α − (1−R0)]2
= 0. (2.16)

Then, to get the MLE of ν under H0 we should substitute the solution of Equation (18) in ν =
α(1−R0)

(bβα+b̄)( θ
λ)

α−(1−R0)
. Therefore, the GLRT is derived based on a numerical method.

So, the second shrinkage estimation of R is taken by using the following formula

R̃21 = α21R̂ml1 + (1− α21)R0, (2.17)

where (1 − α21) is the p-value of the GLRT. Also, to find the third shrinkage estimator of R the
square root of the p-value is used.

R̃31 = α31R̂ml1 + (1− α31)R0, (2.18)

where (1− α31) =
√
p− value.

Now, the moment estimator (MM) of α and ν is obtained by using the first moment of X (or 1
X )

and Y (or 1
Y ), respectively. Therefore,

α̂mm1 =

{ µ1
µ1−θ(bβ+b̄)

α > 1,
µ′1

θ−1(bβ−1+b̄)−µ′1
α ≤ 1,

(2.19)

where µ1 = E(X) = α
α−1θ(bβ + b̄) and µ′1 = E(X−1) = α

α+1θ
−1(bβ−1 + b̄). Also

ν̂mm1 =

{
δ1

δ1−λ ν > 1,
δ′1

λ−1−δ′1
ν ≤ 1,

(2.20)
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where δ1 = E(Y ) = ν
ν−1λ and δ′1 = E(Y −1) = ν

ν+1λ
−1.

So, the moment estimator of R (we say) is

R̂mm1 = 1− ν̂mm1

α̂mm1 + ν̂mm1
(bβα̂mm1 + b̄)

(
θ

λ

)α̂mm1

. (2.21)

Also, same as the first shrinkage estimator of R respect to the MLE, the shrinkage estimator of R
related to the moment method is

R̃41 = α̂41R̂mm1 + (1− α̂41)R0, (2.22)

where

α̂41 =
(R̂mm1 −R0)[E(R̂mm1 −R0)]

E(R̂2
mm1)− 2R0E(R̂mm1) +R2

0

.

Further, similarly to the MM we can find the shrinkage estimator of R related to the least squares
estimator (LSE). The LSE of α and ν can be derived by using the reliability function of X and Y ,
respectively. So,

α̂ls1 =

∑n
i=1 zxi ln(xi)− nz̄xln(x)∑n

i=1[ln(xi)− ln(x)]2
, (2.23)

and

ν̂ls1 =

∑m
j=1 zyj ln(yj)−mz̄yln(y)∑m

j=1[ln(yj)− ln(y)]2
, (2.24)

where zxi = − ln(1 − FX(xi)) = − ln
(
1− i

n+1

)
, i = 1, 2, ..., n, z̄x = 1

n

∑n
i=1 zxi , ln(x) =

1
n

∑n
i=1 ln(xi), zyj = − ln(1 − FY (yj)) = − ln

(
1− j

m+1

)
, j = 1, 2, ...,m, z̄y = 1

m

∑m
j=1 zyj and

ln(y) = 1
m

∑m
j=1 ln(yj).

Therefore, the LS estimator of R (we say) is

R̂ls1 = 1− ν̂ls1
α̂ls1 + ν̂ls1

(bβα̂ls1 + b̄)

(
θ

λ

)α̂ls1

. (2.25)

Finally, the shrinkage estimator of R related to the LS is derived.

R̃51 = α̂51R̂ls1 + (1− α̂51)R0, (2.26)

where

α̂51 =
(R̂ls1 −R0)[E(R̂ls1 −R0)]

E(R̂2
ls1)− 2R0E(R̂ls1) +R2

0

.
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3 Numerical study and comparison the results

In this section, we perform a numerical study to illustrate the performance of the proposed
estimators. The following values of the parameters are used in this numerical study. The sample
size which is taken from random variable X is 6 and 10. The number of outliers in X random
variable is taken to be 1 and 3. The sample size of random variable Y is 10 and 30. The true value
of R is taken to be 0.5 and 0.8 and the initial estimate of R (ie R0) is taken to be 0.35, 0.5 and
0.65 when R=0.5 and 0.65, 0.8 and 0.95 when R=0.8.
Based on one thousand replication of sampling form the distributions with different values of the
parameters, the simulation are done. Here, by using the above values of R, we obtain the values of
the shape parameter of random variable Y such as:

ν =
α(1−R0)

(bβα + b̄)
(
θ
λ

)α − (1−R0)
. (3.1)

The estimators are calculated and the bias and mean square error (MSE) of the estimators and
shrinkage estimators are found. The bias and MSE (in the parenthesis) of the estimators are shown
in Tables 1.
In this research, we have addressed the problem of estimating the reliability parameter R for
the Pareto distributions when the strength variable is contaminated with outliers in three cases.
According to Table 1, it has been seen that the MLE of R has the least MSE among the MM
and LS estimators. Also, the MSE of the estimators is decreasing respect to n, k and m. For the
shrinkage estimators, it is obvious that the shrinkage estimators are more efficient than the classic
estimators specially for small sample size. The efficiency of the first shrinkage estimator related to
the MLE (R̃11) is more than the other types of shrinkage estimators. In general, it has been seen
that the shrinkage estimators can be arranged in terms of overall performance as follows (from best
to worst); R̃11 → R̃21 → R̃31 → R̃51 → R̃41.
Our result is same as the approach of Afzal Beg and Singh [2] which is the performance of ML
estimator of the reliability parameter is better than the other classical estimator (in that paper
minimum variance unbiased estimator). Also, our result is related with the result of Rezaeia et al.
[11] which is discussed the estimator of R in the generalized Pareto distribution in the case that
the maximum likelihood estimator works quite well.

Table 1. Biases and MSEs (in the parenthesis) of the estimators
when only the shape parameters are unknown for α=3, β=1.5, θ=1 and λ=1.
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n k m R R0 R̂ml1 R̃11 R̃21 R̃31 R̂mm1 R̃41 R̂ls1 R̃51
6 1 10 0.5 0.35 -0.238841 -0.170210 -0.237053 -0.237948 -0.274981 -0.190513 -0.141050 -0.145051

(0.128482) (0.042882) (0.064461) (0.068450) (0.171513) (0.088256) (0.143945) (0.071175)
6 1 10 0.5 0.5 -0.072812 -0.021634 -0.025048 -0.042703 -0.151317 -0.362226 0.011885 -0.004681

(0.084060) (0.019401) (0.028974) (0.029545) (0.296953) (0.1776751) (0.116354) (0.053162)
6 1 10 0.5 0.65 0.078133 0.144240 0.121190 0.104512 0.002103 0.102458 0.132217 0.129830

(0.033660) (0.021042) (0.027510) (0.029150) (0.076813) (0.066139) (0.094861) (0.048752)
6 3 10 0.5 0.35 -0.420681 -0.284072 -0.219375 -0.286993 -0.599514 -0.237517 -0.055218 -0.109490

(0.069761) (0.014812) (0.052750) (0.066451) (1.194876) (0.185643) (0.122375) (0.087860)
6 3 10 0.5 0.5 -0.140562 -0.024380 -0.046860 -0.081131 -0.159015 -0.029861 0.035037 0.022001

(0.051901) (0.008391) (0.012240) (0.035961) (0.147501) (0.054682) (0.115663) (0.041981)
6 3 10 0.5 0.65 -0.081512 -0.070170 0.059871 0.005573 -0.107918 -0.054145 0.150060 0.151443

(0.057660) (0.025961) (0.048022) (0.055356) (1.367465) (0.4887338) (0.097442) (0.072951)
10 1 30 0.5 0.35 -0.176820 -0.150491 -0.176432 -0.176631 -0.180304 -0.176863 -0.152105 -0.152531

(0.038103) (0.022650) (0.035771) (0.037743) (0.061614) (0.053475) (0.080038) (0.045281)
10 1 30 0.5 0.5 -0.004421 -0.000314 -0.001423 -0.002501 -0.011424 -0.015016 -0.005248 -0.013917

(0.004932) (0.000035) (0.000491) (0.001562) (0.005166) (0.003730) (0.010981) (0.002115)
10 1 30 0.5 0.65 0.133140 0.149471 0.142904 0.139063 0.100651 0.072760 0.114331 0.118852

(0.031812) (0.022341) (0.024143) (0.029052) (0.073791) (0.060025) (0.042123) (0.032391)
10 3 30 0.5 0.35 -0.197230 -0.150581 -0.158602 -0.170151 -0.226247 -0.182218 -0.126589 -0.134173

(0.039862) (0.022681) (0.025523) (0.030948) (0.064112) (0.040656) (0.042432) (0.039351)
10 3 30 0.5 0.5 -0.041032 -0.000561 -0.011490 -0.021701 -0.098943 -0.055217 -0.006209 0.018501

(0.008602) (0.000024) (0.000670) (0.001401) (0.019062) (0.018583) (0.015586) (0.013763)
10 3 30 0.5 0.65 0.117001 0.149343 0.136457 0.128856 0.120389 0.044675 0.141123 0.138071

(0.030297) (0.022310) (0.026761) (0.029352) (0.062961) (0.053264) (0.046101) (0.031072)
6 1 10 0.8 0.65 -0.213196 -0.155521 -0.175723 -0.190304 -0.292068 -0.163757 -0.175802 -0.170832

(0.043268) (0.024413) (0.033830) (0.040461) (0.097456) (0.047901) (0.048156) (0.041873)
6 1 10 0.8 0.8 -0.03419 -0.00153 -0.01120 -0.01956 -0.01950 -0.00474 -0.03048 -0.01057

(0.00643) (0.00002) (0.00070) (0.00211) (0.08164) (0.05360) (0.09750) (0.03180)
6 1 10 0.8 0.95 0.139610 0.149765 0.149901 0.149024 0.145946 0.149093 0.141927 0.148558

(0.040413) (0.022439) (0.024176) (0.028212) (0.062982) (0.053253) (0.050941) (0.042110)
6 3 10 0.8 0.65 -0.269396 -0.168578 -0.197835 -0.225553 -0.279942 -0.162781 -0.132490 -0.149271

(0.063568) (0.036346) (0.049347) (0.056213) (0.099364) (0.078275) (0.074286) (0.062728)
6 3 10 0.8 0.8 -0.068961 -0.011720 -0.023674 -0.040396 -0.042523 -0.004734 -0.021826 0.002607

(0.008002) (0.001369) (0.005660) (0.006485) (0.075406) (0.054283) (0.049514) (0.035215)
6 3 10 0.8 0.95 0.133961 0.149732 0.149901 0.148754 0.148043 0.148390 0.142215 0.149527

(0.038823) (0.020421) (0.022475) (0.025138) (0.054001) (0.042183) (0.050964) (0.032756)
10 1 30 0.8 0.65 -0.253001 -0.160860 -0.190491 -0.214563 -0.247805 -0.168610 -0.162292 -0.148908

(0.039041) (0.017032) (0.021596) (0.029657) (0.114891) (0.077452) (0.092753) (0.062324)
10 1 30 0.8 0.8 -0.007212 -0.002083 -0.002654 -0.045593 -0.068918 -0.020103 0.001326 -0.004025

(0.003489) (0.002330) (0.002651) (0.002843) (0.065554) (0.040085) (0.071306) (0.035337)
10 1 30 0.8 0.95 0.137731 0.149708 0.149920 0.149052 0.148843 0.149251 0.145057 0.148513

(0.030048) (0.012415) (0.022483) (0.023224) (0.044375) (0.032280) (0.041663) (0.030134)
10 3 30 0.8 0.65 -0.178761 -0.150352 -0.161768 -0.168390 -0.175161 -0.161243 -0.157283 -0.163028

(0.035623) (0.012614) (0.026780) (0.029852) (0.054253) (0.046805) (0.040367) (0.036825)
10 3 30 0.8 0.8 -0.002971 -0.001433 -0.007124 -0.014605 -0.033492 -0.106683 -0.005136 0.002330

(0.002323) (0.000185) (0.001252) (0.001840) (0.047871) (0.014762) (0.032417) (0.006990)
10 3 30 0.8 0.95 0.147790 0.146981 0.152953 0.153240 0.146081 0.151250 0.147042 0.149238

(0.031942) (0.012501) (0.022503) (0.023674) (0.048075) (0.033126) (0.041824) (0.028293)
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Abstract

In this paper, we study the aging properties and stochastic ordering of coherent systems
with heterogeneous components which components lifetime distributions follow the proportional
hazard rate models. The results are based on the new concept of the survival signature.

Keywords: Coherent system, Survival signature, Heterogeneous components, Stochastic
orders, Aging properties.

1 Introduction

The coherent systems are basic concepts in reliability theory and survival analysis. For a coherent
system consisting of n independent and identically distributed (i.i.d.) components lifetime, the
signature s is defined as the n-dimensional probability vector whose ith element is si = Pr(T =
Xi:n), where T is the system lifetime and X1:n, ..., Xn:n are the ordered components lifetimes. The
signature vector is a distribution-free function that depends on the systems design. Using signature,
the reliability function of system can be represented as

F̄T (t) =
n∑
i=1

siF̄i:n(t) =
n∑
i=1

si

i−1∑
j=0

(
n

j

)
F j(t)F̄n−j(t). (1.1)

Recently, Coolen and CoolenMaturi [1] defined a new metric for the coherent systems and called
it survival signature. Consider an n-component system with components of r different types.

1m.kelkinnama@cc.iut.ac.ir
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Suppose that the system has mk components of type k, k = 1, ..., r. Assume that the lifetimes of
components of the same type are exchangeable and that the lifetimes of components of different
types are independent. Then the survival signature of the system is defined as a nonnegative
function ϕ, where ϕ(i1, ..., ir) for ik = 0, ...,mk, k = 1, ..., r, represents the probability that the
system works when precisely ik components of type k are working. The function ϕ does not depend
on the component distributions and depends only on the system design. Coolen and Coolen-Maturi
[1] also showed that, under the stronger assumption that, for k = 1, ..., r, components of type k
have i.i.d. lifetimes with common distribution function Fk, then the following representation for
system’s reliability function can be obtained

F̄T (t) =

m1∑
i1=0

...

mr∑
ir=0

ϕ(i1, ..., ir)

r∏
k=1

(
mk

ik

)
Fmk−ik
k (t)F̄ ikk (t). (1.2)

specifically, when all the components are i.i.d., that is r = 1,m1 = n the (1.2) reduces to (1.1).

Comparisons of systems with heterogeneous components is an interesting topic in reliability
studies. Many papers in this topic considered the series and parallel systems, (see. for example,
[3], [4], [5], and [9]).

The expression (1.2) illustrates that systems with heterogeneous components can be compared,
and that conditions under which one system provides better performance than another can be
identified. Samaniego and Navarro [7] using the notion of survival signature, compared coherent
systems.

Also, for studing the stochastic behaviors of coherent systems with different types of
components, Erylimaz [2] investigated a mixture form for reliability function of system lifetime
in the case of two types of dependent components.

In this paper, we investigate the aging properties and stochastic comparisons of coherent systems
consisting of independent components with different distributions. We assume that the distributions
of components follow the proportional hazard rate models.

Independent random variables X1, X2, ..., Xn are said to follow the proportional hazard rates
(PHR) model if for i = 1, 2, ..., n, the reliability function of Xi can be expressed as, F̄i(x) =
[F̄ (x)]λi , for λi > 0, where F̄ (x) is the baseline reliability function. If r(t) denotes the hazard rate
corresponding to F̄ , then the hazard rate of Xi is λir(t), i = 1, 2, ..., n. Many well-known models
are special cases of the PHR model, for example, Weibull, Pareto, Lomax distributions. Before
proceeding the main results, let us first recall some stochastic orders that will be used in the sequel.

Definition 1. (Shaked and Shanthikumar [8]) If the ratios below are well defined, the random
variable X is said to be smaller than random variable Y in the

(i) likelihood ratio order (denoted by X ≤lr Y ) if g(x)/f(x) is increasing in x;

(ii) hazard rate order (denoted by X ≤hr Y ) if Ḡ(x)/F̄ (x) is increasing in x;

(iii) reversed hazard rate order (denoted by X ≤rh Y ) if G(x)/F (x) is increasing in x;

(iv) stochastic order (denoted by X ≤st Y ) if F̄ (x) ≤ Ḡ(x) for all x.

It is well known that X ≤lr Y =⇒ X ≤hr(rh) Y =⇒ X ≤st Y
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Definition 2. Let x = (x1, ..., xn) and y = (y1, ..., yn) be two real vectors, denote x(1) ≤ ... ≤ x(n)
the increasing arrangement of x1, ..., xn. x is said to be majorized by y (denoted as x ⪯m y) if∑n

i=1 xi =
∑n

i=1 yi and
∑j

i=1 x(i) ≥
∑j

i=1 y(i) for all j = 1, ..., n− 1.

Definition 3. A real valued function ϕ defined on a set A ⊆ Rn is said to be Schur-convex (
Schur-concave) on A if x ⪰m y implies ϕ(x) ≥ (≤)ϕ(y) for any x,y ∈ A.

Lemma 1.1. [6]A permutation-symmetric continuously differentiable function ϕ(X) is Schur-
concave (Schur-convex) if and only if

(Xi −Xj)
(∂ϕ(X)

∂Xi
− ∂ϕ(X)

∂Xj

)
≤ (≥)0

for all i ̸= j.

2 Main results

2.1 Aging properties

Consider a coherent system with two types of components say type A and B, respectively. Assume
that the lifetimes of m1 components of type A are i.i.d. with reliability function F̄A and hazard rate
function rA, the lifetimes of m2 components of type B are i.i.d. with reliability function F̄B and
hazard rate function rB, and the components of two types have independent lifetimes. Let

P (ϕ, F̄A(t), F̄B(t)) =

m1∑
i1=1

m2∑
i2=0

i1(ϕ(i1, i2)− ϕ(i1 − 1, i2))

(
m1

i1

)(
m2

i2

)
×

Fm1−i1
A (t)F̄ i1

A (t)Fm2−i2
B (t)F̄ i2

B (t),

Q(ϕ, F̄A(t), F̄B(t)) =

m1∑
i1=0

m2∑
i2=1

i2(ϕ(i1, i2)− ϕ(i1, i2 − 1))

(
m1

i1

)(
m2

i2

)
×

Fm1−i1
A (t)F̄ i1

A (t)Fm2−i2
B (t)F̄ i2

B (t),

R(ϕ, F̄A(t), F̄B(t)) =

m1∑
i1=0

m2∑
i2=0

ϕ(i1, i2)

(
m1

i1

)(
m2

i2

)
Fm1−i1
A (t)F̄ i1

A (t)Fm2−i2
B (t)F̄ i2

B (t).

Then the density function of the system lifetime, T , can be written as

fT (t) = rA(t)P (ϕ, F̄A(t), F̄B(t)) + rB(t)Q(ϕ, F̄A(t), F̄B(t)),

therefore, the hazard rate and reversed hazard rate of the system are

rT (t) =rA(t)
P (ϕ, F̄A(t), F̄B(t))

R(ϕ, F̄A(t), F̄B(t))
+ rB(t)

Q(ϕ, F̄A(t), F̄B(t))

R(ϕ, F̄A(t), F̄B(t))

and

r̃T (t) =rA(t)
P (ϕ, F̄A(t), F̄B(t))

1−R(ϕ, F̄A(t), F̄B(t))
+ rB(t)

Q(ϕ, F̄A(t), F̄B(t))

1−R(ϕ, F̄A(t), F̄B(t))

At the following, we suppose that the distribution of components following the proportional hazard
rate model.
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Theorem 2.1. Consider a coherent system with two subsystems connected to each other in series
(Figure 2). The parallel subsystems have i.i.d. components which distributed by F̄A(t) and F̄B(t),
respectively. The survival signature of system is given in Table 1 in parentheses. Suppose that the
distributions of components follow a proportional hazard rate model as F̄B(t) = [F̄A(t)]

λ for some
λ > 0.

(i) If rA(t) is increasing function of t (i.e. F̄A is IFR) then rT (t) is increasing in t, for all
λ > 0.

(ii) If rA(t) is decreasing function of t (i.e. F̄A is DFR) then r̃T (t) is decreasing in t, for all
λ > 0.

Proof. (i) For given system, the two ratios P (ϕ,x,xλ)
R(ϕ,x,xλ)

and Q(ϕ,x,xλ)
R(ϕ,x,xλ)

are decreasing function of x, 0 ≤
x ≤ 1 for all λ > 0. Letting x = F̄A(t), under the assumptions of the theorem, the result is
obtained.

(ii) For given system, the two ratios P (ϕ,x,xλ)
1−R(ϕ,x,xλ)

and Q(ϕ,x,xλ)
1−R(ϕ,x,xλ)

are increasing function of x, 0 ≤
x ≤ 1 for all λ, λ > 0, hence similar to part (i) the result holds.

Theorem 2.2. Consider the coherent system as in Theorem 2.1. Suppose that the distributions of
components follow a proportional hazard rate model as F̄A(t) = [F̄0(t)]

λ1 and F̄B(t) = [F̄0(t)]
λ2 for

some reliability function F̄0(t) and some λ1, λ2 > 0.
(i) If r0(t) is increasing function of t (i.e. F̄0 is IFR) then rT (t) is increasing in t, for all

λ1, λ2 > 0.
(ii) If r0(t) is decreasing function of t (i.e. F̄0 is DFR) then r̃T (t) is decreasing in t, for all

λ1, λ2 > 0.

Proof. The proof is similar to Theorem 2.1.

2.2 Comparison study

Figure 1: System 1

Samaniego and Navarro [7] compared coherent systems with different types of components using
the survival signature. Their result is given below.

Theorem 2.3. [7] Consider the two systems shown in Figures 1 and 2 with survival signatures
given in Table 1. For i = 1, 2, let Ti be the lifetime of system i. Assume that the lifetimes of
components of type A are i.i.d. with reliability F̄A, the lifetimes of components of type B are i.i.d.
with reliability F̄B and components of different types have independent lifetimes. If F̄A(t) ≤ F̄B(t)
for all t, then T1 ≤st T2.
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Figure 2: System 2

Table 1: The survival signature of the system in Figure 1 (Figure 2)

ϕ1(i1, i2)(ϕ2(i1, i2)) i2 = 0 i2 = 1 i2 = 2 i2 = 3
i1 = 0 0(0) 0(0) 0(0) 0(0)
i1 = 1 0(0) 0(1) 1

9 (1)
1
3 (1)

i1 = 2 0(0) 0(1) 4
9 (1)

2
3 (1)

i1 = 3 1(0) 1(1) 1(1) 1(1)

At the continue, we stochastically compare the coherent systems.

Theorem 2.4. Consider two coherent systems with lifetimes Ti, i = 1, 2 composed of two types of
components. Assume that the lifetimes of components of type A are i.i.d. with reliability function
F̄0, and the lifetimes of components of type B are i.i.d. with reliability function F̄ λ0 , λ > 0 and
components of different types are independent.

(i) T1 ≤st T2 for all F̄0 if R(ϕ1, x, x
λ) ≤ R(ϕ2, x, x

λ) for all x, 0 ≤ x ≤ 1.

(ii) T1 ≤hr T2 for all F̄0 if R(ϕ2,x,xλ)
R(ϕ1,x,xλ)

is decreasing in x, 0 ≤ x ≤ 1.

(iii) T1 ≤lr T2 for all F̄0 if P (ϕ2,x,xλ)+λQ(ϕ2,x,xλ)
P (ϕ1,x,xλ)+λQ(ϕ1,x,xλ)

is decreasing in x, 0 ≤ x ≤ 1.

Proof. By using Definition 1 and letting F̄0(t) = x we get the results.

Now, we investigate the conditions at Theorem 2.4 for the two systems considered at Theorem
2.3 which their components obey the proportional hazard model. The following theorems are obtained
by some tedious computations and therefore the proofs are omitted.

Theorem 2.5. Consider the two coherent systems given at Theorem 2.3. Then

(i) T1 ≤hr T2 for all F̄0 and 0 < λ ≤ 2.

(ii) T1 ≤hr T2 for all F̄0 and 0 < λ ≤ 2.

(iii) T1 ≤lr T2 for all F̄0 and 0 < λ ≤ 2.

Note that for 0 < λ ≤ 1 we have F̄0 ≤ F̄ λ0 and based on Theorem 2.3, T1 ≤st T2. Hence,
Theorem 2.5 shows that this result holds, for 1 < λ ≤ 2.

Theorem 2.6. Consider the two coherent systems as in Theorem 2.5.
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(i) Assume that at System 1, F̄A = F̄0, and F̄B = [F̄0]
λ and at System 2, F̄A = F̄∗, and

F̄B = [F̄∗]
λ for some reliability functions F̄0, F̄∗ and λ > 0. If F̄0(t) ≤ F̄∗(t) for all t > 0 then

T1 ≤st T2 for all λ > 0.
(ii) Assume that at System 1, F̄A = [F̄0]

λ1, and F̄B = [F̄0]
λ2 and at System 2, F̄A = [F̄∗]

λ1, and
F̄B = [F̄∗]

λ2, for some reliability functions F̄0, F̄∗ and λ1, λ2 > 0.
If F̄0(t) ≤ F̄∗(t) for all t > 0 then T1 ≤st T2 for every λ1, λ2 such that λ1 ≥ λ2.

At the following theorems, we consider coherent system in Figure 1 with survival signature given
in Table 1, and compare the lifetime of this system under different conditions.

Theorem 2.7. Consider the coherent system illustrated in Figure 1. Let T1 be the lifetime of the
system when F̄A = F̄0 and F̄B = F̄ λ10 , and T2 be the lifetime of the system when F̄A = F̄0 and
F̄B = F̄ λ20 . Then

(i) T1 ≥st T2 if 0 < λ1 < λ2.
(ii) T1 ≥hr T2 if 0 < λ1 < λ2 ≤ 1.

Proof. (i) For given system we have,
R(ϕ, x, xλ) = 2x(3+3λ) − 3x(3+2λ) + 2x(2+2λ) − 2x(2+3λ) + x3 + x(1+2λ)

It can be shown that it is a decreasing function of λ, for all x, 0 ≤ x ≤ 1. Therefore, for all
t > 0,

F̄T1(t) = R(ϕ, F̄0(t), [F̄0(t)]
λ1) ≥ R(ϕ, F̄0(t), [F̄0(t)]

λ2) = F̄T2(t).

Theorem 2.8. Consider the coherent system illustrated in Figure 1. Let T1 be the lifetime of the
system when F̄A = F̄0 and F̄B = F̄ λ0 , and T2 be the lifetime of the system when F̄A = F̄1 and
F̄B = F̄ λ1 . Then if F̄0(t) ≤ F̄1(t) for all t > 0, then T1 ≤st T2 for all λ > 0.

Proof. For given system, similar to proof of Part (i) of Theorem 2.8, we have R(ϕ, x, xλ) is an
increasing function of x, 0 ≤ x ≤ 1, for all λ > 0. Therefore, for all t > 0,

F̄T1(t) = R(ϕ, F̄0(t), [F̄0(t)]
λ) ≤ R(ϕ, F̄1(t), [F̄1(t)]

λ) = F̄T2(t).

Theorem 2.9. Consider the coherent system illustrated in Figure 1. Let T1 be the lifetime of the

system when F̄A = F̄ λ10 and F̄B = F̄ λ20 , and T2 be the lifetime of the system when F̄A = F̄
λ∗1
0 and

F̄B = F̄
λ∗2
0 . Suppose that 0 < λ1 ≤ λ2 and 0 < λ∗1 ≤ λ∗2. If (λ1, λ2) ⪰m (λ∗1, λ

∗
2) then T1 ≤st T2 .

Proof. For the given system, we have

∂R(ϕ, xλ1 , xλ2)

∂λ2
− ∂R(ϕ, xλ1 , xλ2)

∂λ1
=

− ln(x)(3x3λ1 − xλ1+2λ2 − 3x3λ1+2λ2 + 2x2λ1+3λ2)

It can be shown that this function is nonnegative for λ1 ≤ λ2.Hence, (λ2 − λ1)
(∂F̄T (t)

∂λ2
− ∂F̄T (t)

∂λ1

)
is nonnegative for λ1 ≤ λ2 and hence using Lemma 1.1 we get that the reliability function of system
is Schur-convex in (λ1, λ2) and using Definitions 2 and 3, the desired result holds.
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At the following, we compare a coherent system with heterogeneous components and the coherent
system with homogeneous components.

Figure 3: System 3

Table 2: The survival signature of the System 3

(i1, i2) (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)
ϕ(i1, i2) 0 0 0 1

2 1 1

Theorem 2.10. Consider a coherent system given in Figure 3 with two types of components with
survival signature given in Table 2 and denote its lifetime by T1. Also, consider a similar coherent
system with the same structure which consists of i.i.d. components with common reliability function
¯̄F (t) = 1

2(F̄A(t) + F̄B(t)) and denote the system’s lifetime by T2. If F̄A(t) ≤ F̄B(t) for all t > 0
then T1 ≤st T2.

Proof. For the system with heterogeneous components, we have

F̄T1(t) = F̄A(t)(1− F̄A(t))F̄B(t) + F̄ 2
A(t).

The signature vector of this system is s = (13 ,
2
3 , 0), hence, the reliability function of the system

with i.i.d. components is

F̄T2(t) =
¯̄F 2(t)(2− ¯̄F (t))

=
1

2
(F̄A(t) + F̄B(t))

2
(
1− 1

4
(F̄A(t) + F̄B(t))

)
Then one can show that F̄T1(t) ≤ F̄T2(t) holds if F̄A(t) ≤ F̄B(t) for all t > 0.

Theorem 2.11. Consider a coherent system given in Figure 3 with lifetime T1 and survival
signature given in Table 2. Suppose that F̄A = F̄ λ10 and F̄B = F̄ λ20 . Also, consider a coherent

system with the same structure but with i.i.d. components with common reliability function [F̄0(t)]
λ̄

where, λ̄ = 1
2(λ1 + λ2) and denote the lifetime of such system by T2. If λ1 ≤ λ2 then T1 ≥st T2.

Proof. This can be proved similar to Theorem 2.10 and therefore is omitted.
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Comparison of coherent systems using reverse mean residual order
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Abstract

The performance ordering of the coherent systems is well known topic in the reliability.
Many works and researches in different criteria have been done. Now, we are interested in
ordering the coherent system with dependent identical distributed components in terms of
reversed mean residual lifetime. The results are based on the representation of the system
distribution as a distorted distribution function of the common components’ distribution.

Keywords: Distortion, Reverse mean residual lifetime, Stochastic order, Copula.

1 Introduction

The study on performance ordering of coherent system is a principle subject in the reliability
which have been done based on different criteria. Most of the results are on the case that, the
system components are i.i.d. see for example [2, 5, 6]. Navarro et al. [3] obtained some ordering
results for coherent systems with identical distributed (ID) components by using stochastic, hazard
rate and likelihood ratio orders. They also achieved a representation for reliability function based
on distortion function to compare the system lifetimes in [3]. An increasing continuous function
q : [0, 1] → [0, 1] is called distortion function introduced in [8]. For a distribution F , define
Fq = q(F ), then Fq is also a distribution which is called distortion distribution.
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Recently, Navarro and Gomis et al. [4] obtained comparisons in the mean residual life (MRL)
order for coherent systems with ID component lifetimes. In this paper, we extend the results of [4]
for the case of reverse mean residual order (RMRL). Let X and Y be two non-negative random
variables with distribution functions F and G. Reversed hazard rate order has been defined in [6].

X is smaller than Y in the reversed hazard rate order which is written as X ⩽RHR Y if G(t)
F (t) is

increasing in t ∈ (−∞,+∞). Equivalently, X ⩽RHR Y iff (t− Y |Y ⩽ t) ⩽ST (t−X|X ⩽ t).
As an another order, X is said smaller than Y in the reversed mean residual life order, which is
shortly denoted by X ⩽RMRL Y , if E(t − Y |Y ⩽ t) ⩽ E(t − X|X ⩽ t) for all t. Obviously, the
RMRL order concluds E(X) ⩽ E(Y ), and also the RHR order implies the RMRL order. The
mentioned relations are summarized in Table 1.

Table 1: Relationship between some relevant stochastic orders

X ⩽RHR Y =⇒ X ⩽RMRL Y
⇓ ⇓

X ⩽ST Y =⇒ E(X) ⩽ E(Y )

In Section 2, the fundamental theorem is presented to obtain comparison results in the RMRL
ordering.

2 Main Results

First of all, Belzunce et al. [1] presented some conditions which is provided a reverse connection
between means order and RMRL order, that is available in the following theorem.

Theorem 2.1. Let X ∼ F and Y ∼ G be non-negative random variables with finite means such
that E(X) ⩽ E(Y ), then X ⩽RMRL Y if there exist a t0 in which F (t)

G(t) is decreasing in t ⩽ t0 and
is increasing in t ⩾ t0.

In the next lemma sufficient conditions for equivalency of FX
GY

based on the ratio of qXqY is given.

Lemma 2.2. Assume that X and Y be two non-negative random variables with distorted
distributions qX and qY based on the same continuous distribution F . Then, the following
condonations are equivalent.

(a) ∃t0 ∈ (0,∞) such that
FX
GY

is decreasing in (0, t0) and is increasing in (t0,∞).

(b) ∃u0 ∈ (0, 1) such that
qX
qY

is decreasing in (0, u0) and is increasing in (u0, 1).

Proof. Assume that (a) holds and take u0 = F (t0) ∈ (0, 1). If F is continuous and 0 < u1 ⩽ u2 ⩽ u0,
there exists 0 ⩽ t1 ⩽ t2 ⩽ t0 such that ui = F (ti) for i = 1, 2. As FX

GY
is decreasing in (0, t0), then

qX(u2)

qY (u2)
=
FX(t2)

GY (t2)
⩽ FX(t1)

GY (t1)
=
qX(u1)

qY (u1)
,
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so qX
qY

is decreasing in (0, u0). Similarly, if u0 ⩽ u1 ⩽ u2 < 1 and F is continuous, there exists
t0 ⩽ t1 ⩽ t2 such that ui = F (ti) for i = 1, 2, the result is obtained. Then (a) implies (b) and the
reverse implication can be proved obviously.

As a consequence, we obtain conditions for comparing system based on RMRL order in the
next theorem.

Theorem 2.3. Suppose that X and Y be two non-negative random variables with distorted
distributions qX and qY based on the same continuous distribution F . If there exist a u0 ∈ (0, 1),
such that qX

qY
is decreasing in (0, u0) and is increasing in (u0, 1), then X ⩽RMRL Y whenever

E(X) ⩽ E(Y ).

Proof. It is immediately proved based on Theorem 2.1 and Lemma 2.2.

Now, consider H = qX
qY

, Theorem 2.3 is equivalent to say that, if H is decreasing in (0, u0) and
increasing in (u0, 1) i.e. (H is bathtube), then the correspond random variables X and Y have
RMRL order when their means are ordered. In special case t0 = 0, without the condition about
the means, we have X ⩽RMRL Y . The next examples are given to clarify the subject.
The connection between distortion distribution and distribution function of coherent system is
the next discussed topic. In order to, consider a coherent system with n identical distributed
components X1, ..., Xn ∼ F , structure function ϕ and lifetime T . If P1, ..., Pr are minimal path sets
of the syetem, then

FT (t) =
r∑
j=1

P (XPj ⩽ t)−
∑
i<j

P (XPi ∩XPj ⩽ t) + ...+ (−1)r+1P (XP1 ∩ ... ∩XPr ⩽ t).

The dependence between identical components can be expressed by copula C, hence, distribution
function of each minimal path set Pj can be written as follow.

FPj (t) = P (XPj ⩽ t) = P (min
i∈Pj

Xi ⩽ t)

= C(F (t1), ..., F (tn)). (2.1)

So far, the distribution of the system lifetime based on equation (2.1) can be represented as,

FT (t) = q(F (t)) (2.2)

where q is distortion function. For more perception consider the following example. Distortion
function for all coherent systems with 1 − 3 independent identical distributed components are
exhibited in Table 2.
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Table 2: Distortion function of all systems with 1− 3 i.i.d. components.

i Ti = ϕ(X1, ..., Xn) qi(u)
1 X1:1 = X1) u
2 X1:2 = min(X1, X2) u2

3 X2:2 = max(X1, X2) 2u− u2

4 X1:3 = min(X1, X2, X3) u3

5 min(X1,max(X2, X3) 2u2 − u3

6 X2:3 (2-out of-3) 3u2 − 2u3

7 max(X1,min(X2, X3) u+ u2 − u3

8 X3:3 = max(X1, X2, X3) 3u− 3u2 + u3

Example 2.4. Assume a system with three components whose the lifetime is, T7 =
max(X1,min(X2, X3)) with minimal path sets P1 = {1} and P2 = {2, 3}. Then

FT7(t) = P (T7 ⩽ t) = P ({XP1 ⩽ t} ∪ {XP2 ⩽ t})
= P (X1 ⩽ t) + P ({X2 ∩X3} ⩽ t)− P ({X1 ∩X2 ∩X3} ⩽ t)

= C(F (t), 1, 1) + C(1, F (t), F (t))− C(F (t), F (t), F (t)) = q7(F (t)).

Thus, the distortion function of T7 is,

q7(u) = C(u, 1, 1) + C(1, u, u)− C(u, u, u),

in which, C is copula function. If the components are independent i.e. C is the product copula,
then

q7(u) = u+ u2 − u3.

A straight computation, give us

H17(u) =
q1(u)

q7(u)
=

u

u+ u2 − u3
.

This ratio, H17 is decreasing in (0, 0.5) and increasing in (0.5, 1), therefore T1 ⩽RMRL T7 when
E(T1) ⩽ E(T7).
Note that, T1 ⩽RMRL T7 is satisfied, if E(T1) ⩽ E(T7), for example if the component lifetime is
Weibull distribution F (t) = e−t

2
t ⩾ 0, then

FT7(t) = e−t
2
+ e−2t2 − e−3t2

FT1(t) = e−t
2

so the means are,
E(T1) ≈ 0.88622 ⩽ 1.195443 ≈ E(T7).

For another comparison, computation give us

H21(u) =
q2(u)

q1(u)
=
u2

u
,

this function is increasing in (0, 1), so T1 ⩽RHR T2 and T1 ⩽RMRL T2 is concluded without any
condition about their expectations.
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Theorem 2.5. Assume that T1, ..., T8 be the lifetimes of coherent systems with 1 − 3 i.i.d.
components which is given in Table 2.1, then

T3 ⩽RMRL T8 ⩽RMRL T1 ⩽RMRL T7 ⩽RMRL T6 ⩽RMRL T5 ⩽RMRL T2 ⩽RMRL T4,

whenever their means are ordered.

Proof. The proof is obtained by studying all the ratio of distortion function pairs similar to Example
2.4.

If the ratio, based on the Theorem 2.3, is bathtub in (0, 1), they have RMRL ordering (when
their means are order). If the ratio is increasing in (0, 1), the RHR and RMRL order (without any
condition) holds. So, with more precise in the conclusion, we can rewritten the result of Theorem
2.5 in such way,

T3 ⩽RHR T8 ⩽RHR T1 ⩽RMRL T7 ⩽RHR T6 ⩽RHR T5 ⩽RHR T2 ⩽RHR T4.
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Some monotonicity properties of mean residual life of a k-out-of-n
system with nonidentical components

Khanjari Sadegh, M. 1 and Mohammadzadeh, T. 2

1,2 Department of Statistics, Faculty of Mathematical Sciences and Statistics,

University of Birjand

Abstract

This article considers some monotonicity properties of the residual life and the mean
residual life (MRL) of a k-out-of-n System in two cases, when all components of the system
are working, also when the failed components of the system are known. We assume that
the lifetimes of the system components are independent random variables but not necessarily
identically distributed (inid), extending some results in literatures.

Keywords: Mean residual life, k-out-of-n System, Inid components, IFR, DFR.

1 Introduction

The study of reliability properties of k-out-of-n systems has been considered by many researchers.
An important class of coherent systems is k-out-of-n systems. A system with n components has
k-out-of-n structure if it fails as long as at least k of its components fail.(For a details on coherent
systems see Barlow and Proschan, 1975). Let nonnegative and continuous random variables
X1, . . . , Xn denote the lifetimes of the system components. It is known that the lifetime of the k-out-
of-n system is the kth order statistic, that is Xk:n. The MRL and the failure rate functions are very
important in reliability and survival analysis as both of them uniquely characterize the distribution
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function. For a random lifetime T (> 0) with a reliability function F̄ (t) = P (T > t) = 1−F (t) and
a density function f(t), the failure rate and the MRL functions are defined as

h(t) =
f(t)

F̄ (t)
= −d/dt(lnF̄ (t))

and

m(t) = E(T − t|T > t) =

∫∞
0 F̄ (t+ x)dx

F̄ (t)
,

respectively.

It is well known that if distribution F has increasing(decreasing) failure rate IFR(DFR) property,
that is h(t) is increasing(decreasing) function, then it has decreasing(increasing) MRL property
DMRL(IMRL), that is m(t) is decreasing(increasing) function.

IFR(DFR) ⇒ DMRL(IMRL)

The reverse above implications are not valid(see Bryson, 1969 for counterexamples). Also they do
not hold true for a system in the following sense. Let T = ϕ(X1, . . . , Xn) represent the lifetime of the
system and suppose Xi’s have IFR(DFR) property. Then in general T does not have DMRL(IMRL)
property. Actually T may not have IFR(DFR) property. See for example, Samaniego (1985) when
Xi’s are independent and identically distributed (iid) random variables. Note that for the system
lifetime T we may define different types of MRL. Therefore even if T be IFR(DFR) closed (that is
T has IFR(DFR) property when Xi’s have IFR(DFR) property) it may not have DMRL(IMRL)
property. In iid case Samaniego (1985) obtained a necessary and sufficient condition under which
to T be IFR(DFR) closed and showed that k-out-of-n system is IFR closed. Most of literatures
on k-out-of-n systems are based on the iid assumption. See for example Asadi and Goliforushani
(2008) and Goliforushni et al.(2011). But in inid case not much works have been done. It seems
Sadegh (2008-a) was the first to obtain some properties of MRL of a parallel system with inid
components. Kochar and Zuo (2010) further investigated

Xk:n − t|Xr:n > t

and

Xk:n − t|Xr:n < t < Xk:n

for 1 ≤ r < k ≤ n.

Ding et al.(2012) obtained some stochastic comparisons between residual lifetimes of parallel
systems and inactivity times of series systems with inid components.

In inid case we note that a series system is both IFR and DFR closed but this is not case for a
k-out-of-n system.

We consider here two MRL functions for a k-out-of-n system as follows:

Hk
n(t) = E(Xk:n − t|X1:n > t)
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and
Hr
n,k(t) = E(Xk:n − t|N(t) = r, Cr = {i1, . . . , ir})

for 1 ≤ r < k ≤ n in which N(t) is the number of failed components of the system up to time t
and Cr is a subset of {1, . . . , n} represents the set of indices of failed components of the system up
to this time. In other words Hr

n,k(t) measures the MRL of the system at time t when the failed
components of the system up to this time are known.

In iid case Asadi and Goliforushani (2008) showed that if F is IFR(DFR) then Hk
n(t) is

decreasing(increasing) in t. They also showed that if F is IFR then M r,k
n (t) = E(Xk:n− t|Xr:n > t,

1 ≤ r ≤ k ≤ n is decreasing in t. Sadegh (2008-b) showed in iid case that

P (Xk:n − t > x|N(t) = r) = P (Xk−r:n−r − t > x|X1:n−r > t) (1.1)

and therefore

E(Xk:n − t|N(t) = r) = E(Xk−r:n−r − t|X1:n−t > t) = Hk−r
n−r(t)

which is increasing(decreasing) in t if F is DFR(IFR). We note that in iid case

Hr
n,k(t) = Hk−r

n−r(t).

In the following section we obtain some monotonicity properties of Hk
n(t) and H

r
n,k(t) in inid case.

2 Main results

Let X1, . . . , Xn denote the lifetimes of n components in a k-out-of-n system and suppose Fi(x) =
1− F̄i(x) is the distribution function of Xi.

Lemma 2.1. In inid case we have (Xk:n − t|X1:n > t) ≤st (Xk:n−1 − t|X1:n−1 > t).

Proof. See Sadegh(2011).
We recall that X ≤st Y if F̄ (x) ≤ Ḡ(x), for all x. Above lemma implies that Hk

n(t) = E(Xk:n −
t|X1:n > t) is a decreasing function of n. We now consider the behavior of Hk

n(t) in terms of t. Note
that Xk:n − t|X1:n > t is distributed as kth order statistic from the sample Xi

t = (Xi − t|Xi > t),

i = 1, . . . , n. We have P (Xi
t ≤ x) = 1− F̄i(t+x)

F̄i(t)
and therefore

P (Xk:n − t > x|X1:n > t) = P (

n∑
i=1

Zit,x ≤ k − 1) (2.1)

where Zit,x is distributed as Binomial(1, pi,x(t) = 1− F̄i(t+x)
F̄i(t)

) and Zit,x, i = 1, . . . , n are independent

random variables. It is easy to see that

P (
n∑
1

Zit,x ≤ k − 1)− P (
n−1∑
1

Zit,x ≤ k − 2) =
F̄n(t+ x)

F̄n(t)
P (

n−1∑
1

Zit,x = k − 1) ≥ 0



Third Seminar on Reliability Theory and its Applications 164

that is
(Xk:n − t|X1:n > t) ≥st (Xk−1:n−1 − t|X1:n−1 > t)

and therefore Hk
n(t) ≥ Hk−1

n−1(t).
The following lemma is required in the sequel.

Lemma 2.2. Kr
n(p) =

∑r
x=0

(
n
x

)
px(1− p)n−x, 0 ≤ r ≤ n is a decreasing function of 0 < p < 1.

Proof. d/dp(Kr
n(p)) =

∑r
1 x
(
n
x

)
px−1(1−p)n−x−

∑r
0(n−x)

(
n
x

)
px(1−p)n−x−1 = n

∑r−1
0

(
n−1
x

)
px(1−

p)n−x−1 − n
∑r

0

(
n−1
x

)
px(1− p)n−x−1 which is obviously negative and the lemma follows.

In above lemma we note that if p is replaced by pt in which pt is increasing(decreasing) in t then
Kr
n(pt) is also decreasing(increasing) in t.

Lemma 2.3. If Fi’s are IFR(DFR) distributions then P (Xk:n − t > x|X1:n > t) is
decreasing(increasing) in t.

Proof. From Equation (2.1) we have

P (Xk:n − t > x|X1:n > t) =

k−1∑
j=0

∑
Cj

∏
i∈Cj

pi,x(t)
∏

i∈C−Cj

(1− pi,x(t)) (2.2)

where C = {1, . . . , n} and Cj is a subset of C with cardinality j. It is easy to see that Fi’s are

IFR(DFR) if and only if pi,x(t) = 1 − F̄i(t+x)
F̄i(t)

, 1 ≤ i ≤ n are increasing(decreasing) in t. Now in

view of Lemma 2.2 and Equation (2.2) the proof of the lemma simply follows.
Lemma 2.3 implies that if Fi’s are IFR(DFR) distributions then Hk

n(t) is decreasing(increasing) in
t.

We now consider the MRL function Hr
n,k(t). The following equation gives in inid case an expression

which is similar to that of given in iid case stated in Equation (1.1).

P (Xk:n − t > x|N(t) = r, Cr = {i1, . . . , ir})

= P (X(k−r:n−r) > t+ x|X(1:n−r) > t) (2.3)

where X(j:n−r) is jth order statistic from random sample {Xi|i ∈ C − Cr, i = 1, . . . , n− r}.
From above equation we have

Hr
n,k(t) = E(Xk:n − t|N(t) = r, Cr = {i1, . . . , ir})

= E(X(k−r:n−r)|X(1:n−r) > t) (2.4)

Lemma 2.4. If Fi’s are IFR(DFR) distributions then P (Xk:n − t > x|N(t) = r, Cr = {i1, . . . , ir})
is decreasing(increasing) in t.
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Proof. In view of Equation (2.3) and Lemma 2.3 the proof of the lemma follows.
Based on Lemmas 2.3 and 2.4 and Equation (2.4) we note that if Fi’s are IFR(DFR) distributions
then Hr

n,k(t) is decreasing(increasing) in t.
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Predicting the lifetime of a k-out-of-n:F system in the presence of
an outlier

Khatib Astane, B. 1

Department of Statistics, University of Neyshabur

Abstract

Consider a k-out-of-n:F system which the lifetimes of the components are not identically
distributed such that there is only one outlier. Based on an observed data set, the prediction
problem of the lifetime of the system is investigated in this paper. The exponential distribution
is used to obtain the results in details. Finally an illustrative example is presented.

Keywords: Order statistics, Single outlier model, Proportional hazard rate model,
Exponential distribution.

1 Introduction and preliminaries

As known in the literature of reliability, a k-out-of-n:F system consists of n components which
fails if and only if at least k of its components fail. Such systems have various applications in
engineering. For more details, we refer to Lawless (2003). Recently, the residual lifetime and
inactivity time of such systems have been studied by some authors. See, for example, Asadi
and Bayramoglu (2006), Bairamov and Arnold (2008) and Tavangar and Bariamov (2015). Many
researchers have studied the k-out-of-n:F system assuming the lifetimes of the components are
independent and identically distributed random variables. But, there are some situations in life-
testing and reliability experiments in which the observations are independent but not identically
distributed. For example, when the distribution of one of the observations is different from the
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others, one face with a single outlier model. In this paper, we would like to predict the lifetime of
a survive k-out-of-n:F system which contains an outlier.

Let us denote the lifetimes of the components of a k-out-of-n:F system by X1, . . . , Xn which are
independent random variables, such that X1, . . . , Xn−1 come from a population with cumulative
distribution function (cdf) F (x) and probability density function (pdf) f(x); moreover, Xn is an
outlier from a different population with cdf G(x) and pdf g(x). Denote the corresponding order
statistics by X1:n < · · · < Xn:n. Then, it is obvious that the lifetime of a k-out-of-n:F system is
Xk:n. If one observe some of the smallest lifetime whereas the system is still functioning, then the
problem of predicting the lifetime of the system may be of interest. More precisely, assume that
one only observe

X = {X1:n, . . . , Xr:n},

such that 1 ≤ r < k. To predict Xk:n for r < k ≤ n, let us first recall the pdfs of order statistics in
the presence of an outlier from Balakrishnan (2007). The pdf of Xr:n (1 ≤ r ≤ n) is given by

fXr:n(y) =
(n− 1)!

(r − 2)!(n− r)!
(F (y))r−2G(y)f(y)(1− F (y))n−r

+
(n− 1)!

(r − 1)!(n− r)!
(F (y))r−1g(y)(1− F (y))n−r

+
(n− 1)!

(r − 1)!(n− r − 1)!
(F (y))r−1f(y)(1− F (y))n−r−1(1−G(y)),

where the first and last terms vanish when r = 1 and r = n, respectively. The joint pdf of
X = (X1:n, . . . , Xr:n), at the point y = (y1, . . . , yr), is as follows

fX(y) =
(n− 1)!

(n− r)!

r∑
i=1

g(yi)

r∏
j=1
j ̸=i

f(yj)(1− F (yr))
n−r

+
(n− 1)!

(n− r − 1)!

r∏
i=1

f(yi)(1− F (yr))
n−r−1(1−G(yr)), (1.1)

where the last term vanishes when r = n. Moreover, the joint pdf of (X, Xk:n), for 1 ≤ r < k ≤ n,
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is given by

f(X,Xk:n)(y, yk) = (n− 1)!

×
{ r∑
i=1

g(yi)
r∏
j=1
j ̸=i

f(yj)
(F (yk)− F (yr))

k−r−1f(yk)(F̄ (yk))
n−s

(s− r − 1)!(n− k)!

+

r∏
i=1

f(yi)
(F (yk)− F (yr))

k−r−2(G(yk)−G(yr))f(yk)(F̄ (yk))
n−k

(k − r − 2)!(n− k)!

+

r∏
i=1

f(yi)
(F (yk)− F (yr))

k−r−1g(yk)(1− F (yk))
n−k

(s− r − 1)!(n− k)!

+

r∏
i=1

f(yi)
(F (yk)− F (yr))

k−r−1f(yk)(1− F (yk))
n−k−1Ḡ(yk)

(k − r − 1)!(n− k − 1)!

}
. (1.2)

where the second and last terms vanish when k = r + 1 and k = n, respectively.

The rest of paper is as follows. In Section 2, the best unbiased predictor is presented. In Section
3, the predictor is derived for the case of Exponential distribution. In this section, it is assumed
that (n− 1) component of a k-out-of-n:F system have exponential lifetimes and the lifetime of the
other component is different which come from a proportional hazard rate model. The results are
illustrated via a real data set in Section 4. Finally, some conclusions are stated in Section 5.

2 Best unbiased predictor

Assume that the data set X = {X1:n, . . . , Xr:n} is available. It is well-known that X̂k:n = E[Xk:n|X]
is the best unbiased predictor for Xk:n (r < k ≤ n), in the sense that it is unbiased (i.e., E(X̂k:n) =

E(Xk:n)) and minimizes the mean square prediction error E
(
(X̂k:n −Xk:n)

2
)
. For more details

about this predictor, we refer the readers to MirMostafaee and Ahmadi (2011) and Khatib and
Ahmadi (2015). Using (1.2) and (1.1), we find

X̂s:n =

4∑
i=1

φi(r), (2.1)

such that the functions φi(r) for i = 1, 2, 3, 4 are presented as follows. By assuming Ur,k ∼
Beta(k − r, n− k + 1), we get

φ1(r) =
b1(r)

a(r)
E

(
F−1

(
Ur,k(1− F (yr)) + F (yr)

))
,

φ2(r) =
b2(r)

a(r)
E

{
F−1

(
Ur+1,k(1− F (yr)) + F (yr)

)
×
(
G
(
F−1

(
Ur+1,k(1− F (yr)) + F (yr)

))
−G(yr)

)}
,
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φ3(r) =
b3(r)

a(r)
E

{
F−1

(
Ur,k(1− F (yr)) + F (yr)

)
×
g
(
F−1

(
Ur,k(1− F (yr)) + F (yr)

))
f
(
F−1

(
Ur,k(1− F (yr)) + F (yr)

))}
and

φ4(r) =
b2(r)

a(r)
E

{
F−1

(
Ur,k(1− F (yr)) + F (yr)

)
×
(
1−G

(
F−1

(
Ur,k(1− F (yr)) + F (yr)

)))}
,

where

a(r) =

r∑
i=1

g(yi)

r∏
j=1j ̸=i

f(yj) + (n− r)

r∏
i=1

f(yi)(1− F (yr))
−1(1−G(yr)),

b1(r) =

r∑
i=1

g(yi)

r∏
j=1j ̸=i

f(yj),

b2(r) = (n− r)
r∏
i=1

f(yi)(1− F (yr))
−1

and

b3(r) =

r∏
i=1

f(yi).

3 Exponential distribution

In this section, we assume that X1, . . . , Xn−1 have the exponential distribution with the cdf

F (x) = 1− e−θx, x > 0, θ > 0.

The reader may refer to Balakrishnan and Basu (1995) for more details about exponential
distribution. Moreover, we consider a proportional hazard rate model for the distribution of the
outlier. That is, we assume that Xn comes from the cdf

Ḡ(x) = (F̄ (x))α, (3.1)

where F̄ (x) = 1−F (x) is the survival function of the first (n−1) observations. In such a situation,
from (3.2), the best unbiased predictor of Xk:n is given by

X̂k:n =

4∑
i=1

ξi(r), (3.2)
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where

ξ1(r) =
αψ

αψ + (n− r)

{
Xr:n +

1

θ

(n− r)!

(k − r − 1)!(n− k)!

k−r−1∑
i=0

(−1)i
(
k−r−1

i

)
(n− k + i+ 1)2

}
,

ξ2(r) =
1

α
n−rψ + 1

{
Xr:n − (B(k − r − 1, n− k + 1))−1

×
[
Xr:nB(k − r − 1, n− k + α+ 1)− 1

θ

k−r−2∑
i=0

(
k − r − 2

i

)
×(−1)i(

1

(n− k + i+ 1)2
− 1

(n− k + i+ α+ 1)2
)]}

,

ξ3(r) =
α(B(k − r, n− k + 1))−1

αψ + (n− r)

{
Xr:nB(k − r, n− k + α− 2)

+
1

θ

k−r−1∑
i=0

(
k − r − 1

i

)
(−1)i

1

(n− k + i+ α+ 1)2

}
and

ξ4(r) =
(B(k − r, n− k))−1

ψ
n−r + 1

{
Xr:n

(k − r − 1)!(n− k + α− 1)!

(n− r + α− 1)!

+
1

θ

k−r−1∑
i=0

(
k − r − 1

i

)
(−1)i

(n− k + α+ i)2

}
,

such that

ψ =

r∑
i=1

eθ(α−1)(Xr:n−Xi:n).

In the next section, we present a simulated example to illustrate the obtained results.

4 Illustrative example

Here, we generate the lifetimes of the components of a system with 10 components such that 9
components come from a exponential distribution with θ = 0.5 and the outlier comes from the
model (3.1) with α = 0.2. The ordered data are

0.418, 0.723, 1.052, 2.923, 3.451, 3.483, 5.262, 5.469, 6.299, 16.970.

Now, consider a 5-out-of-10:F system such that the above data are the lifetime of its components.
Obviously, the exact lifetime of this system is X5:10 = 3.451. Consider the time point that we only
observe the first third smallest lifetimes, i.e., (X1:10, X2:10, X3:10) = (0.418, 0.723, 1.052). Based
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on these observations and using (3.2), the predicted lifetime of the system is 1.752. So, it is
important to know if we have more observations then can we get a better predictor. In this
example, if (X1:10, . . . , X4:10) = (0.418, 0.723, 1.052, 2.923) are observed, then the predicted lifetime
of the system is 3.304 which is closer to the exact value.

5 Concluding Remark

In this paper the prediction problem of the lifetime of a k-out-of-n:F system was investigated in
the presence of an outlier. The best unbiased predictor was derived in general. The results were
obtained in details for the case of exponential distribution. Eventually an illustrative example was
presented. In this example it was observed that according to a larger observed data set a more
accurate predictor may be obtained. However, this issue seems logical, but it may be discussed via
different criteria such as Mean Squared Prediction Error or Pitman Closeness.
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Some reliability measures in general form of distributions
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Abstract

In this paper, some properties of concepts in reliability such as log-odds rate, proportional
hazard model and stress- strength model are studied in a general form of distributions.

Keywords: Hazard rate function, Reversed hazard rate function, Log-odds rate function,
Stress-Strength model.

1 Introduction

In probability and statistics, it is very important to obtain statistical and mathematical properties
for a general class of distributions. For example the exponential family of distribution and
its properties is well known in statistics. Al-Hussaini (1999) has proposed a general class of
distributions, which includes more distribution than exponential family. His class of distribution
in special case is defined as follow:

Let X be a non-negative continuous random variable with distribution function of form,

F (x) = 1− e−αkθ(x); x > 0, (1.1)

where α > 0 and θ is a parameter vector (which may contains α) and kθ(x) is a strictly increasing
function of x with kθ(0) = 0 and kθ(∞) = ∞. The probability density function of x is then given
by:

f(x) = αk′θ(x)e
−αkθ(x); x > 0, (1.2)

1m.khorashadizadeh@birjand.ac.ir
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where k′θ(x) is the derivative of kθ(x) with respect to x. Note that if F (x) = P (X > x) has

closed form, then kθ(x) = − lnF (x)
α . The form of (1.1) can be viewed as the exponential form of

distributions. Table 1 shows the Kθ(x) for some distributions.
Rezaei Roknabadi et al. (2009) has introduced the discrete version of exponential form of

distributions by using transformation Y = [X] and named it Telescopic form of distribution.

Table 1: kθ(x) function for some lifetime distribution

PDF kθ(x) Name

αe−αx x Exponential

αθxθ−1e−αx
θ

xθ Weibull

αxe
−α
x2

2
x2

2
Rayleigh

αθeθxe−α(e
θx−1) eθx − 1 Gompertz

2αx2r−1(
θ

x2
+ r)× exp{− θ

x2
− αx2re

−
θ

x2 } x2re
−
θ

x2 Brittle-Fracture

(γ + θx)e
−γx+

θx2

2 x+
θ

2γ
x2 Exponential-linear

2αxe−x
2
(1− e−x

2
)α−1 − ln(1− e−x

2
) Burr X

αθxθ−1

(1 + xθ)α+1
ln(1 + xθ) Burr XII

θx−1−θe−x
−θ

ln(−ex−θ
) Frechet

2ex

(1 + ex)2
ln(

1 + ex

2
) Half-logistic

Many researchers have obtained the different properties of this general class of distribution
such as Soliman (2002), Al-Hussaini (2010), Al-Hossain (2016) and Hashempour and Doostparast
(2016).

In this form of exponential distribution some reliability measures have the following form:

• Reliability function: F (t) = exp{−αkθ(t)}.

• Hazard rate function: h(t) = f(t)
R(t) = αk′θ(t).

• Reversed hazard rate function: r(t) = f(t)
F (t) =

αk′θ(t)e
−αkθ(t)

1−e−αkθ(t)
= h(t)

eαkθ(t)−1
.

• Mean residual life: µ(t) =
∫∞
t exp{α(kθ(t)− kθ(u))}du .

In the rest of the paper we obtain some results for this general class of distribution for other
reliability concepts such as log-odds rate, proportional hazard model and stress-strength model.
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2 Log-odds rate function in general form

Recently, there has been some interest in studying the potential of log-odds function and log-odds
rate in reliability theory. The motivations for the construction of these functions are: (i) they are
easy to compute and interpret, (ii) the estimation of these functions is relatively simple, (iii) the
behaviour of the other reliability functions can be ascertained through them, and (iv) the odds
ratio can also be used to elicit subjective probability of failure (survival) in the context of inference
in a Bayesian framework. The aging properties and stochastic orders for comparing various life
distributions based on various reliability functions can be translated in terms of the odds function.

In the reliability literature, the failure or hazard rate function is one of the most important
measure in characterizing the lifetime distributions and in modeling statistical data, to derive the
appropriate model. Also, the monotonic behaviour of the failure rate, i.e. increasing failure rate
(IFR) and decreasing failure rate (DFR), are the fundamental classes in the reliability analysis.

In engineering reliability, there are many situations where the reliability of the components
is high or their hazard rate is non-monotone. These two problems indicate that there is a need
for other reliability indicators than hazard rate. The LO and LOR functions are such indicators.
Martz and Waller (1982) and Zimmer et al. (1998) studied the important and the most frequent
continuous distributions in modeling the failure times data, such as log normal, Burr XII and
inverse Gaussian, which have non-monotone hazard rate.

Recently, in order to solve the above problem, Zimmer et al. (1998) and Wang et al. (2003,
2008) introduced a new model for continuous time to failure based on the log-odds rate (LOR)
which is comparable to the model based on the failure rate.

LOR function is defined as follows,

LOR(x) =
∂

∂x
LO(x),

where LO(x) = ln F (x)
R(x) is the log-odds function. Hence,

LOR(x) =
f(x)

F (x)R(x)
=
h(x)

F (x)
=

r(x)

R(x)
. (2.1)

So, for distributions of form (1.1) we have:

LO(t) = ln(eαkθ(t) − 1), (2.2)

LOR(t) =
αk′θ(t)

1− e−αkθ(t)
. (2.3)

Theorem 2.1. If X be lifetime random variable then increasing log odds rate (ILOR) implies the
increasing failure rate (IFR) and also decreasing failure rate (DFR) implies decreasing log odds rate
(DLOR). That is,

ILOR =⇒ IFR

DFR =⇒ DLOR
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Proof. The theorem can be proved by the fact that multiplying two non negative increasing function
(decreasing function) is also increasing (decreasing).

Theorem 2.2. For any lifetime random variable, the log-odds rate function is increasing if and
only if for any t,

−r′(t) ≤ r(t)h(t) ≤ h′(t),

and decreasing if and only if,

h′(t) ≤ r(t)h(t) ≤ −r′(t).

Proof. Differentiating from (2.1) we have,

LOR′(t) =
h′(t)− r(t)h(t)

F (t)
=
r′(t) + r(t)h(t)

F (t)
,

which follows the required results.

Remark 2.3. If the probability density function of random variable X is of form (1.2), then X has
increasing log odds rate function if and only if,

k′2θ(t)

k′′θ (t)

(
1

eαkθ(t) − 1

)
< 1. (2.4)

Zimmer et al. (1998) have shown that the logistic distribution is the only distribution that have
constant log-odds rate. Consider the standard logistic cdf, reliability, pdf, and hazard functions:

F (x) =
ex

1 + ex
, F (x) =

1

1 + ex
, f(x) =

ex

(1 + ex)2
,

h(x) =
f(x)

F (x)
= F (x),

The log-odds function for the standard logistic distribution is:

LO(x) = ln
F (x)

F (x)
= x,

thus the logistic distribution has linear LO and therefore constant LOR in x. Using the result of
Remark 2.6 it is easy to see the three parameters Burr XII distribution with reliability function
F (x) = 1

(1+(θx)γ)α is ILOR with respect to lnx for α > 1 and DLOR for α < 1.
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3 Proportional hazard model

Another reliability measure that has important role in modeling and dependance structure among
two distributions is the proportional hazard model defined by Cox (1959). Two random variables
X and Y satisfy the proportional hazard rate model (PHM) with proportionality constant β(> 0),
if for all x,

G(x) = [F (x)]β; β > 0. (3.1)

Or equivalently,
g(x) = βf(x)[F (x)]β−1.

Let X and Y have exponentiated distribution functions as follow:

F (t) = 1− exp{−α1kθ1(t)}, (3.2)

G(t) = 1− exp{−α2k
∗
θ2(t)}. (3.3)

Then, X and Y are satisfying the PHM if and only if,

kθ1(t)

k∗θ2(t)
= β

α1

α2
, (3.4)

and if α1 = α2 = α, PHM is satisfy if and only if

kθ1(t) = βkθ2(t).

For example if X ∼ Weibull(α, 2) and Y ∼ Rayleigh(α) then kθ1(x) = x2 and kθ2(y) =
y2

2 , so X
and Y are satisfying the PHM with proportional constant β = 2.

4 Stress-Strength model in general form

The stress-strength model involving two independent random variables and is defined as R =
P (X1 < X2), where X1 represents the stress variable and X2 represents the strength variable . The
literature review on the stress-strength models covers over 58 years of research. Birnbaum (1956)
was one of the first researchers who dealt with the model P (X1 < X2) in stress-strength content.
Nowadays the stress-strength model is of substantial interest and usefulness in which provides a
general measure of the difference between two populations and has applications in many areas such
as clinical trials, genetics, and reliability. For example, if Y is the response for a control group,
and X refers to a treatment group, R is a measure of the effect of the treatment. Or, if Y is the
water pressure on the dam wall, and X be the strength of the dam, then the parameter R is of
very important in maintenance. Different examples of applications of P (X1 < X2) in engineering
and medicine is presented in Johnson (1988), and the monograph by Kotz et al. (2003). We should
also mention the recent works of Sengupta (2008), Kundu and Raqab (2009), Rezaei et al. (2010)
and Panahi and Asadi (2010) which have obtained results due to estimation of P (X > Y ) and
characterizations related to it.



Khorashadizadeh, M. 177

If X and Y are two independent continuous random variables with pdf of forms,

fX(x) = α1k
′
θ(x)e

−α1kθ(x); x > 0,

and

fY (y) = α2k
′
θ(y)e

−α2kθ(y); y > 0,

respectively, then we have,

R = P (Y < X) =

∫ ∞

0
P (Y < x)fX(x)dx

=

∫ ∞

0
(1− e−α2kθ(x))α1k

′
θ(x)e

−α1kθ(x)dx

=
α2

α1 + α2
. (4.1)

Theorem 4.1. Let h1(t) and h2(t) are the hazard rate of X1 and X2 respectively, then the Stress-
Strength reliability function is of form,

R = P (X2 < X1) =
α2

α1 + α2
=

h2(t)

h1(t) + h2(t)
, (4.2)

if and only if the distribution functions of X1 and X2 is of form (1.1) with parameters θ1 = θ2 = θ
and α1 and α2.

Proof. Using (4.1) the proof of ’if’ part is satisfied. Now, suppose that for two random variables
X1 and X2, the Stress-Strength reliability function is of form (4.2). Let g(t, θ) be an non-negative
integrable function, then for any t > 0 we have,

α2g(t, θ)

α1g(t, θ) + α2g(t, θ)
=

h2(t)

h1(t) + h2(t)
,

which leads to,

αig(t, θ) = hi(t) =
fi(t)

F i(t)
, i = 1, 2.

So, integrating both sides of the above equation over the range (0, x), we get,

lnF i(x) = −αi
∫ x

0
g(t, θ)dt =⇒ F i(x) = e−αi

∫ x
0 g(t,θ)dt, i = 1, 2. (4.3)

Hence, by setting kθ(x) =
∫ x
0 g(t, θ)dt the required result is obtained.

To obtain the MLE for R, firstly we need to obtain the MLEs for α1 and α2, which are depend
on MLE of θ. Suppose x1, . . . , xn is a random sample from fX(x) and y1, . . . , ym is a random sample
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from fY (y) and also let kθ(.) does not depend on α, then the log-likelihood function is,

L(θ, α1, α2) = n ln(α1) +m ln(α2) +
n∑
i=1

ln(k′θ(xi)) +
m∑
j=1

ln(k′θ(yj))

− α1

n∑
i=1

kθ(xi)− α2

m∑
j=1

kθ(yj).

The MLEs of parameters, say α̂1, α̂2 and θ̂, can be obtain as the solutions of

∂L

∂α1
=

n

α1
−

n∑
i=1

kθ(xi) = 0, (4.4)

∂L

∂α2
=

m

α2
−

m∑
j=1

kθ(yj) = 0, (4.5)

∂L

∂θ
=

n∑
i=1

k
′(1)
θ (xi)

k′θ(xi)
+

m∑
j=1

k
′(1)
θ (yj)

k′θ(yj)
− α1

n∑
i=1

k
(1)
θ (xi)− α2

m∑
j=1

k
(1)
θ (yj) = 0, (4.6)

where k
(1)
θ (.) is the derivative of kθ(.) with respect to θ. Using (4.4) and (4.5) we have,

α̂1(θ) =
n∑n

i=1 kθ(xi)
and α̂2(θ) =

m∑m
j=1 kθ(yj)

. (4.7)

Substituting α̂1(θ) and α̂2(θ) in to (4.6), we obtain,

n∑
i=1

k
′(1)
θ (xi)

k′θ(xi)
+

m∑
j=1

k
′(1)
θ (yj)

k′θ(yj)
= n

∑n
i=1 k

(1)
θ (xi)∑n

i=1 kθ(xi)
+m

∑m
j=1 k

(1)
θ (yj)∑m

j=1 kθ(yj)
.

Therefor, when kθ(.) is known, θ̂ can be estimated by iterative process and the scale parameters
α̂1 and α̂2 can be obtained from (4.7). So the MLE of R is,

R̂ =

m∑m
j=1 kθ̂(yj)

n∑n
i=1 kθ̂(xi)

+ m∑m
j=1 kθ̂(yj)

. (4.8)

5 Conclusions

In this paper, some reliability concepts such as log-odds rate, proportional hazard model and stress-
strength model are studied in a big class of distribution. Considering more properties of general
form of distributions in discrete and continuous lifetime distribution are the future of the research.
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Assessing effect of ranking quality in parametric reliability
estimation based on ranked set samples

Mahdizadeh, M. 1

Department of Statistics, Hakim Sabzevari University

Abstract

This article deals with reliability estimation from exponential population when data are
collected by ranked set sampling. Performances of some estimators in the presence of ranking
errors are compared with that of the usual estimator in simple random sampling.

Keywords: Covariate information, Judgment ranking, Stress-strength model.

1 Introduction

Ranked set sampling (RSS), introduced by McIntyre [2], is applicable in settings where full
measurement of a unit is expensive and time consuming while approximate ranking of a small
set is inexpensive and easy. It often provides improved efficiency over simple random sampling
(SRS), given a fixed sample size.

To construct a ranked set sample of size p = mr (with set size m and cycle size r) the following
procedure is repeated m times. One first selects m sets of units, each of size m, from an infinite
population. Each of these sets is ranked from smallest to largest with some method that does not
require any actual measurement. After completing the ranking inm sets, the ith ranked unit is fully
measured in the ith set. The resulting sample is denoted by {X(i:m)j : i = 1, . . . ,m; j = 1, . . . , r},
where X(i:m)j is the ith judgment order statistic in the jth cycle.

As mentioned in the above, the ranking is done without any actual measurement. The ranking
errors, which are inevitable, affect any RSS based procedure. This article aims to investigate this
problem in the context of reliability estimation from exponential populations.
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2 The estimators

Let X and Y be independent exponential random variables with mean α and β, respectively. The
corresponding probability density functions are given by fX(x) =

1
α exp{−x/α} (x > 0;α > 0) and

fY (y) =
1
β exp{−x/β} (y > 0;β > 0). Then, it can be shown that θ = P (X > Y ) = α/(α+ β). In

the sequel, estimators of θ in different designs are introduced.

2.1 SRS case

Suppose X1, . . . , Xp
iid∼ fX and Y1, . . . , Yq

iid∼ fY be two independent samples. Then the maximum
likelihood estimator of θ is given by

θ̂SRS =
X̄

X̄ + Ȳ
, (2.1)

where X̄ =
∑p

i=1Xi/p and Ȳ =
∑q

i=1 Yi/q. The uniformly minimum variance unbiased estimator
of θ (see Vasermanis et al. [5] for details) is not considered here as its performance is similar to
(2.1) according to simulation results.

2.2 RSS case

Let {X(i:m)j : i = 1, . . . ,m; j = 1, . . . , r} and {Y(i:n)j : i = 1, . . . , n; j = 1, . . . , s} be two independent
ranked set samples of total sizes p = mr and q = ns drawn from fX and fY , respectively. The
following estimators were developed by Muttlak et al. [4] under perfect ranking assumption.

The simplest estimator of θ is given by

θ̂1RSS =
X̄RSS

X̄RSS + ȲRSS
, (2.2)

where X̄RSS =
∑m

i=1

∑r
j=1X(i:m)j/p and ȲRSS =

∑n
i=1

∑s
j=1 Y(i:n)j/q.

The best linear unbiased estimators of α and β are given by

α̂BLUE =

∑m
i=1

∑r
j=1 ci:mX(i:m)j/di:m∑m

i=1

∑r
j=1 c

2
i:m/di:m

and

β̂BLUE =

∑n
i=1

∑s
j=1 ci:nY(i:n)j/di:n∑n

i=1

∑s
j=1 c

2
i:n/di:n

,

where ci:m =
∑i

t=1 1/(m− t+ 1) and di:m =
∑i

t=1 1/(m− t+ 1)2. Based on α̂BLUE and β̂BLUE, an
estimator of θ can be constructed as

θ̂2RSS =
α̂BLUE

α̂BLUE + β̂BLUE

. (2.3)

By setting the first derivative of the log-likelihood function ℓ with respect to α and β equal to
zero, we arrive at

∂ℓ

∂α
= −mrα+

m∑
i=1

r∑
j=1

(m− i+ 1)X(i:m)j −
m∑
i=1

r∑
j=1

(i− 1)X(i:m)j

eX(i:m)j/α − 1
= 0 (2.4)
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and
∂ℓ

∂β
= −nsβ +

n∑
i=1

s∑
j=1

(n− i+ 1)Y(i:n)j −
n∑
i=1

s∑
j=1

(i− 1)Y(i:n)j

eY(i:n)j/β − 1
= 0. (2.5)

If the solutions of the above equations (found numerically) are denoted by α̂MLE and β̂MLE, then

θ̂3RSS =
α̂MLE

α̂MLE + β̂MLE

(2.6)

is another estimator for θ. If the terms X(i:m)j/
(
eX(i:m)j/α − 1

)
and Y(i:n)j/

(
eY(i:n)j/β − 1

)
in (A.1)

and (A.2) are replaced by their expectations, then the solutions have explicit forms as

α̂MMLE =
4

rm(m+ 3)

m∑
i=1

r∑
j=1

(m− i+ 1)X(i:m)j

and

β̂MMLE =
4

sn(n+ 3)

n∑
i=1

s∑
j=1

(n− i+ 1)Y(i:n)j .

The final estimator is defined as

θ̂4RSS =
α̂MMLE

α̂MMLE + β̂MMLE

. (2.7)

3 Simulation study

In this section, we use Monte Carlo simulation to compare different estimators. In doing so,
ρ = α/β ∈ {0.15, 1, 6} with β = 1 was used. Also, (p, q) ∈ {(10, 10), (10, 20)} and m = n = 2, 5
were chosen.

The relative efficiencies (REs) reported in Muttlak et al. [4] are computed under perfect ranking
setup, which does not happen in practice. The imperfect rankings model that we utilize is the
fraction-of-random-rankings model described by Frey et al. [1]. Under this model, each set in
the RSS procedure is independently ranked either perfectly, with probability λ, or randomly, with
probability 1− λ, where λ ∈ [0, 1] is a model parameter. Perfect rankings are obtained by setting
λ = 1, and random rankings are obtained by setting λ = 0. In particular, we considered λ ∈
{1, 0.75, 0.5}.

The efficiency of θ̂iRSS relative to θ̂SRS was estimated as follows. For each setup, 5,000 pairs
of samples were generated in SRS and RSS. The two estimators were computed from each pair of
samples in the corresponding designs, and their mean squared errors (MSEs) were determined. The
RE is defined as

REi =
M̂SE(θ̂SRS)

M̂SE(θ̂iRSS)
, i ∈ {1, 2, 3, 4}.

The estimated REs are reported in Table 1 from which the following conclusions can be made:
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• As ranking quality deteriorates, all of the REs decline. There are (a few cases) that the RSS
estimator is outperformed by its SRS analog. Overall, θ̂1RSS has better performance in the
presence of ranking errors.

• The larger set size, the higher impact of ranking errors. For example compare values of RE1
for (p, q) = (10, 10) and m = 2, 5 when λ changes from 1 to 0.75.

• As with most inference procedures based on RSS, the RE is expected to be increasing in set
size, given a fixed total sample size. We note, however, that this property does not hold here.
For example, examine values of RE2-RE4 for (p, q) = (10, 10) and m = 2, 5 when λ = 0.5.

4 Application

The stress-strength model defines the reliability of a component as the probability that the strength
of the unit (X) is greater than the stress (Y ) imposed on it. Although the use of stress-strength
models was originally motivated by problems in physics and engineering, it is not limited to these
contexts. It is worth mentioning that θ = P (X > Y ) provides a general measure of the difference
between two populations, and has found applications in different fields such as economics, quality
control, psychology, medicine and clinical trials. For instance, if Y is the response of a control
group, and X is that of a treatment group, then θ is a measure of the treatment effect. This
situation is exemplified in the following.

Murray et al. [3] conducted an experiment in which apple trees are sprayed with chemical
containing fluorescent tracer, Tinopal CBS-X, at 2% concentration level in water. Two nine-tree
plots were chosen for spraying. One plot was sprayed at high volume, using coarse nozzles on the
sprayer to give a large average droplet size. The other plot was sprayed at low volume, using fine
nozzles to give a small average droplet size. Fifty sets of five leaves were identified from the central
five trees of each plot, and used to draw a ranked set sample with set size 5 and cycle size 10, from
each plot. The variable of interest is the percentage of area covered by the spray on the surface
of the leaves. The formal measurement entails chemical analysis of the solution collected from
the surface of the leaves, and thereby is a time-consuming and expensive process. The judgment
ranking within each set is based on the visual appearance of the spray deposits on the leaf surfaces
when viewed under ultraviolet light. Clearly, the latter method is cheap, and fairly accurate if
implemented by an expert observer.

The data are given in Table 2, where measurements obtained from the plot sprayed at high
(low) volume constitute the control (treatment) group. Figure 1 shows histogram of data in each
group along with a fitted exponential density. The parameter of the exponential distribution is
simply estimated using the sample mean. Clearly, the exponentiality assumption for the data in
both groups is supported. So approximations of θ can be obtained using the estimators presented
in sub-section 2.2. The estimated values are as follows: θ̂1RSS = 0.601, θ̂2RSS = 0.590, θ̂3RSS = 0.592

and θ̂4RSS = 0.588.
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Figure 1: Histogram of apple trees data along with a fitted exponential density
for control (a) and treatment (b) groups

5 Conclusion

The RSS is often used when a ranking of the sampling units can be obtained cheaply without having
to actually measure the characteristic of interest, which may be time consuming or costly. Many
statistical procedures based on RSS have been developed in the literature. This article is directed at
the problem of reliability estimation from exponential populations when data are collected by RSS.
In particular, effect of the judgment ranking on the precisions of different reliability estimators is
investigated.
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Given the simulation results, parametric reliability estimation in RSS is quite sensitive to
the accuracy of ranking. In a subsequent work, we plan to evaluate robustness properties of
nonparametric reliability estimation based on RSS.
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Table 1: Estimated REs for different configurations

(p, q) = (10, 10) (p, q) = (10, 20)
ρ λ m RE1 RE2 RE3 RE4 RE1 RE2 RE3 RE4

0.15 1 2 1.37 1.45 1.45 1.44 1.34 1.40 1.40 1.39
5 2.58 3.03 3.06 2.96 2.24 2.60 2.61 2.54

0.75 2 1.26 1.25 1.24 1.21 1.18 1.15 1.15 1.11
5 1.65 1.54 1.56 1.35 1.43 1.29 1.30 1.12

0.5 2 1.18 1.12 1.13 1.07 1.06 1.01 1.01 0.97
5 1.20 1.07 1.08 0.94 1.09 0.95 0.97 0.82

1 1 2 1.34 1.40 1.40 1.39 1.32 1.38 1.38 1.37
5 2.26 2.61 2.63 2.55 2.17 2.47 2.49 2.41

0.75 2 1.19 1.18 1.18 1.14 1.19 1.16 1.17 1.13
5 1.49 1.42 1.43 1.27 1.40 1.30 1.31 1.16

0.5 2 1.13 1.09 1.09 1.05 1.05 1.01 1.01 0.98
5 1.15 1.06 1.07 0.95 1.12 1.00 1.02 0.89

6 1 2 1.49 1.55 1.56 1.53 1.40 1.46 1.47 1.45
5 2.56 2.99 3.02 2.91 2.49 2.84 2.87 2.75

0.75 2 1.20 1.18 1.18 1.14 1.25 1.22 1.23 1.18
5 1.56 1.48 1.50 1.30 1.49 1.39 1.41 1.23

0.5 2 1.14 1.09 1.09 1.04 1.07 1.03 1.03 0.99
5 1.17 1.06 1.07 0.94 1.19 1.05 1.07 0.91
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Table 2: Ranked set sample data for the percentage area covered on the surface
of the leaves of apple trees

Group Cycle Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Control 1 0.003 0.028 0.244 0.057 0.143
2 0.039 0.119 0.126 0.105 0.565
3 0.034 0.118 0.130 0.218 0.296
4 0.051 0.104 0.193 0.210 0.150
5 0.032 0.141 0.130 0.250 0.229
6 0.069 0.070 0.260 0.225 0.285
7 0.100 0.091 0.244 0.130 0.347
8 0.012 0.096 0.069 0.373 0.133
9 0.046 0.117 0.126 0.223 0.273
10 0.028 0.083 0.108 0.212 0.261

Treatment 1 0.036 0.137 0.183 0.270 0.487
2 0.250 0.181 0.290 0.328 0.715
3 0.089 0.032 0.269 0.419 0.315
4 0.180 0.111 0.130 0.194 0.742
5 0.100 0.009 0.184 0.277 0.122
6 0.042 0.089 0.199 0.269 0.395
7 0.044 0.083 0.227 0.177 0.742
8 0.044 0.171 0.067 0.192 0.336
9 0.009 0.017 0.217 0.438 0.544
10 0.071 0.132 0.310 0.343 0.379
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Abstract

The mean past lifetime measures the expected time elapsed since the failure of a subject till
the time of observation. In the presence of covariates, regression models are needed to study
the association between the mean past lifetime function and potential regression covariates. In
this paper, we propose the proportional mean past life model for fitting survival data under left
censoring. To estimate the model parameters, martingale estimating equations are developed,
and the asymptotic properties of the resulting estimators are established.

Keywords: Counting process, Martingale estimating equation, Mean past lifetime,
Proportional model, Reversed hazard rate.

1 Introduction

In reliability studies and survival analysis, several approaches have been considered in the literature
to study the lifetime and aging properties of a system or any other living organism. The basic
tools for studying the characteristics of lifetime distribution specially under right censored data
are the hazard rate and the mean residual lifetime. There are many occasions in survival studies,
where the lifetime data are left censored. For example, when we are following persons until they
become HIV positive, we may record a failure when a subject first tests positive for the virus.
However, we may not know exactly the time of first exposure to the virus, and therefore do not
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know exactly when the failure occurred. Thus, the survival time is censored on the left side. The
reversed hazard rate (RHR) and the mean past lifetime (MPL) facilitate the analysis of such left
censored data, which are defined, respectively, by

r(t) = lim
∆t→0

P (t−∆t < T < ∆t|T ≤ t)

∆t
,

k(t) = E(t− T |T ≤ t).

The RHR specifies the instantaneous rate of failure of a subject at time t given that it failed before
time t. The MPL corresponds to the mean time elapsed since the failure of T , given that T ≤ t. For
instance, assume that, at time t, one has undergone a medical test to check for a certain disease,
and the test is positive. Let T denote the time he(she) has been infected by this disease. Hence,
it is known that T ≤ t. Now the question is, how much time has elapsed since he(she) had been
infected by this disease. In this example, the random variable of interest is Tt = t− T |T < t, and
the MPL function is its expected value.

The MPL has recently been considered by some authors. [1] gave the necessary conditions for a
function to be MPL, where the MPL is called the mean waiting time in his paper. The latter author
has also shown that the reversed hazard ordering implies the MPL ordering. [2] defined some new
classes of distributions based on the MPL, and obtained some results on the MPL ordering, where
they called the MPL the ”reversed mean residual”. [3] investigated the properties of the MPL in
connection with other reliability measures. They also gave some results on partial ordering and
characterization and finally estimated the MPL. [9] studied some implications of stochastic orders
and aging notions for the proportional MPL model and for its extended mixture model.

In this study, to assess the association between the MPL and potential regression covariates,
we propose the proportional MPL model that takes the form

k(t|Z) = k0(t) exp(Z
Tβ), (1.1)

where k(t|Z) = E(t−T |T ≤ t, Z) and k0(t) is an unspecified baseline MPL, and β is a p×1 vector of
regression parameters. In the presence of left censoring, we apply martingale estimating equations
to estimate k0(t) and β. The rest of the paper is organized as follows. Section 2 is devoted
to semiparametric inference procedures for estimating the non-parametric component k0(t) and
parametric component β in model (1.1). Section 3 gives the asymptotic properties of the proposed
estimators. Regularity conditions and theoretical proofs are collected in the Appendix.

2 Inference procedures

Suppose that the lifetime random variable T is left censored by the random variable C. We assume
that T is independent of C given the covariate Z. Under left censoring we observe random vector
(X,∆, Z) where X = max(T,C) and ∆ = I(T ≥ C) with I(·) as the usual indicator function. Let
(Xi,∆i, Zi) be independent and identically distributed copies of (X,∆, Z), i = 1, 2, . . . , n.
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We now employ the counting process approach for the estimation of the parameters of the
proposed model. Let Ni(t) = I(Xi ≥ t,∆i = 1), Yi(t) = I(Xi ≤ t). Define the sigma field
Ft = σ {Ni(u), Yi(u), Zi : 0 ≤ t ≤ u < τ ; i = 1, . . . , n}. We denote history at an instant just after
to time t by Ft+ .

For left censored data, under the assumption of independent censoring, we have

E {dNi(t)|Ft+ ;β∗, k∗(.)} = Yi(t)dRi(t;β∗,m∗),

where the true values of β andm0(t) are defined by β∗ andm∗(t), respectively, and R(t) =
∫ τ
t r(u)du

and τ = sup(t;F (t) < 1). Let

dMi(t;β∗,m∗) = dNi(t)− Yi(t)dRi(t|Zi;β∗, k∗), (i = 1, . . . , n),

where {Mi(t;β∗,m∗), t ≥ 0} , is a martingale with respect to Ft. Therefore without assuming any
particular form for k0(t), it is natural to estimate k∗(t) and β∗ from estimating equations parallel
to the partial score equations

n∑
i=1

{dNi(t)− Yi(t)dRi(t;β, k0)} = 0, (0 ≤ t < τ),

n∑
i=1

∫ τ

0
Zi {dNi(t)− Yi(t)dRi(t;β, k0)} = 0.

(2.1)

It is well known that the RHR of T given Z is [3, sect. 2]

r(t|Z) = 1− k′(t|Z)
k(t|Z)

. (2.2)

Then under model (1.1), one obtains that

k0(t)dRi(t|Zi;β, k0) = exp(−ZTi β)dt− dk0(t), (i = 1, . . . , n).

Therefore, by analogy with (2.1), the following estimating equations can be used for estimating
k∗(t) and β∗ in model (1.1), respectively

n∑
i=1

[
k0(t)dNi(t)− Yi(t)

{
exp(−ZTi β)dt− dk0(t)

} ]
= 0, (2.3)

n∑
i=1

∫ τ

0
Zi
[
k0(t)dNi(t)− Yi(t)

{
exp(−ZTi β)dt− dk0(t)

} ]
= 0. (2.4)
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In view of equation (2.3), it can be obtained that

dk0(t) =

∑n
i=1 J(t)

{
Yi(t) exp(−ZTi β)dt− k0(t)dNi(t)

}
Y�(t)

, (2.5)

where Y�(t) =
∑n

i=1 Yi(t) and J(t) = I(Y�(t) > 0). Since k0(0) = 0 in model (1.1), we suggest the
following recursive estimating equation for estimation of k∗(t)

k̂0(t;β) =

∫ t

0

J(s)
∑n

i=1

{
Yi(s) exp(−ZTi β)ds− k̂0(s

−)dNi(s)
}

Y�(s)
, (2.6)

where k̂0(s
−) is the left hand limit of k̂0(t) at s. The equation displayed in (2.6) has a recursive

structure, but admits an explicit solution. The Volterra equation [4, pp. 90-91] can easily be
adapted to obtain the solution for equation (2.6) as

k̂0(t;β) = Q(t)−1

∫ t

0
Q(s−)

J(s)
∑n

i=1 Yi(s) exp(−ZTi β)
Y�(s)

ds, (2.7)

where

Q(t) =
∏
[t,τ ]

{
1− J(s)dN�(s)

Y�(s)

}
,

with
∏

[t,τ ] denoting a product-integral, see [4, Sect. II.6] and dN�(t) =
∑n

i=1 dNi(t).

To estimate β∗, we replace k0(t) with k̂0(t;β) in (2.4). Then in view of (2.5), the score equation
for β∗ can be simplified as

U
{
τ, β; k̂0(t;β)

}
=

n∑
i=1

∫ τ

0

{
Zi − Z̄(t)

}{
k̂0(t;β)dNi(t)− Yi(t) exp(−ZTi β)dt

}
, (2.8)

where Z̄(t) = J(t)
∑n

i=1 Yi(t)Zi/
∑n

i=1 Yi(t). Let β̂ denote the solution to U
{
τ, β; k̂0(t;β)

}
= 0.

The corresponding estimator of k∗(t) is given by k̂0(t) = k̂0(t; β̂).

3 Asymptotic properties

In this section, we establish the asymptotic properties of the estimators given in the previous
section. First we consider the existence, uniqueness and strong consistency of β̂ together with the
strong consistency of k̂0(t). The results are summarized in the following theorem with the proof
given in the Appendix.

Theorem 3.1. Under the regularity conditions stated in the Appendix, β̂ exists and is unique.
Moreover, β̂ is strongly consistent for β∗, and k̂0(t) → k∗(t) almost surely uniformly in t ∈ [0, τ ] as
n→ ∞.
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Theorem 3.2. Under the regularity conditions stated in the Appendix, we have

(i) n−1/2U{τ, β∗; k̂0(t;β∗)} converges to a normal distribution with mean zero and a variance-
covariance matrix that can be consistently estimated by Σ̂, where Σ̂ = n−1

∑n
i=1 ξ̂

⊗2
i ,

ξ̂i =

∫ τ

0
{Zi − Z̄(t)− Z̃(t)} k̂0(t)dM̂i(t),

with

Z̃(t) =
J(t)Q(t−)

Y�(t)

∫ τ

t
Q(s)−1

n∑
i=1

{Zi − Z̄(s)}dNi(s),

dM̂i(t) is the corresponding estimator dMi(t) with all unknown parameters replace by their
estimates and υ⊗2 = υυT for a vector υ;

(ii) n1/2(β̂ − β∗) is asymptotically normal with mean zero and a variance-covariance matrix that can
be consistently estimated by D̂(τ, β̂)−1Σ̂ D̂(τ, β̂)−1, where

D̂(τ, β̂) = −n−1
n∑
i=1

∫ τ

0

{
Zi − Z̄(t)− Z̃(t)

}
Yi(t)Z

T
i exp(−ZTi β̂)dt.

Theorem 3.3. Under the regularity conditions stated in the Appendix, n1/2{k̂0(t) − k∗(t)} (0 ≤
t ≤ τ) converges weakly to a zero-mean Gaussian process whose covariance function at (s, t) can
be consistently estimated by Γ̂(s, t) = n−1

∑n
i=1 ϕ̂i(s)ϕ̂i(t), where

ϕ̂i(t) =−Q(t)−1

∫ t

0
Q(s−)

J(s)k̂0(s)

n−1Y�(s)
dM̂i(s)

− B̂(t, β̂)D̂(τ, β̂)−1

∫ τ

0
{Zi − Z̄(t)− Z̃(t)}k̂0(t)dM̂i(t),

and

B̂(t, β̂) = Q(t)−1

∫ t

0
Q(s−)

J(s)
∑n

i=1 Yi(s)Z
T
i exp(−ZTi β̂)

Y�(s)
ds.
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Appendix

Let Z̄(t) and Z̃(t) denote the quantities defined in the text. Also let µ(t) and µ̃(t) denote their limits,
respectively. In order to study the asymptotic properties of the proposed estimators, we need the following
regularity conditions:

(C1) P (C ≥ τ) > 0, and N(τ) in bounded almost surely.

(C2) The covariate Z is bounded.

(C3) k∗(t) is right continuous with left-hand limits, and has bounded total variation on [0, τ ].

(C4) The matrix D(τ, β) = −E
[∫ τ

0
{Zi − µ(t)− µ̃(t)}Yi(t)ZT

i exp(−ZT
i β)dt

]
is non-singular.

Proof of Theorem 3.1

It follows from (2.6) that

k̂0(t;β)− k0(t) =−
∫ t

0

J(s)k0(s)dM�(s)
Y�(s)

−
∫ t

0

J(s)
{
k̂0(s

−;β)− k0(s)
}
dN�(s)

Y�(s)

−
∫ t

0

{1− J(s)} dk0(s), (A.1)
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where dM�(t) =
∑n

i=1 dMi(t). Since the latter term in (A.1) converges to zero uniformly in probability,
using the Volterra equation [4, pp. 90-91], the foregoing equation has the solution given by

k̂0(t;β)− k0(t) = −Q(t)−1
n∑

i=1

∫ t

0

Q(s−)
J(s)k0(s)

Y�(s)
dMi(s), (A.2)

where Q(t) =
∏

[t,τ ] [1− {J(s)dN�(s)/Y�(s)}] . Define A(t) =
∫ τ

t
{J(s)/Y�(s)}dN�(s), we then have

A(t;β) =

∫ τ

t

J(s)

Y�(s)
dM�(s) +

∫ τ

t

J(s)

k0(s)

{∑n
i=1 Yi(s) exp(−ZT

i β)ds

Y�(s)
+ dk0(s)

}
. (A.3)

By Lenglart’s inequality [4, p. 86], the first term in (A.3) converges uniformly in probability to zero.
The second term, by the weak law of large numbers converges uniformly in probability to a(t;β) =∫ τ

t
{λ(s;β)ds + dk0(s)}/k0(s) where λ(t;β) = E{Yi(t) exp(−ZT

i β)}/y(t) in which a function y(t) is such

that sups∈[t,τ ] |n−1Y�(s)− y(s)| P→ 0.
Therefore, we have Q(t;β) =

∏
[t,τ ]{1 − dA(s;β)} with A(t;β) = a(t;β) + op(1). Using arguments along

the lines of [4, pp. 263-264] for the Kaplan-Meier estimate, it can be demonstrated that Q(t;β) converges
uniformly in probability to q(t;β) = exp{a(t;β)}. Now, again from the uniform weak law of large numbers,
J(t)k0(t)/{n−1Y�(t)} converges uniformly in probability to k0(t)/y(t). Here and subsequently, the op(1) is
uniform in t.
It remains to show that

n∑
i=1

∫ t

0

{Q(s−;β)− q(s;β)}dM̃i(s) → 0,

uniformly in probability, where dM̃i(t) = J(t)k0(t)dMi(t)/n
−1Y�(t). Because Q(t;β) = exp{A(t;β)} is

monotone, this follows from the Lemma in [5, p. 45]. Thus it can be obtained that

k̂0(t;β∗)− k∗(t) = −n−1q(t;β∗)
−1

∫ t

0

q(s;β∗)
k∗(s)

y(s)
dM�(s) + op(1). (A.4)

From Lenglart’s inequality [4, p. 86], the above term converges uniformly in probability to zero. Hence (A.4)

implies that k̂0(t;β∗) converges almost surely to k∗(t) in t ∈ [0, τ ].

Denote the minus of the first derivative of U{τ, β; k̂0(t;β)} with respect to β by I(τ, β), where

I(τ, β) = −
n∑

i=1

∫ τ

0

{
Zi − Z̄(t)

}{∂k̂0(t;β)
∂β

dNi(t) + Yi(t)Z
T
i exp(−ZT

i β)dt

}
.

Taking the derivative of representation (2.7) with respect to β and substituting that into the foregoing term
and then interchanging the order of integrals, we obtain

I(τ, β) = −
n∑

i=1

∫ τ

0

{
Zi − Z̄(t)− Z̃(t)

}
Yi(t)Z

T
i exp(−ZT

i β)dt.

It can be proved that Z̄(t) and Z̃(t) are of bounded variation and thus can be expressed as the difference
of two increasing functions. Since the process I(τ, β) can be written as sums and products of monotone
functions in t and all components of β, therefore it is manageable ([6, p. 38 ]; [7, Lemma A.1]). Using
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the uniform strong law of large numbers [6, p. 41], it follows that n−1I(τ, β) converges almost surely to a
nonrandom function D(τ, β) uniformly in β, where

D(τ, β) = −E
[∫ τ

0

{Zi − µ(t)− µ̃(t)}Yi(t)ZT
i exp(−ZT

i β)dt

]
,

with µ(t) and µ̃(t) are the limit in probability of Z̄(t) and Z̃(t), respectively.
It can also be checked that n−1U(τ, β∗) → 0 almost surely, and D(τ, β) is non-singular by condition

(C4). Therefore, the uniform convergence of n−1I(τ, β) and the continuity of D(τ, β) imply that for all large
n, there exists a small neighborhood of β∗ in which n−1I(τ, β) is non-singular. Hence it follows from the

inverse function theorem [8, p. 221] that within a small neighborhood of β∗, there exists a unique solution β̂
to U(τ, β) = 0 for all large n. Since this neighborhood of β∗ can be arbitrarily small, the preceding proof also

implies that β̂ is strongly consistent. It then follows from the uniform convergence of k̂0(t;β∗) to k0(t;β∗)

that k̂0(t) ≡ k̂0(t; β̂) → k0(t;β∗) ≡ k∗(t) almost surely uniformly in t ∈ [0, τ ].

Proof of Theorem 3.2

(i) Consider a decomposition of n−1/2U{τ, β∗; k̂0(t;β∗)} of the form

n−1/2U{τ, β∗; k̂0(t;β∗)} = n−1/2
n∑

i=1

∫ τ

0

{
Zi − Z̄(t)

}{
k̂0(t;β∗)− k∗(t)

}
dNi(t)

+ n−1/2
n∑

i=1

∫ τ

0

{
Zi − Z̄(t)

}
k∗(t)dMi(t).

By the representation of k̂0(t;β∗)− k∗(t) in (A.2) and interchanging the order of integration, the foregoing
expression can be written as

n−1/2U{τ, β∗; k̂0(t;β∗)} = n−1/2
n∑

i=1

∫ τ

0

{Zi − Z̄(t)− Z̃(t)}k∗(t)dMi(t).

Since Z̄(t) and Z̃(t) are of bounded variation, thus can be written as the difference of two increasing
functions. Therefore, by the uniform strong law of large numbers and using the Lemma [5, p. 45],

n−1/2U{τ, β∗; k̂0(t;β∗)} can be decomposed as a sum of independent and identically distributed terms

n−1/2U{τ, β∗; k̂0(t;β∗)} = n−1/2
n∑

i=1

ξi + op(1), (A.5)

where

ξi =

∫ τ

0

{Zi − µ(t)− µ̃(t)}k∗(t)dMi(t).

Utilizing the multivariate central limit theorem, n−1/2U{τ, β∗; k̂0(t;β∗)} converges in distribution to
zero-mean normal distribution whose variance-covariance matrix Σ = E{ξ⊗2

i } can be consistently estimated

by Σ̂ = n−1
∑n

i=1 ξ̂
⊗2
i as defined in Theorem 2(i).

(ii) A Taylor series expansion of the score function (2.8) around β̂ gives

n1/2(β̂ − β∗) = {n−1I(τ, β∗∗)}−1n−1/2U{τ, β∗; k̂0(t;β∗)},
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where β∗∗ is on the line segment between β∗ and β̂. To prove asymptotic normality of n1/2(β̂−β∗) it suffices

to prove weak convergence of n−1/2U{τ, β∗; k̂0(t;β∗)} to a Gaussian process and to prove convergence in
probability of n−1I(τ, β∗∗) to a non-singular matrix. From the uniform convergence of n−1I(τ, β) to D(τ, β)

along with the consistency of β̂ and representation (A.5), asymptotic approximation for n1/2(β̂−β∗) can be
displayed by

n1/2(β̂ − β∗) = n−1/2D(τ, β∗)
−1

n∑
i=1

ξi + op(1). (A.6)

Thus, it follows that n1/2(β̂ − β∗) is asymptotically normal with mean zero and covariance matrix

D(τ, β∗)
−1ΣD(τ, β∗)

−1, which can be consistently estimated by D̂(τ, β̂)−1Σ̂ D̂(τ, β̂)−1 as defined in Theorem
2(ii).

Proof of Theorem 3.3

To show the weak convergence of n1/2{k̂0(t)− k∗(t)}, we first note that

n1/2{k̂0(t)− k∗(t)} = n1/2{k̂0(t;β∗)− k∗(t)}+ n1/2{k̂0(t; β̂)− k̂0(t;β∗)}.

It follows from (A.4) that

n1/2
{
k̂0(t;β∗)− k∗(t)

}
= n−1/2

n∑
i=1

ζi(t) + op(1),

where

ζi(t) = −q(t;β∗)−1

∫ t

0

q(s;β∗)
k∗(s)

y(s)
dMi(s), (i = 1, . . . , n).

Taking the Taylor expansion of k̂0(t, β̂), together with the consistency of β̂ and the uniform strong law of
large numbers, we have

n1/2{k̂0(t, β̂)− k̂0(t, β∗)} = −B(t;β∗) n
1/2(β̂ − β∗) + op(1),

where

B(t;β) = q(t;β)−1

∫ t

0

q(s;β)
E
{
Yi(s)Z

T
i exp(−ZT

i β)
}

y(s)
ds,

denotes the limit in probability of −∂k̂0(t;β)/∂β. Therefore, it follows from (A.6) that uniformly in t ∈ [0, τ ],

n1/2{k̂0(t)− k∗(t)} = n−1/2
n∑

i=1

ϕi(t) + op(1), (A.7)

where
ϕi(t) = ζi(t)−B(t;β∗)D(τ, β∗)

−1ξi.

Since ϕi(t), i = 1, . . . , n, are independent zero-mean random variables for each t, the multivariate central

limit theorem implies that n1/2{k̂0(t) − k∗(t)} converges in finite-dimensional distribution to a zero-mean

Gaussian process for 0 ≤ t ≤ τ . Because any function of bounded variation can be expressed as the difference
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of two increasing functions, the processes {ζi(t); i = 1, . . . , n} can be written as sums or products of monotone

functions of t and are thus manageable. It then follows from the functional central limit theorem [6, p. 53]

that the first term on the right-hand side of (A.7) is tight. The second term is tight because n−1/2
∑n

i=1 ξi

converges in distribution and B(t, β∗) is a deterministic function. Thus n1/2
{
k̂0(t)− k∗(t)

}
is tight and

converges weakly to a zero-mean Gaussian process whose covariance function Γ(s, t) = E{ϕi(s)ϕi(t)} can be

consistently estimated by Γ̂(s, t) defined in Theorem 3.
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Abstract

In this paper, we propose a dynamic form of L2 distance between the probability
distributions of two nonnegative continuous random variables. We investigate some properties
of the proposed measure and explore its relation with some well known stochastic and aging
concepts. Empirical results are also presented leading to an estimator for the proposed criterion.
The results are then employed to compare two probability distributions based on real data sets.

Keywords: Aging, Information measures, Residual life, Stochastic ordering.

1 Introduction

The energy distance is a measure of discrimination between two distributions that introduced by
Székely [9, 10]. If X and Y be independent random vectors on Rd with cumulative distribution
functions (c.d.f.’s) F (x) and G (x), respectively, then the squared energy distance (ED2) was
defined as

ED2 (F,G) = 2E ∥X − Y ∥ − E
∥∥X −X ′∥∥− E

∥∥Y − Y ′∥∥ ,
where X ′ is i.i.d. with X, Y ′ is i.i.d. with Y and ∥·∥ denotes the Euclidean norm. The energy
distance (ED) between distributions F and G is defined as the square root of ED2 (F,G). Székely
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[10] proved that if d = 1, then ED2 (F,G) is twice Cramér’s distance (CD) that introduced by
Cramér’ [1] (also known as L2 distance), i.e.,

ED2 (F,G) = 2CD (F,G) = 2

∫ ∞

−∞
(F (x)−G (x))2 dx.

For more informations about background and applications of energy distance, see [11], [7], and
references cited therein. Rizzo and Székely [8] also provided the energy package, for the statistical
software R.

In the present paper, we consider a dynamic version of Cramér’s distance, and call it dynamic
Cramér’s distance (DCD), as well as dynamic L2 distance. The rest of this paper is organized as
follows: In Section 2, we present a dynamic form of Cramér’s distance for nonnegative continuous
random variables. In Section 3, we obtain some properties of the introduced measure. Finally in
Section 4, we provide some empirical results.

2 A dynamic form of L2 distance

Hereafter, letX and Y be independent nonnegative continuous random variables with c.d.f.’s F (x)
and G (x), survival functions (s.f.’s) F̄ (x) and Ḡ (x), and mean residual life (MRL) functions
mF (t) and mG (t), respectively. Then CD (F,G) can be defined as

CD (F,G) =

∫ ∞

0

(
F̄ (x)− Ḡ (x)

)2
dx.

Now, we consider the dynamic version of CD and call it dynamic Cramér’s distance (DCD)
which is defined as

DCD (F,G; t) =

∫ ∞

t

(
F̄t (x)− Ḡt (x)

)2
dx

= m
(2)
F (t) +m

(2)
G (t)− 2mFG (t) , (A.1)

where F̄t (x) =
F̄ (x)
F̄ (t)

, m
(2)
F (t) is MRL function of minimum of two components from F and mFG (t)

is MRL function of minimum of two components from F and G. Now, we study monotonicity of
DCD.

Theorem 2.1. DCD (F,G; t) is non decreasing (non increasing) function of t, iff

DCD (F,G; t) ≥ (≤) (1− 2wt)
(
m

(2)
F (t)−m

(2)
G (t)

)
, (A.2)

where wt = λF (t) / (λF (t) + λG (t)).

Theorem 2.2. If X ≥hr Y (X ≤hr Y ), X is IFR and Y is DFR, then DCD (F,G; t) is non
increasing (non decreasing) function of t.
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3 Some properties of DCD

In this section, we obtain some properties of DCD. The following theorem gives a lower bound for
DCD (F,G; t).

Theorem 3.1.

DCD (F,G; t) ≥ m
(2)
F (t) +m

(2)
G (t)− 2max (mF (t) ,mG (t)) .

We have the following upper bound for DCD (F,G; t) in general case.

Theorem 3.2.
DCD (F,G; t) ≤ mF (t) +mG (t) . (A.1)

The following theorem gives an upper bound for DCD (F,G; t) which is sharper than that in
(A.1).

Theorem 3.3.

DCD (F,G; t) ≤
∫ ∞

t

∣∣F̄t (x)− Ḡt (x)
∣∣ dx.

In the following theorem, we compare DCD (F,G; t) and CD (F,G).

Theorem 3.4. If X ≥hr Y (X ≤hr Y ), X is NWU and Y is NBU , then

DCD (F,G; t) ≥ (≤)CD (F,G) .

The next theorem compares distances of three random variables.

Theorem 3.5. Let X, Y and Z be three nonnegative random variables with p.d.f.’s F , G and H,
respectively.

(a) If X ≥hr Z ≥hr Y or X ≤hr Z ≤hr Y , then

DCD (F,G; t) ≥ max {DCD (F,H; t) , DCD (H,G; t)} .

(b) If X ≥hr Y or X ≤hr Y and Z be mixture of X and Y , then (a) holds.

Finally, we consider the behavior of DCD (F,G; t) under transformations.

Theorem 3.6. Let ϕ be an increasing function on (0,∞) with
a ≤ ϕ′ ≤ b, a, b > 0, where ϕ′ is derivation of ϕ, and Let DCD (X,Y ; t) be equivalent with
DCD (F,G; t).Then

a DCD
(
X,Y ;ϕ−1 (t)

)
≤ DCD (ϕ (X) , ϕ (Y ) ; t)

≤ b DCD
(
X,Y ;ϕ−1 (t)

)
.

and

DCD (bX, bY ; t) = b DCD

(
X,Y ;

t

b

)
, b > 0.
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4 Empirical results

Let X1, · · · , Xn and Y1, · · · , Ym be two independent random samples from F and G, respectively.
Based on empirical s.f., we can define the empirical estimation of DCD (F,G; t) as distance of Fn
and Gm.

Definition 1. Under above considerations, the empirical dynamic Cramér’s distance of Fn and
Gm is defined as

DCD (Fn, Gm; t) =

∫ ∞

t

(
F̄nt (x)− Ḡmt (x)

)2
dx

=

∫ ∞

t

(
F̄n (x)

F̄n (t)
− Ḡm (x)

Ḡm (t)

)2

dx. (A.1)

and the empirical Cramér’s distance of Fn and Gm is defined as

CD (Fn, Gm) =

∫ ∞

0

(
F̄n (x)− Ḡm (x)

)2
dx, (A.2)

which is related to the energy statistic that defined by Rizzo [6].

In following, we will find simple forms of (A.1) and (A.2).

Theorem 4.1. Let X(1) ≤ X(2) ≤ · · · ≤ X(n) and Y(1) ≤ Y(2) ≤ · · · ≤ Y(m) be ordered sample
of F and G, respectively, and U(1) ≤ U(2) ≤ · · · ≤ U(n+m) be ordered pooled sample. Let
Mi =

∑m
j=1 I

(
Yj ≤ X(i)

)
, i = 1, 2, · · · , n and Nj =

∑n
i=1 I

(
Xi ≤ Y(j)

)
, j = 1, 2, · · · ,m. If

X(k) ≤ t < X(k+1) and Y(s) ≤ t < Y(s+1), then DCD (Fn, Gm; t) can be rewritten as

DCD (Fn, Gm; t) =
1

(n− k)2

{
n∑

i=k+1

X(i) − 2

n∑
i=k+1

iX(i)

}

+
1

(m− s)2


m∑

j=s+1

Y(j) − 2
m∑

j=s+1

jY(j)


+ 2

(
n

n− k
− m

m− s

)

×

 1

n− k

n∑
i=k+1

X(i) −
1

m− s

m∑
j=s+1

Y(j)


+

2

(n− k) (m− s)


n∑

i=k+1

MiX(i) +

m∑
j=s+1

NjY(j)

 .

Notice that

n∑
i=k+1

MiX(i) +
m∑

j=s+1

NjY(j) =
n+m∑

r=k+s+1

rU(r) −
n∑

i=k+1

iX(i) −
m∑

j=s+1

jY(j).
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Table 1: Air-conditioning data

Plane Failure times

1 (X) 90 100 160 346 407 456 470 494 550
570 649 733 777 836 965 983 1008 1164
1474 1550 1576 1620 1643 1705 1835 2043 2113
2214 2422

2 (Y ) 23 284 371 378 498 512 574 621 846
917 1163 1184 1226 1246 1251 1263 1383 1394
1397 1411 1482 1493 1507 1518 1534 1624 1625
1641 1693 1788

3 (Z) 97 148 159 163 304 322 464 532 609
689 690 706 812 1018 1100 1154 1185 1401
1447 1558 1597 1660 1678 1869 1887 2050 2074

Example 4.2. Table 1 gives failure times of air-conditioning systems of three different planes given
by Proschan [5]. Times between failures are available in package MixtureInf of R Li:et:al:2016. Let
X, Y and Z denote the failure times of the air-conditioning of planes 1 to 3, respectively. Zardasht
and Asadi [12] used pairs (X,Y ) of these data to estimate R (t) = P (Xt > Yt), where Xt =
X−t|X > t. We use these data to evaluate DCD (Fn, Gm; t). Figure 1 represents DCD (Fn, Gm; t)
for all pairs of these 3 planes. It shows that approximately pairs (X,Y ) have most distance and
pairs (X,Z) have least distance. Also, if compare results with figure 5 of Zardasht and Asadi [12],
we see that both models R (t) and DCD (Fn, Gm; t) have the same behavior.

Using theorem 4.1 we have the following corollary.

Corollary 4.3. In Theorem 4.1, if t→ 0+, then CD (Fn, Gm) can be rewritten as

CD (Fn, Gm) =
X

n
− 2

n2

n∑
i=1

iX(i) +
Y

m
− 2

m2

m∑
j=1

jY(j)

+
2

nm


n∑
i=1

MiX(i) +
m∑
j=1

NjY(j)

 .

Example 4.4. The top left frame of Figure 2 shows a sample picture of two parrots. The picture
has 768 × 512 cells. The gray level of each cell has a value between 0 (black) and 1 (white). The
top right, bottom left and bottom right frames are increased brightness, adjusted contrast and
gamma corrected versions of the original frame, respectively. This sample picture and functions
for adjusting it are available in package EBImage of R Pau:et:al:2010,Pau:et:al:2016. Let name
the frames from top to bottom and left to right by X, Y (= X + 0.3), Z(= 2X) and W (=

√
X),

respectively. Using corollary 4.3, we want see how much is difference of each pairs of these frames.
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Figure 1: DCD (Fn, Gm; t) for all pairs of air-conditioning data



Mehrali, Y., Asadi, M. 205

Figure 2: Sample picture of two parrots with its adjustments
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Table 2: CD (Fn, Gm) for each pairs of Figure 2

X Y Z W

X 0 0.1336 0.1673 0.0882
Y 0.1336 0 0.0222 0.0116
Z 0.1673 0.0222 0 0.0519
W 0.0882 0.0116 0.0519 0

Table 2 represents CD (Fn, Gm) for each pairs of these frames.
CD (Fn, Gm) states that the frame Z has most and the frame W has least distance with
the original frame X. Also pairs (X,Z) have most and pairs (Y,W ) have least distance between
all pairs.

Let X1, · · · , Xn be a random sample of a parametric family F (x;θ), θ ∈ Θ ⊂ Rk. Based on
empirical s.f., we can define DCD (Fn, F ; t) as dynamic Cramér’s distance of Fn and F .

Definition 2. Under above considerations, the dynamic Cramér’s distance of Fn and F is defined
as

DCD (Fn, F ; t) =

∫ ∞

t

(
F̄nt (x)− F̄t (x;θ)

)2
dx

=

∫ ∞

t

(
F̄n (x)

F̄n (t)
− F̄ (x;θ)

F̄ (t;θ)

)2

dx. (A.3)

In following, we will find simple form of (A.3).

Theorem 4.5. Let X(1) ≤ X(2) ≤ · · · ≤ X(n) be ordered sample of F (x;θ). If X(k) ≤ t < X(k+1),
then DCD (Fn, F ; t) can be rewritten as

DCD (Fn, F ; t) =
2n+ 1

(n− k)2

n∑
i=k+1

X(i) −
2

(n− k)2

n∑
i=k+1

iX(i) − t

+m
(2)
F (t)− 1

n− k

n∑
i=k+1

h
(
X(i)

)
,

where

h (x) = 2

∫ x

t

F̄ (y;θ)

F̄ (t;θ)
dy, x > t.

DCD (Fn, F ; t) enables us to do some inferences on parameter θ, for example in parameter
estimation and goodness of fit testing. A dynamic estimator of θ can be found for example by

θ̂ = arg min
θ∈Θ

DCD (Fn, F ; t) .
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Abstract

Today, many products are designed to function for a long period of time before they fail.
For such highly-reliable products, collecting step-stress accelerated degradation test (SSADT)
data can provide useful reliability information. SSADT is more useful for developing products
when there is inadequate knowledge for test conditions. Some efficient SSADT plans have
been proposed when the underlying failure modes are independent. However, how to design
an efficient SSADT plan for the dependent failure modes with linear degradation data is still
a problem to be solved. The aim of this paper is to provide an SSADT plan for these cases.
Copulas are used to describe the dependence between failure modes. Finally, we use the
proposed method to deal with the SSADT design with dependent failure modes for a real data
set and a simulation study.

Keywords: Competing risk, Copula function, Linear degradation, Reliability function,
Step-stress accelerated degradation test.
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1 Introduction

Accelerated life testing (ALT) is the method of testing a product by subjecting it to situations
(stress, temperatures and so on.) in excess of its normal service parameters with a view to find
faults and ability modes of failure in a short quantity of time. It is often used to speed up tests.
In ALT, data concerning the lifetime distribution at higher levels of stress is extrapolated to attain
an estimate of the lifetime distribution at a normal level of stress via a link among accelerated and
normal environments. Because most of today’s manufacturing products grow to be more reliable,
ALT has evolved in latest years to in reliability tests for which product lifetimes are predicted to
closing far beyond the allotted testing time.

A few current works on ALT with competing risks are addressed as follows. [8] studied the
design of ALT with competing failure risks while the time-to-failure due to a particular risk is
modeled by using a Weibull or a lognormal distribution. A Bayesian technique to designing an
ALT for repairable systems with multiple independent failure modes became mentioned by [4].
They brought a power law procedure for modeling a failure manner of the repairable systems under
the ALT. [3] proposed a way for planning multiple step-stress ALT with competing risks.

Alongside ALT, degradation testing and analysis has been significant in reliability assessment
for industries, because it is difficult to observe failure times, or even degradation measurements,
under normal operating conditions. Even upon the use of methods incorporating censoring and
accelerating techniques, the information obtained about the lifetime distribution remains very
restrained.

In this case, an alternative approach is to measure the degradation of components at higher
levels of stress for predicting a products lifetime at a use-stress level. Such a test is known as an
accelerated degradation test (ADT). ADT combines degradation testing with ALT by means of
trying out the products in harsh environments, and measuring the degradation of product during
the accelerated test. ALT and ADT share similar concepts and practices for underlying lifetime-
stress models.

Accelerated degradation models have been studied by many authors. [7], extended the
accelerated degradation models to a very general class of models that included Gaussian process
models, geometric Brownian motion models and gamma process models, and described the
stochastic degradation models with several accelerating variables. They also used stochastic
degradation models with several accelerated variables ([7]). Later, [6], proposed direct methods
to predict the lifetime distribution of organic light-emitting diodes (OLEDs) based on the ADT
of the products. See [9] for more thorough reviews of the (accelerated) degradation models, and
remaining useful life estimation from the models.

Although ADT is an efficient life-test method, it is generally very expensive to carry out.
Obviously, for a newly developed product or expensive product, it is very difficult to have enough
test units available for testing purposes. Under the circumstance, a constant-stress ADT is not
applicable. To handle this problem, the SSADT has been proposed. It is a useful tool for
assessing the lifetime distribution of highly reliable products (under a typical-use condition) when
the available test items are very few. Recently, [10] discussed the SSADT problem based on gamma
process. [5] discussed multiple-step step-stress accelerated degradation models based on Wiener
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and gamma processes in a Bayesian framework, and applied a Markov chain Monte Carlo (MCMC)
method to estimate the parameters in analytically intractable models.

In this paper, we the study a statistical inference for SSADT with competing failures. These
competing failures can be either independent or dependent. But in recent studies, the dependency
assumption is not considered or dependency of failure modes is considered without the presence
of degradation (in SSALT) and there is almost no literature on dependency analysis in SSADT.
Recently, [1], studied reliability estimation from linear degradation and multiple failure time data
with competing risks under a SSADT, but they assumed multiple failure times are independent.

In this paper, we propose a modeling approach for jointly analyzing linear degradation data and
dependent failure-times which are simultaneously recorded during the SSADT. We apply the copula
model to combine the marginal distribution of the competing failure models with the time to failure
distribution of the products, and derived a general statistical model for SSADT with dependent
competing failures. It is widely believed that the copula method is the most convenient, important
tool for solving dependence problems. Finally, We derive a likelihood function for failure-times
from degradation data to provide maximum likelihood estimates (MLEs) of the parameters of the
proposed model and the reliability function.

This paper is organized as follows. In section two, we describe the model and design for a
SSADT and express the likelihood. In section three, we provide two examples from real and
simulation data in an attempt to compare the efficiency of the SSADT plan proposed in this paper
considering dependency between failure modes using the copula function and that given by [1].
Finally, conclusion and possible directions for future study are discussed in section four.

2 The model and design for a SSADT

In this section, we use a cumulative exposure model for step-stress ADT data. Let n units be placed
on the test. The testing time starts in τ0 = 0. All of the units are first subjected to a normal stress,
S0. Afterwards, at changing time stress τ1, all surviving units are moved to the stress level S1 until
time τ2. The stress on a unit is thus increased step by step until it fails. So, we have a sequence of
changing time points of stress τi, i = 0, . . . ,m+ 1.

As previously mentioned, we consider the linear degradation process: {Z(t); t > 0} as Z(t) =
t/A,A ∈ R, where A is a random variable with a distribution function of FA(a;η) for the q-
dimensional vector of parameters η, which is influenced by stress levels. The degradation process
at time t under the SSADT can be written as:

Z(t|S) =


Z0(t|A(S0)) = t−τ0

a0
, τ0 < t ≤ τ1,

Z1(t|A(S1)) = τ1−τ0
a0

+ t−τ1
a1

, τ1 ≤ t < τ2,
...

...

Zm(t|A(Sm)) =
∑m

j=0
τj−τj−1

aj−1
+ t−τm

am
, τm ≤ t < τm+1.

Let Tij be the failure time of i-th level of stress for the j-th unit, where i = 1, . . . ,m and
j = 1, . . . , ni and Zij are degradation values at time Tij . Suppose we have s failure modes at each
level of stress. Therefore failure time is defined as: Tij = min{T 1

ij , T
2
ij , , T

s
ij} where the failure-times
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caused by each failure modes are dependent. The failure mode at the i-th level of stress for the
j-th unit is denoted by Vij . In this case, we make use of the data set {Tij , Vij , Zij}. Suppose that
the rates of failures caused by different failure mechanisms are increasing functions of degradation
values (e.g., [2]). We denote the failure rate at time t, corresponding to the k-th failure mode at
the i-th level of stress, by λki (z(t)).

According to [1], the conditional reliability function corresponding to the k-th failure mode is
given by:

Rki (t|ai) =


Rk0(t|a0), τ0 < t ≤ τ1,
Rk1(t|a1) = Rk0(τ1 +

a0
a1
(t− τ1)|a1), τ1 ≤ t < τ2,

...
...

Rkm(t|am) = Rk0

(
a0

[∑m
j=1

τj−τj−1

aj−1
+ t−τm

am

]
|am

)
, τm ≤ t < τm+1.

Our goal is to model the reliability function of the cause-specific survival times random vector
{T 1, .., T s} in the presence of degradation which is defined as follows:

RT (t) = P (T > t) = P (min(T 1, . . . , T s) > t) = R(t, . . . , t). (A.1)

Using copula, equation (A.4) is as follows:

R(t1, . . . , ts) = C(R1(t1), . . . , Rs(ts)) (A.2)

where C is the survival copula. We use Franks family of copulas because they exhibit symmetric
dependence in both tails. The Frank copula is defined as:

Cθ(u, v) = −1

θ
log

[
1 +

(exp(−θu)− 1)(exp(−θv)− 1)

(exp(−θ)− 1)

]
, θ ̸= 0.

From the observed data at the end of each step-stress under the SSADT and equations (A.2),
the likelihood has the following form:

L =
m∏
i=0

ni∏
j=1

2∑
k=1

I(Vij = k)(a0j/aij)λ
k
0(zij ;γk)R

k
0(t

⋆
ij)

exp(−θRk0(t⋆ij))[exp(−θR
3−k
0 (t⋆ij)− 1)]

(exp(−θ)− 1) exp(−θC(R1
0(t

⋆
ij), . . . , R

k
0(t

⋆
ij)|aij ;γk))

fAi(aij ;η)

(A.3)

where γk is q-dimensional vector of parameters that correspond to the k-th competing risk, I(.) is
an indicator function, and aij is an observed value of A for the j-th unit at the i-th level of stress,
aij ≡ (a0j , a1j , . . . , aij)

T , fAi(aij ;η) =
∏i
l=0 fA(alj ;ηl), for i = 0, . . . ,m and t⋆ is the equivalent

failure-time at normal stress S0:

t⋆ = a0

 i∑
j=1

τj − τj−1

aj−1
+
t− τi
ai

 . (A.4)
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The MLEs of γ ≡ (γ1, . . . ,γs)
T and η ≡ (η0, . . . ,ηm)T , γ̂ and η̂, cannot be obtained in closed

form, thus we use numerical methods.

The unconditional reliability (survival) function can be defined as:

R(t) =

∫ ∞

0
C(R1(t), . . . , Rs(t)|A = a)dFA(a,η0)

Thus the estimate of reliability function is:

R̂(t) =

∫ ∞

0
Ĉ(R1(t), . . . , Rs(t)|A = a)dFA(a, η̂0) (A.5)

3 Examples

3.1 Simulation study

We generated n data sets under SSADT by considering a simple step-stress test with a changing
time point of τ1 = 40. As mentioned earlier, we have assumed that the failure rates of two failure
modes depends on the amount of degradation, λk(z(t)) = (θkz(t))

νk for k = 1, 2. Suppose that
θ1 = 0.06, ν1 = 5, θ2 = 0.06 and ν2 = 5. We consider the dependency between failure modes using
Frank copula with parameter θ = 20. In addition, we assume that the distribution of A in Z = t/A
is Weibull with parameters α = 5 and β = 4.

Let a0j , a1j denote the values of A for the j-th unit at the first (normal) and second level of
stress. We observe a0j according to linear degradation as t0j/z0j , where t0j , and z0j are failure
time and degradation of j-th unit at normal stress, but a1j has been generated from a Weibull
distribution. From (A.3) and simulated a1j , the failure times in second level of stress can be
computed. The considered sample sizes are n = 50, n = 100 and n = 200, each with one thousand
replications.

The estimation of parameters of failure rates (θ1, ν1, θ2, ν2), the parameters of Ai, (α0, β0), and
the copula parameter, θ, have been obtained using a numerical solution of the likelihood function
(A.3). Table 1 shows estimations in two cases: independent and dependent failure modes. The
estimated median of the lifetime (M̂), which is derived from (A.3) (R(t̂0.5) = 0.5), is shown in
the Table 1. According to Table 1, it can be seen that the estimated parameters differ in cases
with and without dependency. Thus it is important to consider the dependency between failure
modes in analyzing the survival time. The results provide insight into the sampling behavior of
the estimators. They indicate that the MLEs approximate the true values of the parameters as
the sample size n increases. Similarly, the standard errors (SE) and mean relative errors (MRE)
decrease with increasing the sample size.

The estimate of reliability function (R̂(t)) in two dependent and independent cases was also
derived. In the dependent case, R̂(t) has been derived from (A.3). Figure 1 shows the reliability
functions estimated using the proposed method in both dependent and independent cases (solid and
dashed lines) with different sample sizes. They indicate that increasing the sample size decreases
the difference between two curves.
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Table 1: The MLEs of the parameters, and the associated SE and MRE for
different sample sizes (α1 = 0.06 , ν1 = 5, α2 = 0.06, ν2 = 5, θ = 20)

Dependent Independent

n Param. Estimate SE MRE Estimate SE MRE

n=50 α0 5.139 0.572 0.092 5.139 0.572 0.092
β0 3.996 0.114 0.023 3.996 0.114 0.023
α1 0.059 0.005 0.067 0.037 0.024 0.399
ν1 5.228 0.893 0.136 3.628 2.193 0.389
α2 0.059 0.005 0.068 0.039 0.023 0.345
ν2 5.208 0.873 0.136 3.953 2.151 0.348
θ 16.33 12.45 0.547 - - -
τθ 0.779 - 0 - -
M 38.35 - - 40.08 - -

n=100 α0 5.065 0.403 0.064 5.065 0.468 0.064
β0 3.996 0.082 0.016 3.996 0.096 0.016
α1 0.059 0.004 0.049 0.041 0.022 0.313
ν1 5.153 0.581 0.092 3.594 1.898 0.285
α2 0.059 0.004 0.046 0.044 0.021 0.261
ν2 5.144 0.550 0.088 3.937 1.799 0.346
θ 16.55 11.54 0.515 - - -
τθ 0.775 - - 0 - -
M 38.03 - - 39.24 - -

n=200 α0 5.048 0.278 0.044 5.048 0.278 0.044
β0 4.000 0.061 0.012 4.000 0.061 0.012
α1 0.059 0.003 0.036 0.053 0.003 0.110
ν1 5.080 0.408 0.065 4.987 0.511 0.082
α2 0.059 0.003 0.035 0.053 0.003 0.111
ν2 5.084 0.402 0.064 4.975 0.508 0.080
θ 18.50 10.35 0.499 - - -
τθ 0.803 - - 0 - -
M 37.85 - - 37.48 - -

3.2 Real data

We use real data collected from 53 bus tires in a normal use environment as presented in a study
by Bagdonavicius who have reported tire wear with two different failure modes: protector zone and
side zone. These two failure modes are dependent since we assume the failure rate of both of them
depends on degradation.

The method is similar to the previous example with respect to a changing time point of τ1 = 60.
According to τ1, 33 out of 53 failure times were at the use stress (S0). As in the previous example,
a0j , a1j are the values of A for the j-th unit at the first (normal) and second level of stress, where
a1j has been generated from a Weibull distribution with shape parameter, α = 10.60, and scale
parameter, β = 4.50. According to the data at normal stress, the estimation of shape and scale
parameters are: α = 11.1190, β = 4.4826.
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(a) n = 50 (b) n = 100 (c) n = 200

Figure 1: The estimated reliability function in a dependent (solid line) and
an independent (dashed line) case under the simple SSADT for simulation
data with different sample sizes

All model parameters,(α0, β0, θ1, ν1, θ2, ν2, θ), have been estimated using a numerical solution
of the likelihood function (A.3). The last column of Table 2 is the estimated median of the lifetime
(M̂). According to Table 2, considering the dependency between failure modes is important.
According to the relation between kendall’s tau and parameter of copula, τθ = 0.81. Like the
previous example, the estimate of reliability functions was also derived. Figure 2 shows the
reliability functions estimated using a Nelson-Aalen nonparametric method (dashed line) and
the proposed method in both dependent and independent cases (dotted and solid lines). The
difference between the two curves (solid and dotted lines) is obvious in Figure 2. As we see,
ignoring dependency between failure modes led to overestimation of the reliability function.

Table 2: The estimation of parameters with and without dependency for the
bus tire data

α0 β0 θ1 ν1 θ2 ν2 θ M
Dependent case 11.119 4.4826 0.0655 12.168 0.0663 13.046 20.22 55.88
Independent case 11.119 4.4826 0.0616 11.611 0.0647 17.269 – 56.79

4 Coclusion

SSADT is one of the most commonly used methods for reducing the required sample size. When we
have multiple failure modes in SSADT, it is important to take into account the dependency between
them. This article has proposed a modeling approach for simultaneously analyzing dependent
failure modes and degradation data under the SSADT. According to this method, we can estimate
the reliability function in a dependent case and see the differences between the dependent and
independent cases.
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Figure 2: Nonparametric (dashed line) and parametric estimated reliability
function in a dependent (solid line) and an independent (dotted line) case
under the simple SSADT for bus tire data

References

[1] Haghighi, F. and Bae, S.J. (2015), Reliability Estimation from Linear Degradation and Failure
Time Data With Competing Risks Under a Step-Stress Accelerated Degradation Test, IEEE
Transactions on Reliability, 64, 960-971.

[2] Liu, X., Li, J., Al-Khalifa, K., Hamouda, A., Coit, D. and Elsayed, E. (2013), Condition-based
maintenance for continuously monitored degrading systems with multiple failure modes. IIE
Transactions, 45, 422-435.

[3] Liu, X. and Qiu, W. (2011), Modeling and planning of step-stress accelerated life tests with
independent competing risks, IEEE Transactions on Reliability, 60, 712-720.

[4] Liu, X. and Tang, L. (2010), Accelerated life test plans for repairable systems with multiple
independent risks, IEEE Transactions on Reliability, 59, 115-127.

[5] Pan, Z. and Balakrishnan, N. (2010), Multiple-steps step-stress accelerated degradation
modeling based on Wiener and gamma processes, Communications in Statistics - Theory and
Methods, 39, 1384-1402.

[6] Park, J.I. and Bae, S.J. (2010), Direct prediction methods on lifetime distribution of organic
light-emitting diodes from accelerated degradation tests, IEEE Transactions on Reliability, 59,
74-90.

[7] Park, C. and Padgett, W.J. (2006), Stochastic degradation models with several accelerating
variables, IEEE Transactions on Reliability, 55, 379-390.

[8] Pascual, F. (2010), Accelerated life test planning with independent log-normal competing risks,
Journal of Statistical Planning and Inference, 140, 1089-1100.



Third Seminar on Reliability Theory and its Applications 216

[9] Si, X.S. , Wang, W., Hu, C.H. and Zhou, D.H. (2011), Remaining useful life estimation-a review
on the statistical data driven approaches, European Journal of Operational Research, 213, 1-14.

[10] Tseng, S.T., Balakrishnan, N. and Tsai, C.C. (2009), Optimal step-stress accelerated
degradation test plan for gamma degradation process, IEEE Transactions on Reliability, 58,
611-618.



Bayesian estimation for the STH distribution based on type II
censored data

MirMostafaee, S.M.T.K. 1 and Mahdizadeh, M. 2

1 Department of Statistics, University of Mazandaran
2 Department of Statistics, Hakim Sabzevari University

Abstract

In this paper, we consider type II right censored order statistics from the STH distribution
which is a lifetime distribution. The maximum likelihood estimation is discussed. Then, we
focus on the problem of Bayesian estimation of the unknown parameter. Since the integral
related to the Bayes estimate can not be obtained explicitly, we propose the Markov chain
Monte Carlo technique to derive the result. A real data example ends the paper.

Keywords: Bayesian estimation, MCMC technique, Censoring.

1 Introduction

Recently, Sarhan et al. [6] introduced a one parameter lifetime distribution with the following
probability density function (pdf)

f(x) =
β

β + 1

[
β + (1 + 2βx)e−βx

]
e−βx, x > 0, β > 0. (A.1)
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Let us call this model the STH distribution. Sarhan et al. [6] referred to this distribution as N(β)
and we do the same in this paper. The cumulative distribution function of X ∼ N(β) is given by

F (x) = 1− 1

β + 1

[
β + (1 + βx)e−βx

]
e−βx, x > 0. (A.2)

In the sequel, we discuss the problem of estimation of the unknown parameter based on type II
right censored order statistics (TOSs).

2 Main results

Let x̃ = (xr, x2, · · · , xr) be the observed TOSs extracted from a random sample of size n from
N(β) where 1 ≤ r ≤ n, then the likelihood function is given by (see [1])

L(β, x̃) =
n!

(n− r)!
[1− F (xr)]

n−r
r∏
i=1

f(xi)

=
n!βre−βt

[
β + (1 + βxr)e

−βxr
]n−r

(n− r)! (1 + β)n

r∏
i=1

[
β + (1 + 2βxi)e

−βxi
]
,

where t =
∑r

i=1 xi + (n− r)xr. The log likelihood function is

ℓ(β, x̃) = log
n!

(n− r)!
− βt+ r log β + (n− r) log

[
β + (1 + βxr)e

−βxr
]

−n log(1 + β) +

r∑
i=1

log
[
β + (1 + 2βxi)e

−βxi
]
.

The maximum likelihood estimate (MLE) of β, denoted by β̂M , is obtained by maximizing ℓ(β, x̃)
with respect to (w.r.t.) β. Upon differentiating ℓ(β, x̃) w.r.t. β and equating the result with zero,
we get

∂ℓ(β, x̃)

∂β
= −t+ r

β
+ (n− r)

1− βx2re
−βxr

β + (1 + βxr)e−βxr

− n

1 + β
+

r∑
i=1

1 + xie
−βxi(1− 2βxi)

β + (1 + 2βxi)e−βxi
= 0. (A.1)

Next, we derive the Bayes estimate (BE) of β. suppose that β has the following prior distribution

π(β) =
ba

Γ(a)
βa−1e−bβ, β > 0, a, b > 0.

Then the posterior distribution of β given x̃ is

π(β|x̃) = 1

C0
βr+a−1e−(b+t)βh(β, x̃),
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where

h(β, x̃) =
[
β + (1 + βxr)e

−βxr
]n−r r∏

i=1

[
β + (1 + 2βxi)e

−βxi
]
,

and

C0 =

∫ ∞

0
βr+a−1e−(b+t)βh(β, x̃)dβ.

The BE under the squared error loss (SEL) function, denoted by β̂S , is the mean of the posterior
distribution, i.e.

β̂S =
1

C0

∫ ∞

0
βr+ae−(b+t)βh(β, x̃)dβ.

But it seems that the above integral can not be obtained explicitly. Therefore, we use the Markov
chain Monte Carlo (MCMC) technique and the Gibbs sampler to compute β̂S . Clearly, we have

π(β|x̃) ∝ g(β|x̃)h(β, x̃),

where g(β|x̃) is the density of the gamma distribution with parameters r + a and b + t. We may
consider the following algorithm to compute the approximated Bayes estimate (ABE) of β.

Algorithm 1:

• Step 1: Generate β1 from g(β|x̃).

• Step 2: Repeat Step 1, N times to find β1, · · · , βN .

• Step 3: The ABE of β, denoted by β̂MS , is given by

β̂MS =

N∑
i=1

βiwi,

where

wj =
h(βj , x̃)∑N
i=1 h(βi, x̃)

, for j = 1, · · · , N.

3 A real data example

In this section, we consider the remission times (in months) of 128 bladder cancer patients taken
from [3]. The data are as follows:

0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07,
2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 3.48,
3.52, 3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09,
5.17, 5.32, 5.32, 5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93, 6.94, 6.97, 7.09, 7.26,
7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74,
10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80,
14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63,
25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12, 79.05.
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The adequacy of the fitness of the STH distribution with β = 0.08445444 to the above data
set was checked by using the Kolmogorov-Smirnov (K-S) test. The value of K-S test statistic was
found to be D = 0.071297 and the corresponding p-value equaled 0.5334. We used the goodness.fit
function, contained in the AdequacyModel package [4], in R to fit N(β). Therefore, N(β) fits the
data satisfactorily.

Let us assume that the true value of β is 0.08445444. Here, n = 128 and we considered 3
censoring schemes with r = 88, 100 and 108. Since we had no prior information, we used the
non-informative prior density with a = b = 0 for the Bayesian estimation. The MLEs, Exact
BEs (obtained using the integrate function in R) and ABEs (with N = 10000) as well as the
absolute values of the differences between these estimates and the true value of β were computed
and reported in Table 1. we used the nleqslv function, contained in the nleqslv package [2], in R to
solve (A.1). All the other computations were also performed using R [5].

We can see from Table 1 that the ABEs are quite close to the exact BEs. Therefore, we may
conclude that Algorithm 1 works satisfactorily. Moreover, the MLEs are closer to the true value
than the exact BEs but note that the true value of β was assumed to be the MLE of β based on
the complete sample.

Table 1: The MLEs, exact BEs and ABEs as well as the absolute values of the differences

between these estimates and the true value of β in parentheses.

r MLE Exact BE ABE

88 0.09404 (0.00958) 0.09603 (0.01158) 0.10446 (0.02001)
100 0.09341 (0.00896) 0.12650 (0.04204) 0.10222 (0.01776)
108 0.09209 (0.00764) 0.18969 (0.10524) 0.10076 (0.01631)
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A look at the upper and lower means in reliability framework
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Abstract

In this work, a relation between the some notions in reliability and the upper and lower
means is established. The similarity between income inequality curves and the upper and lower
means gives the idea of connecting economy and reliability. So, we also refer the relationship
between the Zenga new inequality curve and some uncertainty measures. The result is
illustrated with several models commonly used in informetrics, such as exponential, Pareto and
lognormal.

Keywords: Mean residual life, Mean waiting time, Zenga curve, Upper and lower means.

1 Introduction

The mean residual life (MRL) and the mean waiting time (MWT) of a non-negative random variable
X plays an important role in reliability theory, survival analysis and other branches of probability
and statistics. These notions are also related to income inequality studies. In this case, the age
of an item has been considered as an income. Chandra and Singpurwalla (1981) [1] and Pham
and Turkkan (1994) [4] proved that the Lorenz curve and the Gini index are closely related to
MRL of reliability theory. In this work, we briefly describe the concepts of reliability theory in
terms of the upper and lower means of variable. We also address the connection between the Zenga
new inequality curve and some uncertainty measures. The result is illustrated with several models
commonly used in informetrics, such as exponential, Pareto and lognormal. Finally, relationships
with some other reliability concepts are also presented.

1sh mirzaee@pnu.ac.ir
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2 Definitions, notations and relationships

In this context, let X be a continuous random variable denoting the age of an item. We consider
the cumulative distribution function (cdf) of X by F and F−1(p) = inf{x | F (x) ≥ p; p ∈ [0, 1]}
be the inverse function of F . Given a population and a random variable X evaluated on it, for
each p ∈ (0, 1), the population can be splitted into two groups: the first one, called lower group
that consists of the proportion p of people with the lowest values of X, and the second one called
upper group composed by all the others. Once the population is splitted into the lower and the
upper group, the means of X in these two groups can be computed, obtaining the lower and the
upper mean. The two following definitions delineate these two means.

Definition 1. Let X be a continuous random variable with distribution function F and support
[a, b], where 0 ≤ a < b ≤ ∞. The lower mean of X is defined as

µ−p = E(X | X ≤ x) =
1

p

p∫
0

F−1(u)du,, ∀p ∈ (0, 1].

Definition 2. Let X be a continuous random variable with distribution function F and support
[a, b], where 0 ≤ a < b ≤ ∞. The upper mean of X is defined as

µ+p = E(X | X ≥ x) =
1

1− p

1∫
p

F−1(u)du,, ∀p ∈ [0, 1).

It is easy to verify that for a random variabile X with expected value µ, the following formula
holds true:

µ = pµ−p + (1− p)µ+p , ∀p ∈ [0, 1]. (A.1)

2.1 Some consepts of reliability theory

Two ageing measure used in reliability analysis are the mean residual life

MRL(x) = E(X − x | X > x),

=
1

1− F (x)

∞∫
x

(u− x)dF (u),

=
1

1− F (x)

∞∫
x

udF (u)− x,

and the mean waiting time

MWT (x) = E(x−X | X < x),

= x− 1

F (x)

x∫
0

udF (u).
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2.2 Income inequalityt Curves

In the following, the most used inequality curves are considered. It is worth noting that they can
be defined through the lower and upper group means.

The Lorenz curve introduced by Lorenz (1905) is the most well-known inequality curve used in
the literature and several indices of income inequality are directly derived from this curve.

Definition 3. Let X be a non-negative continuous random variable, with finite and positive expected
value µ. The Lorenz curve of X is defined as:

L(p) =

p∫
0

F−1(u)du

1∫
0

F−1(u)du,

, p ∈ [0, 1],

=
1

µ

p∫
0

F−1(u)du, p ∈ [0, 1].

The relation between the L(p) curve, µ−p and µ+p can be written as:

µ−p =
µL(p)

p
,

µ+p =
µ(1− L(p))

1− p
.

Zenga (2007) [5] introduced a new inequality curve Z(p), based on the ratio between the lower
mean µ−p and the upper mean µ+p of non-negative random variable by

Z(p) = 1−
µ−p

µ+p
, p ∈ (0, 1),

The link between the Z(p) curve and the L(p) curve can be obtained as:

Z(p) =
p− L(p)

p[1− L(p)]
. (A.2)

The above equation shows that the Lorenz curve can be transformed into the Zenga curve and vice
versa. From such Z(p) curve, the related inequality index Z is defined as

Z =

1∫
0

Z(p)dp. (A.3)
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2.3 Relationships

The main result, which provides a simple explicit relation between the lower mean, upper mean,
Zenga curve, mean residual life time and the mean waited time is presented in the following theorem.

Theorem 2.1. Let X be a non-negative continuous random variable with finite and positive expected
value. Then,

MRL(x) = µ+p − x,

MWT (x) = x− µ−p ,

and

Z(p) =
MRL(x) +MWT (x)

MRL(x) + x
,

=
1

p
(1− µ

x+MRL(x)
), p ∈ (0, 1).

3 Some examples

In this section, we apply the main theorem to several relevant models of common use in informetrics.

3.1 Classical exponential distribution

Let X be a random variable with exponential distribution F (x) = 1 − e−
x
λ I(x>0), where λ > 0 is

its scale parameter distribution. In this case, we have

∞∫
x

[1− F (t)]dt = λ exp(−x
λ
)

and we find

MRL(x) = λ, x ≥ 0.

Then, using (2.1) we obtain,

Z(p) =
1

p[1− (ln(1− p))−1]
.

It is important to note that the scale parameter λ is not an inequality indicator, in fact the
Zenga curve, Lorenz curve and inequality measures derived from them don’t depend on λ (see
Figure 1).
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Figure 1: Zenga curve and mean residual life time in exponential distribution.

3.2 Power Distribution

Let X be a non-negative random income variable with power distribution and corresponding cdf,

F (x) = xα, 0 < x < 1

where α > 0. In this case,

MRL(x) =
α(1− xα+1)

(1− xα)(α+ 1)
− x, x > 0

and

Z(p) =
1− p

1
α

1− p
1
α
+1
, p ∈ (0, 1)

In Figure 2 some MRL and Z(p) curves are shown with different values of the distribution
parameter α. It is evident that the value of α is an inverse inequality indicator. In the other words,
if α increases, then Z(p) curves decreases.

3.3 Pareto model

A random variable X follows a Pareto distribution if its distribution function is

F (x) = 1− (
x

x0
)−θI(x>x0),

where x0 > 0 and θ > 1. In this case,

MRL(x) =
x

x0(θ − 1)
, x > 0
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Figure 2: Zenga curve and mean residual life time in power distribution.

and from that, the Zenga curve can be obtained as

Z(p) =
1− (1− p)

1
θ

p
, p ∈ (0, 1]. (A.1)

In Figure 3 some MRL and Z(p) curves are shown with different values of the distribution
parameter θ. It is notable that the value of θ is an inverse inequality indicator and the scale
parameter x0 is not an inequality indicator.
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Figure 3: Zenga curve and mean residual life time in Pareto distribution.
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3.4 Lognormal distribution

The classical lognormal distribution with the corresponding cdf is

F (x) = Φ(
log(x)− µ

σ
), x > 0, (A.2)

where −∞ < µ < ∞, σ > 0 and Φ(·) denotes the cdf of the standard normal distribution. Then,
in this distribution

MRL(x) =
µ[1− Φ( log(x)−µσ − σ2)]

1− Φ( log(x)−µσ )
− x, x ≥ 0.

where µ = E(X) = e
µ+σ2

2 and

Z(p) =
p− Φ(Φ−1(p)− σ2)

p[1− Φ(Φ−1(p)− σ2)]
, p ∈ (0, 1).

4 Empirical illustration

As an example, the formulae presented in this section can be applied to the data - set represents
the lifetime’s data relating to relief times (in minutes) of 20 patients receiving an analgesic and
reported by [2]. The data are as follows:

1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0

In Figure 4 empirical curves MRL, MWT, L(p), Z(p), lower and upper mean plots are drawn.

The four inequality curves are drawn together in the unitary square. The values of the related
indexes corresponding to the areas below the curves can be computed as income inequality indices.
The lower and upper mean plots are increasing. The Lorenz curve is convex and increasing. The
Zenga curve is convex but at first decreases then increases.

5 Conclusion

In this paper, the relation between some notions in economic theory and reliability based on upper
and lower means of variable has been shown. The considered notions are the mean waiting time,
mean residual life and the new Zenga inequality curve. I hope that this discussion may attract
wider applications in economic and applied statistics.
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Reliability of a k-out-of-n:F degradation system
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Abstract

In this paper, a k-out-of-n:F system with degrading components is considered. Likelihood
and reliability function is derived based on degradations and the effect of presence a cold
standby component is investigated on the reliability and parameter estimates. The gamma
process is assumed for degradation of active and standby components. Finally the results are
illustrated via a real data set.

Keywords: Cold standby component, Gamma process, Likelihood function, Reliability.

1 Introduction

For systems with high reliability, it is a difficult work to assess reliability with lifetime data, because
a failure dosn’t occur during short time at normal conditions. In this cases, degradation data contain
more useful information than lifetime data about system reliability. So far, the degradation data
have not been used to analyze the coherent systems. In this paper, we consider a k-out-of-n:F
system and determine the failure times of the consisting components based on their deteriorations.
As known in the literature of reliability, a k-out-of-n:F system consists of n components which fails
if and only if at least k of its components fail. Such systems have various applications in engineering.
For more details, we refer to Asadi and Bayramoglu (2006). On the other hand, there are different
methods of redundancy to increase system reliability. One of them is to equip the system with cold
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standby units which do not fail while they are waiting. Eryilmaz (2012) investigated the behavior of
three different versions of mean residual life function corresponding to k-out-of-n system equipped
with a cold standby unit. For recent studies, see also, Franko et al. (2015) and Wang et al. (2015).
Here, we consider degradation performance of a k-out-of-n:F system with a single cold standby
component and study the reliability of the system based on deterioration of consisting components.
Toward this end, a Gamma process is considered for degradation data over time.

The rest of the paper is organized as follows. In Section 2, some preliminaries are presented
regarding the Gamma process and time to failure distribution. Section 3 focuses on model
description. In this section, some various likelihood functions are derived when either a cold
standby component is used or not. In Section 4, the reliability function of a k-out-of-n:F system
is investigated. A real data set is used to illustrate the proposed procedure in Section 5. Some
conclusions are stated in Section 6.

2 Preliminaries

It is worthwhile to note that environment of an experiment, measurement errors, sample material,
etc. are observed at random. So, degradation measurement is a random variable such that the
parameters of its distribution change over time. Thus, it is recommended to model degradation
performance in terms of a stochastic process. Since, degradation is monotone and status of samples
is irreversible, Gamma process is much suitable for describing components degradation. Gamma
process is a stochastic process with independent, non-negative and real-valued increments having
a Gamma distribution. Let X(t) denote the deterioration at time t, t ≥ 0, which follow a Gamma
process with the following probability density function

fX(t)(x;α(t), β(t)) =
1

Γ(α(t))β(t)α(t)
xα(t)−1e

− x
β(t) ; x > 0, (A.1)

where Γ(α) =
∫∞
0 xα−1e−xdx stands for the complete Gamma function. Note that the expectation

and variance of X(t) are

E(X(t)) = α(t)β(t), V ar(X(t)) = α(t)β2(t),

where α(t) and β(t) denote the shape and scale parameters at time t, respectively. Such process is
denoted by G(α(t), β(t)). For more details about gamma process, see Bagdonavicius and Nikulin
(2000). Here we assume that α(t) is a nondecreasing, right-continuous and real-valued function for
t ≥ 0, and β(t) is constant β, unchanging over time. Thus, process {X(t); t ≥ 0} has the following
properties

(a) X(0) = 0 with probability one;

(b) X(t) has independent increments;

(c) X(t)−X(s) ∼ G(α(t)− α(s), β) for all t > s ≥ 0.
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To determine the failure time of a component, we assume that it fails when its degradation
reaches or exceeds a certain boundary level. In fact, for a given threshold level d, the lifetime T of
the product is defined as the instant at which the degradation X(t) reaches or exceeds d for the
first time, i.e.,

T = inf{t ≥ 0; X(t) ≥ d}. (A.2)

Using (A.1) and (A.1), the cdf and pdf of T are given by

FT (t) =P (T ≤ t) = P (X(t) ≥ d) =

∫ ∞

d

1

Γ(α(t))βα(t)
xα(t)−1e

− x
β dx

and

fT (t) =α
′(t)

∫ ∞

d
β

(
log y −Ψ(α(t))

) 1

Γ(α(t))
yα(t)−1e−ydy, (A.3)

respectively, where α′(t) is the first derivative of α(t) with respect to t and Ψ(t) = d
dt log Γ(t) stands

for the Digamma function.

3 Likelihood Functions

Let X1(t), ..., Xn(t) denote the degradations of n units of a k-out-of-n:F system at time t. Also,
suppose that at the failure time of such system, a cold standby component with degradation Y (t)
is put into operation. The following assumptions are also considered throughout the paper:

(1) All active and standby components are statistically independent,

(2) Degradations of n active components are identically distributed with the Gamma process
with the cdf F (.;α(t), β) at time t ,

(3) Degradation of standby component Y (t) obeys the Gamma process with the cdf Fs(.;αs(t), βs)
in active state.

(4) All components have increasing degradation paths and the ith component fails when Xi(t)
reaches or exceeds the given threshold value d.

(5) The degradations are measured at time points 0 ≤ t0 < t1 < ... < tm.

As previously mentioned, a k-out-of-n:F system fails when the kth failure occurs. Suppose that
the νith (i = 1, ..., k) component is the ith failed component for which its failure time is tri . It
is obvious that ν1 ̸= ν2 ̸= ... ̸= νk and 1 ≤ r1 < r2 < ... < rk ≤ m. Denoting the parameters
of Gamma process by θ, the associated likelihood function based on the degradation increments
∆i(tj) = Xi(tj)−Xi(tj−1) is

L1(θ) =

k−1∏
i=1

ri∏
j=1

f∆νi (tj)
(δνi,j ;θ)

n∏
h=1

h̸=ν1,...,νk−1

rk∏
j=1

f∆h(tj)(δh,j ;θ), (A.1)
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where δi,j is the observed value of ∆i(tj) with the pdf f∆i(tj)(·;θ). Moreover,
∏0
i=1 ai = 1.

In the presence of a cold standby component, assume that a k-out-of-n:F system is failed at the
ℓth inspection. That is, tℓ is the first inspection time after trk for which the degradation of one of
active components reaches or exceeds the threshold d, i.e., rk < ℓ ≤ m. Denoting the parameters
of standby components by θs, the likelihood function based on degradation increments ∆i(tj) and
standby degradation increments ∆

′
(tj) = Y (tj − trk)− Y (tj−1 − trk) in active state, is given by

L2(θ,θs) =
k∏
i=1

ri∏
j=1

f∆νi (tj)
(δνi,j ;θ)

n∏
h=1

h̸=ν1,...,νk

ℓ∏
j=1

f∆h(tj)(δh,j ;θ)
ℓ∏

j=rk+1

f∆′ (tj)
(δ

′
j ;θs), (A.2)

where δ
′
j is the observed value of ∆

′
(tj). From (A.2), it is deduced that inferences about θ and θs

may be made based on the separate likelihood functions

L21(θ) =
k∏
i=1

ri∏
j=1

f∆νi (tj)
(δνi,j ;θ)

n∏
h=1

h̸=ν1,...,νk

ℓ∏
j=1

f∆h(tj)(δh,j ;θ) (A.3)

and

L22(θs) =
ℓ∏

j=rk+1

f∆′ (tj)
(δ

′
j ;θs), (A.4)

respectively. Furthermore, when the active and standby components come from the same processes,
i.e., θ = θs, the likelihood function

L3(θ) = L3(θ,θ) (A.5)

may be used to make inference about θ.

4 System reliability

Here, we study the reliability of a k-out-of-n:F system when either a cold standby component is
used or not. First of all, let us define the lifetime of such a system without standby component as
follows

Tk:n = inf{t > 0; Xi1(t) ≥ d, ...,Xik(t) ≥ d}, (A.1)

where {i1, ..., ik} is a permutation of {1, ..., n}. Reliability function of a k-out-of-n:F system at
time x is calculated as

R(x) = P (Tk:n > x) =

k−1∑
i=0

(
n

i

)
F̄ i(d;α(x), β)Fn−i(d;α(x), β). (A.2)

When a cold standby component is used, the failure time of a k-out-of-n:F system may be
defined as

T sk:n = inf{t > Tk:n; Xj1(t) ≥ d or Y (t− Tk:n) ≥ d},
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where j1 = 1, ..., n\{i1, ..., ik} and Tk:n is the failure time of the system without standby component
defined in (A.2).
Reliability function of a k-out-of-n:F system equipped with a cold standby component at time
point x, can obtain with small changes in corollary 1 of Eryilmaz (2012) as follows

Rs(x) =R(x) +

(
n− 1

k − 1

)
Fn−k(d;α(x), β)

×
∫ x

0
F̄ k−1(d;α(u), β)Fs(d;αs(x− u), βs)fT1(u)du, (A.3)

where R(x) is as defined in (A.2), F and Fs stand for the cdfs of X(t) and Y (t), respectively.

5 Application to a real data set

Here, we use the fatigue crack growth data to illustrate the proposed methodology in this paper.
This data set, which consist of 21 sample paths, was provided by Hudak et al. (1978) and also
analyzed by Lu and Meeker (1993). These data are measured at t0 = 0, t1 = 0.01, ..., t12 = 0.12
million cycles and presented in Table 1. It is observed that initial crack length at shorten test time
t0 = 0 is equal to 0.9. Let us denote the observed measures by Di(tj), i = 1, ..., 21, j = 1, ..., 12.
Figure 1 is a plot of crack lengths Di(tj) versus time (in million cycles). It is obvious that the paths
follow an exponential regularity. So, we consider a Gamma process for Xi(tj) = Di(tj)− 0.9 with
shape parameter ebtj and constant scale parameter a. With such parameters, the average of crack
lengths has exponential growth, i.e., E(Xi(tj)) = aebtj .

Table 1. Fatigue crack growth data
Cycles (in million)

path 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12
1 0.90 0.95 1.00 1.05 1.12 1.19 1.27 1.35 1.48 1.64
2 0.90 0.94 0.98 1.03 1.08 1.14 1.21 1.28 1.37 1.47 1.60
3 0.90 0.94 0.98 1.03 1.08 1.13 1.19 1.26 1.35 1.46 1.58 1.77
4 0.90 0.94 0.98 1.03 1.07 1.12 1.19 1.25 1.34 1.43 1.55 1.73
5 0.90 0.94 0.98 1.03 1.07 1.12 1.19 1.24 1.34 1.43 1.55 1.71
6 0.90 0.94 0.98 1.03 1.07 1.12 1.18 1.23 1.33 1.41 1.51 1.68
7 0.90 0.94 0.98 1.02 1.07 1.11 1.17 1.23 1.32 1.41 1.52 1.66
8 0.90 0.93 0.97 1.00 1.06 1.11 1.17 1.23 1.30 1.39 1.49 1.62
9 0.90 0.92 0.97 1.01 1.05 1.09 1.15 1.21 1.28 1.36 1.44 1.55 1.72
10 0.90 0.92 0.96 1.00 1.04 1.08 1.13 1.19 1.26 1.34 1.42 1.52 1.67
11 0.90 0.93 0.96 1.00 1.04 1.08 1.13 1.18 1.24 1.31 1.39 1.49 1.65
12 0.90 0.93 0.97 1.00 1.03 1.07 1.10 1.16 1.22 1.29 1.37 1.48 1.64
13 0.90 0.92 0.97 0.99 1.03 1.06 1.10 1.14 1.20 1.26 1.31 1.40 1.52
14 0.90 0.93 0.96 1.00 1.03 1.07 1.12 1.16 1.20 1.26 1.30 1.37 1.45
15 0.90 0.92 0.96 0.99 1.03 1.06 1.10 1.16 1.21 1.27 1.33 1.40 1.49
16 0.90 0.92 0.95 0.97 1.00 1.03 1.07 1.11 1.16 1.22 1.26 1.33 1.40
17 0.90 0.93 0.96 0.97 1.00 1.05 1.08 1.11 1.16 1.20 1.24 1.32 1.38
18 0.90 0.92 0.94 0.97 1.01 1.04 1.07 1.09 1.14 1.19 1.23 1.28 1.35
19 0.90 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 1.20 1.25 1.31
20 0.90 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 1.19 1.24 1.29
21 0.90 0.92 0.94 0.97 0.99 1.02 1.04 1.07 1.11 1.14 1.18 1.22 1.27

Now, we assume that the data are actually the sample paths of 21 components with a k-out-
of-n:F structure and present the results for k = 1, 2. Also, as defined by Lu and Meeker (1993), a
component is considered to be failed when its crack length reaches or exceeds the threshold d = 1.6
inches.
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Figure 1: Fatigue crack length versus time

Using (A.1) and the entries of Table 1, the MLEs of a and b in a k-out-of-21:F system are
numerically derived for k = 1, 2. Note that the values of r1 = 9 and r2 = 10 are observed from
Table 1. Estimated values (â, b̂) are drived (0.027,31.271) and (0.0301,28.7021) for k = 1 and k = 2,
respectively. Substituting the estimated values in (A.2), the reliability function may be estimated.

To obtain reliability function of the k-out-of-21:F system with a cold standby component,
in addition to the degradations of active components, we need to have degradation of standby
component when it is activated. Toward this end, we generate 1000 pseudo observations from
G(ebst, as). For more investigation about the effect of the parameters of standby component, we
use two different pairs of (as, bs) such that the expected degradation of standby component is equal
or less than the active components corresponded with the identically or non-identically distributed
cases, respectively. Precisely, we use (as, bs) = (0.027, 31.271), (0.017, 21) for the case of k = 1
and (as, bs) = (0.0301, 28.7021), (0.02, 18) when k = 2. Using (A.3), the MLEs of a and b may be
derived for different values of k in the presence of a cold standby component. Moreover, assuming
as = a and bs = b, the MLEs may be obtained from (A.5). The results are presented in Table 2
for given values of (as, bs), when k = 1, 2.

Table 2. Values of MLE in the presence of cold standby component.
k = 1 k = 2

(as, bs) (0.027, 31.271) (0.017, 21) (0.0301, 28.7021) (0.02, 18)
â 0.0304 0.0301 0.0315 0.0314

b̂ 28.6645 28.7021 27.4005 27.4015

The reliability of the k-out-of-21:F system may also be estimated from (A.3), when standby
component is used. The estimated reliability functions are plotted in Figure 2 for k = 1 and 2. In
this figure, the solid lines show the reliability for the systems without standby component. The dots
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Figure 2: Reliability of a k-out-of-21:F system.

and dashed lines show the reliability of the systems in the presence of one standby component when
its degradation is identical and non-identical with the active components, respectively. It is seen
that the reliability increases significantly when a cold standby component is used, however, varying
the degradation parameters of standby component have no significant effect on the reliability.
Specially, when k = 2, maximum difference of reliability is 4.399926× 10−3 such that the dots and
dashed lines overlap approximately. Of course, the results are valid for the current data and they
may be different for other data sets.

6 Conclusion

In this paper, degradation perormance of a k-out-of-n:F system was considered. Likelihood function
was derived based on degradtions. Moreover, the effect of cold standby was investigated on
reliability function and parameter estimates. It was shown in a real data set that the reliability of
the system increases significantly when a cold standby component is used.
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The stress-strength reliability under the environmental factors
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Abstract

Environmental factors such as temperature, humidity, dust, fumes or corrosive agents often
have considerable influence on system reliability characteristics. In this paper, we assume
that the effect of the environmental factors on the system can be modelled by a distortion
function and under this assumption the stress-strength reliability is studied. Also, the dynamic
stress-strength reliability and the number of working components of static stress-strength
system are considered.

Keywords: Stress-strength reliability, Distortion function, Distorted probability
distribution.

1 Introduction

There are various definitions for reliability indices in the literature. One of them is the probability
of satisfactory performance of a system at a given time which works under certain conditions. In
some experiments, it is desired to evaluate strength components under the other stress variables,
which is called “stress-strength model” in reliability analysis. One issue of interest in the reliability
engineering is the study of the probability that a random variable can dominate the other, that
is the probability P (X < Y ) where X and Y are two non-negative random variables, defined
on a same probability space (Ω,F , P ). If X and Y represent the lifetimes of two systems, then
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P (X < Y ) is known as the probability that system with the lifetime X fails before another. The
stress-strength reliability is defined by P (X < Y ). In many situation in reliability, due to exposure
of the environmental factors such as, temperature, pressure, humidity, dust and etc, distribution of
the system under these factors may be changed. For example, consider the designing of a bridge in
the cities or an oil offshore platform on the sea. If the random variable Y represent strength of leg of
bridge or oil platform and the random variable X is represented the stress of weight of the bridge or
oil offshore platform on its legs. With the passing of the time and under the temperature, pressure
or humidity the the random variables X and Y transform to the random variables X∗ and Y ∗,
respectively, then P (X∗ < Y ∗) is the probability of successful bridge design or oil platform during
a mission. In this paper, we consider a stress-strength model under the environmental factors. We
assume that these factors have almost equal effect, with the distortion function, on the original
distribution of a stress-strength system. Distorted probability distributions are special cases of the
more general theory of monotone set functions and non-additive measures, see, Denneberg (1994)
for more details. The stress-strength reliability in static modeling is defined as the probability
that the units strength is greater than the stress, that is, P (Y > X), where Y is the random
strength of the unit and X is the random stress placed on it. Dynamic modeling of stress-strength
interference might offer more realistic applications to real-life reliability studies than static modeling
and it enables us to investigate the time-dependent (dynamic) reliability properties of the system.
The rest of this paper is organized as follows. Section 2 contains definition and auxiliary results.
Section 3 deals with the investigation of the dynamic stress-strength model under the distortion
functions. Exact expressions are obtained and the conditions to increase (or decrease) the reliability
by concavity or convexity of distortion function are discussed. The number of working strength
components under the environmental factors has been studied in Section 4.

2 Definition and auxiliary results

A distortion function, Φ(u), is a continuous and non-decreasing function on the interval [0, 1] such
that Φ(0) = 0 and Φ(1) = 1 and expect for a finite number of points, φ(u) = d

duΦ(u) exists on
the interval (0, 1). For a given distortion function Φ(·), a distorted probability distribution can be
defined by F ∗ = Φ(F ). Suppose that under the environmental factors the random lifetimes of X
and Y with distributions F and G transform to Φ(F ) and Φ(G), respectively. Let us denote by
X∗ and Y ∗ any random variables that are distributed according to F ∗ = Φ(F ) and G∗ = Φ(G),
respectively, which are also called the distorted random variables induced by Φ. If Φ(·) is concave (or
convex) distortion function we have X∗ ⩽st X ( or X ⩽st X

∗). For example, take F (x) = 1− e−x,

Φ1(u) = u2 and Φ2(u) = u
1
2 . Then Figure 1 shows that the lifetime of the system has been reduced

due to concavity of the distortion function.

Navarro et al. (2015) studied the preservation of stochastic orders under the formation of the
generalized distorted distributions. The next result shows that some stochastic orders preserved
under the distortion.

Result 1. Let Φ be a continuous and strictly increasing distortion function, then
(i) X ⩽c Y if, and only if, X∗ ⩽c Y

∗.
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Figure 1: Survival function of distorted random variable

(ii) X ⩽∗ Y if, and only if, X∗ ⩽∗ Y
∗.

(iii) X ⩽su Y if, and only if, X∗ ⩽su Y
∗.

(iv) X ⩽disp Y if, and only if, X∗ ⩽disp Y
∗.

Proof. By assumptions, we have

G∗−1(F ∗(x)) = G∗−1(Φ(F (x))) = G−1(F (x)). (A.1)

The results follow from (A.1) and Definition 2. 2

3 Dynamic stress-strength reliability under the distortion
function

Assume that the strength system consists of n i.i.d components and the deteriorating strength of the
ith component at time t is denoted by the process Yi(t) for i = 1, . . . , n with cumulative distribution
function Gt and with signature vector s = (s1, · · · , sn). The random variableX represents the stress
system with cumulative distribution function F and remains fixed over time (static). Let Tt be the
system’s lifetime at time t then (see, Samaniego, 2007)

P (Tt > u) =

n∑
i=1

siP (Yi:n(t) > u). (A.1)

The stress-strength reliability of this system is given by

R(t) = P (Tt > X) =
n−1∑
k=0

s̄k

(
n

k

)∫ ∞

0
(Gt(x))

k(Ḡt(x))
n−kdF (x), (A.2)

where s̄k =
∑n

j=k+1 sj . Under the distortion function Φ, the stress-strength reliability in (A.2) is
given by

R∗(t) = P (T ∗
t > X) =

n−1∑
k=0

s̄k

(
n

k

)∫ ∞

0
(Φ(Gt(x)))

k(Φ̄Gt(x))
n−kdF (x), (A.3)
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where T ∗
t is lifetime of strength system under the environmental factors with component Y ∗

i (t)
which has distribution function G∗

t = Φ(Gt). we have the following results for comparing R∗(t) and
R(t).

Result 2. (i) If s = (0, · · · , 1) and Φ is concave (convex) then R∗(t) ≤ (≥)R(t).
(ii) If s = (1, · · · , 0) and Φ is concave (convex) thenR∗(t) ≤ (≥)R(t).
(iii) For n = 1 and Φ is concave (convex) then R∗(t) ≤ (≥)R(t).

In order to obtain the effect of environmental factor we evaluate R∗(t) − R(t) under the two
distortion function and for some special signature vectors. From Eryilmaz (2013), let Yi(t) be
defined by

Yi(t) = e−Ct, t ≥ 0, i = 1, . . . , n, (A.4)

where C follows Pareto distribution with distribution function FC(x) = 1− (µx )
2, x > µ, then the

distribution function of Yi(t) for i = 1, . . . , n is

Gt(x) =
µ2t2

(lnx)2
, 0 < x < e−µt. (A.5)

Let us take the following notations for two special signature vectors

C1 = {s|si =
6i2

n(n+ 1)(2n+ 1)
, i = 1, . . . , n},

C2 = {s|si =
(12)

i

1− (12)
n
, i = 1 . . . , n}

Assume that the random stress X has power distribution function F (x) = xθ, 0 < x < 1, θ > 0. In
the following, under two distortion functions the expression R∗(t)−R(t) has been studied.

• Power distortion: It is defined as

Φ(u) = up, 0 ≤ u ≤ 1, p > 0. (A.6)

It is obvious that Φ(u) is concave (convex) if p ≤ 1 (p ≥ 1). From (A.2) and (A.3) we obtain

R∗(t)−R(t) =

n−1∑
k=0

s̄k

(
n

k

)∫ e−µt

0

[( µ2t2

(lnx)2
)kp(

1− (
µ2t2

(lnx)2
)p
)n−k

−
( µ2t2

(lnx)2
)k(

1− µ2t2

(lnx)2
)n−k]

. (A.7)

For some selected values of θ and p, we have computed (A.7) as a function of t. The results are
presented in the Figure 2 and it is seen that for two signature vectors and for n = 5 and µ = 0.5,
R∗(t)−R(t) > 0 (R∗(t)−R(t) < 0), if the distortion function be convex (concave). Note that from
Figure 2 for large value of t we have R∗(t) ≃ R(t).
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Figure 2: The plot of R∗(t) − R(t) under the power distortion function for signature
vectors C1 and C2 in left and right panel, respectively.

• Dual Power distortion: It is defined as

Φ(u) = 1− (1− u)p, 0 ≤ u ≤ 1, p > 0. (A.8)

It is obvious that Φ(u) is concave (convex) if p ≥ 1 (p ≤ 1). From (A.2) and (A.3) we obtain

R∗(t)−R(t) =

n−1∑
k=0

s̄k

(
n

k

)∫ e−µt

0

[(
1− (1− µ2t2

(lnx)2
)p
)k(

1− µ2t2

(lnx)2
)p(n−k)

−
( µ2t2

(lnx)2
)k(

1− µ2t2

(lnx)2
)n−k]

. (A.9)
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Figure 3: The plot of R∗(t)−R(t) under the dual power distortion function for signature
vectors C1 and C2 in left and right panel, respectively.

For some selected values of θ and p, we have computed (A.9) as a function of t. The results are
presented in the Figure 3 and it is seen that for two signature vectors and for n = 5 and µ = 0.5,
R∗(t)−R(t) < 0 (R∗(t)−R(t) > 0), if the distortion function be concave (convex).
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4 Stochastic comparison for the number of working strength
components in static stress-strength model

Consider the stress-strength system consisting of n independent components whose random
strengths are indicated by Y1, · · · , Yn with survival function Ḡ1, · · · , Ḡn, respectively. Assume
that the components are subjected to a common stress X with distribution function F , and let X
and Yi for i = 1, · · · , n be independent random variables. Describe the random variable N(l,X, Y )
to be the random number of active components of the system who endured the stress X up to level
strength l. Then we have

N(l,X, Y ) =

n∑
i=1

I(Yi −X > l), (A.1)

where I(A) = 1 if event A occurs, and I(A) = 0, otherwise. The random variable defined by (A.1)
may be useful for understanding the behaviour of a system over time, see Ling and Li (2013). The
distribution of N(l,X, Y ) can be obtained by Theorem 3.8 of Ling and Li (2013) which is stated
in the next result.

Result 3. Let the random variable N(l,X, Y ) be as in (A.1), then for 0 ≤ k ≤ n

P (N(l,X, Y ) = k) =
∑
S

k∏
u=1

∫ ∞

0
Ḡju(l + x)dF (x)

n∏
u=k+1

∫ ∞

0
Gju(l + x)dF (x), (A.2)

where the summation S expand over all permutation (j1, . . . , jn) of 1, . . . , n for which j1, · · · , jk and

jk, · · · , jn (Note that
0∏

u=1
= 1 and

n∏
u=n+1

= 1).

Proof. We have

P (N(l,X, Y ) = k) =
∑
S

P (Yj1 −X > t, · · · , Yjk −X > t, Yjk+1
−X > t, · · · , Yjn −X > t). (A.3)

By equation (A.3) and P (Yjk −X > t) =
∫∞
0 Ḡjk(t+ x)dF (x) the proof has been completed. 2

Let the aforementioned stress-strength system under the environmental factors has been changed
and the distribution of random stress (or strength) has been re-weighted. Assume that the
environmental factors have the effect on the original stress (or strength) distributions as a distortion
function. Suppose that under the environmental factors the random lifetime of X (or Y ) with
distributions F (or Gi) transform to Φ(F ) (or Φ(Gi)). In the following, we give sufficient conditions
for the stochastic orders between N(l,X, Y ) and N(l,X∗, Y ) (or N(l,X, Y ∗)).

Result 4. Assume that the stress-strength system with random stress X∗ and random strength
components Y1, · · · , Yn.
(i) If Φ(.) is a concave (or convex) distortion function, then N(l,X, Y ) ⩽st (⩾st)N(l,X∗, Y ).
(ii) If Φ(.) is a concave (or convex) and differentiable distortion function , then N(l,X, Y ) ⩽lr (⩾lr

)N(l,X∗, Y ).
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Similar Result 4, st and lr orders hold if the distribution of strength components changed. There
are stated in the next result.

Result 5. Assume that the stress-strength system with random stress X and random strength
components Y ∗

1 , · · · , Y ∗
n .

(i) If Φ(.) is a concave (or convex) distortion function, then N(l,X, Y ) ⩾st (⩽st)N(l,X, Y ∗).
(ii) If Φ(.) is a concave (or convex) and differentiable distortion function , then
N(l,X, Y ) ⩾lr (⩽lr)N(l,X, Y ∗).
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Abstract

The reliability scientists have always investigated the ageing properties of different systems
structures and for this reason utilizing applicable tools is vitally important. The Gini-type
index is an applicable diagnostic tool to realise the ageing properties of lifetime variables. In
this paper Gini-type and its properties are studied. Besides different illustrative examples
are given for further intuition. Later, a new stochastic order in terms of Gini-type index is
introduced to compare the speed of ageing of components and systems.

Keywords: Reliability, Ageing properties, Stochastic comparisons.

1 Introduction

So far many researchers have been comparing different strategies under various assumptions
specially when the systems elements are assumed to be dependent, such as Spizzichino [11], Navarro
et al. [7], Khaledi and Shaked [3], Pellerey [9] and Navarro et al. [5], [6] and Borgonovo et al. [1].

Along with the previous mentioned investigations we propose to apply the Gini-type index
defined by Kaminskiy and Krivtsoz [4] as a novel tool to gain useful information on the ageing
characteristics of reliability systems.
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Some extensions to multidimensional case of Gini-type index are also thoroughly investigated,
by which the multivariate and conditional ageing properties of the lifetime variables are accessible.
In particular, we show that the ageing properties of a component lifetime can vary when the other
(dependent) components are working or have already failed.

This paper is organized as follows. In Section 2 the Gini-type index is introduced and its
application in reliability theory is expressed. Section 3 defines a new stochastic order in terms of
Gini-type index and different properties of this order are discussed.

Note that throughout the paper, ‘log’ means natural logarithm, and prime denotes derivative.

2 Gini-type index

The ageing behaviour of repairable or non-repairable systems is vitally important for maintenance
strategies. Kaminskiy and Krivtsoz [4] introduced a simple index which could help to assess the
degree of ageing or rejuvenation of repairable or non-repairable systems. Let X be a non-negative
absolutely continuous (a.c.) random variable denoting the lifetime of a component or a system.
Let F̄ (t) = P(X > t) and HX(t) = − log F̄ (t) represent its survival function and cumulative hazard
rate function, respectively. We recall that hX(t) =

d
dtHX(t) is the hazard rate of X. Assuming that

D1
X := {t > 0 : 0 < F̄ (t) < 1}, (A.1)

the Gini-type (GT) index is introduced for all t ∈ D1
X as follows (see [4]).

Definition 1. The GT index for a non-negative a.c. random variable X in time interval (0, t] is

GTX(t) = 1− 2

tHX(t)

∫ t

0
HX(u) du, t ∈ D1

X . (A.2)

It is shown that GT index satisfies the inequality

−1 < GTX(t) < 1 for all t ∈ D1
X .

We point out that the GT index can be seen a measure of the ageing property of the underlying
random variable. Indeed, since HX(0) = 0 and X is absolutely continuous, the following result
holds (see [4]).

Proposition 2.1. We have that

(i) GTX(t) ≥ (≤) 0 for all t ∈ D1
X if and only if X is IFR (DFR);

(ii) GTX(t) = 0 for all t ∈ D1
X if and only if X is CFR (constant failure rate), i.e. X has exponential

distribution.

Clearly, the GT index changes sign when the hazard rate is non-monotonic. For instance, if
hX(t) = t(t− 1)2, t ≥ 0, then GTX(t) =

3
5 +

4(t−2)
5(6+t(3t−8) , t ≥ 0, which is first positive, then negative,

and finally positive when t increases.
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As stated in [4], the index introduced in Definition 1 is defined similarly as the ‘Gini coefficient,
which is used in macroeconomics for analysing income distributions. In the reliability analysis of
repairable systems it is of large interest to establish if the point process of the failure times is close
to or far from the homogeneous Poisson process. The analysis of the GT index is thus useful to
determine if the system is stable, or is improving, or is deteriorating.

Let us now investigate if the GT index can be a constant for further cases than the exponential
distribution. This allows us to give a characterization result for the Weibull distribution in terms
of the GT index, which extends case (ii) of Proposition 2.1.

Theorem 2.2. The non-negative a.c. random variable X has Weibull distribution if and only if
the corresponding GT index is constant.

Proof. The proof of one side is straightforward. Thus, suppose that GT index of X is constant, i.e.
GTX(t) = r for t ∈ D1

X , with −1 < r < 1. Hence, from (A.1) we have

1

tHX(t)

∫ t

0
HX(u) du =

1− r

2
, t ∈ D1

X .

Differentiating both sides with respect to t, since HX(t) is differentiable, we obtain

H
′
X(t)−

1 + r

1− r

HX(t)

t
= 0. (A.3)

By solving the differential equation in (A.3), with HX(0) = 0, and using (A.1) one attains

F̄ (t) = exp
{
−c t

1+r
1−r

}
, −1 < r < 1, t ∈ D1

X ,

with c > 0, this being the survival function of the Weibull distribution.

The following example presents a number of distributions, where D1
X = (0,∞), with the

corresponding GT index and the related limit behaviour.

Example 2.3. Consider the following survival functions, having support (0,∞):

(i) (Lomax distribution) F̄ (t) = (1 + t
β )

−α, α > 0 and β > 0;

(ii) (Gompertz Makeham distribution) F̄ (t) = exp{α(1− eβt)}, α > 0 and β > 0;

(iii) (Log-logistic distribution) F̄ (t) = 1
1+(tβ)α , α > 0 and β > 0;

(iv) (A bathtub-shaped hazard rate distribution) F̄ (t) = exp{α t33 − αβt2 + (β2 + λ)t}, α > 0, λ > 0
and β > 0, having the bathtub-shaped hazard rate hX(t) = α(t− β)2 + λ.

Table 2.3 gives the corresponding GT indexes and their limits. In case (iii), Φ denotes the Lerch
transcendence function, defined as

Φ(z, s, a) =
∞∑
k=0

zk

(k + a)s
. (A.4)

For a better intuition about the GT indexes in Table 2.3, see Figures 1–4.
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GTX(t) t→ 0 t→ ∞

(i) 1 + 2
(β + t) log(1 + β

t )− t

t log(1 + β
t )

0 −1

(ii) 1 + 2
−1 + eβt − tβ

βt(1− eβt)
0 1

(iii) 1 +
2(−(tβ)αΦ(−(tβ)α, 1, 1 + 1

α) + log(1 + (tβ)α))

− log(1 + (tβ)α)
−1

(iv)
α
6 t

2 − αβ
3 t

α
3 t

2 − αβt+ λ+ αβ2
0

1

2

Table 1: GT indexes and their limits for the distributions of Example 2.2.
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Figure 1: The GT index of the Lomax distribution (i) for β =
0.1, 0.5, 1, 2, 5, 10 from bottom to top (left) and the GT index of the
Gompertz Makeham distribution (ii) for β = 0.1, 0.5, 1, 2, 5, 10 from bottom
to top (right).

3 A GT index-based stochastic order

Let us now define a new stochastic order in terms of GT index, called ‘GT order’ for short. This
is useful to compare the ageing properties of lifetime random variables.

Definition 2. Let X and Y be two random lifetimes having GT indexes GTX and GTY , respectively.
We say that X is less than Y in GT index, and write X ≤GT Y , if

GTX(t) ≤ GTY (t) for all t ∈ D1 := D1
X ∩D1

Y .

An equivalent condition is stated hereafter.

Proposition 3.1. We have that X ≤GT Y if and only if∫ t
0 HY (u) du∫ t
0 HX(u) du

is non-decreasing in t ∈ D1. (A.1)
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Figure 2: The GT index of the Log-logistic distribution (iii) for α = 0.5
(left) and α = 2 (right) where β = 0.1, 0.5, 1, 2, 5, 10 (from bottom to top).

Figure 3: The GT index of the bathtub-shaped hazard rate distribution (iv)
for α = 0.5 (left) and α = 10 (right) where λ = 1 and β = 0.1, 0.5, 1, 2, 5, 10
(from left to right).

Proof. By Definition 2 and Eq. (A.1), one concludes that X ≤GT Y if and only if the following
condition is fulfilled for all t ∈ D1:

HY (t)

∫ t

0
HX(u) du−HX(t)

∫ t

0
HY (u) du ≥ 0, (A.2)

Therefore, it is not hard to see that inequality (A.2) is equivalent to
d
dt(
∫ t
0 HY (u) du/

∫ t
0 HX(u) du) ≥ 0, and then the stated result holds.

Example 3.2. Let X(a), a > 0, be a family of non-negative a.c. random variables having survival
functions F̄X(a)(t) = ta, 0 ≤ t ≤ 1. The GT index of X(a) is given by

GTX(a)(t) = 1− 2

log (1− ta)

[
taΦ
(
ta, 1, 1 +

1

a

)
+ log (1− ta)

]
, 0 < t < 1,

where Φ is the Lerch function defined in (A.4). It can be seen that X(a) is increasing in a in the
GT order, since GTX(a)(t) < GTX(b)(t) for all a and b such that 0 < a < b < 1 and all t ∈ (0, 1).
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In the following proposition we show that the random lifetimesX and Y having common support
D1 satisfy the proportional hazard rate model

F̄Y (t) =
[
F̄X(t)

]α
, t ∈ D1, α > 0, (A.3)

if and only if they have the same GT indexes.

Proposition 3.3. The non-negative random variables X and Y having common support D1 satisfy
the proportional hazard rate property as in (A.3), if and only if

GTX(t) = GTY (t), ∀t ∈ D1. (A.4)

Proof. Let HX(t) and HY (t) represent the cumulative hazard rate functions for X and Y ,
respectively. By the proportional hazard rate property (A.3) we have HY (t) = αHX(t), t ∈ D1,
α > 0. Thus, (A.4) holds trivially.

On the other hand when (A.4) holds, according to (A.2) one concludes that∫ t
0 HY (u) du/

∫ t
0 HX(u) du = α, where α > 0, which implies the proportional hazard rate

property.

Let us now discuss some further properties of the GT order.

Proposition 3.4. Let X, Y and Z be non-negative random variables. The following properties
hold:

(i) (reflexivity) X ≤GT X.

(ii) (transitivity) If X ≤GT Y and Y ≤GT Z then X ≤GT Z.

(iii) X ≤GT Y ⇐⇒ aX + b ≤GT aY + b for a, b ∈ R+.

Proof. The proof is trivial by Proposition 3.1.

Remark 3.5. Due to Proposition 3.3, the antisymmetry property of GT order does not hold in strict
sense. Indeed, X ≤GT Y and Y ≤GT X are achieved simultaneously if and only if X and Y satisfy
the proportional hazard rate model.

Sengupta and Deshpande [10] introduced the following partial orderings dealing with ageing
properties. Hereafter we slightly modify their definitions in order to have more consistent notions.

Definition 3. Given two non-negative random lifetimes X and Y , we say that X is

• ageing slower than Y , and write X ≤c Y , if hY (t)/hX(t) is non-decreasing in t ∈ D1, or equivalently
if Z = HY (X) is IFR;

• ageing slower than Y in average, and write X ≤⋆ Y , HY (t)/HX(t) is non-decreasing in t ∈ D1, or
equivalently if Z = HY (X) is IFRA.
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And therefore we have
X ≤c Y =⇒ X ≤⋆ Y.

We stress that the inequalities given in Definition 3 have been inverted with respect to the
corresponding ordering concepts in [10].

The following proposition expresses the relation between the GT order and the aforementioned
lifetime orders.

Proposition 3.6. Suppose that at least one of the non-negative random variables X and Y has
continuous and strictly increasing distribution. Then we have

X ≤⋆ Y =⇒ X ≤GT Y. (A.5)

Moreover, if ψ is a strictly increasing positive function passing through (0, 0) then

X ≤⋆ Y =⇒ ψ(X) ≤GT ψ(Y ). (A.6)

Proof. According to Proposition 2.3 in [10] we have X ≤⋆ Y if and only if HY (t)/HX(t) is non-
decreasing in t ∈ D1. Since HX(u) and HY (u) are non-negative non-decreasing functions of u, then
it is not hard to see that the condition (A.1) in Proposition 3.1 is held and we have X ≤GT Y .

Theorem 2.1 in [10] states that X ≤⋆ Y if and only if ψ(X) ≤ ψ(Y ) for every strictly increasing
positive function ψ passing through (0, 0). Hence, the validity of (A.6) follows straightforwardly
from (A.5).

The stochastic ordering introduced in Definition 2 is useful to assess the ageing properties of
random lifetimes, indeed, due to the above results, condition X ≤GT Y means that X is ageing
slower than Y in a broad sense. As example, hereafter we analyse the problem of improving a
coherent system by introducing a redundant component by means of comparisons based on the GT
order.

Conclusion

The Gini-type index is an applicable tool to investigate the ageing properties of lifetime variables.
Specifically, when one needs to study complicated systems properties this index could be employed
as a diagnostic gadget. According to Gini-type index we have introduced a new stochastic order
by which lifetime comparisons are studied as well. Also, the relationship of this stochastic order
with other orders in the literature has been expressed.
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[5] Navarro, J., del Águila, Y., Sordo, M.A., Suárez-Llorens, A. (2013) Stochastic ordering properties for
systems with dependent identically distributed components. Appl. Stoch. Mod. Bus. Ind. 29, 264–278.

[6] Navarro, J., Pellerey, F., Di Crescenzo, A. (2015) Orderings of coherent systems with randomized
dependent components. European J. Oper. Res. 240, 127–139.

[7] Navarro, J., Ruiz, J.M., Sandoval, C.J. (2005) A note on comparisons among coherent systems with
dependent components using signatures. Stat. Prob. Lett. 27, 179–185.

[8] Navarro, J., Spizzichino, F. (2010) Comparisons of series and parallel systems with components sharing
the same copula. Appl. Stoch. Mod. Bus. Ind. 26, 775–791.

[9] Pellerey, F. (2008) On univariate and bivariate ageing for dependent lifetimes with archimedean survival
copulas. Kybernetika 44, 795–806.

[10] Sengupta, D., Deshpande, J.V. (1994) Some results on the relative ageing of two life distributions. J.
Appl. Prob. 31, 991–1003.

[11] Spizzichino, F. (2001) Subjective probability models for lifetimes. Monographs on Statistics and Applied

Probability, 91. Chapman & Hall/CRC, Boca Raton, FL.



Optimum maintenance policy for a system with three types of
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Abstract

Consider a system subject to three types of failures with different rate functions and
different costs in which repairs and replacement. The type I and II failures arrive according
to a non-homogeneous Poisson process where type I can be repair (k − 1) times by a minimal
repair policy. We suppose that type III of failure is catastrophic failure and the system should
be replaced with a new one. We are interested in determining an optimal planned replacement
time which minimizes the expected discounted costs.

Keywords: Minimal repair, Non-homogeneous Poisson process, Optimal replacement.

1 Introduction

The majority systems deteriorate with age and usage are influenced by stochastic failures during
operation. Failures of systems incur high costs. Some of failures are repairable and some of failures
should be replaced. Finding an optimal replacement policy for a system becomes a major problem
in a reliability studies. Barlow and Proschan (1965) presented the traditional age-replacement
maintenance policy which a system is replaced at failure time or at age T , whichever occurs first.
Several extensions of this policy have been investigated by researchers, such as Nakagawa and
Kowada (1983) and Sheu and Chang (2009). Furthermore, Boland and Proschan (1982) considered
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the case of periodic replacement at times kT (k = 1, 2, . . .) and minimal repair if the system fails
otherwise. This model has been extended by Nakagawa (1981), Boland and Proschan (1983) and
Sheu (1996). Sheu et al. (2015) introduced optimal preventive maintenance and repair policies
for multi-state systems. Lai and Chen (2016) proposed a bivariate replacement policy (n, T ) for
a cumulative shock damage process under cumulative repair cost limit. Aven and Casrto (2008)
considered a system subject two types of failure, the system is minimally repaired and replacement.
This paper presents an extension model for determining the optimal replacement policy based on
the results of Aven and Casrto (2008).

2 Model Description

Minimal-repair and replacement are often used as practical maintenance activities of real reliability
systems. A minimal repair is the maintenance activity to repair the failed system so that its function
is recovered, without changing its age, while a replacement restores the entire system into the new
condition so that it behaves as a new system. Further, replacement is classified into preventive
replacement or failure (or corrective) replacement according as whether the system is in operation
or in failure.

Consider a system subject to three types of failures with different rate functions in which repairs
and replacement take place according to the following scheme:

A1. The type I failures arrive according to a non-homogeneous Poisson process {N1(t); t ≥ 0}
with intensity function r1(t). This type of failure can be repair (k − 1) times by a minimal
repair policy and at the time of the k-th failure system is replace with a new one. The process
of replacement in type I failure denotes by {N1,k(t); t ≥ 0} with intensity function r1,k(t).

A2. The type II failures arrive according to a non-homogeneous Poisson process {N2(t); t ≥ 0}
with intensity function r2(t). When type II failure occurs at time t, the system is minimally
repaired with probability p(t) and replaced by a new one with probability 1 − p(t), where
0 ≤ p(t) ≤ 1, t > 0. Therefore the process of minimal repair is non-homogeneous Poisson
process {N2,m(t); t ≥ 0} with intensity function p(t)r2(t) and the process of replacement is
non-homogeneous Poisson process {N2,r(t); t ≥ 0} with intensity function (1− p(t))r2(t).

A3. The type III failures arrive according to a non-homogeneous Poisson process {N3(t); t ≥ 0}
with intensity function r3(t). This type of failure is catastrophic failure, because when type
III failure occurs the system should be replaced with a new one.

Further it is assumed that three types of failures are independent, also the intensity functions ri(t),
i = 1, 2, 3 are continuous.
The system is replaced at a constant time T (T > 0), k−th failure of type I failure, a non-repairable
type II failure or at a type III failure, whichever occurs first. Replacement of type I, II and III
failures are non-planned and replacement at age T is planned replacement.
The costs of minimal repair and replace for a type I failure at the k-the failure are c1 and ck,
respectively. The costs as to the minimal repair and the replacement for a type II failure are c2,m
and c2,r, respectively. And the cost of replacement for a type III failure and planned replacement
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of the system at age T are c3 and cr, respectively. Also, it is supposed that cr < min{ck, c2,r, c3}.
That is, the cost of the planned replacement is less than the costs of the non-planned replacements.
All costs are positive real-values.

3 Main results

Let XT , XM and Xr be the time to replacement of the system, the time to a non-repairable type
II failure and the time to a type III failure, respectively. Also let Xk be the time when the k-th
failure of type I occur. Then, we have XT = min{Xk, XM , Xr, T}. Denote the survival functions
of Xk, XM and Xr by F̄k(t), F̄M (t) and F̄r(t), respectively, then for T ≥ t, the survival function of
XT is given by

F̄XT
(t) = F̄k(t)F̄M (t)F̄r(t). (A.1)

Under the assumption A1, the process N1(t) is non-homogeneous Poisson processes, therefore

F̄k(t) = P (Xk > t) = P (N1(t) < k) =

k−1∑
i=0

exp

{
−
∫ t

0
r1(u)du

} (∫ t
0 r1(u)du

)i
i!

.

=

∫ ∞

t

(λ1(u))
k−1

(k − 1)!
r1(t)e

−λ1(u)du,

where is λ1(t) cumulative failure intensity function for N1(t). From assumptions A2 and A3 we can
write

F̄M (t) = exp

{
−
∫ t

0
r2(u)(1− p(u))du

}
,

F̄r(t) = exp

{
−
∫ t

0
r3(u)du

}
.

The expected discounted cost associated for minimal repair for type I failure with cost c1 during
one cycle, by doing same steps as in Aven and Casrto (2008), is given by

E

(∫ XT

0
c1e

−αtd(N1(t))

)
= c1

∫ T

0
e−αtF̄k(t)F̄M (t)F̄r(t)r1(t)dt.

The expected discounted cost associated for the k-th failure in type I failure (replace) with cost ck
during one cycle is given by

E

(∫ XT

0
cke

−αtd(N1,k(t))

)
=

∫ XT

0
cke

−αtF̄k(t)F̄M (t)F̄r(t)r1,k(t)dt,

where r1,k(t) is intensity function of N1,k(t). By assumption A1 we have

P (N1,k(t) = r) =

(r+1)k−1∑
j=rk

e−λ1(t)
(λ1(t))

j

j!
.
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Then, by using the results in ages 7-8 of Aven and Jensen (1999), we can write

r1,k(t) = lim
h→0

E(N1,k(t+ h))− E(N1,k(t))

h

= lim
h→0

1

h

∞∑
r=0

r

(r+1)k−1∑
j=rk

e−λ1(t+h)(λ1(t+ h))j − e−λ1(t)(λ1(t))
j

j!
.

For repairable type II failures, non-repairable type II failures and type III failures with cost c2,m,
c2,r and c3 during one cycle, the expected discounted cost are given by, respectively

E

(∫ XT

0
c2,me

−αtd(N2,m(t))

)
= c2,m

∫ T

0
e−αtF̄k(t)F̄M (t)F̄r(t)p(t)r2(t)dt,

E

(∫ XT

0
c2,re

−αtd(N2,r(t))

)
= c2,r

∫ T

0
e−αtF̄k(t)F̄M (t)F̄r(t)(1− p(t))r2(t)dt,

and

E

(∫ XT

0
c3e

−αtd(N3(t))

)
= c3

∫ T

0
e−αtF̄k(t)F̄M (t)F̄r(t)r3(t)dt.

The expected cost for preventive replace (replace in time T ) is cre
−αT F̄k(T )F̄M (T )F̄r(T ). Let C(T )

be the total expected discounted cost for one cycle i.e. C(T ) =
E(C(α))

E(1− e−αT )
. Then, by the use of

the above results we have

E(1− e−αXT )C(T ) = c1

∫ T

0
e−αtF̄k(t)F̄M (t)F̄r(t)r1(t)dt+ ck

∫ T

0
e−αtF̄k(t)F̄M (t)F̄r(t)r1,k(t)dt

+ c2,m

∫ T

0
e−αtF̄k(t)F̄M (t)F̄r(t)p(t)r2(t)dt

+ c2,r

∫ T

0
e−αtF̄k(t)F̄M (t)F̄r(t)(1− p(t))r2(t)dt

+ c3

∫ T

0
e−αtF̄k(t)F̄M (t)F̄r(t)r3(t)dt+ cre

−αT F̄k(T )F̄M (T )F̄r(T ). (A.2)

Using (A.1), we have

E(1− e−αXT ) =

∫ T

0
αe−αtF̄k(t)F̄M (t)F̄r(t)dt. (A.3)

The right hand side of (??) can be reexpressed as∫ T

0
Q(t)dt+ 2cr, (A.4)
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where

Q(t) =(c1r1(t) + ckr1,k(t) + c2,rr2(t)(1− p(t)) + c2,mp(t)r2(t) + c3r3(t)

+ cr(r2(t)(1− p(t)) + r3(t)− α))F̄k(t)F̄M (t)F̄r(t)

− (cr(fk(t) + 2r2(t)(1− p(t)) + 2r3(t)))F̄M (t)F̄r(t)− 2(crr3(t))F̄k(t)F̄r(t)

− 2(crr2(t)(1− p(t)))F̄k(t)F̄M (t) + (−2fk(t) + r3(t))F̄r(t)

+ 2(r2(t)(1− p(t))− fk(t))F̄M (t) + 2fk(t).

By using (A.3) and (A.4), C(T ) can be rewritten as a simple expression

C(T ) =

∫ T
0 Q(t)dt+ 2cr∫ T

0 αe−αtF̄k(t)F̄M (t)F̄r(t)dt
=

∫ T
0 Q(t)dt+ 2cr∫ T

0 A(t)dt
. (A.5)

In order to find T ∗ so that C(T ) should be minimized at T = T ∗, we derive

d

dT
C(T ) =

Q(T )
∫ T
0 A(t)dt−A(T )

(∫ T
0 Q(t)dt+ 2cr

)
(∫ T

0 A(t)dt
)2 .

Take

h(T ) = Q(T )

∫ T

0
A(t)dt−A(T )

(∫ T

0
Q(t)dt+ 2cr

)
. (A.6)

Therefore
d

dT
C(T ) equals 0, is greater than 0, or is less than 0, if the function in (A.6) equals 0,

is greater than 0, or is less than 0, respectively. Hence, an optimal T ∗ satisfies h(T ∗) = 0. On the
other hand

lim
T→0

h(T ) = −2cr < 0,

and

d

dT
h(T ) =

(∫ T

0
A(t)dt

)
d

dT
Q(T )−

(∫ T

0
Q(t)dt+ 2cr

)
d

dT
A(T ). (A.7)

Since A(T ) =
∫ T
0 αe−αtF̄k(t)F̄M (t)F̄r(t)dt is decreasing in T , thus, if Q(T ) is increasing then from

(A.7) h(T ) is increasing. From (A.6) h(T ) can be re-expressed as

h(T ) = (Q(T )− C(T )A(T ))

∫ T

0
A(t)dt. (A.8)

By using (A.8), we have the next result.

Proposition 3.1.
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1. If Q(∞) > C(∞)A(∞) then h(∞) > 0 and there exist finite T ∗ that
d

dT
C(T )

∣∣
T=T ∗ = 0 and T ∗

minimizing C(T ).

2. If Q(t) is strictly increasing then h(t) is strictly increasing and Q(∞) > C(∞)A(∞), there exists
a unique and finite minimum T ∗.

3. If Q(t) is non-decreasing then h(t) is non-decreasing and Q(∞) < C(∞)A(∞), then T = ∞ is
optimal.

4 Numerical Example

In order to illustrate the obtained results, let us take ri(t) = λiβi(λit)
βi−1, λ1 = 1, λ2 = 2, λ3 =

3, β1 = 3, β2 = 2, β3 = 2, α = 0.1 and p(t) =
1

1 + t2
. Also, suppose c1 = 3, ck = 12, c2,m = 15, c2,r =

25, c3 = 27, cr = 10 and k = 5. Then from assumptions, the cumulative failure intensity functions
are λ1(t) = t3, λ2(t) = 4t2 and λ3(t) = 9t2. By calculating h(T ) in (A.6) and solve h(T ) = 0, we
can find the optimum T . The optimum T that minimize C(T ) is T ∗ = 1.44 and C(T ∗) = 1085.7.
Therefore, if the system doesn’t have any failure need to replace until T = 1.44, then the system
must do planned replacement in T = 1.44 in order to minimize the total expected discounted cost.
To investigate the effect of cr and k on optimal time for planned replacement, Figures 1 and 2 are
plotted. In Figure 1 cost function is plotted versus T per different cr. In this figure the change of
optimal point of T , which is T ∗, can be seen per different cr’s. It is also seen that T ∗ increases
with planned replacement cost increases. That is, when cr increases, planned replacement should
be done in a later time.

Figure 1: Cost function versus T per different cr.

In Figure 2 cost function is plotted versus T per different k. In this figure the change of optimal
point of T , which is T ∗, can be seen per different k’s. It is also seen that T ∗ increases with number
of minimal repair before replacement in type I failure increases. That is, when k increases, planned
replacement should be done in a later time. This figure shows that cost function decreasing with
number of minimal repair before replacement in type I failure increases. That is, when k increases,
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costs incurred to system decreases. Summing-up, the results observed from Figures 1 and 2 are as
we intuitively expected.

Figure 2: Cost function versus T per different k.
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Reliability of random complex networks based on percolation
theory

Sajadi, F. 1

Department of Statistics, University of Isfahan

Abstract

In this paper we evaluate the reliability of a complex network using concepts of percolation
theory by regarding the network failure as a percolation process. The critical threshold of
percolation can be used as network failure criterion. In particular we consider complex systems
which can be modeled as a general inhomogeneous random graphs.

Keywords: Complex network, Random graph, Percolation threshold, Network reliability.

1 Introduction

Complex networks can be used to model different systems of the real world where nodes represent
the elements of the system and edges/links depict the interactions patterns between them. The
performance of such systems depends on the interconnection between the components of the
system. An important property of such connection patterns is their robustness. The focus of
robustness in complex networks is the response of the network to the removal of nodes or links.
The mathematical model of such a process can be thought of as a percolation process. Percolation
is a model of statistical physics. It models the process of randomly removing either nodes (site
percolation) or edges (bond percolation) that are randomly occupied with probability p, from
a graph. In percolation, the random network considered naturally lives on an infinite graph.
A common way to evaluate the robustness of a graph is that of studying the size of the giant
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component after the removal of a fraction of nodes/edges. By removing nodes/edges, this size
decreases. Using percolation theory, one can predicts the presence of a threshold value, above it
the giant component disappears, i.e. the network is fragmented in many disconnected components
of very small sizes. Any infinite graph has a site percolation critical probability and a bond
percolation critical probability.

In network reliability, many studies focused on the terminal reliability between pair of nodes
in the network. In these studies, only the connectivity between two nodes, namely the origin
and the destination are considered. The removal of a single node has only limited impact on a
network’s integrity. The removal of several nodes, however, can break a network into several isolated
components. Obviously, the more nodes we remove, the higher are the chances that we damage a
network, prompting us to ask: what fraction of nodes must be removed so that the network turns
into smaller clusters that are unable to communicate with each other? Or equivalently we can ask
with how many operating components, still a system works.

In this paper, we consider a random graph model for a system of components. We use a
statistical physics description of the failure process for this system and based on percolation theory,
we calculate the reliability of network. In [4], the authors considered the same node-reliability for
each node in the random graph and based on site percolation, computed the network reliability at
time t. In fact they considered the same lifetime probability for nodes. Here we assume that the
lifetime of edges are not identical and we use the results of bond percolation theory to compute the
global network reliability.

2 Preliminary Definitions

This paper deals with a mathematical concept related to percolation theory known as percolation
threshold. Before we address percolation threshold, however, some definitions of basic concepts
in random graph theory will be necessary. We give some definitions of random graph-theoretical
terms used throughout the paper.

Definition 1. Let G be a graph with vertex set [n] = {1, 2, ..., n}. Given a real number p, 0 ≤ p ≤ 1,
the binomial random graph, denoted by Gn,p, is defined by taking as Ω the set of all graphs on vertex
set [n] and setting

P(G) = peG(1− p)(
n
2)−eG ,

where eG stands for the number of edges of G.

Definition 2. Given an integer M, 0 ≤M ≤
(
n
2

)
, the uniform random graph, denoted by Gn,M , is

defined by taking as Ω the family of all graphs on the vertex set [n] with exactly M edges, and as P
the uniform probability on Ω,

P(G) =
((n

2

)
M

)−1

G ∈ Ω

Definition 3. A general inhomogeneous random graph Gn,p, where p = {pij}1≤i<j≤n is such that
pij is the probability that the edge ij = (i, j) is occupied, and where different edges are independent.
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If pij = p for all ij, then we get the Erdos-Renyi random graph Gn,p. Note that the distributions of
Gn,p and ∪ni=1Gn,pi are identical, (Staged exposure,[5]).

Definition 4. Let Γ be a finite set, |Γ| = N , let 0 ≤ p ≤ 1. Then the random subset Γp of Γ is
obtained by flipping a coin, with probability p of success, for each element of Γ to determine whether
the element is to be included in Γp; the distribution of Γp is the probability distribution on Ω = 2Γ

given by P(F ) = p|F |(l − p)|Γ|−|F | for F ⊆ Γ.

For an arbitrary set X and an integer k, let [X]k stand for the family of all k-element subsets
of X. If X = {1, 2, ..., n}, we will simplify this notation to [n]k. Taking Γ = [n]2, we obtain the
model of random graphs Gn,p, [5].

Definition 5. A family of subsets Q ⊆ 2Γ is called increasing if A ⊆ B and A ∈ Q imply that
B ∈ Q.

For example ”being connected”, is an increasing graph property. For many graph properties
the limiting probability that a random graph possesses them jumps from 0 to 1 (or vice versa) very
rapidly, that is, with a rather small increase in the (expected) number of edges. It is known that
every monotone property has a threshold, [5].

Definition 6. For an increasing property Q, a sequence p̂ = p̂(n) is called a threshold if P(Γp ∈ Q)
converges to 1 for p >> p̂ and converges to 0 for p << p̂.

It is easy to show that p̂ is a threshold for a monotone property if and only if M̂ = p̂|Γ|.

Definition 7. Denote by C(v) the set of nodes which can be reached from a node v by occupied
edges. Define the percolation function p −→ θ(p) by

θ(p) = Pp(|C(v)| = ∞) .

The critical value is

pc = inf {p : θ(p) > 0} .

It is known that for any infinite graph, the number of infinite connected components is in
{0, 1,∞} a.s., [2].

3 Reliability of random network

The correct function of a real complex network, relies on its structural properties: the resilience
to damage and the robustness to external attacks, cascade failures, or to collapses due to traffic
jams and overloading, [1]. Let G(V,E) be an undirected graph on n nodes. Let Rs(t) be the
network reliability of the system. In this section by considering the lifetimes of network edges,
we study the global network lifetime with respect to the critical point of the network percolation
process. Given the time t, let Rij(t) be the probability that edge between nodes i and j is functional
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at time t, (the reliability of edge i, j at time t). We ignore the direction of the edges, therefore
Ri(t) = Rj(t) = Rij(t). Let 1− p = 1−R(t) where

R(t) = 1−
n∏
i=1

[1−Ri(t)] .

According to the reliability of edges, a fraction 1−p of them fail and as the failure process proceeds,
cluster of connected nodes will form as they are fall of from the giant cluster. When the number
of failed edges increases, the network breaks into small clusters. If R(t) is less than a critical point
pc, the giant cluster does not exist anymore. Define the instant at which this occurs as the lifetime
of the network.

It is known that [5], the binomial (uniform) random graph loses its connectivity when the
number of failed nodes reaches n− [n∗pc] ( when the number of edges in the uniform random graph
reaches

(
n
2

)
− [M∗], where M∗ is the number of remaining edges at critical point).

Now the network reliability at time t, Rs(t) is given by the following equation:

Rs(t) =
N∑

i=[M∗]+1

∑
A∈[N ]i

∏
j∈A

Rj(t)
∏
j∈Ac

[1−Rj(t)] , (A.1)

where N =
(
n
2

)
. In case when, all of Ri(t)’s are equal to R(t), we have

Rs(t) =

N∑
i=[M∗]+1

(
N

i

)
R(t)i[1−R(t)]N−i , (A.2)

The lifetime distribution of the network based on Rs(t) is

fs(t) =
d(1−Rs(t))

dt
,

and the network lifetime, Ts, is given by

Ts =

∫ ∞

0
Rs(t)dt

In the following, since the node percolation and edge percolation have the same properties, we
consider node percolation for simplicity and give an example. Let Ri(t) be the probability that
node i is functional at time t, i = 1, 2, ..., n. The expected minimal number of functional nodes to
keep the network connected is [n ∗ pc]. Hence,

Rs(t) =

n∑
i=[n∗pc]+1

∑
A∈[n]i

∏
j∈A

Rj(t)
∏
j∈Ac

[1−Rj(t)] . (A.3)

The computing of Rs(t) in (A.1) by enumerating all elements in [n]i is not practicable, even
when n is small. Thus we need to use approximation methods for computing Rs(t). One can think
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of Poisson approximation method, which is used for Poisson binomial distribution( the distribution
of the sum of independent and non-identical random indicators). Fix t > 0. Let pi(t) = Ri(t),
µ(t) =

∑n
i=1 pi(t). Then by Poisson approximation method,

Rs(t) ≈
n∑

i=[n∗pc]+1

µ(t)ie−µ(t)

i!
. (A.4)

By Le Cam’s theorem [3], the approximation error for the Poisson approximation method is

n∑
k=0

|
∑
A∈[n]k

∏
j∈A

Rj(t)
∏
j∈Ac

[1−Rj(t)]−
µ(t)ke−µ(t)

k!
| < 2

n∑
j=1

pj(t)
2

Another approximation method is the normal approximation method which is based on the
central limit theorem.

Example 3.1. Suppose lifetime distribution of node i, i = 1, 2, ..., n follows an Exponential
distribution with mean 1

λi
, i.e.,

Ri(t) = e−λit .

Denote the average value of degree (sum of node’s degree divided by the number of nodes in the
network) by < k >. For a random network, the percolation threshold can be calculated as pc =

1
<k> .

Therefore,

Rs(t) =

n∑
i=[n∗pc]+1

∑
A∈[n]i

∏
j∈A

e−λjt
∏
j∈Ac

[1− e−λjt] . (A.5)

If λj = λ, for all j = 1, ..., n, then

Rs(t) =
n∑

i=[n∗pc]+1

e−iλt[1− e−λt]n−i . (A.6)

Let n = 8, < k >= 4 and λi ∼ U(0.249, 0.251), i = 1, 2, ..., 8. The plot of Rs(t) verses t, 0 ≤ t ≤ 15
is shown in the following figure.

4 Future Works

It would be interesting to study the case when the edges are not independent of each other, i.e., the
presence of an edge in one position is correlated with the presence of an edge in a different position.
For that we will study the random geometric graphs. Also, in future, we will study the failure rate
of system based on failure rate of components, using percolation threshold for underlying graph
and for that a comparison between theoretical and simulation results will be considered.
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Non-parametric estimation of bivariate MRL and QRL functions
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Abstract

When we deal with dependent pairs of lifetimes, estimation of bivariate mean residual
life (BMRL) and bivariate α-quantile residual life (α-BQRL) functions may play a key role
in survival analysis. We present the empirical non-parametric estimators of them based on
complete data and discuss their main asymptotic properties. We have a real data example to
illustrate their applications.

Keywords: Bivariate mean residual life , Bivariate α-quantile residual life, Empirical
estimator.

1 Introduction

Many statisticians studied the problem of estimating the BMRL function. Among them we can refer
to Zahedi (1982), Kulkarni and Rattihalli (2002) and Rojo and Ghebremichael (2006). However,
the BMRL may be useful in survival analysis, but it may encounter some shortcomings, e.g.,
when the distribution is strongly skewed or heavy-tailed in which a long-term survivor may have
a marked effect on the estimator. This fact that the list of common heavy-tailed distribution
includes Pareto, Weibull, log-normal and log-gamma distributions supports this idea. To overcome
such shortcomings, we can consider the α-BQRL function as a good competitor for BMRL function.
Here, we review a non-parametric estimator of the BMRL function and it’s key attributes briefly.
Then, a non-parametric estimator for α-BQRL has been proposed and studied. Finally, two
aforementioned measures have been computed for a real bivariate lifetime data set.
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2 Bivariate mean residual life function

Let the non-negative random vector X = (X1, X2) represent lifetimes of two possibly dependent
components and it follows absolutely continuous distribution F in the first quadrant of R2, Q =
{(x1, x2);xi ≥ 0}. The well-known reliability function is F̄ (x1, x2) = P (X1 > x1, X2 > x2). Nair
and Nair (1989) showed that the bivariate mean residual life function

mi(x1, x2) =

{
1

F̄ (x1,x2)

∫∞
x1
F̄ (u, x2)du, i = 1,

1
F̄ (x1,x2)

∫∞
x2
F̄ (x1, u)du, i = 2,

characterizes the underlying distribution uniquely.
Let (X1i, X2i), i = 1, 2 be n independent and identically distributed pairs of random lifetimes
following reliability function F̄ . Kulkarni and Rattihalli (2002) proposed the empirical estimator
of
(
m1(x1, x2),m2(x1, x2)

)
measure by

m̂i(x1, x2) =


∑n

i=1(X1i−x1)I[X1i>x1,X2i>x2]∑n
i=1 I[X1i>x1,X2i>x2]

, i = 1,

∑n
i=1(X2i−x2)I[X1i>x1,X2i>x2]∑n

i=1 I[X1i>x1,X2i>x2]
, i = 2,

(A.1)

Let ||(x, y)|| = max{|x|, |y|}. The following theorem holds for every (b1, b2) with F̄ (b1, b2) > 0 and
D = [0, b1]× [0, b2] for such points.

Theorem 2.1. The estimator (m̂1, m̂2) is asymptotically unbiased, and uniformly strongly
consistent on D, i.e.,

sup
D

||(m̂1, m̂2)− (m1,m2)|| → 0.

They showed that (m̂1, m̂2) weakly converges to a zero-mean bivariate gaussian process.
Rojo and Ghebremichael (2006) studied the estimation of the bivariate mean residual life when it
is bounded above by another known or unknown ones.

3 Bivariate quantile residual life function

Recently Shafaei and Kayid (2017) proposed the α-BQRL function as a vector(
q1,α(x1, x2), q2,α(x1, x2)

)
where

qi,α(x1, x2) = F̄−1
i (ᾱF̄ (x1, x2);x3−i)− xi, i = 1, 2, (A.1)

in which F̄−1
1 (p;x2) = inf{x1 : F̄ (x1, x2) ≤ p} and ᾱ = 1 − α. F̄−1

2 (p;x1) is defined in a similar
way.
Applying the empirical estimator of F̄ , a non-parametric estimator of it can be introduced as{

q̂1,α(x) =
ˆ̄F−1
1 (ᾱ ˆ̄F (x);x2)− x1,

q̂2,α(x) =
ˆ̄F−1
2 (ᾱ ˆ̄F (x);x1)− x2,
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Table 1: Survival times in months.

Patient (i) 1 2 3 4 5 6 7 8 9

X1i 6.9 1.63 13.83 35.53 14.8 6.2 22 1.7 43.03
X2i 20.17 10.27 5.67 5.90 33.9 1.73 30.2 1.7 1.77

Patient (i) 10 11 12 13 14 15 16 17 18

X1i 6.53 42.17 48.43 9.6 7.6 1.8 9.9 13.77 0.83
X2i 18.7 42.17 14.3 13.33 14.27 34.57 21.57 13.77 10.33

Patient (i) 19 20 21 22 23 24

X1i 1.97 11.3 30.4 19 5.43 46.63
X2i 11.07 2.1 13.97 13.80 13.57 42.43

where

ˆ̄F (x) = n−1
n∑
i=1

I(X1i > x1, X2i > x2),

is the empirical reliability function and

ˆ̄F−1
1 (p;x2) = inf{x : ˆ̄F (x, x2) ≤ p}, p ≤ ˆ̄F (0, x2),

shows the inverse of the empirical reliability. I(X1i > x1, X2i > x2) is 1 when X1i > x1, X2i > x2

and 0 otherwise. ˆ̄F−1
2 (p;x1) can be defined analogously.

Theorem 3.1. If F̄−1
1 (p;x2) and F̄−1

2 (p;x1) be continuous at p = ᾱF̄ (x1, x2) then the estimator
(q̂1,α, q̂2,α) is strongly consistent, i.e.,(

q̂1,α(x1, x2), q̂2,α(x1, x2)
)T

→
(
q1,α(x1, x2), q2,α(x1, x2)

)T
, a.e.,

Recently, Shafaei and Kayid (2017) investigated its weakly convergence to a bivariate gaussian
process under proper normalization.

4 Real data example

Here we consider a data set related to a diabetic retinopathy (DR) study reported from Rojo and
Ghebremichael (2006). DR is a major cause of visual loss in many countries and the leading cause
of blindness in patients under 60 years old in the USA. One main goal is to study the effect of laser
photocoagulation in delaying blindness in DR patients. Some patients with DR at both eyes and
at least 20/100 clarity of vision in both eyes were taken part in the study. One eye of each patient
was randomly selected to receive treatment. The interesting event for each eye is the time from
initiation of treatment to the time when visual acuity dropped below 5/200 two visits in a row.
Such low vision is called ”blindness”. The survival times have been presented in Table 1. These
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(a) (b)

Figure 1: (a): Surface plot of q̂1,0.5(x1, x2) for the data set of Table 1. (b):
Surface plot of q̂2,0.5(x1, x2) for this data set.
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Figure 2: (a): Surface plot of m̂1(x1, x2) for the data set of Table 1. (b):
Surface plot of m̂2(x1, x2) for this data set.
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survival times are time to blindness minus 6.5 months which is minimum possible time to events.
Here, X1i and X2i measure time to event for treated and untreated eyes respectively.
Figures 1 (a) and (b) present surface plots of q̂1,0.5(x1, x2) and q̂2,0.5(x1, x2) respectively. Moreover,
surface plots related to m̂1(x1, x2) and m̂2(x1, x2) have been drawn in Figures 2 (a) and (b)
respectively. Both q̂1,0.5(x1, x2) and m̂1(x1, x2) show decreasing in x1 except for small values of
x1. Similarly, q̂2,0.5(x1, x2) and m̂2(x1, x2) are decreasing in x2 except small values of x2.
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Some results on comparing the mean residual life functions of two
groups

Sharafi, M. 1

Department of Statistics, Razi University

Abstract

The mean residual life (MRL) function or remaining life expectancy function at age t is
defined to be the expected remaining life given survival to age t. In this paper, we first propose
two new tests for comparing mean residual life functions of two populations. We also obtain
some results on limit theorems under null and fixed hypothesis. Finally, some examples is
presented for illustration and is discussed about comparing powers of proposed test statistics.

Keywords: Asymptotic distribution, Brownian motion process, Convergence, Mean
residual order, Nonparametric test.

1 Introduction

The Mean Residual Life function (MRL) of a subject given that the subject has survived uo to
a given time point. This concept play an important and a signican role in reliability as well as
insurance studies. For a detailed discussion and statistical applications of the MRL function and
and empricall process, you can refer to [1,3,4,5] and [2,6] respectively . In this paper, we interest
to compare the mean residual life functions from two populations or treatment groups. Suppose
that F and G are two distribution functions on R+ with finite means µF and µG, and let eF and
eG denote the corresponding mean residual life functions: i.e.

eF (x) = E{X − x|X > x} =

∫∞
x F (y)dy

F (x)

1m.sharafi@razi.ac.ir
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where F (x) ≡ 1 − F (x). Consider testing H : eF = eG versus K : eG(t) ≥ eF (t) for all t ∈ R+

and with strict inequality for some t > 0. Note that K holds if and only if

δF,G(t) ≡ δ(t) ≡ F (t)

∫ ∞

t
G(v)dv −G(t)

∫ ∞

t
F (v)dv ≥ 0 (A.1)

for all t ≥ 0, and with strict inequality for some t. Note that taking t = 0 yields µG ≥ µF . We also
note that we can write

δF,G(t) = F (t)G(t)eG(t)− F (t)G(t)eF (t)

= F (t)G(t) {eG(t)− eF (t)} . (A.2)

With Hλ(x) ≡ λF (x) + (1− λ)G(x) for some λ ∈ (0, 1) we define

∆λ(F,G) ≡
∫ ∞

0
δF,G(t)dHλ(t). (A.3)

Note that ∆λ(F,G) ≥ 0 with equality holding under the null hypothesis H (or F = G), while
∆λ(F,G) > 0 if the set of t’s for which strict inequality holds in (A.1) has positive Hλ measure.

2 Some statistics

2.1 Integral type test statistics

Suppose that we observe X1, . . . , Xm i.i.d. F and Y1, . . . , Yn i.i.d. G, and let Fm and Gn denote the
empirical distribution functions of the X’s and Y ’s respectively. We also let N ≡ m/N ≡ λN and
let HN ≡ λNFm + (1 − λN )Gn denote the pooled empirical measure. Based on the development
leading to (A.2) and (A.3) it is natural to define

δ̂m,n(t) ≡ Fm(t)Gn(t) {êGn(t)− êFm(t)} ,

and to consider integral type test statistics of the form

Tm,n ≡
√
mn

N

∫ ∞

0
δ̂m,n(t)dHN (t) =

∫ ∞

0
Zm,n(t)dHN (t) (A.1)

where

Zm,n(t) ≡
√
mn

N
(δ̂m,n(t)− δ(t)) (A.2)

and the second equality in (A.1) holds under the null hypothesis H.

We will show in Section 3 that under the null hypothesis eG = eF we have

Zm,n(t) ⇒ F (t)B(F (t)σ2F (t)).
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Thus the processes Zm,n ≡ Zm,n/HN satisfy (modulo some possible difficulties for small values of
F )

Zm,n(t) ⇒ B(F (t)σ2F (t)). (A.3)

This leads to integral type statistics based on the processes Zm,n: we define

Tm,n ≡
∫ ∞

0
Zm,n(t)dHN (t).

3 Limit theory under the null hypothesis

To treat the asymptotic theory of the test statistics Tm,n, we first consider the sequence of processes
{Zm,n(t) : 0 < t < ∞}∞m,n=1 defined by A.2 Now suppose that the null hypothesis holds: thus
F = G and eF = eG. We will also assume that m/N → λ ∈ [0, 1]. These considerations lead
naturally to the following theorem:

Theorem 3.1. Suppose that the null hypothesis H holds (so that eF = eG and δF,G = 0). If
EF (X

2) <∞ and m ∧ n→ ∞, then

Zm,n ⇒ Z0 in ℓ∞(R+)

where

Z0(t) ≡ F (t)B(F (t)σ2F (t))

for a standard Brownian motion process B and σ2F (x) ≡ V arF (X − x|X > x).

Now we let Hλ = λF +(1−λ)G. Under the null hypothesis Hλ = F , and the above calculations
suggest that

Tm,n ≡
∫ ∞

0
Zm,n(t)dHλ(t) →d

∫ ∞

0
F (t)B(F (t)σ2F (t))dF (t) ∼ N(0, A2)

where

A2 =

∫ ∞

0

∫ ∞

0
F (s)F (t)

{
F (t)σ2F (t)1{t ≥ s}+ F (s)σ2F (s)1{t ≤ s}

}
dF (s)dF (t)

= 2

∫ ∞

0

(∫ ∞

t
F

2
(s)σ2F (s)dF (s)

)
F (t)dF (t). (A.1)

Similar considerations apply to the statistics Tm,n: integrating the processes Zm,n yields

Tm,n ≡
∫ ∞

0
Zm,n(t)dHN (t).
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Based on the developments above it is not hard to see that under the null hypothesis eG = eF we
should have

Tm,n →d

∫ ∞

0
B
(
F (t)σ2F (t)

)
dF (t) ∼ N(0, A

2
)

where now

A
2

=

∫ ∞

0

∫ ∞

0
{F (t)σ2F (t)1{t ≥ s}+ F (s)σ2F (s)1{s ≥ t}}dF (s)dF (t)

= 2

∫ ∞

0

(∫ ∞

t
F (s)σ2F (s)dF (s)

)
dF (t). (A.2)

This leads to the following theorem concerning Tm,n and Tm,n under the null hypothesis:

Theorem 3.2. Suppose that the null hypothesis H holds. If EF (X
2) <∞ and m ∧ n→ ∞, then:

A. The statistics {Tm,n : m,n ≥ 1} satisfy

Tm,n ≡
∫ ∞

0
Zm,n(t)dHN (t) →d

∫ ∞

0
Z0(t)dF (t) ∼ N(0, A2)

where A2 given by (A.1).
B. The statistics {Tm,n : m,n ≥ 1} satisfy

Tm,n ≡
∫ ∞

0
Zm,n(t)dHN (t) →d

∫ ∞

0
Z0(t)dF (t) ∼ N(0, A

2
)

where A
2
is given by (A.2) and Z0(t)

d
= B(F (t)σ2F (t)).

Suppose that the null hypothesis H holds. If EF (X
2) <∞ and m ∧ n→ ∞, then:

A. The statistics {Tm,n : m,n ≥ 1} satisfy

Tm,n ≡
∫ ∞

0
Zm,n(t)dHN (t) →d

∫ ∞

0
Z0(t)dF (t) ∼ N(0, A2)

where A2 given by (A.1).
B. The statistics {Tm,n : m,n ≥ 1} satisfy

Tm,n ≡
∫ ∞

0
Zm,n(t)dHN (t) →d

∫ ∞

0
Z0(t)dF (t) ∼ N(0, A

2
)

where A
2
is given by (A.2) and Z0(t)

d
= B(F (t)σ2F (t)).
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4 Limit theory under a fixed alternative hypothesis, eF ̸= eG

Here our goal is to prove the following theorem concerning the processes {Zm,n : m,n ≥ 1} under
a fixed alternative, eG ̸= eF .

Theorem 4. Suppose that F and G satisfy EFX
2 < ∞ and EGY

2 < ∞, and assume that
λN → λ ∈ [0, 1] as m ∧ n→ ∞. Then: (a)

Zm,n ⇒ Z in ℓ∞(R)

where Z is given by

Z(t) ≡
√
λF (t)ZG(t)G(t)−

√
1− λG(t)ZF (t)F (t) (A.1)

− (eG − eF )(t)
{
G(t)

√
1− λU(F (t)) + F (t)

√
λŨ(G(t))

}
≡ Z1(t)− Z2(t).

(b) Under the same hypotheses(?) and with Zm,n ≡ Zm,n/HN ,

Zm,n ⇒ Z in ℓ∞(R)

where Z ≡ Z/Hλ and Hλ ≡ λF + (1− λ)G.
(c) Furthermore,

Cov [Z1(s),Z1(t)] = (1− λ)G(s)G(t)
(
Fσ2F

)
(s ∨ t) + λF (s)F (t)

(
Gσ2G

)
(s ∨ t),

Cov [Z2(s),Z2(t)] = (eG − eF )(s)(eG − eF )(t)

·
{
(1− λ)G(s)G(t)(F (s ∧ t)− F (s)F (t)) + λF (s)F (t)(G(s ∧ t)−G(s)G(t))

}
,

Cov [Z1(s),Z2(t)] = (eG − eF )(t)
{
λF (s)F (t)Cov

[
Z̃G(s)G(s), Ũ(G(t))

]
+ (1− λ)G(s)G(t)Cov

[
ZF (s)F (s), U(F (t))

]}
,

where

Cov
[
ZF (s)F (s),U(F (t))

]
= −1{s ≤ t}F (t)

{
eF (t)− eF (s)− F (t)(t− s)

}
,

Cov
[
Z̃G(s)G(s), Ũ(G(t))

]
= −1{s ≤ t}G(t)

{
eG(t)− eG(s)−G(t)(t− s)

}
.

In particular, by taking s = t we find that V ar [Z(t)] is given by

V ar [Z(t)] = (1− λ)G
2
(t)
(
Fσ2F

)
(t) + λF

2
(t)
(
Gσ2G

)
(t)

+ (eG − eF )
2(t) ·

{
(1− λ)G

2
(t)F (t)F (t) + λF

2
(t)G(t)G(t)

}
.
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5 Studentization: estimating the asymptotic variances

First, recall the expression A2 for the asymptotic variance of Tm,n under the null hypothesis H

given in (A.1), and the expression A
2
for the asymptotic variance of Tm,n under H given in (A.2).

Here we propose two different estimators of the asymptotic variances A2 and A
2
under the null

hypothesis H.
The first estimator uses the null hypothesis very strongly. Since the limiting distribution under

the null hypothesis is N(0, A2) with

A2 = 2

∫ ∞

0

(∫ ∞

t
F

2
(s)σ2F (s)dF (s)

)
F (t)dF (t)

and HN satisfies ∥HN − F∥∞ →a.s. 0 under H, one possible estimator is given by

Â2
(1) ≡ 2

∫ ∞

0

(∫ ∞

t

̂(
F

2
(s)σ2F (s)

)
dHN (s)

)
HN (t)dHN (t)

where
̂(
F

2
σ2F

)
(t) ≡ HN (t)

∫ ∞

t
(x− t)2dHN (x)−

(∫ ∞

t
(x− t)dHN (x)

)2

.

This last display is based on the fact (correcting a minor typographical error in the display below
(2.4) on page 5 of [?]) that

σ2F (t) ≡ V ar [X − t|X > t] =

∫∞
t (x− t)2dF (x)

F (t)
− e2F (t).

The second estimator of A2 is based on the decomposition of the limit process Z under fixed
alternatives as given in (A.1). Note that the process Z2 is identically zero under the null hypothesis,
and that the process Z1 has covariance function given in (c) of Theorem 2:

Cov [Z1(s),Z1(t)] = λF (s)F (t)
(
Gσ2G

)
(s ∨ t) + (1− λ)G(s)G(t)

(
Fσ2F

)
(s ∨ t).

Furthermore, we also have (under the null hypothesis H)

Tm,n →d

∫ ∞

0
Z1(t)dHλ(t) ∼ N(0, A2

λ)

where

A2
λ = E

(∫ ∞

0
Z1(s)dHλ(s) ·

∫ ∞

0
Z1(t)dHλ(t)

)
=

∫ ∞

0

∫ ∞

0

{
λF (s)F (t)(Gσ2G)(t ∨ s) + (1− λ)G(s)G(t)(Fσ2F )(t ∨ s)

}
dHλ(s)dHλ(t).

Thus our second proposed estimator of A2 is

Â2
(2) ≡

∫ ∞

0

∫ ∞

0

{
λNFm(s)Fm(t)(̂Gσ2G)(t ∨ s) + (1− λN )Gn(s)Gn(t)(̂Fσ2F )(t ∨ s)

}
dHN (s)dHN (t)
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where

(̂Fσ2F )(t) ≡
∫ ∞

t
(x− t)2dFm(x)− Fm(t)e2Fm

(t), (A.1)

(̂Gσ2G)(t) ≡
∫ ∞

t
(x− t)2dGn(x)−Gn(t)e

2
Gn

(t). (A.2)

It seems apparent that this second estimator relies less strongly on the null hypothesis H. With
these variance estimators in hand, the studentized test statistics based on Tm,n are

T̂ (1)
m,n ≡ Tm,n

Â(1)

and T̂ (2)
m,n ≡ Tm,n

Â(2)

. (A.3)

The corresponding estimators of A
2
are as follows: the first (simple) estimator is

Â
2

(1) ≡ 2

∫ ∞

0

(∫ ∞

t

(̂
Fσ2F

)
(s)dHN (s)

)
dHN (t)

where (̂
Fσ2F

)
(t) ≡

{∫ ∞

t
(x− t)2dHN (x)−

(∫∞
t (x− t)dHN (x)

)2
HN (t)

}
1[0,X(m)∨Y(n)](t).

On the other hand, the second, somewhat more complicated, estimator is

Â
2

(2) ≡
∫ ∞

0

∫ ∞

0

{
λN (̂Gσ2G)(t ∨ s) + (1− λN )(̂Fσ2F )(t ∨ s)

}
dHN (s)dHN (t)

where (̂Fσ2F ) and (̂Gσ2G) are given by (A.1) and (A.2). Then the two studentized versions of Tm,n
upon which we will base our tests are

T
(1)
m,n ≡ Tm,n

Â(1)

and T
(2)
m,n ≡ Tm,n

Â(2)

. (A.4)

Theorem 5.1. (Consistency of the the variance estimators). If the null hypothesis holds, then

Â2
(1) →p A

2, Â2
(2) →p A

2 as m ∧ n→ ∞,

and

Â
2

(1) →p A
2
, Â

2

(2) →p A
2

as m ∧ n→ ∞.
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6 Limit theory under local alternatives

Now we study the test statistic(s) Tm,n/Âj and Tm,n/Âj , j = 1, 2, under local alternatives and
study local asymptotic approximations to the power of our tests. Suppose that {fm} and {gn} are
sequences of densities satisfying

∥
√
m(
√
fm −

√
f)− (1/2)α

√
f∥2 → 0 as m→ ∞,

∥
√
n(
√
gn −

√
f)− (1/2)β

√
f∥2 → 0 as n→ ∞ (A.1)

where α, β ∈ L2(F ):
∫
α2dF < ∞ and

∫
β2dF < ∞. Then (see e.g. Shorack and Wellner (1986),

Theorem 4.1.1, page 152; or, see BKRW, Example 1, pages 191-192)

∥
√
m(Fm − F )−A∥∞ → 0, and

∥
√
n(Gn −G)−B∥∞ → 0

where

A(x) ≡
∫ x

−∞
α(y)dF (y), and B(x) ≡

∫ x

−∞
β(y)dF (y).

The following proposition connects these with the corresponding sequences {eFm} and {eGn} of
mean residual life functions.

Proposition 1. Suppose that the sequences {fm} and {gn} are as in (A.1) and that Ef (X
2) <∞.

Then

∥
[√
m(eFm − eF )− C

]
F∥∞ → 0 as m→ ∞, and

∥
[√
n(eFn − eF )−D

]
F∥∞ → 0 as n→ ∞,

where

C(x) ≡ C(x;α) =

∫∞
x (y − x)α(y)dF (y)

F (x)
− eF (x)

F (x)
A(x),

D(x) ≡ D(x;β) =

∫∞
x (y − x)β(y)dF (y)

F (x)
− eF (x)

F (x)
B(x).

Now we can describe the behavior of the processes {Zm,n : m ≥ 1, n ≥ 1} and {Zm,n : m ≥
1, n ≥ 1} under the local alternatives {fm} and {gn}.

Proposition 2. If {fm} and {gn} are as in Proposition 1, and λN ≡ m/N → λ ∈ (0, 1). Then,
with δm,n ≡ (eGn − eFm)FmGn,

Zm,n ≡
√
mn

N
δ̂m,n =

√
mn

N

(
δ̂m,n − δm,n

)
+

√
mn

N
δm,n

⇒ Z+ (
√
λD −

√
1− λC)F

2

d
= FB(Fσ2F ) + (

√
λD −

√
1− λC)F

2
.
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This, in turn, yields the following theorem concerning the behavior of the test statistics

{Tm,n/Â(j)} and {Tm,n/Â(j)} for j = 1, 2.

Theorem 6. Suppose that {fm} and {gn} are as in Proposition 1, and λN ≡ m/N → λ ∈ (0, 1).
Then

Tm,n →d N(∆, A2) and Tm,n →d N(∆, A
2
)

where

∆ ≡
∫ ∞

0
F

2
(√

λD −
√
1− λC

)
dF,

∆ ≡
∫ ∞

0
F
(√

λD −
√
1− λC

)
dF,

and where A2 and A
2
are given by (A.1) and (A.2) respectively. Consequently, under {fm} and

{gn}

Tm,n/Â(j) →d N(∆/A, 1), and (A.2)

Tm,n/Â(j) →d N(∆/A, 1), (A.3)

and it follows that

lim
m,n→∞

Pfm,gn(Tm,n/Â(j) ≥ zα) = P (Z ≥ zα −∆/A),

lim
m,n→∞

Pfm,gn(Tm,n/Â(j) ≥ zα) = P (Z ≥ zα −∆/A)

for j = 1, 2 where Z ∼ N(0, 1), P (Z ≥ zα) = α.

In fact, in particular examples it will be easier to compute the functions C and D appearing in
∆ and ∆ by consider certain parametric families em ≡ eFm and en ≡ eGn .

7 Examples and special cases

Here we calculate explicitly in some particular examples.

Example 1. Suppose that eF (x) = (µ − cx)+ and eG(x) = (µ − dx)+ with 0 < d < c so that
eG ≥ eF with equality only at x = 0; see Figure 1. We will take F to be fixed and consider Gn → G
with µ fixed and d = dn ≡ c− vn−1/2. Then we find that

√
n(eGn − eF )(x) → vx1[0,µ/c](x) ≡ D(x).

Since F (x) = (1− bx)−1+1/c1[0,1/b)(x) with b ≡ c/µ, we find that

∆ =

∫ µ/c

0
F

2
(t)

√
λvtdF (t)

=
√
λvµ

1

3(3− 2c)
,
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and, with γ2 = (1− c)/(1 + c),

A2 = 2γ2µ2
(1/c− 1)2

(3/c− 1)(5/c− 3)
= 2µ2

(1− c)3

(1 + c)(3− c)(5− 3c)
.

Consequently

∆

A
=

√
λvµ/(3(3− 2c))

√
2µ
√

(1−c)3
(1+c)(3−c)(5−3c)

=

√
λ

2

v

3(3− 2c)

√
(1 + c)(3− c)(5− 3c)

(1− c)3
.

Furthermore, similar calculations yield

∆

A
=

√
λv
√

(1 + c)(3− c)

2(2− c)
√

(1− c)3
.

Figure 1: Pareto alternatives, negative slope, slope of eG smaller than slope
of eF but equal means

Example 2. Suppose that eF (x) = (µ − cx)+ and eG(x) = (ν − cx)+ with 0 < µ < ν so that
eG ≥ eF . We take F to be fixed and consider Gn → G with c > 0 fixed and ν = νn = µ+ vn−1/2.
See Figure 2. Then

√
n(eGn − eF )(x) → v1[0,µ/c](x) ≡ D(x).
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Figure 2: Pareto alternatives, negative slope, eG(0) = µG greater than
eF (0 = µF but equal slopes

Since F (x) = (1− bx)−1+1/c with b ≡ c/µ we find that

∆ =

∫ µ/c

0
F

2
(t)

√
λvdF (t) =

1

3

√
λv

while A2 is exactly as in Example 1. This yields

∆

A
=

1
3

√
λv

√
2µ
√

(1−c)3
(1+c)(3−c)(5−3c)

=

√
λ

2

v

3µ

√
(1 + c)(3− c)(5− 3c)

(1− c)3
.

Moreover we find that ∆ = 1
2

√
λv while A

2
is as in Example 1. Consequently

∆

A
=

√
λν
2

µ2
√

(1−c)3√
(3−c)(1+c)

=
ν
√
λ(3− c)(1 + c)

2µ
√

(1− c)3
.

This yields

∆/A

∆/A
=

2
√
5− 3c

3
√
2

;
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Figure 3: Pareto alternatives, positive slope, eG(0) = µ = eF (0) but greater
slopes

this decreases from (2/3)
√

5/3 ≈ 1.05 at c = 0 to (2/3) ≈ 0.67 at c = 1, and crosses 1 at c ≈ .17

Thus we expect the test statistics Tm,n/Â(j) to be somewhat more powerful than the test statistics

Tm,n/Â(j) for c < 0.17, but that the reverse will be true for c > 0.17. This is supported by
simulations for finite m,n.
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Doubly truncated (interval) quantile Shannon entropy
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Abstract

It is well known that Shannon’s entropy plays an important role in the measurement of
uncertainty of probability distributions. Also, in statistical modelling and analysis of data
there is an equivalent and alternate approach, through the quantile function (QF), which is
very important in exploratory data analysis and in many other areas of applied statistics. In
the present paper, we introduce and study quantile version of the Shannon entropy functions
in doubly truncated (interval) lifetime, which includes the residual and past lifetimes as special
case.

Keywords: Shannon entropy, Quantile function, Generalized failure rate, Quantile doubly
truncated Shannon entropy.

1 Introduction

The main measure of the uncertainty contained in random variable X is the Shannon entropy
(Shannon, 1948) defined by,

HX = −E(log f(X)) = −
∫ ∞

0
f(x) log f(x)dx.

Studying the measures based on residual life time random variable Xt = X − t|X ≥ t has a
fundamental role in many areas such as reliability theory, survival analysis and information theory.
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Ebrahimi and Pelerey (1995) and Ebrahimi (1996) defined the residual entropy (RE) based on the
random variable Xt by

REX(t) = −
∞∫
t

f(x)

F (t)
log

f(x)

F (t)
dx. (A.1)

Di Crescenzo and Longobardi (2002) introduced an entropy-based measure of uncertainty in past
life time distributions and called it past entropy (PE) which represents the uncertainty of the idle
time (or inactivity time) of a component or system which is based on past life time random variable,
X∗
t = t−X|X ≤ t, and it is given by,

PEX(t) = −
t∫

0

f(x)

F (t)
log

f(x)

F (t)
dx.

Sometimes, in many situations, we only have information between two points, so we should study the
statistical measures (especially in information theory and reliability) under the condition of doubly
truncated random variables. For example in reliability, if X denotes the lifetime of a unit, then
the random variable Xt1,t2 = X − t1|t1 ≤ X ≤ t2 is called the doubly truncated (interval) residual
lifetime, which is in special case of t2 → ∞ tends to residual lifetime random variable Xt. Also, we
can use the doubly truncated (interval) past lifetime random variable X∗

t1,t2 = t2 −X|t1 ≤ X ≤ t2,
which in special case t1 = 0, it tends to the past lifetime random variable X∗

t . Another extension
of shannon entropy is based on a doubly truncated (interval) random variable, which is defined by
Misagh and Yari (2010, 2011, 2012) as follows,

HX(t1, t2) = −
∫ t2

t1

f(x)

F (t2)− F (t1)
log

f(x)

F (t2)− F (t1)
dx,

where (t1, t2) ∈ D = {(t1, t2) : F (t1) < F (t2)} and HX(0,∞) is the Shannon entropy HX

and HX(t1,∞) is the residual entropyREX(t1) and also HX(0, t2) is the past entropy PEX(t2).
Recently, many researchers have pay attention to use of quantile function (QF) instead of
distribution function, which is defined for any random variables by:

Q(u) = F−1(u) = inf{t|F (t) ≥ u}, 0 ≤ u ≤ 1.

Since quantile functions are less influenced by extreme observation they are more convenient. For
more details and recent studies on QF, its properties and usefulness in Reliability and information
theories and also in the identification of models we refer to Gilchrist (2000), Nair and Sankaran
(2009), Nair et al. (2008, 2011), Sankaran and Nair (2009), Sankaran et al. (2010), Sunoj and
Sankaran (2012), Sunoj et al. (2013) and the references therein.

On the other hand, many of distributions in reliability are known by their quantile functions
like Lambda distributions (van Staden and Loots, 2009), Power-Pareto distribution (Hankin and
Lee, 2006) and Govindarajulu distribution (Nair et al., 2008), so using quantile version of reliability
and information measures is the best way to analysis the data for such distributions.
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From now on, we assume that F is continuous, so, F (Q(u)) = FQ(u) = u and defining the

density quantile function by fQ(u) = f(Q(u)) and quantile density function by q(u) = ∂Q(u)
∂u , we

have (see Parzen, 1979),
q(u)fQ(u) = 1.

From the perspective of quantile function, Sunoj and Sankaran (2012) introduced a quantile based
Shannon entropy and residual entropy REq(u) respectively by,

Hq =

1∫
0

log q(u)du,

and

REq(u) = log(1− u) + (1− u)−1

1∫
u

log q(p)dp.

Unlike the residual entropy of form (A.1), REq(u) determine the QF uniquely. For more properties
of REq(u), one may refer to Sunoj and Sankaran (2012). Similarly, Sunoj et al. (2013) have studied
the past entropy in terms of QF by,

PEq(u) = log(u) + u−1

u∫
0

log q(p)dp.

The measure PEq(u) gives the expected uncertainty contained in the conditional density about the
predictability of and out come of X until 100u% point of distribution.

2 Interval quantile based Shannon entropy

In this section, we first define the doubly truncated version of quantile entropy and obtain some
of it’s properties. In similar way of previous measures, the doubly truncated (interval) quantile
Shannon entropy function is defined by,

Hq(u1, u2) = −
∫ u2

u1

f(Q(p))

u2−u1
log

f(Q(p))

u2−u1
dQ(p)

= log(u2−u1) +
1

u2−u1

∫ u2

u1

log(q(p))dp, (A.1)

where (u1, u2) ∈ D = {(u1, u2);Q(u1) < Q(u2)}.
In doubly truncation, Navarro and Ruiz (1996) defined the generalized failure rate (GFR) by,{

h1(t1, t2) =
f(t1)

F (t1)−F (t2)
,

h2(t1, t2) =
f(t2)

F (t2)−F (t1)
.
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We can define the quantile GFR by,

Λ1(u1, u2) =
1

(u2−u1)q(u1)
; (u1, u2) ∈ D,

Λ2(u1, u2) =
1

(u2−u1)q(u2)
; (u1, u2) ∈ D.

Definition 1. The random variable X is said to have

• decreasing (increasing) interval quantile entropy DIQE (IIQE) property in term of u1 if and only
if for any fixed u2, Hq(u1, u2) is decreasing (increasing) with respect to u1.

• decreasing (increasing) interval quantile entropy DIQE (IIQE) property in term of u2 if and only
if for any fixed u1 ,Hq(u1, u2) is decreasing (increasing) with respect to u2.

Now, differentiating Eq.(A.1) with respect u1, we get:

∂Hq(u1, u2)

∂u1
=

−1

u2 − u1
+

1

(u2 − u1)
2

u2∫
u1

log q(p)dp− 1

u2 − u1
log q(u1)

=
1

u2 − u1
{Hq(u1, u2)− log(u2 − u1)− log q(u1) + 1} (A.2)

So, Hq(u1, u2) is increasing with respect to u1 if and only if, for all (u1, u2) ∈ D,

Hq(u1, u2) ≥ log(u2−u1) + log(q(u1)) + 1,

or equivalently

Hq(u1, u2) ≥ − log(Λ1(u1, u2)) + 1.

Similarly for u2 we have,

∂Hq(u1, u2)

∂u2
=

1

u2 − u1
− 1

(u2 − u1)
2

u2∫
u1

log q(p)dp+
1

u2 − u1
log q(u2)

=
1

u2 − u1
{−Hq(u1, u2) + log(u2 − u1) + log q(u2) + 1,

Hence , Hq(u1, u2) is increasing with respect to u2 if and only if, for all (u1, u2) ∈ D,

Hq(u1, u2) ≤ log(u2−u1) + log(q(u2)) + 1

or equivalently

Hq(u1, u2) ≤ − log(Λ2(u1, u2)) + 1.

The next theorem shows that Hq(u1, u2) can determine the distribution uniquely.
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Theorem 2.1. If X be a non-negative absolutely continue random variable then the quantile density
function is uniquely determined for fixed u2 by interval quantile entropy via relation,

q(u) = exp{1− log(u2−u) +Hq(u, u2)− (u2−u)H
′
q(u, u2)}.

Proof. Using the Eq. (A.2) the required results are follow.

Example 2.2. In this example we obtain the interval quantile shannon entropy for some
distributions.
• Exponential distribution
If X have the exponential distribution with parameter λ. Then we have, Q(p) = 1

λ(− log(1− p)) ,
q(p) = 1

λ(1−p) and the interval quantile Shannon entropy is,

Hq(u1, u2) = log(u2−u1)−
1

u2−u1

u2∫
u1

log(λ(1− p))dp

= log(u2−u1)− log λ− (1− u1)

(u2−u1)
log(1− u1)−

(u2−1)

(u2−u1)
log(1− u2) + 1.

In special case of u1 = u and u2 = 1 we have quantile residual entropy,

REq(u) = 1− log λ,

and when u1 = 0 and , u2 = u we have quantile past entropy,

PEq(u) = 1− log λ+ log u+ (
1− u

u
) log(1− u).

• Pareto I distribution
Let X have the Pareto I distribution with Q(p)s ,σ (1− p)−

1
α and q(p) = σ

α (1− p)−1− 1
α .Also, we

have

Hq(u1, u2) = log(u2−u1) +
1

u2−u1
{log(σ

α
(u2−u1)) +

u2∫
u1

(−1− 1

α
) log(1− p)dp

= log(u2−u1) + log
σ

α
+

(−1− 1
α)(1− u1)

(u2−u1)
log(1− u1)

+
(−1− 1

α)(u2−1)

(u2−u1)
log(1− u2) + 1 +

1

α
.

In special case of u1 = u and u2 = 1 we have quantile residual entropy,

REq(u) = log(
σ

α
) + (

α+ 1

α
)− 1

α
log(1− u),
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and when u1 = 0 and u2 = u we have quantile past entropy,

PEq(u) = log(
σ

α
) + (

α+ 1

α
) + log u+ (

α+ 1

α
)(
1− u

u
) log(1− u).

• Uniform distribution
Let X have the uniform distribution with parameter (a, b) and Q(p) ,a + (b − a)p and q(p) =
b− a.Then quantile doubly truncated Shannon entropy for this distribution is,

Hq(u1, u2) = log(u2−u1) + log(b− a).

In special case of u1 = u and u2 = 1 we have quantile residual entropy,

REq(u) = log(1− u) + log(b− a),

and when u1 = 0 and u2 = u we have quantile past entropy,

PEq(u) = log u+ log(b− a).

• Power function distribution
Let X have the power function distribution with parameter (α, β) and Q(p)s ,αp

1
β and q(p) =

α
β
p

1
β
−1

. Then quantile doubly truncated shannon entropy for this distribution is given by,

Hq(u1, u2) = log(u2−u1) +
1

u2−u1
{log(α

β
)(u2−u1) +

u2∫
u1

(
1

β
− 1) log(p)dp

= log(u2−u1) + log
α

β
−

( 1β − 1)(u1)

(u2−u1)
log(u1) +

( 1β − 1)(u2)

(u2−u1)
log(u2) + 1− 1

β
.

In special case of u1 = u and u2 = 1 we have quantile residual entropy,

REq(u) = log(
α

β
) + (

β − 1

β
) + log(1− u) + (

β − 1

β
)
u log u

(1− u)
,

and when u1 = 0 and u2 = u we have quantile past entropy,

PEq(u) = log(
α

β
) + (

β − 1

β
) +

1

β
log u.

Theorem 2.3. If X is IIQE (DIQE) and if ϕ(.) is nonnegative, increasing and convex (concave)
function, then ϕ(X) is also IIQE (DIQE) .
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Proof. If g(y) is the pdf of Y = ϕ(X), then g(y) = f(ϕ−1(y))

ϕ′(ϕ−1(y))
;hence ,g(QY (u)) =

1
qY (u) =

fQ(u)
ϕ′Q(u) =

1
qx(u)ϕ′Q(u) , then the interval quantile shannon entropy of Y, HY

q (u1, u2) is as follow,

H
Y
q (u1, u2) = log(u2−u1) +

1

u2−u1

u2∫
u1

log(qY (p))dp

= log(u2−u1) +
1

u2−u1

u2∫
u1

log(qX(p)ϕ
′(Q(p)))dp

= log(u2−u1) +
1

u2−u1

u2∫
u1

log(qX(p))dp+
1

u2−u1

u2∫
u1

log(ϕ′(Q(p))dp

= H
X
q (u1, u2) + E(log(ϕ′(X))|ϕ−1(u1) < X < ϕ−1(u2)); (u1, u2)ϵD

where HX
q (u1, u2) and H

Y
q (u1, u2) are the DQE’s of X and Y respectively. Now if X is IIQE and

ϕ(x) is nonnegative ,increasing and convex ,then ϕ(x) is also IIQE.

Definition 2. X said to have less IQE than Y if HY
q (u1, u2) ≥ HX

q (u1, u2) for all 0 ≤ u1 ≤ u2 ≤ 1,
and we write X ≤IQE Y .

For example if X and Y are two uniform distribution with parameters (0, b1) and (0, b2), and if

b1 ≤ b2, then

H
X
q (u1, u2) = log(u2−u1) + log(b1) ≤ log(u2−u1) + log(b2) = H

Y
q (u1, u2),

so, X ≤IQE Y .

Theorem 2.4. Let Z1 = a1X + b1 and Z2 = a2 Y + b2, where a1 > 0, a2 > 0 and b1 > 0, b2 > 0.
If X ≤IQE Y and a1 ≤ a2 , then Z1≤IQE Z2.

Proof. Let qZ(u) be the quantile density function of the variable Z = aX + b, where a > 0 and
b > 0. Then, using A.1 we get,

H
Z
q (u1, u2) = H

X
q (u1, u2) + log(a), (A.3)

which proved the theorem.

It should be noted that all characterization problems of distribution functions discussed in
literature are automatically hold for quantile functions under the transformation x = Q(u). Other
than these, new characterizations have been found exclusively in the quantile set-up. Nair et al.
(2013) have obtained characterization results based on linear hazard quantile function and mean
residual quantile function. In the next theorem we obtain a characterization of power distribution.
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Theorem 2.5. The non-negative random variable X have power distribution with parameters α
and β if and only if for a real constant C,

Hq(u1, u2) = log(u2−u1) + C −
u1

u2−u1
log(

β(u2−u1)

α
A(u1)) +

u2
u2−u1

log(
β(u2−u1)

α
A(u2)).

Proof. Using results of Theorem 2.1 and Example 2.2 and some calculations the required result is
obtained.

Remark 2.6. When C = 0 we have the uniform distribution with parameters (0, 1) and when C = 1
we have the uniform distribution with parameters (0, α) .
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Abstract

The aim of this paper is to present a new method for evaluating the reliability of k-out-of-m
systems, titled the fuzzy non-parametric predictive inference. With this end in view, this paper
presents fuzzy, lower and upper probabilities for the reliability of k-out-of-m systems. For
the sake of reaching this aim, attention has been restricted to the k-out-of-m systems with
exchangeable components. Moreover, the problem of evaluating system reliability based on
nonparametric predictive inferential (NPI) approach has been considered in this paper, in which
defining the parameters of reliability function as crisp values is not possible, and parameters
of reliability function are described with the use of a triangular fuzzy number. Formula of a
fuzzy reliability function and its -cut set are also presented. Moreover, the fuzzy reliability
of structures is defined on the basis of fuzzy numbers, and the fuzzy reliability functions of
k-out-of m systems are discussed. Finally, some numerical examples are presented to illustrate
how to calculate the fuzzy reliability function and its α-cut set.

Keywords: k-out-of-m systems, Lower and upper probabilities, Nonparametric predictive
inference, Fuzzy number.
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1 Introduction

This paper provides a new method for statistical inference on system reliability on the basis
of uncertain information resulting from component testing. This Approach is called Fuzzy
Nonparametric Predictive Inference (FNPI). We present FNPI for system reliability, in particular
FNPI for k-out-of-m systems. Coolen [6] provided an insight into imprecise reliability, discussing
a variety of issues and reviewing suggested applications of imprecise probabilities in reliability;
see [8, 9, 10] for a detailed overview of imprecise reliability and many references. The
nonparametric predictive approach is a statistical approach based on few assumptions about
probability distributions together with inferences based on data [7, 8]. Nonparametric predictive
inference (NPI) is close in nature to predictive inference for the low structure stochastic case
as briefly outlined by Geisser [11]. In recent years, many theoretical aspects and a variety of
applications of inferences based on Hills assumption of A(n) for prediction of probabilities for
one (or more) future values on the basis of n prior observations have been presented, referred
in the literature as nonparametric predictive inference (NPI), see e.g. [1, 2, 5, 7, 8]. Shokri et al.
[15] present FNPI for reliability of series systems.The aim of the authors of the current paper is
studying the reliability of k-out-of-m systems based on non-parametric predictive inference in a
fuzzy environment and proposing a new method titled fuzzy non-parametric predictive inference
for the reliability of k-out-of-m systems.

2 Concepts on Nonparametric Predictive Approach

Hill [13] introduced the assumption A(n) for predictions concerning future observations. This
assumption was suggested particularly for states in which there is no strong prior knowledge about
the probability distribution for a random variable of interest. Hill [13] explained A(n) in detail.
Inferences based on A(n) are nonparametric and predictive, and can be considered proper if there
is hardly any knowledge about the random variable of interest other than the n observations, or
if one does not want to use such knowledge; for example, in the case of studying the influences of
additional assumptions underlying other statistical techniques [7]. A(n) is not enough for deriving
exact probabilities for many events of interest but presents optimal bounds for probabilities for all
events of interest involving Xn+1. These bounds are lower and upper probabilities in the theory of
interval probability[16]. Augustin and Coolen [1] showed that the interval probabilities obtained,
based only on the A(n) assumption, have powerful consistency characteristics in the theory of
interval probability [6]. Coolen [5] used A(n) for NPI in the case of Bernoulli data, presenting lower
and upper probabilities for the number of successes in m future trials based on the number of
successes in n observed trials. This was possible by considering similar representations of Bernoulli
data as was used by Bayes [3] under the title of balls on a table.

Theorem 2.1. Assume n +m number of Bernoulli’s exchangeable experiments whose result can
be success or failure. Assume:
Y n+m
n+1 → The random variable of number of successes of m Bernoulli’s future (n + 1 → +m )

experiments.



Third Seminar on Reliability Theory and its Applications 296

Y n
1 → The random variable of the number of successes in n Bernoulli’s previous (1 to n)

experiments.
For the sake of simplicity, we define

(
s+r0
s

)
= 0; therefore, the upper and lower probabilities of

non-parametric predictive inferences are

P̄
(
Y n+m
n+1 ∈ Rt|Y n

1 = s
)
=(

n+m
m

)−1 t∑
j=1

[(
s+ rj
s

)
−
(
s+ rj−1

s

)](
n− s+m− rj

n− s

)
, (A.1)

and

P
(
Y n+m
n+1 ∈ Rt|Y n

1 = s
)
= 1− P̄

(
Y n+m
n+1 ∈ Rc

t |Y n
1 = s

)
. (A.2)

where Rt = {r1, . . . , rt} with ◦ ≤ r1 < r2 < . . . < rt ≤ m, 1 ≤ t ≤ m + 1 and
Rct = {◦, 1, . . . , m} \Rt.

Proof. See [5].

3 Non-parametric predictive inference for a k -out-of-m system

The class of k-out-of-m systems, also called ‘voting systems’, was introduced by Birnbaum [4].
These are systems that consist of m exchangeable components (often the confusing term identical
components is used) such that the system functions if and only if at least k of its components
function. Since the value of m is usually larger than the value of k, redundancy is generally built
into a k-out-of-m system [10].

Theorem 3.1. considering a k-out-of-m system, the event Y n+m
n+1 ≥ k is of interest as this

corresponds to successful functioning of a k-out-of-m system, following n tests of components
that are exchangeable with the m components in the system considered. Given data consisting
of s successes from n components tested, the NPI lower and upper probabilities for the event
denoting that the k-out-of-m system functions successfully are also denoted by P (S (m : k)|(n, s))
and P (S (m : k)|(n, s)), respectively. For k ∈ {1, 2, · · · ,m} and 0 < s < n

P (S (m : k)|(n, s))
= P

(
Y n+m
n+1 ≥ k

∣∣Y n
1 = s

)
=

(
n+m
m

)−1
[(

s+ k
s

)(
n− s+m− k

n− s

)
+

m∑
l=k+1

(
s+ l − 1
s− 1

) (
n− s+m− l

n− s

)]
,

P (S (m : k)|(n, s)) = P
(
Y n+m
n+1 ≥ k

∣∣Y n
1 = s

)
= 1− P

(
Y n+m
n+1 ≤ k − 1

∣∣Y n
1 = s

)
= 1−

(
n+m
m

)−1
[
k−1∑
l=0

(
s+ l − 1
s− 1

) (
n− s+m− l

n− s

)]
.

Proof. See [10].
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4 Fuzzy Non-parametric Predictive Inference for the reliability of
k -out-of-m systems

In this Section, we consider the problem of the evaluation of system reliability based on the
nonparametric predictive inferential (NPI) approach, in which the defining the parameters of
reliability function in definite quantities is not possible and parameters of reliability function are
described using a triangular fuzzy number.The theory of sets and fuzzy logic was first proposed
by Zadeh [17]. This theory has found wide applications in many fields such as computer, system
analysis, electronic and recently in social sciences, economics and industry. Fuzzy logic is a theory
for uncertain conditions. This theory can form many of concepts, variables and systems which
are imprecise and vague in a mathematical form and provide the way for reasoning, control and
decision-making in uncertain conditions [14, 17].

4.1 Fuzzy number of success in tested components(s )

The number of success in tested components can be defined by linguistic variables. One of the
circumstances that can be assumed is when the number of functioning items is defined as linguistic
variables. Fuzzy numbers can be used for showing functioning items. Assume that the number of
functioning items can be shown as the following triangular fuzzy number:

s̃ = TFN(s1, s2, s3), s (α) = (s1 + (s2 − s1)α , s3 + (s2 − s3)α).

Therefore, the fuzzy upper non-parametric predictive probability is as

P̃ (S (m : k)|(n, s)) = P̃
(
Y n+m
n+1 ≥ k

∣∣Y n
1 = s

)
=

(
n+m
m

)−1
[(

s̃+ k
s̃

)(
n− s̃+m− k

n− s̃

)
+

m∑
l=k+1

(
s̃+ l − 1
s̃− 1

)(
n− s̃+m− l

n− s̃

)]
.

As a result

P̃ (α) =

{(
n+m
m

)−1
[(
s+ k
s

)(
n− s+m− k

n− s

)
+

m∑
l=k+1

(
s+ l − 1
s− 1

)(
n− s+m− l

n− s

)]∣∣∣∣∣
s ∈ s (α)

}
, 0 ≤ α ≤ 1.

Too fuzzy lower non-parametric predictive probability is as

P l (α) = min

{
1−

(
n+m
m

)−1
[
k−1∑
l=0

(
s+ l − 1
s− 1

) (
n− s+m− l

n− s

)]∣∣∣∣∣s ∈ s (α)

}
,

P r (α) = max

{
1−

(
n+m
m

)−1
[
k−1∑
l=0

(
s+ l − 1
s− 1

) (
n− s+m− l

n− s

)]∣∣∣∣∣s ∈ s (α)

}
.
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4.2 Fuzzy numbers of tested components(n )

One of the other instances that can be assumed is when the number of tested components is defined
as linguistic variables. Fuzzy numbers can be used for the depiction of the number of sample
elements. Assume that n numbers of tested components are defined as the following triangular
numbers:

ñ = TFN(n1, n2, n3), n (α) = (n1 + (n2 − n1)α , n3 + (n2 − n3)α).

So fuzzy upper non-parametric predictive probability is as

P̃ (S (m : k)|(n, s)) = P̃
(
Y n+m
n+1 ≥ k

∣∣Y n
1 = s

)
=

(
ñ+m
m

)−1
[(

s̃+ k
s̃

) (
ñ− s̃+m− k

ñ− s̃

)
+

m∑
l=k+1

(
s̃+ l − 1
s̃− 1

) (
ñ− s̃+m− l

ñ− s̃

)]
.

As a result,

P̃ (α) =

{(
n+m
m

)−1 [(
s+ k
s

) (
n− s+m− k

n− s

)

+

m∑
l=k+1

(
s+ l − 1
s− 1

) (
n− s+m− l

n− s

)]∣∣∣∣∣s ∈ s (α) , n ∈ n(α)

}
, 0 ≤ α ≤ 1.

Also fuzzy lower nonparametric predictive probability is given as follows,

P̃ (α) = [P l (α) , P r (α)] ,

P l (α) =min

{
1−

(
n+m
m

)−1
[
k−1∑
l=0

(
s+ l − 1
s− 1

) (
n− s+m− l

n− s

)]
∣∣∣∣∣s ∈ s (α) , n ∈ n(α)

}
,

P r (α) =max

{
1−

(
n+m
m

)−1
[
k−1∑
l=0

(
s+ l − 1
s− 1

) (
n− s+m− l

n− s

)]
∣∣∣∣∣s ∈ s (α) , n ∈ n(α)

}
.

4.3 example

Consider a 2-out-of-6 system with exchangeable components (so k = 2, m = 6), and the only
information available is the result of a test of “Approximately 5” components, also exchangeable
with the 6 to be used in the system. Assume that the numbers of successes in the tests are expressed
as “Approximately 2”. Triangular fuzzy numbers are more suitable to convert this definition into
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a fuzzy number. The number of components to be converted to a triangular fuzzy number as
ñ = TFN (4, 5, 6), and The number of successes in the tests to be converted to a triangular fuzzy
number is as s̃ = TFN (1, 2, 3). The FNPI lower and upper probabilities for successful functioning
of the system are

ñ = TFN(4, 5, 6),

s̃ = TFN(1, 2, 3),

n (α) = (4 + α , 6− α),

s (α) = (1 + α , 3− α).

P̃ (α) =


(
n+ 6
6

)−1


(
s+ 2
s

) (
n− s+ 6− 2

n− s

)
+∑m

l=k+1

(
s+ l − 1
s− 1

) (
n− s+ 6− l

n− s

)

∣∣∣∣∣∣∣∣s ∈ s (α) ,

n ∈ n (α)} , 0 ≤ α ≤ 1.

Table 1 and 2 show α-cuts related to P̃ fuzzy lower non-parametric predictive probability and

P̃ fuzzy upper non-parametric predictive probability. Figures 1 and 2 show the corresponding
diagrams of membership function.

Table 1: α-cuts related to P̃ fuzzy lower non-parametric predictive
probability.

α P l (α) P r (α) α P l (α) P r (α)
0 0.3333 0.7273 0.55 0.4799 0.6531

0.05 0.3480 0.7213 0.60 0.4915 0.6453
0.10 0.3625 0.7152 0.65 0.5029 0.6374
0.15 0.3766 0.7090 0.70 0.5141 0.6292
0.20 0.3905 0.7026 0.75 0.5250 0.6208
0.25 0.4041 0.6960 0.80 0.5356 0.6122
0.30 0.4174 0.6893 0.85 0.5460 0.6034
0.35 0.4305 0.6824 0.90 0.5562 0.5944
0.40 0.4432 0.6754 0.95 0.5661 0.5852
0.45 0.4557 0.6681 1 0.5758 0.5758
0.50 0.4679 0.6607

5 Conclusions

Despite of the usefulness of reliability of k-out-of-m systems based on non-parametric predictive
approach, it has a main difficulty in defining its parameters as crisp values. For these cases,
the fuzzy set theory is the most suitable tool to analyze reliability of k-out-of-m systems based
on nonparametric predictive approach. The obtained results show that the fuzzy definitions of
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Figure 1: the diagram of membership function of lower non-parametric
predictive probability

Table 2: α-cuts related toP̃ fuzzy upper non-parametric predictive
probability.

α P l (α) P r (α) α P l (α) P r (α)
0 0.6667 0.8788 0.55 0.7517 0.8425

0.05 0.6756 0.8759 0.60 0.7581 0.8386
0.10 0.6843 0.8730 0.65 0.7643 0.8346
0.15 0.6927 0.8700 0.70 0.7703 0.8304
0.20 0.7009 0.8669 0.75 0.7762 0.8262
0.25 0.7088 0.8637 0.80 0.7819 0.8218
0.30 0.7165 0.8604 0.85 0.7874 0.8173
0.35 0.7240 0.8570 0.90 0.7928 0.8127
0.40 0.7312 0.8535 0.95 0.7980 0.8079
0.45 0.7382 0.8499 1 0.8030 0.8030
0.50 0.7450 0.8463

parameters provide more flexibility and more usability. In this article the non- parametric predictive
probability has been analyzed for reliability of k-out-of-m systems with fuzzy parameters. We
calculated the fuzzy reliability function and its α-cut set.
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Cumulative residual inaccuracy in upper record values
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Abstract

In this paper, we propose a measure of cumulative residual inaccuracy between distribution
of the nth upper record value and parent distribution F . We discuss some reliability properties
of the proposed measure.

Keywords: Cumulative residual inaccuracy; Upper record values; Measure of inaccuracy.

1 Introduction

Suppose that X and Y are two non-negative random variables with reliability functions F̄ (x), Ḡ(x),
respectively. [3] defined the cumulative residual inaccuracy based on F̄ (x), Ḡ(x) as

I(F̄ , Ḡ) = −
∫ +∞

0
F̄ (x) log Ḡ(x)dx. (A.1)

Now, let {Xm,m ≥ 1} be a sequences of independent and identically distributed random variables
with cumulative distribution function (cdf) F and density function f . An observation Xj will be
called an upper record value if its value exceeds all previous observations. Thus, Xj is an upper
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record value if Xj > Xi for every i < j. Let {Xn = Rn} denote the nth upper record value arising
from the {Xm,m ≥ 1}. Then the density function and survival function of Rn, which are denoted
by fRn and F̄Rn , respectively, are given by

fRn(x) =
[− log F̄ (x)]n−1

(n− 1)!
f(x), x > 0, n ≥ 1,

F̄Rn(x) =

n−1∑
j=0

[− log F̄ (x)]j

j!
F̄ (x).

Record values apply in problems such as industrial stress testing, meteorological analysis, hydrology,
sporting and economics. In reliability theory, records values are used to study, for example, technical
systems which are subject to shocks, e.g. peaks of voltages. For more details about records and their
applications, one may refer to [1]. Recently [7] have introduced the measure of residual inaccuracy
of order statistics and prove a characterization result for it. In this paper we consider a measure of
cumulative residual inaccuracy between F̄Rn and F̄ and study its characterization results.

2 Main results

We propose the cumulative residual measure of inaccuracy between F̄Rn and F̄ as follows:

I(F̄Rn , F̄ ) = −
∫ +∞

0
F̄Rn(x) log

(
F̄ (x)

)
dx

= −
∫ +∞

0

n−1∑
j=0

[− log F̄ (x)]j

j!
F̄ (x) log

(
F̄ (x)

)
dx

=
n−1∑
j=0

∫ +∞

0

[− log F̄ (x)]j+1

j!
F̄ (x)dx

=

n−1∑
j=0

(j + 1)ERj+2

(
1

λF (X)

)
, (A.1)

where λF (X) is the hazard rate function of F and Rj+2 is a random variable with reliability F̄Rj+2 .
In the following example, we calculate I(F̄Rn , F̄ ) for some specific lifetime distributions which are
widely used in reliability theory and life testing.

Example 2.1. (a) If X is uniformly distributed in [0, θ], then it is easy to see that I(F̄Rn , F̄ ) =

θ
∑n−1

j=0
j!(j+1)2

2j+2 , for all integers n ≥ 1.

(b) If X has a Weibull distribution with survival function F̄ (x) = e−αx
β
, x ≥ 0, α, β > 0, then for

all integers n ≥ 1, we obtain I(F̄Rn , F̄ ) =
1

βα
1
α

∑n−1
j=0

( 1
β
+j)!

j! .

(c) If X has a Pareto distribution with survival function F̄ (x) =
(

λ
x+λ

)γ
, x ≥ 0, γ > 1, λ > 0,

then I(F̄Rn , F̄ ) =
λ
γ−1

∑n−1
j=0 (j + 1)

(
γ
γ−1

)j+1
, for all integers n ≥ 1.
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(d) Let X be an exponential distribution with mean 1
λ , then I(F̄Rn , F̄ ) =

n(n+1)
2λ .

(e) Let X be a nonnegative random variable which has an Exponential-Inverse Gaussian

distribution with survival function F̄ (x) = e
α
β
[1−

√
1+2βx]

, x ≥ 0, α, β > 0, then for all integers
n ≥ 1, we obtain I(F̄Rn , F̄ ) =

1
α2

∑n−1
j=0 j!(j + 1)2[α+ (j + 2)β].

Proposition 2.2. Let a, b > 0. For n = 1, 2, ... it holds that

I(F̄aRn+b, F̄aX+b) = aI(F̄Rn , F̄ ).

Proof. From (A.1) and noting that F̄aX+b(x) = F̄ (x−ba ), we have

I(F̄aRn+b, F̄aX+b) = −
∫ +∞

0

n−1∑
j=0

[− log F̄aX+b(x)]
j+1

j!
F̄aX+b(x)dx = aI(F̄Rn , F̄ ).

Proposition 2.3. Let X be an absolutely continuous nonnegative random variable with I(F̄Rn , F̄ ) <
∞, for n ≥ 1. Then, we have

I(F̄Rn , F̄ ) =
n−1∑
j=0

1

j!
E [hj+1(X)] , (A.2)

where

hj+1(x) =

∫ x

0

[
− log F̄ (z)

]j+1
dz, x ≥ 0.

Proof. From (A.1) and using Fubini’s theorem, we obtain

I(F̄Rn , F̄ ) =

n−1∑
j=0

∫ ∞

0

[− log F̄ (z)]j+1

j!
F̄ (z)dz

=

n−1∑
j=0

1

j!

∫ ∞

0

[∫ ∞

z
f(x)dx

]
[− log F̄ (z)]j+1dz

=
n−1∑
j=0

1

j!

∫ ∞

0
f(x)

[∫ x

0
[− log F̄ (z)]j+1dz

]
dx =

n−1∑
j=0

1

j!
E [hj+1(X)] .

The next propositions give some lower and upper bounds for I(F̄Rn , F̄ ).

Proposition 2.4. For a nonnegative random variable X and n ≥ 1, it holds that

I(F̄Rn , F̄ ) ≥
n−1∑
j=0

[E(X)]j+1

j!
, (A.3)



Third Seminar on Reliability Theory and its Applications 306

where

E(X) = −
∫ +∞

0
F̄ (x) log F̄ (x)dx,

is the cumulative residual entropy (see [5]).

Proof. Since F̄ (x) ≥ (F̄ (x))n, for n ≥ 1, we have

I(F̄Rn , F̄ ) =

n−1∑
j=0

1

j!

∫ ∞

0
F̄ (x)[− log F̄ (x)]j+1dx ≥

n−1∑
j=0

1

j!

∫ ∞

0
[−F̄ (x) log F̄ (x)]j+1dx.

By noting that g(x) = xn, n ≥ 1, is a convex function, Jensen’s inequality gives

I(F̄Rn , F̄ ) =

n−1∑
j=0

1

j!

∫ ∞

0
F̄ (x)[− log F̄ (x)]j+1dx ≥

n−1∑
j=0

1

j!

(
−
∫ ∞

0
F̄ (x) log F̄ (x)dx

)j+1

,

which proof follows by recalling (A.3).

Corollary 2.5. Let X be a nonnegative absolutely continuous random variable. Then,

I(F̄Rn , F̄ ) ≥
n−1∑
j=0

Cj+1

j!

[
e(j+1)H(X)

]
,

where C = exp
(∫ 1

0 log(x| log x|)dx
)
= 0.2065, and H(X) = −

∫ +∞
0 f(x) log f(x)dx is the Shannon

entropy of X.

Proof. The proof follows by recalling (A.3) and Proposition 4.2 of [2].

Proposition 2.6. Let X be an absolutely continuous nonnegative random variable with finite mean
µ = E(X). Then, we have

I(F̄Rn , F̄ ) ≥
n−1∑
j=0

1

j!
[hj+1(µ)] ,

where hj+1(µ) is defined in Proposition 2.3.

Proof. By noting that hj+1(.) is a convex function, applying Jensens inequality in (A.2) the proof
is completed.

Proposition 2.7. Let X be a nonnegative random variable with absolutely continuous cumulative
distribution function F (x). Then for n = 1, 2, ... we have

I(F̄Rn , F̄ ) ≤
n−1∑
j=0

1

j!

∫ ∞

0
[− log F̄ (x)]j+1dx.
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Proof. By using (A.1) proof is easy.

In the following, we obtain some results of I(F̄Rn , F̄ ) and its connection with notions of reliability
theory. For that we present the following definitions:

1. The random variable X is said to be smaller than Y according to stochastically ordering
(denoted by X ≤st Y ) if P (X ≥ x) ≤ P (Y ≥ x) for all x. It is known that X ≤st Y ⇔ E(ϕ(X)) ≤
E(ϕ(Y )) for all increasing functions ϕ.

2. We say that X is smaller than Y in the hazard rate order, denoted by X ≤hr Y , if Ḡ(x)
F̄ (x)

is

increasing with respect to x.
3. A non-negative random variable X is said to have increasing (decreasing) failure rate IFR

(DFR) if λF (x) =
f(x)
F̄ (x)

is increasing(decreasing) in x.

4. A non-negative random variable X with cdf F is said to have increasing(decreasing) failure

rate average IFRA(DFRA) if λF (x)
x is increasing (decreasing) function in x > 0. Note that IFR and

DFR classes of distributions are included to IFRA and DFRA classes of distributions, respectively.

Proposition 2.8. If X has the exponential distribution with mean µ = 1
θ , then as the hazard rate

is constant, we obtain the following property I(F̄Rn , F̄ ) =
n(n+1)

2 µ which is an increasing function
of n.

Proposition 2.9. Let X and Y be two nonnegative random variables with reliability functions
F̄ (x), Ḡ(x), respectively. If X ≤hr Y and X is DFR, then

I(F̄Rn , F̄ ) ≤ I(ḠRn , Ḡ),

for n = 1, 2, . . . .

Proof. It is well known that X ≤hr Y implies X ≤st Y (see [6]). Hence, we have

F̄Rj+2 ≤ ḠR̃j+2
,

where ḠR̃j+2
is the survival function of R̃j+2. That is , Rj+2 ≤st R̃j+2 holds. This is equivalent

(see [6]) to have
E(ϕ(Rj+2)) ≤ E(ϕ(R̃j+2)),

for all increasing functions ϕ such that these expectations exist. Thus, if we assume that X is DFR
and λF (x) is its failure rate, then 1

λF (x) is increasing and we have

I(F̄Rn , F̄ ) =
n−1∑
j=0

(j + 1)ERj+2

(
1

λF (X)

)
≤

n−1∑
j=0

(j + 1)ER̃j+2

(
1

λF (X)

)
.

On the other hand, X ≤hr Y implies that the respective failure rate functions satisfy λF (x) ≥ λG(y)
. Hence, we have

n−1∑
j=0

(j + 1)ER̃j+2

(
1

λF (X)

)
≤

n−1∑
j=0

(j + 1)ER̃j+2

(
1

λG(Y )

)
= I(ḠRn , Ḡ).

Therefore, using both expressions we obtain I(F̄Rn , F̄ ) ≤ I(ḠRn , Ḡ).
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Proposition 2.10. If X is IFRA (DFRA), then for n = 1, 2, . . . , we have

I(F̄Rn , F̄ ) ≤ (≥)

n−1∑
j=0

1

j!
E
[
X
(
− log F̄ (X)

)j]
. (A.4)

Proof. From (A.1), we have

I(F̄Rn , F̄ ) =

n−1∑
j=0

∫ +∞

0

[− log F̄ (x)]j

j!
[− log F̄ (x)]F̄ (x)dx. (A.5)

Now, since X is IFRA (DFRA), − log F̄ (x)
x is increasing (decreasing) with respect to x > 0, which

implies that

−F̄ (x) log F̄ (x) ≤ (≥)xf(x), x > 0. (A.6)

Hence, the proof is completed by noting (A.4) and (A.5).

Proposition 2.11. Let X and Y be two nonnegative random variables with survival function F̄ (x)
and Ḡ(x), respectively. If X ≤hr Y , then for n = 1, 2, ..., it holds that

I(F̄Rn , F̄ )

E(X)
≤ I(ḠRn , Ḡ)

E(Y )
.

Proof. By noting that the function hj+1(x) =
∫ x
0 [− log F̄ (z)]j+1dz is an increasing convex function,

under the assumption X ≤hr Y , it follows by [6],

n−1∑
j=0

1

j!

[
E [hj+1(X)]

E(X)

]
≤

n−1∑
j=0

1

j!

[
E [hj+1(Y )]

E(Y )

]
.

Hence, the proof is completed by recalling (A.2).

Assume that X∗
θ denotes a nonnegative absolutely continuous random variable with the survival

function H̄θ(x) = [F̄ (x)]θ, x ≥ 0. This model is known as a proportional hazards rate model. We
now obtain the cumulative residual measure of inaccuracy between H̄Rn and H̄ as follows:

I(H̄Rn , H̄) = −
∫ +∞

0
H̄Rn(x) log

(
H̄(x)

)
dx

=

n−1∑
j=0

θj+1

∫ +∞

0

[− log F̄ (x)]j+1

j!
[F̄ (x)]θdx. (A.7)

Proposition 2.12. If θ ≥ (≤)1, then for any n ≥ 1, we have

I(H̄Rn , H̄) ≤ (≥)

n−1∑
j=0

(j + 1)θj+1Ej+1(X),
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where Ej+1(X) is the generalized cumulative residual entropy of X, defined by [4] as

Ej+1(X) =

∫ +∞

0

F̄ (x)[− log F̄ (x)]j+1

(j + 1)!
.

Proof. Suppose that θ ≥ (≤)1, then it is clear [F̄ (x)]θ ≤ (≥)F̄ (x), and hence (A.7) yields

I(H̄Rn , H̄) ≤ (≥)
n−1∑
j=0

(j + 1)θj+1Ej+1(X).
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Abstract

In this paper, we analyze recurrent event data in the framework of mixed-effects models
to control the between and within subject variabilities among observations. We assume that
longitudinal variables are informative for the analysis of recurrent data and thus are considered
as covariates in the structure of underlying mixed-effects model. Since longitudinal variables
are stochastic, they may be correlated with the random effects. This correlation causes biased
estimates of regression coefficients. To solve this problem, we propose jointly modelling of
longitudinal and recurrent event data in the framework of shared-random effects models.
Bayes estimates of model parameters are achieved by the use of Gibbs sampling algorithm. A
simulation study is conducted to show the performance of the proposed model.

Keywords: Endogeneity, Gibbs sampler, Longitudinal data, Mixed-effects models,
Recurrent event data.

1 Introduction

In many research fields, subjects may experience the outcome of interest more than once over a
period of observations. These types of outcomes are termed recurrent events. This sort of data is
used in many applied fields such as medical studies and reliability. In clinical applications, recurrent
events are often specific medical conditions, such as hospitalizations due to a particular disease,
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cancer metastasis, cardiovascular events or epileptic seizures. In industrial applications, recurrent
event data are generally related to the analysis of repairable systems.

Usually, through recording recurrent event data, measuring other variables than the time of
events may also be important. Repeated measurements for these types of variables are termed
longitudinal data. Recurrent event data and longitudinal data are often analyzed separately.
Nevertheless, when recurrent variables are dependent on longitudinal variables, ignoring the
dependence between them may lead to bias estimates or inefficient inferences [1]. In this article, we
assume that longitudinal variables are informative for the analysis of time to event data. Thus, we
enter longitudinal responses as covariates for the recurrent model. On the other hand, to control
the between and within subject variabilities among time to event observations, we assume a mixed-
effects modeling structure. In these models, random effects can capture a part of variability among
recurrent event observations that are inherited by the variety of subjects.

However, in the analysis of mixed-effects models, it is usually assumed that random effects
are independent of covariates. Violation of this assumption is critical and may cause biases for
estimates of some regression coefficients [3]. The assumption of independence among random
effects and time-invariant covariates are usually fulfilled, in practice. However, when there are time-
varying or longitudinal covariates, this assumption may be violated. The reason of this violation
is that longitudinal covariates are usually stochastic, thus they are probable to have non-zero
correlation with both random effects and errors. These types of covariates are termed endogenous
and the problem of having biased estimates due to the existence of endogeonus covariates is called
endogeneity.

Thus, when longitudinal responses are considered as covariates in the structure of random-effects
models for the analysis of recurrent event data, the endogeneity problem usually happens.

To solve this problem, we propose jointly modelling of the recurrent event data and longitudinal
reponses in the framework of a mixed-effects model. In this approch, we consider a joint distribution
for the random effects of the main model used for the analysis of recurrent data and the subsequent
model of the longitudinal responses. Thus, through this approach, the dependence among random
effects and longitudinal covariates has taken to account. By conducting a simulation study we
show that the resulting model can considerably reduce the bias and improve the performance of
the model.

The remainder of this paper is organized as follows. In Section 2, we introduce the proposed
joint modeling structure. In Section 3, we drive all full conditional distributiones required for
implementing the Gibbs sampler, to achive the Bayes estimates of parameters. The last section
presents a simulation study.

2 Model specification

Let Tij denotes the time to the j-th event, j = 1, · · · , Ji, for the i-th subject, i = 1, · · · , n. A
common model for analyzing recurrent event data is given by [4],

T ∗
ij = z′ijδ + bi + ηij , (A.1)
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where T ∗
ij = lnTij , zij is a p-dimensional vector of covariates at the j-th event for the i-th subject

and δ includes regression coefficients. Variables bi’s are random intercepts which are considered to
capture the between subject variability and ηij ’s are residual terms. It is usually assumed that the

random intercepts and residuals are independent and bi
iid∼N(0, σ2b ) and ηit

iid∼N(0, σ2η).
Usually in the analysis of recurrent data, measuring some longitudinal variables may also be

informative. Putting the longitudinal covarites, yij ’s, into the model can provides, in many cases,
much information about the time of events. Thus, we consider the following model,

T ∗
ij = z′ijδ + γyij + bi + ηij , (A.2)

where γ denotes the effect of longitudinal covariates on the logarithm of the time to event variable,
T ∗
ij . Since the yij is a random variable, thus it may depend on the random effects and error terms.

This dependency known as the endogeneity problem causes bias to the estimation of regression
coefficients [5]. Indeed, there may be some features of subjects which are not entered to the model
as time-invariant covarites and thus their effects are present in random intercepts, bi’s. In these
situations, it is more probable that these omitted time-invariant covariates be correlated with the
longitudinal covariate, yij . Thus, the longitudinal covariate, yij , is an endogeneous variable. To
solve the endogeneity problem, we propose joint modelling of T ∗

ij and yij in the framework of a
shared random-effects model. Thus, in a vector form representation, we assume that,

T∗
i |δ, bi, σ2η

ind∼NJi(Ziδ + γyi + bi1Ji , σ
2
ηIJi), (A.3)

Yi|β, αi, σ2ε
ind∼NJi(Xiβ + αi1Ji , σ

2
εIJi), (A.4)

(αi, bi)
′ ∼ N2(0,Ξ), (A.5)

where T∗
i = (T ∗

i,1, · · · , T ∗
i,Ji

)′, Yi = (Yi,1, · · · , Yi,Ji)′, Zi = (z′i,1, · · · , z′i,Ji)
′, Xi = (x′

i,1, · · · ,x′
i,Ji

)′,
and xi,j includes covariates values at the time of j-th event for the i-th subject. The vector
β includes regression coefficients. Indeed, in this hierarchical representation of the model, the
correlation between random effects, bi, and the longitudinal covaraite, yij , is considered through
the framework of the shared random-effects model. In this model, the dependence between random
effects, αi and bi, reduces the bias created in these models. We illustrate this reduction in biases
through conducting a simulation study in section 4.

3 Bayesian Estimation

In this section, we obtain parameter estimates in a Bayesian framework by the use of Markov
Chain Monte carlo (MCMC) methods such as the Gibbs sampler [6]. To perform this sampler,
the complete conditional posterior distributions are required to be driven. To do this, we use the
following conditionally conjugate priors to obtain the parameter estimates: Inverse gamma priors,
IG(τ1, τ2) for σ

2
ε and IG(η1, η2) for σ

2
η, the N(λ,Λ) for θ, the N(ς,S) for δ, theN(Υ1,Υ2) for γ, the

N2(0
′,Ξ) for κi = (αi, bi)

′ and IW (υ, φ) for Ξ. Then, by assuming the hierarchical representation
of the model in Equations (2.3) to (2.5), the complete conditional posterior distributions, after
doing some algebra, are obtained as follows

β|κi, δ, γ, σ2ε , σ2η,Ξ,Y,T∗ ∼ Np(µβ,Σβ), (A.1)
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where, µβ = Σβ(λ
′Λ−1 + 1

σ2
ε

∑n
i=1(yi − αi)

′Xi) and Σβ = (Λ−1 + 1
σ2
ε

∑n
i=1X

′
iXi)

−1.

For σ2ε we have
σ2ε |β,κi,Ξ, δ, σ2η,Y,T∗ ∼ IG(τ∗1 , τ

∗
2), (A.2)

where τ∗1 = τ1 +
1
2

∑n
i=1 Ji and τ

∗
2 = τ2 +

1
2

∑n
i=1(yi −Xiβ − αi)

′(yi −Xiβ − αi).
For the vector parameter δ, we derive

δ|β,κi,Ξ, γ, σ2ε , σ2η,Y,T∗ ∼ Nq(µδ,Σδ), (A.3)

where µδ = Σδ(ς
′S−1 + 1

σ2
η

∑n
i=1(T

∗
i − γyi − bi)

′Zi) and Σδ = (S−1 + 1
σ2
η

∑n
i=1 Z

′
iZi)

−1.

For the vector parameter γ we have

γ|β,κi, δ,Ξ, σ2ε , σ2η,Y,T∗ ∼ N(µγ ,Σγ), (A.4)

where µγ = Σγ(
Υ1
Υ2

+ 1
σ2
η

∑n
i=1(T

∗
i − bi − Ziδ)

′yi) and Σγ = ( 1
Υ2

+ 1
σ2
η

∑n
i=1 y

′
iyi)

−1.

Further, for the residual variance, σ2η, we show that

σ2η|β, δ,κi,Ξ, γ, σ2ε ,Y,T∗ ∼ IG(η∗1, η
∗
2), (A.5)

where η∗1 = η1 +
1
2

∑n
i=1 Ji and η

∗
2 = η2 +

1
2

∑n
i=1(T

∗
i − Ziδ − γyi − bi)

′(T∗
i − Ziδ − γyi − bi).

For each random intercept, we derive

κi|β, δ, γ, σ2ε , σ2η,Ξ,Y,T∗ ∼ N(K∗
1,K

∗
2), (A.6)

whereK∗
1 = K∗

2(Y
∗
i −X∗

iβ
∗)′Σ−1W∗,K∗

2 = (Ξ−1+W∗′Σ−1W∗)−1,Y∗
i = (Yi,T

∗
i )

′,β∗ = (β, δ∗)′,
δ∗ = (δ, γ)′,

Σ =

[
σ2εIJi 0IJi
0IJi σ2ηIJi

]
and the matrices X∗

i and W∗ are defined according to β∗ and κi, respectively.
Moreover, for Ξ we have

Ξ|β, δ, γ, σ2ε , σ2η,κi,Y,T∗ ∼ IW(υ∗, φ∗), (A.7)

where υ∗ = υ + n and φ∗ = φ+
∑n

i=1 κiκ
′
i.

Now by sampling from the above distributions, iteratively and set appropriate burn-in until
converges to stationary distributions and averaging the simulated values, the Bayes estimates are
obtained.

4 Simulation Study

In this section, we conduct a simulation study to evaluate performance of the proposed model. The
recurrent event data generating process is organized as follows

T ∗
ij = δ0 + δ1zij + γ1yi,j + bi + ηij , (A.1)
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for i = 1, ..., 200 and j = 1, ..., 20, where lnTij = T ∗
ij and

Yij = β0 + αi + εij , (A.2)

where εij
iid∼N(0, σ2ε) and ηij

iid∼N(0, σ2η). We set intercept parameters, β0 and δ0 equal to 0 and
regression coefficient δ1 equals to 0.5. The parameter γ1 is assumed to be 1 in order to prevent

from large values for T ∗
ij . We also assume that zij

iid∼N(5, σ2z) and κi = (αi, bi)
′iid∼N2(0

′,Ξ) so that

Ξ =

[
σ2α ρσασb

ρσασb σ2b

]
.

where σ2α and σ2b are both set to 1 and ρ = 0.8. Also, it is assumed that the parameter σ2ε is equal
to 1 , and σ2η and σ2z are equal to 0.01.

We fit the following models:

• Model M1: We consider the proposed joint modeling structure specified by Equations (2.3)
to (2.5) in the framework of a shared- random effects model,

• Model M2: We consider the model specified by Equations (2.3) and (2.4) and assume that

αi
iid∼N(0, σ2α), bi

iid∼N(0, σ2b ) and αi and bi are independent.

Table 1: Bayesian estimation results of Models M1 and M2 for the simulated data set.

Model β0 σ2ε δ0 δ1 γ σ2η
M1 1.187 1.068 1.618 0.609 0.8151 103.8

(0.659) (0.037) (0.0967) (0.57) (0.247) (3.654)
M2 -1.739 1.068 -0.148 0.741 1.826 104.6

(0.739) (0.038) (0.065) (0.554) (0.049) (3.682)
* Bayesian standard deviations are given in parentheses.

In order to achieve the Bayes estimates of parameters, we use conditionally conjugates priors with
large variances. Indeed we assume that the hyper-parameters for the inverse-Gamma prior of σ2ε
and σ2η are equal to 0.01. The inverse-Wishart prior for Ξ has 2 degrees of freedom with a diagonal
scale matrix with values equal to 0.01. Independent normal priors N(0, σ2β), N(0, σ2δ ) and N(0, σ2γ)

with σ−2
β , σ−2

δ and σ−2
γ all equall to 0.01. Then, we use the OpenBUGs software [7] to run the

Gibbs sampler algorithm. We use 100000 samples generated after 1000 burn-in. Results, after
convergence is achieved, are reported in Table 1. It is seen that the regression coefficients in the
model of the recurrent event data, i.e. δ1 and γ, are highly biased in model M2. While the amount
of the biases is drastically reduced in the proposed model, Model M1.

Also, the Deviance information criterion (DIC) is computed for each model [2]. Values of this
criterion for Models M1 and M2 are 19010 and 19030, respectively. As is seen, the proposed model,
Model M1, is better fitted to the simulated data set, in terms of DIC.
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Abstract

In this paper, we derive some new results on preservation properties of the star shaped,
moment-generating-function and Laplace transform orders under weighted distributions.
Then we apply the obtained results to establish our results about preservation of the new
better (worse) than used in star shaped; NBUS (NWUS), new better (worse) than used in
the moment-generating-function; NBUmgf (NWUmgf ) and new better (worse) than used in
Laplace transform, NBUL (NWUL) classes for weighted distributions.

Keywords: Residual lifetime, Stochastic order, Aging class, Weighted distribution,
Reliability.

1 Introduction

One of the most important and widely used the topics in industry and medicine is the weighted
distributions. Weighted distributions are useful to model data in situations where the distribution of
the observed data does not coincide with the original distribution of the data (see [7]). Sometimes,
there is not exist a suitable sampling for recording observations and using classical sampling, because
some reasons such as the invisibility of some events, partial destruction observations, sampling with
unequal chances for the observations, etc. In these cases, observations are recorded according to
some weight functions i.e, we use the weighted distributions instead of the parent distributions. So
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that the study of the weighted distributions has always been considering by many researchers. In
the recent decades, several researchers have also worked to investigate the properties of weighted
distributions in the context of stochastic orderings and aging classes. Among others, we refer to
[2, 6, 5]. Recently, Izadkhah et al. in [3, 4] investigated the preservation of various stochastic orders
and aging classes for weighted distributions under different scenarios.

This article is organized as follows. Some concepts and necessary preliminaries are provided
in Section 2. New results on preservation of the star shaped, moment-generating-function and
Laplace transform orders and NBUS (NWUS), NBUmgf (NWUmgf ) and NBUL (NWUL) classes
under weighted distributions are obtained in Section 3.

2 Preliminaries

In this section, we present the required definitions and concepts to obtain the maim results. Let F
and F̄ denote the distribution function and reliability function of a non-negative random variable
X, respectively. The residual lifetime of X at age t ≥ 0, denoted by Xt = {X − t|X > t}, is the
remaining life of X given survival at age t. The reliability function of Xt, denoted by F̄t, is

F̄t(x) =
F̄ (x+ t)

F̄ (t)
.

In following, we present some stochastic orders considered in this note. [8] is comprehensive
reference on these concepts and their properties.

Definition 1. Let X and Y be two non-negative random variables with distribution functions F
and G, and survival functions F̄ and Ḡ, respectively. X is said to be smaller than Y in the

(i) usual stochastic order, denoted by X ≤st Y , if for all x, F̄ (x) ≤ Ḡ(x);

(ii) increasing concave order, denoted by X ≤icv Y , if for all t ≥ 0,∫ t

0
F̄ (x)dx ≤

∫ t

0
Ḡ(x)dx;

(iii) star shaped order, denoted by X ≤ss Y , if for all t ≥ 0,∫ ∞

t
xf(x)dx ≤

∫ ∞

t
xg(x)dx;

(iv) moment-generating-function order, denoted by X ≤mgf Y , if for all s ≥ 0,∫ ∞

0
esxF̄ (x)dx ≤

∫ ∞

0
esxḠ(x)dx;

(v) the Laplace transform order, denoted by X ≤lt Y , if for all s ≥ 0,∫ ∞

0
e−sxF̄ (x)dx ≤

∫ ∞

0
e−sxḠ(x)dx;
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Below, some of the important aging classes are presented (see [1]).

Definition 2. Let X be a non-negative random variable with distribution function F and survival
function F̄ . X or F is said to be

(i) new better (worse) than used in second order, denoted by NBU(2) (NWU(2)), if for all x, t ≥ 0,∫ x

0
F̄ (u+ t)du ≤ (≥)F̄ (t)

∫ x

0
F̄ (u)du,

or equivalently, Xt ≤icv (≥icv)X.

(ii) NBUS (NWUS) if for all x, t ≥ 0,

1

x

∫ ∞

x
[F̄ (u+ t)− F̄ (u)F̄ (t)]du ≤ (≥)[F̄ (x+ t)− F̄ (x)F̄ (t)],

or equivalently, Xt ≤ss (≥ss)X.

(iii) NBUmgf (NWUmgf ), if for all t, s ≥ 0,∫ ∞

0
esxF̄ (x+ t)dx ≤ (≥)F̄ (t)

∫ ∞

0
esxF̄ (x)dx,

or equivalently, Xt ≤mgf (≥mgf )X.

(iv) NBUL (NWUL), if for all t, s ≥ 0,∫ ∞

0
e−sxF̄ (x+ t)dx ≤ (≥)F̄ (t)

∫ ∞

0
e−sxF̄ (x)dx,

or equivalently, Xt ≤lt (≥lt)X.

In the following, we introduce the weighted distribution. Let X and Y be two random variables
with absolutely continuous distribution functions F and G, probability density functions f and g,
and survival functions F̄ and Ḡ, respectively. Also, assume that uX = sup{x : F (x) < 1} and
uY = sup{x : G(x) < 1} are the respective upper bounds of X and Y , and lX = inf{x : F (x) > 0}
and lY = inf{x : G(x) > 0} are their corresponding lower bounds. Then, the weighted version
of X (Y ) with a non-negative weight function w1(x) (w2(x)) for which 0 < E(w1(X)) < ∞
(0 < E(w2(Y )) <∞), is denoted by Xw (Y w) which has the probability density function

fw1(x) =
w1(x)f(x)

η1

(
gw2(x) =

w2(x)g(x)

η2

)
,

where η1 = E(w1(X)) and η2 = E(w2(Y )). The distribution functions of Xw and Y w are equal to

Fw1(x) =
1

η1
A1(x)F (x), Gw2(x) =

1

η2
A2(x)G(x),

and their corresponding survival functions equal to

F̄w1(x) =
1

η1
B1(x)F̄ (x), Ḡw2(x) =

1

η2
B2(x)Ḡ(x),

where A1(x) = E(w1(X)|X ≤ x), A2(x) = E(w2(Y )|Y ≤ x), B1(x) = E(w1(X)|X > x) and
B2(x) = E(w2(Y )|Y > x). For more details see Jain et al. [5].
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3 Main results

In the section, we obtain some new results on preservation of aging properties and stochastic
orders under weighted distributions. First, we express two theorems about preservation of various
stochastic orders under the weighted distributions.

Theorem 3.1. Let wi be increasing for some i = 1, 2, and let w2(x)
η2

≥ w1(x)
η1

for all x ≥ 0. If
X ≤ss Y , then Xw1 ≤ss Y

w2.

Proof. Suppose that wi is increasing for some i = 1, 2; and let w2(x)
η2

≥ w1(x)
η1

for all x ≥ 0. Then,
for all t ≥ 0, we have∫ ∞

t
(xgw2(x)− xfw1(x)) dx =

∫ ∞

t
x

(
w2(x)g(x)

η2
− w1(x)f(x)

η1

)
dx

≥
∫ ∞

t

wi(x)

ηi
(xg(x)− xf(x))dx

=

∫ ∞

−∞
∆i(x)(xg(x)− xf(x))dx, (A.1)

where ∆i(x) =
1
ηi
[wi(x)I[t,∞)(x)], i = 1, 2. Since ∆i(x) is non-negative and increasing function, and

then by using Lemma 7.1(a) in Barlow and Proschan [1], the expression in (A.1) is non-negative.
Hence, the proof is complete.

Corollary 3.2. If wi is decreasing for some i = 1, 2, such that w2(x)
η2

≤ w1(x)
η1

for all x ≥ 0. Then

Xw1 ≤ss Y
w2 ⇒ X ≤ss Y.

Theorem 3.3. Let Bi be increasing for some i = 1, 2; and let B1(x)
η1

≤ B2(x)
η2

for all x ≥ 0.

(i) If X ≤mgf Y , then Xw1 ≤mgf Y
w2.

(ii) If X ≤lt Y , then Xw1 ≤lt Y
w2.

Proof. We only prove case (i) because the other case is similar. X ≤mgf Y holds if and only if for
all s ≥ 0,

∫∞
0 esx(Ḡ(x)− F̄ (x))dx ≥ 0. Then∫ ∞

0
esx
[
Ḡw2(x)− F̄w1(x)

]
dx =

∫ ∞

0
esx
[
B2(x)

η2
Ḡ(x)− B1(x)

η1
F̄ (x)

]
dx

≥
∫ ∞

0

Bi(x)

ηi

[
esx(Ḡ(x)− F̄ (x))

]
dx

=

∫ ∞

−∞
∆i(x)

[
esx(Ḡ(x)− F̄ (x))

]
dx,

where ∆i(x) =
1
ηi
Bi(x)I[0,∞)(x). Similar to Theorem 3.1 and again using Lemma 7.1 (a) in Barlow

and Proschan [1], the proof is complete.
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Corollary 3.4. Suppose that Bi is decreasing for some i = 1, 2; and B1(x)
η1

≥ B2(x)
η2

for all x ≥ 0.
Then

(i) Xw1 ≤mgf Y
w2 ⇒ X ≤mgf Y.

(ii) Xw1 ≤lt Y
w2 ⇒ X ≤lt Y.

Now, we present some results on preservation of aging classes under weighted distributions.

Theorem 3.5. Let A be decreasing, 1
B(t)E(w(Xt + t)|X ≤ x) ≥ A(x)

η , for all x, t ≥ 0. If X is

NBU(2), then Xw is also NBU(2).

Proof. X is NBU(2) if and only if Xt ≤icv X for all t ≥ 0. Take A2(x) = A(x), A1(x) =
E (w(Xt + t)|X ≤ x). From Lemma 2.1(ii) in Izadkhah et al. [4], we have E(w(Xt + t)) = B(t).
Using Theorem 7 in Izadkhah et al. [3], Xt ≤icv X is equivalent to (Xt)

w1 ≤icv X
w2 for all t ≥ 0.

On the other hand, from Lemma 2.2 in Izadkhah et al. [4], (Xt)
w1

st
= (Xw− t|Xw > t) for all t ≥ 0.

Thus, it follows that (Xw− t|Xw > t) ≤icv X
w, for all t ≥ 0, which means that Xw is NBU(2).

Corollary 3.6. If A is increasing and 1
B(t)E(w(Xt + t)|X ≤ x) ≤ 1

ηA(x), for all x, t ≥ 0. Then

Xw ∈NBU(2) implies X ∈NBU(2).

Theorem 3.7. Let w be decreasing (increasing) and let w(x+t)
B(t) ≤ (≥)w(x)η for all x, t ≥ 0. Then X

is NBUS if and only if Xw is NBUS.

Proof. From Definition 2 (ii), Xt ≤ss X for all t ≥ 0. By using Lemma 2.1 (ii) in Izadkhah et al.
[4], we have,

E(w(Xt + t)) = B(t).

Taking w2(x) = w(x) and w1(x) = w(x+ t), and from Theorem 3.1, we have (Xt)
w1 ≤ss X

w2 for all

t > 0. Using Lemma 2.2 in Izadkhah et al. [4], (Xt)
w1

st
= (Xw − t|Xw > t) for all t > 0. Therefore,

for all t > 0,
(Xw − t|Xw > t) ≤ss X

w.

and it means that Xw is NBUS.

Theorem 3.8. Let B be increasing (decreasing) and let B(x+t)
B(t) ≥ (≤)B(x)

η for all x ≥ 0. Then

(i) X is NBUmgf if and only if Xw is NBUmgf .

(i) X is NBUL if and only if Xw is NBUL.

Proof. From Lemma 2.1 (ii) in Izadkhah et al. [4], E(w(Xt + t)) = B(t). Taking B2(x) = B(x)
and B1(x) = B(x+ t). Since, X is NBUmgf , then Xt ≤mgf X for all s ≥ 0 and from Theorem 3.3,
(Xt)

w1 ≤mgf X
w2 for all s ≥ 0. Also, using Lemma 2.2 in Izadkhah et al. [4], we have for all t ≥ 0,

(Xt)
w1

st
= (Xw− t|Xw > t). Therefore, it follows that (Xw− t|Xw > t) ≤mgf X

w, for all t ≥ 0, and
hence Xw is NBUmgf .

The proof of the other case can be obtained from Definition 2 (iii), and using Theorem 3.3 and
Lemma 2.2 in Izadkhah et al. [4] in the same way as in the proof of case (i).
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An algorithm to assess t-signature
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Abstract

Due to the importance of signature vector in studying the reliability of networks, some
researchers explored the problem of signature estimation. The signature is used when at most
one link may fail at each time instant. Recently, the concept of t-signature has been defined to
get the reliability of network for the case where the failure of more than one link is possible
at each time instant. The t-signature is a probability vector and depends only on the network
structure. In this paper, we propose an algorithm to compute the t-signature. The performance
of the proposed algorithm is evaluated for some networks.

Keywords: Network reliability, BFS algorithm, Signature.

1 Introduction

In recent years, the reliability of networks has been studied by many researchers. A network is
defined as a collection of nodes (vertices), and links (edges). Rail stations, telecommunication
centers, and computers are examples of nodes, and rail ways, communication channels, and the
cables between the computers are examples of links. Some nodes of network are considered as
terminals set and the states of network are usually defined based on the connection between the

1s.zarezadeh@shirazu.ac.ir
2m.siavashi@cse.shirazu.ac.ir
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terminals. In the sequel, We assume that the network has two states: up, and down and the network
nodes are absolutely reliable. In other words, the links are subject to failure and the network state
may change in the process of links failure.

There are different models to get the reliability of network. One of these models, which has
been considerably explored, represents the reliability of network as a mixture of the reliability of
ordered links lifetimes; see, e.g., [3] and [2]. Let T be the lifetime of a network having n links with
independent and identically distributed (i.i.d.) lifetimes T1, . . . , Tn. Under the assumption that
there are not ties between the occurrence times of links failures, P (Ti = Tj) = 0, i ̸= j, the network
reliability is written as

P (T > t) =

n∑
i=1

siP (Ti:n > t), t > 0,

in which Ti:n is the ith ordered links lifetimes and si = P (T = Ti:n) , i = 1, . . . , n. The probability
vector s = (s1, . . . , sn) is called signature which does not depend on the random mechanism of links
failures and is only determined based on the network structure. Similar mixture representation is
hold for the reliability of network when we know the links of network are destroyed based on a
counting process; see, [2] and [5].

The signature has also combinatorially definition as follows:
Consider a network with n links where π = (ei1 , ei2 , . . . , ein) denotes a permutation of the ordinal
number of network links. Let all links be in up state and moving from left to right of permutation,
turn the state of each link from up to down. By the assumption that all permutations are equally
probable, the signature is defined as s = (s1, . . . , sn) where

si =
ni
n!
, i = 1, . . . , n,

where ni is the number of permutations in which the failure of the ith link causes to change the
network state to down state.

As mentioned, the notion of signature is applicable in studying the reliability of networks that
more than one link can not be fail at each time instant; see, e.g. [1], [4]. Zarezadeh et al. [6]
studied the reliability of two-state networks under the assumption that their links are subject to
shocks such that the failure of more than one link is possible at the occurrence time of each shock.
Let the network be subject to shocks. Each shock may lead to link failures and the network finally
fails by one of these shocks. Assume that N(t) denotes the number of links that fail up to time t,
and T is the network lifetime. Under the assumption that the process of occurrence of the shocks
is independent of the number of failed links, it was shown that

P (T > t) =
n∑
i=1

sτi P (N(t) ≤ i− 1). (A.1)

where sτ = (sτ1 , s
τ
2 , . . . , s

τ
n) is called t-signature vector. The t-signature has the following

combinatorial definition:
If it is possible to fail more that one link at instant time, then the way of the order of links failure
is different from ordinal permutation applied in definition of signature. All ways of links failure are
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obtained in two stages: first we obtain all partitions of {1, . . . , n} and then all permutation of each
partition are considered. Therefore, the number of ways of order of links failures, denoted by n∗,
has been obtained as

n∗ =

n∑
j=1

j∑
k=0

(
j

k

)
(−1)k(j − k)n; (A.2)

see Lemma 1 of [6].
Let the discrete random variable M denote the minimum number of links that their failures

cause the network failure in each way of links failure order. Clearly,M takes values on {1, 2, . . . , n}.
Suppose ni is the number of ways of the order of link failures in which M = i. Assuming that all
the number of ways of the order of link failures are equally likely, the t-signature vector associated
to the network is defined as sτ = (sτ1 , . . . , s

τ
n) where

sτi =
ni
n∗
, i = 1, . . . , n.

It is notable that t-signature, similar to the concept of signature, depends only on the structure of
the network and does not depend on the random mechanism of the link failures.

In this paper, we propose an algorithm to compute the t-signature vector. For some networks,
the performance of the algorithm is examined.

2 The proposed algorithm

In this section, we give an algorithm to obtain t-signature of a network. Let us first introduce the
following notations.

Notations:

results: An array to save the result of algorithm
all orders: All ways of order of links failures
order: An element of all orders. Note that order is a vector whose elements

may be subsets of {1, . . . , n}.
source node The source node (terminal)
destination node The destination node (terminal)
has route: A function which surveys the connection between two terminals
removed: An array to save the removed links
failure: The element of order which fails.
all permutations: A function which computes all possible permutation
perm: An element of all permutations
M The minimum number of links that their failures cause the network

failure in each order.

The adjacency matrices usually contain few nonzero elements. These matrices are called
sparse and it is better to store only the nonzero elements instead of storing all elements of the
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matrix. Besides memory efficiency, this makes the calculations go much faster. We can indicate
the structure of network by such method.

Now, we give the algorithm.

Algorithm:

results := [ ]

for each order in all orders:

removed := [ ]

M := 0

for each failure in order:

if not graph.has route(source node,destination node,removed+failure):

all Ms := [ ]

for each permutation in all permutations(failure):

m := 1

without edges := removed[:]

for each edge in permutation:

without edges := without edges + [edge]

if graph.has route(source node, destination node, without edges):

m := m + 1

else

break

all Ms := all Ms + [m]

M = M + minimum(all Ms)

results := results + [(order, M)]

break

M := M + length(failure)



Third Seminar on Reliability Theory and its Applications 326

removed := removed + failure

As seen in Table 1, the number of n∗ is very large even for n = 9. Then we need to estimate
t-signature for large value of n∗. To this, we select the samples using the method of probability
proportional to size sampling.

Table 1: The amount of n∗ for different values of n.

n n! n∗

2 2 3
3 6 13
4 24 75
5 120 541
6 720 4,683
7 5,040 47,293
8 40,320 545,835
9 362,880 7,087,261
10 3,628,800 102,247,563
11 39,916,800 1,622,632,573
12 479,001,600 28,091,567,595

3 Experimental results

In this section, we examine the algorithm for some networks. The computer program is developed
in Python v2.7.10. To run this program we use an intel core i5-4200U processor 1.6 GHz and 8 GB
RAM under Windows 8 64-bit.

Example 3.1. Consider the bridge network with graph as shown in Figure 1. The network is
defined to be in up state if and only if nodes a and d are connected. From Table 1, n∗ = 541 and
hence we can obtain the exact value of t-signature.

Using the proposed algorithm, t-signature of the network is obtained as

sτ = (0,
154

541
,
309

541
,
78

541
, 0).

Example 3.2. Consider the network with graph depicted in Figure 2. This network has 5 nodes
and 8 links in which the network is in up state if and only if there is a path between nodes a and
d. As seen in Table 1, n∗ = 545, 835. To explore the accuracy of estimation, we get both exact
t-signature and estimated signature.

Table 2 represents the exact value of t-signature and estimated t-signature with sample sizes
n = 30000 and n = 450000, respectively. Figure 3 shows the accuracy of estimation even for
n = 30000.
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a

b
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d

Figure 1: The bridge network.
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Figure 2: Network with 5 nodes, 8 links, and terminals set {a, d}
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Figure 3: The plot of t-signature for Example 3.2.
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