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Perface

The Proceedings of the tenth Iranian Statistical Conference, published in two

volumes, is the product of sustained endeavors made by members of the Scientific

and Organizing Committees, scientific advisers, several students and personnel of

the Faculty of Mathematical sciences on one hand, and the authors of papers on

the other hand. Manuscripts appearing in this volume are invited and accepted

contributed papers which are written in English, arranged in alphabetic order of

their first author. It should be noted that these papers are chosen by referees and

the Scientific Committee from 262 out of 600 papers whose articles had been ac-

cepted for oral presentation. Invited papers have not been refereed. However, due

to time limitations, no attempts have been made to have the papers revised by

their authors or the Scientific Committee, except for some minor editing correc-

tions. Therefore, the authors of papers are responsible for the content of these

manuscripts. Further, for the same reasons, some contributed papers that have

not reached the conference office on time or have not fulfilled the conference re-

quirements are not appeared in the Proceedings.

The Conference Organizers
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Ordering Comparison of Zero-truncated Poisson Random Variables

with their Mixtures

S. Abbasi, M. Aghababaei Jazi and M. H. Alamatsaz

Naghshe Jahan, higher education institute,
Isfahan, Iran

Faculty of Mathematics and Statistics,
University of Sistan and Balochestan,

Department of Statistics, University of Isfahan

Comparison of random variable (r.v.’s) measuring certain characteristics in various
types of stochastic orderings are of interest in diverse areas. In particular, several au-
thors have been recently concerned with the comparison of Poisson, binomial, negative
binomial and logarithmic series distributions with their respective mixtures. Inciden-
tally, these distributions are among the four well-known distributions of the family of
generalized power series (GPS) distributions. The objective of this article is to compare
a zero- truncated Poisson distribution having a fixed parameter with a zero- truncated
Poisson mixture having a random parameter, which has an arbitrary continuous (or
discrete) probability distribution. Comparisons are made with respect to various types
of orderings, such as, the simple stochastic, likelihood ratio, (reversed) hazard rate,
uniformly more variable and expectation orderings. The special case when the means
of the two distributions are the same is also discussed.

Keywords: Generalized power series distributions; Simple stochastic ordering; Expec-
tation ordering; Likelihood ratio ordering; (reversed) hazard rate ordering; Uniformly
more variable ordering; Convex ordering; Mean residual life ordering; (Factorial) Mo-
ments ordering; Moment generating function ordering;.

1. Introduction

In the marketing literature, modeling the customer’s response behavior to price

and promotion effects is a major area of research. In this field, it is widely accepted

that the consumer’s quantity decision (i.e., how many units to buy within a product

category) at a given purchase incidence can be modeled as a stochastic variable,

following a zero-truncated Poisson distribution (see, e.g., Johnson and Kotz (1969)

and Campo et al (2003)). Typically, the Poisson parameter in these models is

estimated as a function of customer-specific variables (e.g., loyalty) and marketing

variables e.g., price or promotion.

1
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Hence, mixtures of distributions used in building probability models are quite fre-

quently in biological sciences. For instance, in order to study certain characteristics

in natural populations of fish, a random sample might be taken and the charac-

teristic measured for each member of the sample; since the characteristic varies

with the age of the fish, the distribution of the characteristic in the total popula-

tion will be a mixture of the distribution at different ages. In order to analyse the

qualitative character of inheritance, a geneticist might observe a phenotypic value

that has a mixture distribution because each genotype might produce phenotypic

values over an interval. For a comprehensive account on mixture of distributions

as they occur in diverse fields we refer to Sapatinas, T (1994).

Now, consider that the probability density function (pdf) of some random variable

X of interest is a mixture of pdf’ s of the r.v.’s Yθ, θ ∈ Ω,and it is of interest to

compare r.v.’s X and Yθ0 for a fixed θ0 ∈ Ω. In particular, it may be of interest to

compare r.v.’s X and Yµ; where µ is the mean of the mixing distribution. Shaked

(1980) made such comparisons when the pdf’ s of r.v.’s Yθ, θ ∈ Ω, belong to the

general exponential family. He showed that the two resulting pdf’s must cross each

other exactly twice in a prescribed manner. Misra et al. (2003) considered Poisson

and binomial distributions and compared them with their corresponding mixtures,

with respect to various stochastic orderings. Motivated by Misra et al’s work,

Alamatsaz and Abbasi (2008) compared negative binomial distributions with their

corresponding mixtures and obtained similar results. Recently, Aghababaei Jazi

and Alamatsaz (2009) have studied the stochastic ordering comparison of another

known member of generalized power series distributions, i.e., the logarithmic series

distribution, with its mixture. Motivated by their work, in this paper, we consider

a zero-truncated Poisson distribution and compare it with its mixture with respect

to various stochastic orderings and obtain similar results. Precisely, let X be a r.v.

having zero-truncated Poisson distribution with a fixed parameter λ ∈ (0,∞), i.e.,

P (X = k) =

{
λk

k!(eλ−1) k = 1, 2, ....

0 o.w.
(1)

Let Y be a zero-truncated Poisson r.v. with a variable parameter θ, where θ is a

non-degenerate r.v. having a probability density function g(θ), θ > 0. (Although

we have assumed θ to be a continuous r.v., all results obtained here would also

hold when θ is a discrete r.v.). Thus, we have

P (Y = k) =

{∫∞
0

θk

k!(eθ−1) g(θ) d(θ), k = 1, 2, ....

0, o.w.
(2)

Our purpose is to compare r.v.’s X and Y , given by (1) and (2), respectively, with

respect to various types of stochastic orderings reviewed in section 2.

2
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In section 3, we derive conditions which ensure that a mixed zero-truncated Poisson

r.v., with an arbitrary mixing distribution, is larger than the corresponding zero-

truncated Poisson r.v. with a fixed parameter in different senses. As a special case,

the two distributions are compared when they have equal means.

2. Stochastic Orderings

Here, a brief account of some known stochastic orderings, used in this paper, is

provided and their properties are stated. For more details, we refer to, e.g., Muller

and Stoyan (2002) and Shaked and Shanthikumar (2007).

Let X and Y be two nonnegative discrete (or continuous) r.v.’s with respective

distribution functions F (t) = Pr(X ≤ t) and G(t) = Pr(Y ≤ t), probability

density functions f(t) = Pr(X = t) and g(t) = Pr(Y = t), survival functions F̄ (t)

and Ḡ(t), hazard (failure) rate functions rX(t) = f(t)/Pr(X ≥ t) and rY (t) =

g(t)/Pr(Y ≥ t) and reversed hazard rate functions r̄X(t) = f(t)/Pr(X ≤ t) and

r̄Y (t) = g(t)/Pr(Y ≤ t).

2.1. Simple stochastic ordering: X is said to be smaller than Y in simple

stochastic ordering, denoted by X ≤st Y , if G(t) ≤ F (t) for all t ≥ 0, or, equiv-

alently, if E(φ(X)) ≤ E(φ(Y )) for all non-decreasing functions φ for which the

expectations exist. Thus, in particular, X ≤st Y implies that E(X) ≤ E(Y ).

2.2. Expectation ordering: X is said to be smaller than Y in expectation or-

dering, denoted by X ≤E Y , if E(X) ≤ E(Y ), where expectations are assumed

to exist. Thus, by 2.1, simple stochastic ordering implies expectation ordering but

the converse may not be true.

2.3. Likelihood ratio ordering: X is said to be smaller than Y in likelihood

ratio ordering, denoted by X ≤lr Y , if f(u) g(v) ≥ f(v) g(u), for all u ≤ v, which

is equivalent to h(t) = f(t)/g(t) being non-increasing. Also X ≤lr Y implies that

X ≤st Y but, in general, the converse may not be true.

2.4. Convex ordering: Y is said to be larger than X in the convex ordering,

denoted by X ≤cx Y , if for every real-valued convex function φ(.)defined on the

real line, E(φ(X)) ≤ E(φ(Y )).

2.5. Uniformly more variable ordering: X is said to be smaller than Y in

uniformly more variable ordering, denoted byX ≤uv Y , if X and Y have respective

supports RX and RY such that RX⊆RY and the ratio f(t)/g(t) is a unimodal

function over RY but X and Y are not ordered in simple stochastic ordering. For

random variables X and Y having a same mean, it is known that X ≤uv Y implies

that X ≤cx Y .

2.6. (Reversed) Hazard rate ordering: X is said to be smaller than Y in hazard

rate ordering, denoted by X ≤hr Y , if rY (t) ≤ rX(t) , for all t ≥ 0. Similarly, X is

3
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said to be smaller than Y in reversed hazard rate ordering, denoted by X ≤rh Y , if

r̄X ≤ r̄Y (t) for all t ≥ 0. (Reversed) hazard rate ordering implies simple stochastic

ordering but the converse may not be true. Also, X ≤lr Y is sufficient for X ≤hr Y

and X ≤rh Y .

2.7. Mean residual life ordering: X is said to be smaller than Y in mean

residual life ordering, denoted by X ≤mrl Y , if
∫∞
t
F (u)du/

∫∞
t
G(u)du decreases

in t, when defined. A sufficient condition for X ≤mrl Y is X ≤hr Y .

2.8. (Factorial) Moments ordering: X is said to be smaller than Y in fac-

torial moments ordering, denoted by X ≤fm Y , if E

(
X

i

)
≤ E

(
Y

i

)
, for all

i ∈ {1, 2, ...}. Similarly, X is said to be smaller than Y in moments ordering

(X ≤moments Y ), if E(X i) ≤ E(Y i), for all i ∈ {1, 2, ...}. It is known that simple

stochastic ordering implies factorial moments ordering and X ≤fm Y implies that

X ≤moments Y and specially X ≤E Y .

2.9. Moment generating function ordering: X is said to be smaller than Y in

moment generating function ordering, denoted by X ≤mgf Y , if E(tX) ≥ E(tY )

for all t ∈ (0, 1). Simple stochastic ordering is sufficient for moment generating

function ordering.

3. Comparison

Let X and Y be two r.v.’s with pmf’s given in (1) and (2), respectively. To prove

our main results, we first define:

a(k) = E(
Θk+1

eΘ − 1
)/E(

Θk

eΘ − 1
) k = 1, 2, · · · (3)

dk(x) = x(ln(1 + 1/x)k)/k! , x > 0, k = 1, 2, ... (4)

λ0 = E

(
Θ2

eΘ − 1

)
/E

(
Θ

eΘ − 1

)
, (5)

λ∗1 = ln(1 + E(eΘ − 1)) (6)

Then, we establish the following lemma.

Lemma 3.1 Consider notations (3) to (6). Then, we have

(a) a(k) is a non-decreasing function in k = 1, 2, · · · ,
(b) for each fixed k = 1, 2, · · · ; dk(x) is a concave function in x>0,

(c) s(x) = x
ex−1 and t(x) = xex

ex−1are decreasing and increasing functions in x > 0,

respectively.

4
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Proof. (a) We may write for a(k) in (3) that

a(k) =

∫ ∞

0

(θ)k+1

eθ − 1
g(θ)dθ/

∫ ∞

0

(θ)k

eθ − 1
g(θ)dθ = E(Zk), k = 1, 2, ...

where Zk is a r.v. having pdf hk(z) = ck
zk

ez−1g(z), for all z ∈ (0,∞) with ck as the

normalizing constant. Fixing k ∈ {1, 2, ...}, the ratio hk+1(z)/hk(z)is obviously

a non-increasing function in z ∈ (0,∞), which implies that Zk+1 ≥lr Zk, and

thus Zk+1 ≥st Zk. This, in turn, implies that E(Zk+1) ≥ E(Zk) or, equivalently,

a(k + 1) ≥ a(k). Since k ∈ { 1, 2, ...} was arbitrary, the assertion follows.

(b) It is sufficient to show that d
′
j(x) is a decreasing function, for all x > 0. Since

ln(1 + 1/x)is a decreasing function, we can see that

d′j(x) =
1

j!
(ln(1+1/x))j+jx(

−1

x2
)(

1

1 + 1/x
)(ln(1+1/x))j−1 j = 0, 1, 2, · · · , k

is a decreasing function for all x > 0.

(c) It is trivially true, because s′(x) < 0 and t′(x) > 0, for all x > 0. �

The following theorem provides certain restrictions on the parameter λ to ensure

that Y is larger than X in various orderings senses.

Theorem 3.1 Let X and Y be r.v.’s having distributions given by (1) and (2),

respectively. Then, under the notations (3-6) and Lemma 3.1, we have

(a) X ≤lr Y if, and only if, 0 < λ ≤ λ0 = a(1),

(b) if X ≤hr Y then 0 < λ ≤ λ1 Conversely, if 0 < λ ≤ λ∗1 ≤ λ1 then, X ≤hr Y .

(c) X ≤rh Y if, and only if, 0 < λ ≤ λ0 = a(1)

(d) if X ≤st Y then 0 < λ ≤ λ1. Conversely, if 0 < λ ≤ λ∗1 ≤ λ1 then, X ≤st Y .

(e) X ≤E (≥E)Y if, and only if, λ ≤ (≥)λ2.

Proof. (a) Consider the likelihood ratio

l(k) =
Pr(Y = k)

Pr(X = k)
=

(eλ − 1)

λk
E

[
Θk

eΘ − 1

]
, k = 1, 2, ... (7)

Then, by 2.3 we have

X ≤lr Y ⇔ l(k) ≤ l(k + 1) ∀ k = 1, 2, · · ·

⇔ λ ≤ E(Θk+1/(eΘ − 1))

E(Θk/(eΘ − 1))
∀k = 1, 2, · · ·

⇔ λ ≤ a(1) = λ0 (by part (a) in Lemma 3.1)

which provides a necessary and sufficient condition for the ratio in (7) to be non-

decreasing. Hence, the assertion (a) follows.

(b) First, let X ≤hr Y . Then

P (X = 1)

P (x ≥ 1)
≥ P (Y = 1)

P (Y ≥ 1)

⇒ λ

eλ − 1
≥ E(

Θ

eΘ − 1
) =

λ1
eλ1 − 1

5
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Therefore, since s(x) = x
ex−1 is a decreasing function, we have λ ≤ λ1 =

s−1(E(s(Θ))). Conversely, let 0 < λ ≤ λ∗1 where λ∗1 is as in (6). For k = 1, 2, · · · ,
consider

∆λ(k) =
P (X = k)

P (X ≥ k)
− P (Y = k)

P (Y ≥ k)

=
λk/(k!(eλ − 1))∑∞
j=k λ

j/(j!(eλ − 1))
− E(Θk/(k!(eΘ − 1)))∑∞

j=k E(Θj/(j!(eΘ − 1)))
k = 1, 2, · · ·

It is easily seen that if 0 < λ ≤ λ∗1, X ∼ TP (λ) and X1 ∼ TP (λ∗1), then X ≤lr X1.
Hence, by Ross (1983), we have X ≤hr X1. Consequently,

P (X = k)

P (X ≥ k)
≥ P (X1 = k)

P (X1 ≥ k)

⇒ λk/(k!(eλ − 1))∑∞
j=k λ

j/(j!(eλ − 1))
≥ λ∗k1 /(k!(eλ

∗
1 − 1))∑∞

j=k λ
∗j
1 /(j!(e

λ∗
1 − 1))

and thus for all k, ∆λ(k) ≥ ∆λ∗
1
(k). Therefore, it is sufficient to show that

∆λ∗
1
(k) ≥ 0, ∀k = 1, 2, · · · . Since

λ∗1
k

k!(eλ
∗
1 − 1)

=
[ln(1 + E(eΘ − 1))]k

k![eln(1+E(eΘ−1)) − 1]

≥ 1

k!
E[

(ln(1 + (eΘ − 1)))k

(eln(1+(eΘ−1)) − 1)
] (by concavity of dk(.))

≥ 1

k!
E(

Θk

eΘ − 1
)

Hence,

∞∑

j=k

(λ∗1)
j

j!(eλ
∗
1 − 1)

= 1−
k∑

j=1

(ln(1 + E(eΘ − 1)))j

j!(eln(1+E(eΘ−1)) − 1)

= 1−
k∑

j=1

(ln(1 + E(eΘ − 1)))j

j!(E(eΘ − 1))

≤ 1−
k∑

j=1

E(
(ln(1 + (eΘ − 1)))j

j!(eΘ − 1)
) (by concavity of dk(.))

=

∞∑

j=k

E(
Θj

j!(eΘ − 1)
)

Therefore, ∆λ∗
1
(k) ≥ 0, ∀k = 1, 2, . . . , as required. Note that λ∗1 ≤ λ1, because

6
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s(x) = x
ex−1 is a decreasing function and

λ∗1
eλ

∗
1 − 1

=
ln(1 + E(eΘ − 1))

eln(1+E(eΘ−1)) − 1

≥ E(
Θ

eΘ − 1
) (by concavity of d1(.))

=
λ1

eλ1 − 1

therefore, ∆λ1(k) ≥ 0, ∀k = 1, 2, · · · , as required.
(c) First let X ≤rh Y . Then P (X=2)

P (X≤2) ≤ P (Y =2)
P (Y≤2) which implies that λ ≤ λ0. Con-

versely, if 0 < λ ≤ λ0 then, by part a, X ≤lr Y and consequently X ≤rh Y .

(d) First, let X ≤st Y . Then, Pr(Y ≤ 1) ≤ Pr(X ≤ 1) which implies that

E( Θ
eΘ−1

) = λ1

eλ1−1
≤ λ

eλ−1
. Therefore, since s(x) = x

ex−1 is a decreasing function,

we have λ ≤ λ1 = s−1(E(s(λ))).

Conversely, suppose that 0 < λ ≤ λ∗1 where λ∗1 is as in (6). Then, by part (b)

above, X ≤hr X1 which results in X ≤st Y .

(e) By definition 2.2, since t(x) = x.ex

ex−1 is an increasing function we have

X ≤E Y ⇔ E(X) ≤ E(Y )

⇔ t(λ) =
λeλ

(eλ − 1)
≤ E[

ΘeΘ

eΘ − 1
]

⇔ λ ≤ λ2 = t−1(E(t(Θ))). �

The following corollary is valid by Theorem 3.1 and definitions 2.6, 2.7, 2.8 and

2.9.

Corollary 3.1

(a) for all 0 < λ ≤ λ0 = a(1), X ≤mrl Y ,

(b) for all 0 < λ ≤ λ∗1, X ≤fm Y , X ≤mgf Y and X ≤moments Y ,

(c) for all λ > λ1, Y is not larger than X in simple stochastic and hence not in

(reversed) hazard rate orderings.

Remark 3.1 Theorem 3.1 provides a condition under which sampling from a zero-

truncated Poisson distribution is less favorable than that of its mixture.

In the next theorem, we shall establish that no value of λ > 0 can ensure that

Y ≤st X . Here we also make our comparison in the uniformly more variable

ordering sense.

Theorem 3.2 Consider the notations of Theorem 3.1. Then, we have

(a) no value of λ > 0 can ensure that Y ≤st X ,

(b) if X ≤uv Y , then λ > λ∗1. Also, for λ > λ1 we have X ≤uv Y .

7
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Proof. (a) It is proof by a similar argument used in Misra et al. (2003).

(b) Let X ≤uv Y , then Pr(X = k)/Pr(Y = k) is unimodal but X and Y are not

ordered by the simple stochastic ordering. Thus, from Theorem 3.1(d) and part

(a) above, it follows that λ > λ∗1. Conversely, suppose that λ > λ1, then from

Theorem 3.1(d) and part (a) above, it is clear that r.v.’s Y and X are not ordered

by the simple stochastic ordering. Also, from the arguments used in the proof of

Theorem 3.1(a), it follows that Pr(X = k)/Pr(Y = k) is unimodal, implying that

X ≤uv Y . �

Finally, as a special case, we compare the r.v.’s X and Y in (1) and (2) when they

have a same mean. This is equivalent to the case λ = λ2.

Theorem 3.3 Suppose that λ = λ2. Then,

(a) X ≤uv Y ,

(b) X ≤cx Y, which implies that V ar(X) ≤ V ar(Y ),

(c) Pr(X ≥ 2) > Pr(Y ≥ 2) and

(d) neither X is larger than Y in simple stochastic ordering sense, nor Y is larger

than X .

Proof . (a) By Theorem 3.2 (b), since λ2 = λ > λ1, we have that X ≤uv Y .

(b) Since X ≤uv Y and E(X) = E(Y ), we have X ≤cx Y, i.e., E(φ(X)) ≤
E(φ(Y )) for any convex function φ(.), such as φ(t) = t2. Thus E(X2) ≤ E(Y 2),

which implies that V ar(X) ≤ V ar(Y ).

(c) Since λ2 = λ > λ1, and s(x) is a decreasing function (Lemma 3.1(c)), we have

λ

eλ − 1
<

λ1
eλ1 − 1

= E(
Θ

eΘ − 1
),

which yields Pr(X = 1) ≤ Pr(Y = 1), or equivalently Pr(X ≥ 2) > Pr(Y ≥ 2).

(d) By part (a) above, we haveX ≤uv Y . So, Y is not larger than X in simple

stochastic ordering sense. Also, by Theorem 3.2(a),X is larger than Y in simple

stochastic ordering sense for no value of λ > 0. Therefore, when the zero-truncated

Poisson random variable X has the same mean as that of its mixture Y , then there

is no simple stochastic ordering between X and Y .�

Remark 3.2 Theorem 3.3 indicates that despite of lack of any simple stochas-

tic ordering, when a zero-truncated Poisson distribution has the same mean as that

of its mixture distribution, sampling from the zero-truncated Poisson distribution

seems to be more favorable than its mixture.

Example In the sampling problem of different species, suppose thatX , the

number of moths per species caught in a light-trap, is a zero-truncated Poisson

8
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r.v., TP(θ), with pmf

Pr(X = k) =
θk

k!(eθ − 1)
, k = 1, 2, ....

. It is interesting to specify whether it is better to take θ a random variable

with some mixing distribution or to consider θ to be a fixed value in (0,∞). For

simplicity of computation, assume that θ is an exponential random variable with

unit mean. Then, obviously, Y , the number of individuals in different species, is a

zero-truncated Poisson mixture r.v. with pmf

Pr(Y = k) =

∫ ∞

0

θk

k!(eθ − 1)
e−θdθ, k = 1, 2, ... .

By Theorem 3.1, X is smaller than or equal to Y in likelihood ratio (reversed

hazard rate) ordering sense if, and only if, 0 < λ ≤ λ0 =
E(Θ2/(eΘ−1))
E(Θ/(eΘ−1)) . Since

integration methods and numerical analysis for the computation of λ0 are not

applicable, we have used simulation runs of size m = 10000000, and calculated

λ0 = 0.626 (it is rounded up to 3 digits). Also, by similar method, we calcu-

lated λ∗1 = 0.821, λ1 = 0.693 and λ2 = 1.094 of (6) and Theorem 3.1. So, X

is smaller than or equal to Y in simple stochastic (hazard rate) ordering sense,

if λ ≤ λ1 = 0.693. In addition,X is smaller than or equal to Y in expectation

ordering sense if, and only if, λ ≤ λ2 = 1.094. Also, for λ > 0.626 we have

X ≤uv Y (Theorem 3.2), specially, for λ = 1.094, we conclude that E(X) = E(Y ),

X ≤uv Y , X ≤cx Y, V ar(X) ≤ V ar(Y ), Pr(X ≥ 2) > Pr(Y ≥ 2) and there is no

simple stochastic ordering betweenX and Y (Theorem 3.3). �
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In this paper we consider a constructive representation of skewed distributions, which
proposed by Ferreira and Steel (2006), and its basic properties is presented. We show
that every continuous skewed distribution can be stated as this unified form. In order to
illustrate the effect of different skewing mechanism, we consider four mechanisms with
different degrees of skewness and compare with each other. The main aim of this paper
is to present stein’s lemma for the new unified skew-normal distribution. This work
extends Adcock (2007), which present two versions of stein’s lemma for skew-normal
distribution.

Keywords: Skewed Distribution; Inverse Probability Integral Transformation, Skew-
Normal; Beta-normal Density; Inverse Scale factor Density; Stein’s Lemma.

1. Introduction

The first systematic treatment of the skew-normal (SN) class of distributions was

given by Azzalini (1985). Subsequently, Azzalini and Dalla Valle (1996) introduced

a multivariate version of the skew-normal density. Developments and generaliza-

tions of these ideas to various directions and for other distributions have been

proposed by many authors. A review of these research works can be found the

paper of Azzalini (2005)and the book edited by Genton (2004). There are so many

proposals in construction skewed distributions and it is worth to find an overall

class which covers all of these proposals. Recently, Ferreira and Steel (2006) pro-

posed a general perspective on the skewing a symmetric distribution. The idea was

to separate the skewing mechanism from a symmetric distribution and the rep-

resentation of skewed distributions was based on the inverse probability integral

transformations. This unified form covers a wide set of classes of skewed distri-

butions. In this paper, we show that every continuous skewed distribution can be

stated with this unified form.

The main aim of this paper is to present stein’s lemma for the unified skew-

normal distribution. This work extends Adcock (2007), which present two ver-

11



July 28, 2010 16:45 ISC10 - Proceeding proceeding

The 10th Iranian Statistical Conference University of Tabriz, August 2010

sions of stein’s lemma for skew-normal distribution. As summarized in Adcock

(2007), Stein’s lemma plays an important role in modern portfolio theory. The

theory of portfolio selection developed by Harry Markowitz, see for example

Markowitz(1952,1987), asuumes that investors mimimize the variance of portfo-

lio returns subject to achieeving a given target expected return. It is well known

that returns on financial assets are not normally distributed. They exhibit both

skewness and kurtosis. Therfore, we extend the stein’s lemma for the unified skew-

normal distribution.

The structure of this paper is as follows. In Section 2 we define the represen-

tation of unified skewed distributions and its basic properties. The section briefly

reports four classes of skewed distributions that are required in the rest of the

paper. Section 3, presents the main results of the paper, stein’s lemma for the

unified of skew-normal distribution. This section also contains corollaries to the

result, including siegel’s formula.

2. Unified skewed distribution, USD(f, p)

In this section, we introduce the representation of unified skewed distribution and

prove a number of properties based on this representation.

A random variable Xf,p is said to have a unified skewed distribution with

functional parameters f and p, if its pdf is of the form

s(y|f, p) = f(y) p[F (y)]; −∞ < y <∞, (1)

where f is a symmetric density function on the real line and p is a pdf on (0,1).

In fact the density p specifies a skewing mechanism. We denote a random variable

with this unified skewed distribution by Xf,p ∼ USD (f, p).

In order to illustrate the effect of different skewing mechanisms, we compare

four mechanisms with different degrees of skewness.

2.1. Comparison of the four versions of unified skewed

distributions

For comparing the effect of different skewing mechanisms on a symmetric distri-

bution, we consider the following four mechanisms of skewing normal distribution.

(i) Hidden truncation method : The most common version of univariate

skewed distributions, can be generated by some hidden truncation developments

which involve the densities of the form:

s(y) = 2f(y)G(w(y)), (2)

where G denotes the cdf of a symmetric distribution on <, f is a symmetric pdf on

<, and w(y) is an odd function. (For more details, see Arnold and Beaver (2002)

and Azzalini and Capitanio (2003)).

12



July 28, 2010 16:45 ISC10 - Proceeding proceeding

The 10th Iranian Statistical Conference University of Tabriz, August 2010

In the model (2), by defining the pdf p as, p (y) = 2G(w(F−1(y))), we can in-

terpret the model (2) in the form (1). Two well known family of skewed symmetric

distributions, in this class, were introduced by Azzalini (1985) and Arellano-Valle,

et.al (2004) as follows:

s1 (y |λ ) = 2φ (y)Φ (λ y) , and s∗1(y|λ1, λ2) = 2φ(y)Φ(
λ1y√

1 + λ2y2
); y ∈ <,

(3)

where φ (y) and Φ (y) are density and distribution functions of a standard normal

random variable, respectively. Figure 1 shows the shape of s∗1(y|λ1, λ2) and the

skewing mechanism p∗1(y|λ1, λ2) = 2Φ[ λ1Φ
−1(y)√

1+λ2(Φ−1(y))2
] for some values of λ1and

λ2 . Azzalini’s density (or mechanism) occurs if λ2 = 0.

(ii) Order statistics method: This method contains a family of skewed dis-

tributions, which is generated by taking F as the standard normal distribution and

P as the Beta distribution with unknown parameters a and b, in the USD (f, p).

These distributions have some properties that can make them less attractive in

applications. Eugen et al. (2002) mentioned that the Beta-Normal distribution can

be bimodal and the amount of skewness is not a monotone function of a and b and

is not flexible enough to highly skewed distributions. Ferreira and steel (2004b)

suggested a restricted parameterization on the Beta-Normal distribution by taking

b = 1
a , which leads to a unimodal and monotone density function. Therefore, we

consider the following form of the pdf with a real parameter a > 0, as the second

skewed distribution.

s2 (y |a) =
1

B
(
a, 1a

) φ (y) [Φ (y)]
a−1

[1− Φ (y)]
1
a−1

; y ∈ <. (4)

The above distribution is always skewed for a 6= 1 and the values of a larger

(smaller) than one, correspond to positively (negatively) skewed distribution. This

model can be interpreted as model (1) by defining p2 as a Beta distribution. The

connection between parameter a and the skewness of pdf s2 and p2 is shown in

Figure 1.

(iii)Inverse scale factors method: A family of skew-normal distributions

generated by introducing scale factors in positive and the negative half real lines.

A general form of this distribution is introduced by Fernandez and Steel (1998).

This distribution has density

s3(y|γ) =
2

γ + 1
γ

φ[yγ−sign(y)]; y ∈ <, (5)

with sign(.) as the usual sign function in <, and γ is a scaler in (0,∞). If γ > 1,

then the distribution is right-skewed, whereas it is left-skewed for γ < 1. This
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distribution can be constructed by model (1) by choosing f = φ(.) and using p3

as p3(y|γ) = 2
γ+ 1

γ

.φ[γ
sign( 1

2
−y)Φ−1(y)]

φ[Φ−1(y)] . Figure (1) illustrates several possible shapes

obtained from s3(.) and p3(.) under various choices of γ.

(iv)Unified method: A larger class of skewed distributions can be constructed

by defining F as the standard normal distribution and taking an arbitrary pdf p

on (0, 1). In this case, the pdf is given by

s4(x|p) = φ(x) p[Φ(x)]; y ∈ <. (6)

An illustration of the effect of this skewness mechanism is shown in Figure 1, by

assuming a triangular density function for p (.) as:

p4(y|α) =
{

2
αy if 0 < y < α

2
(1−α) (1− y) if α < y < 1

where α ∈ (0, 1).
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Fig. 1. Comparison of the four versions of unified skewed distributions

All of these methods skew a symmetric distribution F but in different ways. In-

deed, any skewed version of the same symmetric distribution can then be modeled

directly by choosing a particular p. For the hidden truncation technique, there

exists a considerable amount of skewness around (12 ). But the beta-mechanism

shows more various skewness in the tail of the distribution p(.). In the inverse

scale factors method, we see that by varying y from zero to unity, p(y) changes

moderately and large values of skewness give fat tail to s(.). The especial case, in
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the illustration of the method (iv) shows that a positive (negative) skewness on

p(.) yields a positive (negative) skewness on s(.).

2.2. Some representation and properties of USD(f, p)

In Section 2.2, we discussed how various versions of skew-normal distribution arise

with different skewing mechanism. The following theorem states that every contin-

uous skewed distribution can be stated in the form of unified skewed distribution

in (1).

Theorem 1 Every continuous skewed density function s(.) can be stated in the

form of USD(f, p).

Proof. Let s and S be the pdf and cdf of a skewed distribution, respectively. Now

we have to find a symmetric pdf f on the real line and a pdf p on (0,1) such that

s(y) can be written as:

s(y) = f(y)p [F (y)]. (7)

If, we define a symmetric pdf f as:

f(y) =
s(y) + s(−y)

2
, (8)

then, the cdf corresponding to f is in the form:

F (y) = S(y)+(1−S(−y))
2

and from (7) the pdf p on (0,1) is:

p (F (y)) =
2 s (y)

s (y) + s (−y)
or

p(y) =
2 s(F−1(y))

s(F−1(y)) + s(−F−1(y))

It is enough to show that p (y) is a pdf on (0,1). Note that
∫ 1

0

p (y) dy =

∫ +∞

−∞

2 s (t)

s (t) + s (−t) f (t) dt = 1

Some applications of the above theorem are given below.

(a) Some selection mechanisms lead to many existing families of skewed distri-

butions, such as skew-normal and skew-elliptical distributions. This class is defined

by Arrellano-Valle et al (2006) with the following function:

s(y) = f(y)
P [Z ∈ S | Y = y]

P [Z ∈ S]
= f(y)

Q(y)

E[Q(Y )]
(9)
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where f denotes the marginal pdf of Y and Q(y) = P [Z ∈ S | Y = y], with

random vector (Y, Z) and selection set S. If f is a symmetric density and define

pdf p as,

p(F (y)) = P [Z∈S|U=F (y)]
P [Z∈S] ,

where U = F (Y ) ∼ U(0, 1), or

p(y) = P [Z∈S|Y=F−1(y)]
P [Z∈S] ,

then the density (9) is equivalent to (1).

(b) The class of skewed-elliptical distributions which was introduced by Genton

and Loperfido (2005), in the form s(y) = 2f(y)π(y), with a symmetric pdf f and

the skewing function π, can be interpreted in the form (1) by choosing the pdf p

as p(y) = 2π [F−1(y)].

(c)The generalized skew-normal distributions in Gupta and Gupta (2004) with

density s(y) = φ(y)Φn(λy)
cn(λ)

, can be introduced by choosing f = φ, and p(y) =

Φn[λΦ−1(y)]
cn(λ)

.

Some interesting representations and properties of the USD (f, p) are given in

the following propositions.

Proposition 2.1. Let U and V be two independent random variables with pdfs

(cdf) f (F ) on the real line and p on (0, 1), respectively. Then the following results

are concluded.

(a) F−1 (V ) ∼ USD (f, p)

(b) If W = V − F (U), then the conditional distribution of U given (W = 0) is

USD (f, p).

(c) If p(1−y) = 2−p(y), then T = U.SU ∼ USD(f, p), where conditionally on U =

u, SU = 1 with probability 1
2p[F (u)] and SU = −1 with probability 1

2 [2− p[F (u)]].

Proof. Part (a) is due to Ferreira and Steel (2006) and the proof of part (c) is

obvious. For a proof of part (b), note that the conditional density function of U

given (W = 0) is

fU|W (u|0) = fU,W (u, 0)

fW (0)

=
fU (u)fV (F (u))∫∞

−∞ fU (u)fV (F (u))du

=
f(u)p(F (u))∫∞

−∞ f(u)p(F (u))du

= f(u)p(F (u)).
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Proposition 2.2. Let U and V be two independent random variables with pdfs

f , p and cdfs F , P , respectively. Also, let Xf,p ∼ USD (f, p). Then the following

results are concluded

(a) If p is symmetric around 1
2 , then Xf,p will be a symmetric random variable.

(b)When P is the uniform distribution on (0,1), then Xf,p
d
=U .

(c) F (Xf,p)
d
=V .

(d) −Xf,p
d
=Xf,p∗ , where p∗ (y) = p (1− y) ; 0 < y < 1.

(e) |Xf,p| d
= |U |, if p(1− y) = 2− p(y).

(g) X2
φ,p

d
=χ2(1), if p(1 − y) = 2 − p(y) where φ denotes the standard normal

density.

(h) The skewness of Xf,p is positive (negative), if the skewness of the pdf p is

positive(negative).

(i)The r-th moment of Xf,p with USD(f, p) depends on the density functions f ,

p and can be evaluated by the relation:

E[Xr] = E{[F−1(V )]r}.

3. Extension of stein’s lemma for the unified of skew-normal

distribution

When a random variable X has a normal distribution, stein’s lemma (stein, 1981),

states that, under certain regularity conditions on a function g(.)

Cov[X, g(X)] = V ar(X)E[g′(X)]. (10)

A generalization of this result is given by Liu(1994), Adcock(2007) and Landsman

and Neslehova (2008).

We extend the above result and prove stein’s lemma for the unified skew-normal

distribution.

Theorem 3.1. Let X be a random variable distributed as USD(φ, p); where φ is

pdf of a normal distribution with mean µ and variance σ2. Let h(x) be a continuous

real valued function such that h′(x) exist and E[h′(X)] <∞. Then, we have

Cov[X,h(X)] = σ2{E[h′(X)] + E[h(Z)
d

dZ
p∗[Z]− E[

d

dZ
p∗[Z]]E[h(X)]} (11)

where Z ∼ N(µ, σ2) and p∗[Z] = p[Φ(Z)].

Proof.

Cov[X,h(X)] = E[Xh(X)]− E[X ]E[h(X)] (12)
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and

E[Xh(X)] =

∫ +∞

−∞
xh(x)φ(x)p[Φ(x)]dx

= E[Zh(Z)p∗(Z)]

= E[Zg(Z)] (13)

where g(z) = h(z)p∗(z), p∗(z) = p[Φ(z)] and Z ∼ N(µ, σ2).

By Stein’s lemma in (10), we have E[Zg(Z)] = σ2E[g′(Z)] + µE[g(Z)]. Now

note that

E[g(Z)] = E[h(Z)p∗(Z)] = E[h(X)] (14)

and

E[g′(Z)] = E[h′(Z)p∗(Z)] + E[
d

dZ
p∗(Z)h(Z)]

= E[h′(X)] + E[
d

dZ
p∗(Z)h(Z)]. (15)

Combining the relations (13)-(15) lead us to the following equation

E[Xh(X)] = σ2E[h′(X)] + σ2E[
d

dZ
p∗(Z)h(Z)] + µE[h(X)]. (16)

On the other hand E[p∗(Z)] = 1, so

E[X ] = E[Zp∗(Z)] = σ2E[
d

dZ
p∗(Z)] + E[Z]E[p∗(Z)]

= σ2E[
d

dZ
p∗(Z)] + µ. (17)

Now using (12), (16) and (17), the result follows and the proof is complete.

Theorem 3.1 leads in turn to a generalization of Siegel’s formula (1993) for the

covariance of an arbitrary variable of unified skew-normal distribution with its i-th

order statistics.

Corollary 3.1. Let X1, ..., Xn be a random sample from USD(φ, p), then

Cov[Xj , X(i)] = σ2P [Xj = X(i)] + E[
dp∗[Z]

dZ
.Z(i)]− E[

d

dZ
p∗[Z]]E[Z(i)] (18)

Proof. Define h(x) = x(i), where x(i) is the i-th largest variable among the random

sample of USD(φ, p). The derivatives of h(.) with respect to the j − th random

variable

∂h

∂xj
=

{
1 if xj = x(i)
0 otherwise
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then Theorem 3.1 yields the result.

In the following corollary, we derive Stein’s identity in especial cases.

Corollary 3.2. Let X be a random variable with USD(φ, p), φ is the pdf of a

normal distribution with mean 0 and variance σ2.

(a) If p(1 − x) = 2 − p(x), and h(.) is a real-valued odd function for all x ∈ <,
then

Cov[X,h(X)] = σ2{E[h′(X)]− E[
d

dZ
p∗[Z]]E[h(X)]} (19)

(b)If X has a skew-normal distribution (3),s1(.|λ), then for any real valued function

h(.)

Cov[X,h(X)] = σ2E[h′(X)] + µSN (E[h(Z∗)]− E(h(X))) (20)

where Z∗ ∼ N(0, (1 + λ2)−
1
2 ) and µSN is the mean of the random variable X.

Proof. (a) By using the fact that h(−x) = −h(x) and d
dxp(1 − x) = d

dxp(x) we

conclude that E[h(Z) d
dZ p[Φ(Z)]] = 0. Therefore, the result follows.

(b) In this case d
dzp

∗(z) = d
dz2Φ(λz) = λφ(λz), therefore E[h(Z) d

dZ p
∗(Z)] and

E[ d
dZ p

∗(Z)] are obtained as:

E[h(Z)
d

dZ
p∗(Z)] = 2λ

∫
h(z)φ(z)φ(λz)dz

= (
2

π
)

1
2

λ√
1 + λ2

∫ √
λ2 + 1√
2π

e−
1
2 z

2(λ2+1)dz

= µSNE[h(Z∗)]

where Z∗ ∼ N(0, (1 + λ2)−
1
2 ) and, by Azzalini (1985), µSN = ( 2

π )
1
2

λ√
1+λ2 is the

mean of the skew-normal distribution.

Similarly, we have E[ d
dZ p

∗(Z)] = µSN and the result is obtained by Theorem

3.1.

At the end, it is necessary to note that some properties of USD, stated in this

paper, are fulfilled just under the condition p[1−x] = 2−p[x]. In many families of

skewed distributions such as hidden truncation density, and skew-elliptical which

have been introduced in (2) and (2.2 (b)), the skewing mechanism p has such a

condition, which can be verify easily.
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Some Extensions of Discrete α-Monotone Distributions
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Binomial thinning operator was introduced to define α-monotone distributions on the
lattice of integers. This operator is actually a compound of i.i.d. Bernoulli random vari-
ables which was also employed to define self-decomposable distributions on the lattice
of nonnegative integers. Several other different thinning operators have been defined
to model discrete data, specially, in integer-valued time series. In this paper, we shall
introduce two new thinning operators based on zero-inflated and inflated-parameter
Bernoulli random variables. Then, based on these, we shall define modified and gener-
alized α-monotonicity and investigate their similar properties and characterizations.

Keywords: Binomial thinning operator; Compound distributions; Inflated-parameter
distributions; Zero-inflated distributions.

1. Introduction

Thinning operators are probabilistic operations that can be applied to random

counts. The basic idea is that count represents the random size of an imaginary

population, and the thinning operation randomly deletes some members of this

population. Since the size of the shrunken population is still integer-valued, the

population of thinning always leads to integer values.

The first and most popular thinning operation is binomial thinning operator,

defined by Steutel and van Harn [1] as follows:

Definition 1.1. Let Y be an arbitrary nonnegative integer-valued random vari-

able (r.v.) and X1, X2, ... be i.i.d. Ber(u), u ∈ [0, 1). Then

u⊗ Y =

Y∑

i=1

Xi. (1)

is called the binomial thinning operator(or u-fraction) of Y .

For the interpretation of the binomial thinning operation, consider a population

of size X at a certain time t. If we observe the same population at a later point
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of time, say t + 1, then the population may be shrunken, because some of the

individuals died between times t and t+1. If the individuals die independently of

each other, and if the probability of dying in between t and t+1 is equal to 1− u

for all individuals, then the number of survivors is given by u⊗X .

Since binomial thinning always leads to an integer and since both u⊗X and u.X

have the same mean, the scalar multiplication of ARMA recursion was replaced by

binomial thinning in the definition of integer-valued ARMA (INARMA) models.

See, e.g., [2] on INAR(1) model as Xt = α⊗Xt−1 + εt.

Based on operator ⊗, Steutel [3] defined a discrete analogue of α-monotonicity

of Olshen and Savage [4] as follows.

Definition 1.2. A nonnegative integer-valued r.v. X is α-monotone, if

X =d U1/α ⊗ Y. (2)

where Y is a nonnegative integer-valued r.v. and U ∼ U(0, 1), independent of Y ,

where =d means equality in distribution.

He showed that

Theorem 1.1. (Steutel [3]) A nonnegative integer-valued r.v. X with distribution

{pn}∞0 and probability generating function (pgf) PX , is α-monotone if, and only

if (iff)

PX(t) = α(1− t)−α

∫ 1

t

(1− w)α−1Q(w)dw,

where Q(.) is the pgf of a nonnegative discrete r.v.. Or, equivalently, iff

(α+ n)pn ≥ (1 + n)pn+1, ∀n ≥ 0 .

According to Steutel [3], a discrete distribution {pn}∞−∞ is called α-unimodal

(about zero) if for some α > 0,

{
(α− n)pn ≥ (1− n)pn−1 , n ≤ 0

(α+ n)pn ≥ (1 + n)pn+1 , n ≥ 0 .

Obviously, 1-unimodality is just the usual unimodality.

Alzaid and Al-Osh [5] gave a similar characterization to that of Olshen and

Savage [4] for discrete α-monotone distributions as follows.

Theorem 1.2. (Alzaid and Al-Osh [5]) A nonnegative integer-valued r.v. X is α-

monotone iff for every nonnegative bounded measurable function g, tαE[g(t⊗X)]

is non-decreasing in t ∈ (0, 1].
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Also, Steutel and van Harn [1] used binomial thinning operator to define a

discrete self-decomposable r.v.. They called a nonnegative discrete r.v. X self-

decomposable if for any α ∈ (0, 1) there exists a r.v. Xα independent of X such

that X =d α⊗X +Xα (see [6] for more details).

Binomial thinning operator is quite attractive, not only because of its math-

ematical elegance, but also because of its quite intuitive interpretation. Never-

theless, it becomes clear in the practice of time series modeling that binomial

thinning is best suited for Poisson marginals. Therefore, several alternatives to bi-

nomial thinning have been defined which can be applied to distributions other than

Poisson (see, e.g., Weiβ [7]). In this paper, we shall introduce two new thinning op-

erators based on zero-inflated and inflated-parameter Bernoulli r.v.’s. Then, based

on these, we shall define modified and generalized α-monotonicity and study their

similar properties and characterizations.

Let ξ be an arbitrary nonnegative integer-valued r.v. such that Pr(ξ = j) = pj ,

j = 0, 1, 2, ... and Σ∞
j=0pj = 1. If an extra proportion of zeros, ρ ∈ [0, 1], is added

to zeros of the r.v. ξ, while decreasing the remaining proportions in an appropriate

way, the zero-inflated modification η of ξ is defined by

Pr(η = j) =

{
ρ+ (1 − ρ)p0 , j = 0

(1− ρ)pj , j = 1, 2, ... .

It is clear that if ρ = 1, the corresponding zero-inflated distribution is degenerate

at zero and if ρ = 0, there is no inflation, i.e., η =d ξ.

For most cases, the inflating parameter ρ lies between 0 and 1, although it

may also take negative values, provided that P (η = 0) > 0, i.e., ρ ≥ − p0

1−p0
.

This latter case corresponds to the opposite phenomena, i.e., excludes a propor-

tion of zeros from the basic discrete distribution. In this paper, we consider the

former case, where ρ ∈ [0, 1). For example, the distribution of a zero-inflated

Bernoulli r.v. X with parameter u ∈ (0, 1) and the inflating parameter ρ, denoted

by X ∼ZIBer(u, ρ), is given by

Pr(X = j) =

{
ρ+ (1− ρ)(1− u) , j = 0

(1− ρ)u , j = 1 .
(3)

Based on a sequence of ZIBer(u, ρ) r.v.’s, Kolev et al [8] introduced inflated-

parameter modification of geometric distribution. They showed that the pgf of an

inflated-parameter geometric r.v. S, denoted by IGe(π, ρ), is given by

PS(t) =
π(1− tρ)

1− t[1− π + ρπ]
,

which is actually the pgf of S = X1 + X2 + ... + XN , where N is a geometric

r.v. with parameter π ∈ (0, 1) and pgf PN (t) = π
1−(1−π)t in t ∈ [0, 1], denoted

by Ge0(π). Also, X1, X2, ..., XN are geometric r.v.’s with parameter 1 − ρ and
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pgf PX(t) = t(1−ρ)
1−tρ in t ∈ [0, 1], denoted by Ge1(1 − ρ), independent of r.v. N .

Similarly, if N is a r.v. distributed according to the binomial, negative binomial or

Poisson distributions, then S = X1+X2+ ...+XN is inflated-parameter binomial,

negative binomial or Poisson r.v., respectively. For example, the pmf of a inflated-

parameter Bernoulli r.v. X with parameter u ∈ (0, 1) and the inflating parameter

ρ ∈ [0, 1), denoted by IBer(u, ρ), is given by

Pr(X = j) =

{
1− u , j = 0

uρk−1(1− ρ) , j = 1, 2, ... .
(4)

For more details on zero-inflated and inflated-parameter Bernoulli distributions,

we refer the readers to Kolev et al [8] and Minkova [9].

In section 2, we shall modify the binomial thinning operator ⊗ using zero-

inflated Bernoulli r.v.’s and discuss their properties. Section 3 concerns with a

generalization of the concept using inflated-parameter Bernoulli r.v.’s. In both

cases, we shall discuss their convolution properties and provide some characteri-

zation results.

2. ρ-Modified α-Monotone Discrete Distributions

We shall first consider an extension of the binomial thinning operator ⊗ intro-

duced by Steutel and van Harn [1], based on zero-inflated Bernoulli r.v.’s. Then,

accordingly, we shall introduce a modification of α-monotonicity.

Definition 2.1. Let Y be a discrete r.v. on N0 and X1, X2, ... be i.i.d. ZIBer(u, ρ)

r.v.’s with ρ, u ∈ [0, 1). Then, we call the operator ⊗ρ defined by

u⊗ρ Y =

Y∑

i=1

Xi (5)

a zero-inflated thinning operator with inflating parameter ρ.

In the case ρ = 0 (no inflation), zero-inflated thinning operator in (5) is just the

(usual) binomial thinning operator. Further, we can see that

u⊗ρ Y =d u(1− ρ)⊗ Y (6)
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because, let PY be the pgf of Y , then pgf of u⊗ρ Y is

Pu⊗ρY (t) = EE(tu⊗
ρY |Y )

= EE(t
∑Y

i=1 Xi |Y )

= E[E(tX1)]Y

= E[ρ+ (1− ρ)(1− u+ ut)]Y ( from (3) )

= PY (1− u(1− ρ) + u(1− ρ)t)

= PY (1− υ + υt)

= Pυ⊗Y (t) ,

where υ = u(1−ρ). Therefore, the two operators⊗ and⊗ρ are related by u⊗ρY =d

u(1− ρ)⊗ Y .

Definition 2.2. A r.v. X on N0 is called ρ-modified α-monotone((ρ, α)-MM) if

it can be represented as

X =d U1/α ⊗ρ Y, (7)

where Y is a r.v. defined on N0 independent of U ∼ U(0, 1) and ρ ∈ [0, 1].

Obviously, an (0, α)-MM r.v. X is an α-monotone r.v. in the usual sense.

Theorem 2.1. A r.v. X with distribution {pn}∞0 is a (ρ, α)-MM iff X =d

∑N
i=1 Zi, where Z1, Z2, ... are i.i.d. Ber(1−ρ) r.v.’s and N is a nonnegative integer-

valued α-monotone r.v. independent of Zi’s.

Proof. Since if X satisfies (7), by (6), we can readily obtain

X =d U1/α ⊗ρ Y

=d ((1 − ρ)U1/α)⊗ Y

=d (1− ρ)⊗ (U1/α ⊗ Y )

=d (1− ρ)⊗N,

where N =d U1/α ⊗ Y is an α-monotone r.v. and vice versa, as required.

Corollary 2.1. A r.v. X on N0 is (ρ, α)-MM iff its pgf can be written as

PX(t) = α[(1 − ρ)(1− t)]−α

∫ 1

1−(1−ρ)(1−t)

(1 − w)α−1Q(w)d

where Q(.) is the pgf of a r.v. on N0.
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Proof. Using Theorem 2.1, we can write

PX(t) = E(t(1−ρ)⊗(U1/α⊗Y ))

= PU1/α⊗Y (1 − (1− ρ)(1− t)).

Thus, by Theorem 1.1 and the uniqueness property of pgf’s, we have the result.

Also, it is easy to show that

Corollary 2.2. A (ρ, α)-MM r.v. is α-monotone, but not necessarily vice versa.

Alamatsaz [10] considered convolution property of α-monotone distributions. He

proved that the convolution of a discrete α-monotone and a discrete β-monotone

distribution is a discrete α+β-monotone distribution. Using a similar method, we

prove the following convolution property of ρ-modified α-monotone distributions.

Theorem 2.2. Convolution of a (ρ, α)-MM and a (ρ, β)-MM distribution is a

(ρ, α+ β)-MM distribution.

Example 2.1. Ge0(π) is a monotone distribution and a Ge0(π)-compounding

of i.i.d. Ber(1 − ρ) r.v.’s may be shown to be a Ge0(p) distributed r.v., where

p = π
1−(1−π)ρ is a real value in (0, 1). Thus, by Theorem 2.1, Ge0(p) is a (ρ, 1)-MM

distribution, for all p ∈ (0, 1).

3. ρ-Generalized α-Monotone Discrete Distributions

Now, we extend binomial thinning operator ⊗ based on inflated-parameter

Bernoulli r.v.’s.

Definition 3.1. Let Y be a discrete r.v. on N0 and X1, X2, ... be i.i.d. IBer(u, ρ)

r.v.’s with ρ, u ∈ [0, 1). Then, we call the operator ⊗ρ defined by

u⊗ρ Y =
Y∑

i=1

Xi (8)

an inflated binomial thinning operator with inflating parameter ρ.

In the case ρ = 0 (no inflation), the inflated binomial thinning operator in (8) is

again the (usual) thinning operator ⊗ introduced in (1).
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We may also note that if PY is the pgf of Y , for the pgf of u⊗ρ Y we have

Pu⊗ρY (t) = EE(tu⊗ρY |Y )

= EE(t
∑Y

i=1 Xi |Y )

= E[E(tX1)]Y

= E[1− u(1− t)

1− tρ
]Y ( from (4) )

= PY (1 − u+ u
t(1− ρ)

1− tρ
)

= Pu⊗Y (
t(1 − ρ)

1− tρ
) .

Therefore,

u⊗ρ Y =d
u⊗Y∑

i=1

Zi, (9)

where Z1, Z2, ... are i.i.d. Ge1(1 − ρ) r.v.’s with pgf PZ(t) =
t(1−ρ)
1−tρ , i.e., u⊗ρ Y is

a u⊗ Y -compounding of Ge1(1 − ρ) r.v.’s.

Remark 3.1. In the binomial thinning operator, we have 0⊗Y =d 0 and 1⊗Y =d

Y , but in the inflated binomial case, we have

(a) 0⊗ρ Y =d 0,

(b) 1⊗ρ Y =d
∑Y

i=1 Zi, where Z1, Z2, ... are i.i.d. Ge1(1 − ρ) r.v.’s.

Now, we can define ρ-generalized α-monotone discrete distributions.

Definition 3.2. We call a r.v. X on N0 ρ-generalized α-monotone((ρ, α)-GM) if

it can be represented as

X =d U1/α ⊗ρ Y, (10)

where Y is a r.v. on N0, independent of U ∼ U(0, 1) and ρ ∈ [0, 1) is a constant.

Obviously, a (0, α)-GM r.v. X is α-monotone, i.e., it satisfies (2).

Theorem 3.1. A r.v. X with distribution {pn}∞0 is (ρ, α)-GM iff X =d
∑N

i=1 Zi,

where Z1, Z2, ... are i.i.d. Ge1(1 − ρ) r.v.’s, independent of nonnegative integer-

valued α-monotone r.v. N .
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Proof. Since if X satisfies (10) then, by (9), we have

X =d U1/α ⊗ρ Y

=d

U1/α⊗Y∑

i=1

Zi

=d

N∑

i=1

Zi

where N =d U1/α ⊗ Y is an α-monotone r.v. and vice versa, as required.

Using Theorems 1.1 and 3.1, we can easily show that

Corollary 3.1. A r.v. X on N0 is (ρ, α)-GM iff its pgf has the form

PX(t) = α(
1− t

1 − ρt
)−α

∫ 1

1− 1−t
1−ρt

(1− w)α−1Q(w)dw,

where Q(.) is the pgf of a r.v. on N0.

Again using the method of Alamatsaz [10], we can prove analogously that the

following convolution property for ρ-generalized discrete α-monotone distributions

holds.

Theorem 3.2. Convolution of a (ρ, α)-GM and a (ρ, β)-GM distribution is (ρ, α+

β)-GM.

Example 3.1. Since Ge0(π) is monotone and IGe(π, ρ) is a Ge0(π)-compounding

of i.i.d. Ge1(1 − ρ) r.v.’s with ρ ∈ [0, 1), it follows that IGe(π, ρ) is a (ρ, 1)-GM

distributed r.v., for all π ∈ (0, 1).

In the following theorem, we give an alternative characterization to that of

Alzaid and Al-Osh [5], i.e., Theorem 1.2.

Theorem 3.3. A discrete r.v. X on N0 is α-monotone iff for every nonnegative

bounded measurable function g and for some ρ ∈ [0, 1), tαE[g(t ⊗ρ X)] is non-

decreasing in t ∈ (0, 1].

Proof. Observe that for any non-negative bounded measurable g we can write

tαE(g(t⊗ρ X)) = tαE(g∗(t⊗X)),

where g∗(x) = g(
∑x

i=1 Zi) belongs to the same class as g and Z1, Z2, ... are i.i.d.

Ge1(1 − ρ) r.v.’s. Thus, the assertion follows by Theorem 1.2.
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Remark 3.2. In Corollary 3.1, a (ρ, α)-GM r.v. was proved to be an N -

compounding of i.i.d. Ge1(1 − ρ) r.v.’s, with nonnegative integer-valued α-

monotone r.v. N . Thus, it is reasonable to define discrete ρ-generalized α-

unimodality as follows.

A r.v.X is called ρ-generalized α-unimodal ((ρ, α)-GU), ifX is anN -compounding

of i.i.d. Ge1(1− ρ) r.v.’s with nonnegative integer-valued α-unimodal r.v. N .

For example, Poisson distribution Po(λ) is a unimodal r.v. and inflated-parameter

distribution IPo(λ, ρ) is a Po(λ)-compounding of i.i.d. Ge1(1 − ρ) r.v.’s with

ρ ∈ [0, 1), it follows that IPo(λ, ρ) is a (ρ, 1)-GU distributed r.v., for all λ ∈ (0,∞).
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Application And Enhancement Of Monte Carlo Integration
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Randomness of Monte Carlo approximation for the access of integrals, specially in
fractional calculus, reduces the precision of them with comparison to deterministic nu-
merical methods. In this paper, we enhance this approximation by the utilization of
the Riemann method just in uniform cases. After that we compare traditional Monte
Carlo by an example and particular attention is devoted to the modified Monte Carlo
integrals in order to simulate fractional calculus.

keywords: Monte Carlo; Riemann approximation; Random numbers; Fractional
derivatives; Fractional integrals.

1. Introduction

In complex cases, bounded integrals are approximated by using relevant methods,

for example Riemann and Monte Carlo methods (Daivis and Rabinwitz (1984)).

Although, numerical methods are approximated of them but, the answer of in-

tegrals have some differences. In statistical approximation Monte Carlo methods

is based on independent random samples from statistical distribution. Random-

ness factor causes different answers in each runs. On the other hand, Fractional

derivatives and integrals in the framework of the Riemann-Liouville fractional cal-

culus have complicated forms that could be achieved by Tailor extension,(Oldham

(1974), Miller and Ross (1993)) but complexity in calculation of them causes not

to find theirs applications. We compare it by an example in which the Riemann’s

numerical answer for bounded integrals is more scholastic than Monte Carlo in-

tegrals in uniform cases. It should be noted that there are two issues in Monte

Carlo integrations. Randomness and knowledge of the distribution. The bounded

integrals is in form of I =
∫ b

a
f(x)dx and we can use random samples in uniform

[a, b] and evaluate the integral by Monte Carlo method in this case. We use novel

techniques of simulations to accomplish them and depict the related figures. We

prefer to reintroduce the fractional derivatives, integrals and Monte Carlo meth-

ods in this part. Then approximation of fractional derivations and integrals by

simulations for different quantities are discussed, and we do simulation 1000 times
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for any quantity, after that we will draw their figures. The function f(x) = sin(x2)

is as the simplest example in this paper and the approximate fractional derivative

and integral. It is easy to do this, simulation method for more complex functions,

that it is hard to integrate them, with hope to find more applications of fractional

calculus in the future. Deterministic and stochastic methods for evaluation of in-

tegrals are discussed in this section. In section two, we will compare deterministic

and stochastic methods with enhance stochastic Monte Carlo methods. Section

three consists of fractional calculus and simulation of them is the forth section of

this paper.

2. Deterministic Methods to Evaluation of Integrations

evaluation of the integral I =
∫ b

a f(x)dx is a problem as old as the calculus it-

self and is equivalent to solution of the differential equation dy
dx = f(x) subject

to the boundary condition y(a) = 0. In well-catalogued instances, analytical solu-

tions are available. This means neglecting the classical but dated approaches using

equally spaced abscissas, and a more extended discussion may be found in Davis

and Rabinowitz (1984, Chapter 2). The principle underlying most state-of-the-art

deterministic evaluations of I =
∫ b

a
f(x)dx is Riemann numerical method. In this

method, we have:

∫ b

a

f(x)dx ∼=
n∑

i=1

f(xi)∆(xi) ∆(xi) = xi+1 − xi xi ∈ [a, b] (1)

n is number of xi in [a, b].

2.1. Monte Carlo Integrations

Perhaps the earliest documented use of random sampling to find the solution to

an integral is that of Comte de Buffon. In 1777 he described a needle experiment

(Christian and Casella (2004)). Monte Carlo simulation is the use of experiment

with random number to evaluate mathematical expressions (Alijani and Drikvandi

(2009)). The experimental units are the random numbers and the expressions may

be definite integrals, system of equation, or more complicated mathematical mod-

els. In most cases, when a mathematical expression is to be evaluated, the standard

approximation from numerical analysis is to be preferred, but Monte Carlo meth-

ods provide an alternative that is sometimes only a tractable approach. Monte

Carlo is often the preferred method for evaluating integrals over high-dimensional

domains (Alijani and Ghoreishi (2009)). Very large and sparse systems of equation

can sometimes be solved effectively by Monte Carlo methods. In its simplest form,
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Monte Carlo simulation is the evaluation of integrals:

Θ =

∫ b

a

f(x)dx (2)

by identifying from a random variable Y with support on [a, b] and density p(y)

and a function g so that the expected value of g(Y ) is Θ :

E(g(Y )) =

∫ b

a

g(y)p(y)dy =

∫ b

a

f(y)dy = Θ. (3)

Let us first consider the case in which [a, b] the integral Y is taken to be a random

variable with a uniform density over [a, b], and g is taken to be f. In this case,

Θ = (b − a)E(f(Y )). (4)

The problem of evaluating the integral becomes the familiar statistical problem of

estimating the integral, a mean E(f(Y )). The statistician quite naturally takes a

random sample and use the sample mean. For a sample of size m, an estimate of

Θ is

Θ̂ = (b− a)

∑m
i=1 f(yi)

m
(5)

where the yi is value of a random sample from uniform distribution over [a, b].

This estimator is unbiased. Because:

E(Θ̂) = (b− a)
E(f(Yi))

m
= (b− a)E(f(Y )) =

∫ b

a

f(x)dx = Θ. (6)

3. Comparison Between Deterministic Riemann and Stocastic

Monte Carlo Methods

In Monte Carlo method, if Xi is selected in uniform [a, b], after comparison with

Reimann methods, so:
∫ b

a

f(x)dx ∼= (b− a)

n

n∑

i=1

f(xi) (7)

∫ b

a

f(x)dx ∼=
n∑

i=1

f(xi)∆(xi) (8)

In deterministic Reimann method x′is isn’t random sample. We can reduce the

stochastic factor of Monte Carlo method by deterministic Riemann method. After

that, we have:
∫ b

a

f(x)dx ∼= (b− a)

n

n∑

i=1

f(xi) ∼=
n∑

i=1

f(xi)∆(xi) (9)
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If we change (b−a)
n in middle part of (9) by ∆(xi) and sort the random samples

of Xi then calculate ∆(xi) and set the Monte carlo approximation, the value of

this estimator has more precision and is nearer to the real value of integral. For

distinction, in this paper, we nominate the traditional Monte Carlo by Mt and

sorted Monte Carlo by Ms. The variance of Monte Carlo estimator has important

uses in assessing the quality of the integrals, where the Xi is value of a random

sample from uniform distribution over [a, b]. Ms is asymptotic unbiased and the

variance of it is less than variance of Mt. We proved two new theorems about this

facts.

Theorem 1.

If I =
∫ b

a
f(x)dx, Î =

∑n
i=1 f(xi)∆xi and X

∗
i ∼ Uniform[a, b], xi = sort(X∗

i )

then

E(Ms) → (b− a)E(f(x)) = I

Proof

E(Ms) = E(

n∑

i=1

f(Xi)∆Xi) =

n∑

i=1

E(f(Xi))E(∆Xi)

=
b− a

n+ 1

n∑

i=1

E(f(Xi)) =
b− a

n+ 1
E(

n∑

i=1

(f(Xi))) =
n(b− a)

n+ 1
E(f(X))

⇒ lim
n→∞

n(b− a)

n+ 1
E(f(X)) = (b − a)E(f(X)) = I.

Theorem 2.

If I =
∫ b

a f(x)dx, Î =
∑n

i=1 f(xi)∆xi and X
∗
i ∼ Uniform[a, b], xi = sort(X∗

i )

then

V ar(Ms) ≤ V ar(Mt).

Proof

V ar(Ms) =V ar(

n∑

i=1

f(xi)∆(xi))

=
n∑

i=1

V ar(f(xi)∆(xi)) +
∑

i6=j

Cov(f(xi)∆(xi), f(xj)∆(xj))

=(b− a)
2{

n∑

i=1

E(f2(Xi))
n

(n+ 1)
2
(n+ 2)

− (E(f(Xi)))
2 1

(n+ 1)
2 }

+
1

(n+ 1)2

∑

i6=j

Cov(f(xi), f(xj))
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≤(b− a)
2{

n∑

i=1

n

(n+ 1)
2
(n+ 2)

(E(f2(Xi)))− (E(f(Xi)))
2}

+
1

(n+ 1)2

∑

i6=j

Cov(f(xi), f(xj))

≤(b− a)
2


 1

(n+ 1)
2 (

n∑

i=1

V arf(xi)) +
∑

i6=j

Cov(f(xi), f(xj))




≤(b− a)2
(

1

(n+ 1)2
V ar(

n∑

i=1

f(xi))

)

≤ (b− a)
2

n2
V ar(

n∑

i=1

f(xi)) = V ar(Mt).

Example 1.

In simplest case, we are ready to calculate
∫ 5

−5
sin(x2)dx by two methods.

Before computations, in figure 1 this function in interval [−5, 5] is depicted and

we find out integration of sin(x2) is positive in mentioned interval. Real value

of its is equal to
∫ 5

√
2√
π

0

√
2πcos( π

2t2 )dt. By separating interval of [−5, 5] to 10000

equal partition and calculation of denoted integral by simple numerical method,

we have:

∫ 5

−5

sin(x2)dx ∼=
9999∑

i=1

sin(x2i )∆(xi) = 0.000142256, ∆(xi) = xi+1 − xi

On the other hand, if we use Monte Carlo methods and calculate this integral by

10000 random samples from uniform [−5, 5] we have:

∫ 5

−5

sin(x2)dx ∼= (b− a)

n

10000∑

i=1

f(xi) =
1

1000

10000∑

i=1

sin(x2i ) = 0.0003840335

it means that, µ̂1 =Mt = 0.0002840335

We can find the variance of Monte Carlo approximation by 10(Christian and

Casella (2004)).

V ar(µ̂) =
1

n(n− 1)

n∑

i=1

(f(xi)− µ̂)2 (10)

After calculation for variance of this quantity equals to V ar(µ̂1) = V ar(Mt) =

5.472017e− 09
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Fig. 1. f(x) = sin(x2)

For computation of
∫ 5

−5
sin(x2)dx by Modified Monte Carlo method (Ms), the

random samples should be sorted calculated
∑9999

i=1 sin(x2i )∆(xi) in that ∆xi =

xi+1 − xi. Then,

∫ 5

−5

sin(x2)dx ∼=
9999∑

i=1

sin(x2i )∆(xi) = 0.0002513409.

After calculation for variance of this quantity equal to V ar(µ̂2) = V ar(Ms) =

1.472017e−09 variance in this case is less than traditional Monte Carlo method. We

have demonstrated a simple way to improve the calculation of bounded integrals

by using deterministic Riemann methods, and depicting their result by example.

Indeed, reduction of the stochastic factor helps us to decrease its variance and this

approximation is being nearer to the real value. In cases of Monte Carlo we use

with uniform density between two bounds of integrals and, this method can be

used to evaluated the complex function.
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4. Fractional Calculus

According to the Riemann-Liouville approach to fractional calculus the notion of

fractional integral of order α(α > 0) is a natural consequence of the well known

formula(uaually attributed to Caushy),that reduces the calculation of the n-fold

primitive of function f(t) to a single integral of convolution type (Miller and

Ross(1993)). In our notation the Caushy formula reads

Jnf(t) := fn(t) =
1

(n− 1)!

∫ t

0

(t− τ)n−1f(τ)dτ , t > 0 , n ∈ N (11)

where N is positive integer. From this definition, it is noted that fn(t) vanishes

at t = 0 with its derivatives of order 1, 2, · · · , n − 1. For convention we require

that f(t) and henceforth fn(t) to be a causal function, i.e identically vanishing

for t < 0. In a natural way one is led to extend the above formula from positive

integer values of the index to any positive real values by using the Gamma function.

Indeed, nothing that (n − 1)! = Γ(n), and introducing the arbitrary positive real

number α, one define the Fractional Integral of order α :.

Jαf(t) :=
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ , t > 0 , α ∈ R+ (12)

where R+ is the set of positive real numbers . For complementation is defined

J0 := I (Identity operator),i.e. J0f(t) = f(t). Furthermore, by Jαf(0+) we mean

the limit (if it exists) of Jαf(t) for t→ 0+; this limitation may be infinite.

After the notation of fractional integral, that of fractional derivative of order

α (α > 0) becomes a natural requirement and one is attempted to substitute

α with −α in the 12. However, this generalization needs some care in order to

guarantee the convergence of the integrals and preserves the well known proper-

ties of the ordinary derivative of integer order. Denoting by Dn with n ∈ N , the

operator of the derivative of order n, we first note that

DnJn = I, JnDn 6= I, n ∈ N (13)

JnDnf(t) = f(t)−
n−1∑

k=0

f (k)(0+)
tk

k!
, t > 0. (14)

As a consequence we expect that Dα is defined as left-inverse to Jα. For this

purpose, introducing the positive integer m such as m − 1 < α ≤ m, one define

the Fractional Derivative of order α > 0 : Dαf(t) := DmJM−αf(t) namely (Miller

and Ross (1993)).

Dαf(t) :=
dm

dtm
[

1

Γ(m− α)

∫ t

0

f(τ)

(t− τ)α+1−m
dτ ] m− 1 < α < m. (15)
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and for α = m we have Dαf(t) := dm

dtm f(t) Defining for complementations D0 =

J0 = I then we easily recognize that

DαJα = I, α ≥ 0 (16)

and

Dαtγ =
Γ(γ + 1)

Γ(γ + 1− α)
tγ−α, α > 0 γ > −1 t > 0. (17)

Note the remarkable fact that the fractional derivative Dαf is not zero for the

constant function f(t) = 1 if α ∈ N .In fact 17 with γ = 0 teaches us that

Dα1 =
t−α

Γ(1− α)
, α ≥ 0 t > 0. (18)

this of course is≡ 0 for α ∈ N due to poles of Gamma function in the point

0,−1,−2, · · · . We now observe that an alternative definition of fractional deriva-

tive originally introduce by Caputo and Mainardi (1971) in the frame work of

the theory of Linear Viscoelasticity (see Baleanu and Avkar (2004)), is so-called

Caputo Fractional Derivative of order α > 0 : Dα
∗ f(t) := Jm−αDmf(t) with

m− 1 < α ≤ m, and this formula for m− 1 < α < m is

1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α+1−m
dτ

then, for α = m is

dm

dtm
f(t)

5. Simulation of Eractional Calculus by Monte Carlo Methods

A fractional derivative of order α is given by using Caputo definition for

m− 1 < α < m is

1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α+1−m
dτ

We can simulate this form of integrals by using modified Monte Carlo methods.

Algorithm for generation of Dαf(x(t1)), · · · , Dαf(x(tn))

1 − Let y(i) = generate m random number from uniform (0, ti) j =

1, · · · ,m, i = 1 . . . , n and sorted (y)

2− Let zj =
(
fk(yj)/(ti − yj)

α+1−k
)
×∆(yj), k − 1 < α < k

3− Let Dα(f(x(ti)) =
1

Γ(k−α) ×
∑
zj

For example we have simulated Dα(sin(x2)) for α = 0.1, α = 0.2, · · · , α = 0.9

And this problem is solved in R software, after that it is shown in figure 2. When

α is increased, a particular trend will be found.
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Fig. 2. Simulation from Dα(sin(x2)) for α = 0.1, α = 0.2, · · · , α = 0.9.

We prefer to write again, Rieman-Liouville definition of fractional integral of

order α > 0, which is given as [8]

Iαy(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, (α > 0) (19)

and we can do this form of integral by using modified monte carlo method.

Algorithm for generation samples from Iα(y(t1)), I
αf(y(t2)), · · · , Iαf(y(tn)) :

1 − Let yj = generate m random number from uniform (0, ti) j =

1, 2, · · · ,m, i = 1 . . . , n and sorted (y)

2− Let zj =
(
(ti − yj)

α−1/(f(yj)
)
×∆(yj)

3− Let Dα(f(x(ti)) =
1

Γ(α) ×
∑
zj
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For example, Iαsin(x2) for α = 0.1, α = 0.2, · · · , α = 0.9, is simulated and

solved in R software which is shown in figure 3. When α is increased, despite of

trend shown in figure 2 a reverse trend will be found in figure 3.
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Fig. 3. Simulation from Iα(sin(x2)) for α = 0.1, α = 0.2, · · · , α = 0.9.

6. Conclusion

We have demonstrated a simple way of improving for computations of bounded

integrals, using deterministic Riemann methods, and depicting their result by ex-

ample. Indeed, reduction of the stochastic factor help us to decrease of its variance

and this approximation is being nearer to real value. In cases of Monte Carlo using

with uniform density between two bounds of integrals, we can use this method for
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complicated computations of fractional derivations and integrals, using approxi-

mate Monte Carlo methods, and depicted their figures for a variety of amounts

α. Some of these points have not been exactly fitted on relevant carve due to

their stochastic aspects. But in general, current trend in these figures have been

considered to create their novel applications in the field of physics (Samko et al

(1993), Miller and Ross (1993), Hilfer (2000)) and the other sciences (Ghoreishi et

al (2009), Mainardi and Carpinteri (1997)).
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On Unimodality of Generalized Order Statistics and Their Dual

M. Alimohammadi and M. H. Alamatsaz
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Generalized order statistics (GOSs) and their dual (DGOSs) have been introduced as a
unification of several models of random variables arranged in ascending and descending
order of magnitude with different interpretations and statistical applications, respec-
tively. Some authors have worked on strong unimodality of GOSs under some rather
strong conditions. In this article, we shall concentrate to the unimodality of these statis-
tics in general. To do this, we shall first correct an erroneous result of Basak and Basak
(2002) in establishing the unimodality of record values and generalize this result to
k-record values. Then, we shall extend the result, more generally, to certain important
cases of GOSs and DGOSs which contain Alam’s (1972) results as corollaries.

Keywords: Unimodality; Order statistics; Upper k-record values; Lower k-record values;

Generalized order statistics; Dual generalized order statistics; Convexity.

1. Introduction

A distribution function F (x) is said to be unimodal if there exists a value x = a

such that F (x) is convex for x < a and concave for x > a and F (x) is said to be

strongly unimodal if its convolution with any unimodal distribution is unimodal.

Dharmadhikari and Joag-Dev (1988) is a good monograph for these concepts.

Huang and Ghosh (1982) and Chen et al. (2009) have worked on strong uni-

modality of ordinary order statistics and GOSs, respectively, under some rather

strong conditions. For a distribution function F (x) with density f(x), Alam (1972)

showed that the condition of convexity of 1
f(x) is sufficient to ensure unimodality

of the corresponding ordinary order statistics. Basak and Basak (2002) investi-

gated unimodality of record values, but Aliev (2003) provided a counter example

showing that the convexity of 1
f(x) , formulated by Basak and Basak, is not suf-

ficient to conclude that the upper record values are unimodal. In this paper, we

shall first modify Basak and Basak’s result and establish the result for unimodal-

ity of k-record values. Then, we shall extend the result, more generally, to certain

important cases of GOSs and DGOSs which contain Alam’s results.
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2. Unimodality of record statistics

Let X1, X2, ... be iid random variables (r.v.) with absolutely continuous cumu-

lative distribution function (cdf) F and probability density function (pdf) f .

For a sample size of n ≥ 1, we denote the order statistics of X1, X2, ..., Xn by

X1,n, X2,n, ..., Xn,n. Then the sequence {T (k)
n , n ∈ N}, k ∈ N , with nth upper

k-record instances

T
(k)
1 = 1,

T
(k)
n+1 = min{j ∈ N : j > T (k)

n , Xj,j+k−1 > X
T

(k)
n ,T

(k)
n +k−1

}, n ∈ N (1)

and nth upper k-record values

U (k)
n = X

T
(k)
n ,T

(k)
n +k−1

, n ∈ N (2)

are called nth upper k-record statistics. Similar definition is given for the nth lower

k-record statistics L
(k)
n by switching the last inequality in Eq. (1). Obviously, we

obtain ordinary upper record values when k = 1 and, in this case, we denote U
(1)
n

by X(n). For more details on record statistics, we refer to Arnold et al. (1998) and

Nevzorov (2001).

Basak and Basak claimed the following incorrect results for unimodality of

upper record values. First, we shall reveal the incorrectness of their proof, then

attempt to modify their theorems to show the unimodality of k-record values, in

general.

Theorem 2.1 (Basak and Basak, 2002). (i) Suppose that the pdf f of cdf F

is such that 1/f is convex. Then, each upper record statistic X(n), n ≥ 1, has a

unimodal distribution.

(ii) Let the cdf F be unimodal with mode at a, and the pdf f. Let f be continuous

at a, and 1/f be convex in x > a. Then, X(n), n ≥ 1 is unimodal.

Proof. (i) The density function fn(x) of X(n) is given by

fn(x) =
1

(n− 1)!
(H(x))n−1f(x), x ∈ R (3)

where F̄ andH(x) = −lnF̄ (x) are the survival function and the cumulative hazard

rate of X , respectively (see, e.g., Arnold et al. (1998), p. 10). If we denote the

hazard rate of X by H ′(x) = h(x) = f(x)/F̄ (x), by differentiation we obtain

f ′
n(x) =

1

(n− 1)!

[
(n− 1)h(x)(H(x))n−2f(x) + (H(x))n−1f ′(x)

]

=
(H(x))n−1h(x)f(x)

(n− 1)!

[ (n− 1)

H(x)
+
f ′(x)

f2(x)
F̄ (x)

]
. (4)
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But convexity of 1/f implies that f ′/f2 is non-increasing. Also, clearly H is non-

decreasing. Basak and Basak stated that the product of two non-increasing func-

tions f ′/f2 and F̄ is non-increasing, then, by (4), concluded that fn(x) is unimodal.

This claim may not be true when f ′/f2 is negative. Since F̄ is non-negative,

one way to tackle this problem is to restrict ourselves to distributions for which

f ′ is non-negative. This is, obviously, the case when f is non-decreasing on its

support. However, it should be noted that since the pdf (3) of the upper record

statistic, in this special case, becomes the product of two non-decreasing functions,

the assumption of 1/f being convex is not required. Thus, this kind of distributions

can have unimodal upper records (at the end point of their support).

(ii) It may be noted from (i) that, distributions for which f is unimodal and

continuous at its mode can not have unimodal upper record values. Thus, this part

of the theorem is not true at all, confirming Aliev (2003).

Therefore, we arrive at the following modified and also generalized version of

Theorem 2.1 as follows:

Theorem 2.2. Let the pdf f of cdf F be such that for k = 1, f is non-decreasing

on its support and for k = 2, 3, .., both 1/f is convex and f is non-decreasing on

its support. Then, each upper k-record statistic U
(k)
n , (k, n ∈ N), has a unimodal

distribution.

Proof. The density function f
U

(k)
n

(x) of U
(k)
n is given by

f
U

(k)
n

(x) =
kn

(n− 1)!
(H(x))n−1(F̄ (x))k−1f(x), x ∈ R (5)

(see, e.g., Arnold et al. (1998), p. 81).

So, we have

f ′
U

(k)
n

(x) =
kn

(n− 1)!

[
− (k − 1)f2(x)(H(x))n−1(F̄ (x))k−2

+(n− 1)h(x)(H(x))n−2(F̄ (x))k−1f(x) + f ′(x)(H(x))n−1(F̄ (x))k−1
]

=
kn

(n− 1)!
(H(x))n−1(F̄ (x))k−1f(x)h(x)

×
[
− (k − 1) +

(n− 1)

H(x)
+
f ′(x)

f2(x)
F̄ (x)

]
. (6)

Thus, by the above argument, the quantity inside the brackets on the right-hand

side of Eq. (6) is non-increasing in x and the quantity outside the brackets is

positive. Hence, f ′
n(x) has at most one change of sign as x moves from −∞ to ∞,

from positive to negative. Therefore, f
U

(k)
n

(x) is unimodal.
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Example 2.1. Consider the right-truncated Normal distribution, N(µ, σ2), at µ.

Practically, we consider the case when µ > 0 is far from zero, e.g., µ > 4σ. In

this case, the corresponding r.v. takes positive values which is desired in such

contents. Obviously, this distribution satisfies the conditions of Theorem 2.2, thus,

all of its upper k-record values are unimodal. Therefore, it can be concluded that

distributions satisfying 1/f being convex, can be truncated as desired.

As other examples, consider generalized Pareto distribution with the shape

parameter c > 1:

f(x) = a−1(1− cx/a)c
−1−1, 0 < x < a/c.

This satisfies the condition of Theorem 2.2 for k = 1, because it is only non-

decreasing (see Johnson et al. (1994), p. 615). Particular Beta, e.g., power function

distribution

f(x) = pxp−1, 0 ≤ x ≤ 1

with parameter p ≥ 1, satisfies the conditions for k ∈ N , but,

f(x) = q(1− x)
q−1

, 0 ≤ x ≤ 1

where 0 < q < 1, does not satisfy the condition of 1/f being convex (see Johnson

et al. (1995), p. 219-220).

Next theorem shows that for unimodality of the lower case, the condition of

1/f being convex for any k ∈ N is sufficient.

Theorem 2.3. Let the pdf f of cdf F be such that 1/f is convex. Then, each lower

k-record statistic L
(k)
n , (k, n ∈ N), has a unimodal distribution.

Proof. The density function f
L

(k)
n

(x) of L
(k)
n is given by

f
L

(k)
n

(x) =
kn

(n− 1)!
(−lnF (x))n−1(F (x))

k−1
f(x). (7)

So, we have

f ′
L

(k)
n

(x)

=
kn

(n− 1)!

[
(k − 1)f2(x)(−lnF (x))n−1(F (x))k−2

−(n− 1)
f2(x)

F (x)
(−lnF (x))n−2(F (x))k−1 + f ′(x)(−lnF (x))n−1(F (x))k−1(x)

]

=
kn

(n− 1)!
(−lnF (x))n−1(F (x))k−1(x)f2(x)

[ (k − 1)

F (x)
+

(n− 1)

lnF (x)

1

F (x)
+
f ′(x)

f2(x)

]
.

(8)
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Hence, the assertion follows similar to that of Theorem 2.2.

Further, in the special cases we have:

Theorem 2.4. Suppose that the cdf F with pdf f is unimodal with mode at M. Let

f be continuous at M, and 1/f be convex in x < M (x > M). Then, L
(1)
n (L

(k)
1 ),

(k, n ∈ N), is unimodal.

Proof. From (7), the pdf of L
(1)
n , the lower record statistic, is given by

f
L

(1)
n
(x) =

1

(n− 1)!
(−lnF (x))n−1f(x). (9)

Clearly, f
L

(1)
n
(x) is non-increasing for x ≥M . Since 1/f is convex, using the same

argument as in the Theorem 2.3, f
L

(1)
n
(x) is either non-increasing or it is first

increasing and then decreasing for x < M . Therefore, f
L

(1)
n
(x) is unimodal. For

L
(k)
1 , the proof is similar in reverse direction, i.e., for x > M .

3. Unimodality of generalized order statistics and their dual

Generalized order statistics (GOSs) were introduced by Kamps (1995a,b) as a uni-

fication of several models of random variables arranged in ascending order of mag-

nitude with different interpretations and statistical applications. In other words,

he imposed several parameters into a model so that, by changing them, it could

cover previous known ordered random variables arranged in ascending order of

magnitude. Then, Burkschat et al. (2003) proposed a dual model that enables

a common approach to descending ordered random variables. In this section, we

investigate the unimodality of GOSs and DGOSs.

Let n ∈ N, k ≥ 1, m1,m2, ...,mn−1 ∈ R, Mr =
∑n−1

j=r mj , (r = 1, ..., n− 1), be

such that γr = k + n − r + Mr ≥ 1 for all r ∈ {1, ..., n − 1}, and let m̃ =

(m1,m2, ...,mn−1), if n ≥ 2 (m̃ ∈ R arbitrary, if n = 1).

If m1 = m2 = ... = mn−1 = m , we denote GOSs (DGOSs) by X(r, n,m, k)

(Xd(r, n,m, k)), 1 ≤ r ≤ n. In many cases, this assumption of equality of m̃

components naturally holds. This assumption is not far from reality because it

is satisfied by most of the well known models such as, ordinary order statistics,

record values and in general k-record values, order statistics with non-integral

sample size, some cases of sequential order statistics and some cases of Pfeifer’s

record model. Therefore, we may well assume that mi = m, i = 1, ..., n− 1.

Now, let cr−1 =
∏r

i=1 γj , r = 1, ..., n with Mn = 0 and on the unit interval

define gm(x), (m ∈ R), by

gm(x) =

{
1

m+1 (1− (1 − x)m+1) ,m 6= −1

−ln(1− x) ,m = −1
, x ∈ [0, 1). (10)
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In such a case, the pdf of rth GOS and DGOS of an absolutely continuous distri-

bution function F with pdf f are, respectively, given by

fX(r,n,m,k)(x) =
cr−1

(r − 1)!
(F̄ (x))γr−1(gm(F (x)))r−1f(x), x ∈ R (11)

(see Kamps (1995a), p. 64), and

fXd(r,n,m,k)(x) =
cr−1

(r − 1)!
(F (x))γr−1(gm(F̄ (x)))r−1f(x), x ∈ R. (12)

Theorem 3.1. Let F be the cdf with pdf f . Then, its GOS is unimodal if one of

the following conditions are satisfied:

(i) m 6= −1, 1
f is convex,

(ii) m = −1:

(a) k = 1 and f is non-decreasing on this support,

(b) k > 1, 1
f is convex and f is non-decreasing on its support.

Proof. (i) From (11) we have

f ′
X(r,n,m,k)(x) =

cr−1

(r − 1)!

[
− (γr − 1)f2(x)(F̄ (x))γr−2(gm(F (x)))r−1

+(r − 1)f2(x)(F̄ (x))m(F̄ (x))γr−1(gm(F (x)))r−2

+f ′(x)(F̄ (x))γr−1(gm(F (x)))r−1
]

=
cr−1

(r − 1)!
f2(x)(gm(F (x)))r−1(F̄ (x))γr−1

×
[
− (γr − 1)

F̄ (x)
+

(r − 1)

gm(F (x))
(F̄ (x))m +

f ′(x)

f2(x)

]
. (13)

By definition (10), gm(F (x)) is non-decreasing and in the case m 6= −1 its deriva-

tive is f(x)(1 − F (x))m. Now, by the assumption, f́/f2 is non-increasing, so the

quantity inside the brackets on the right-hand side of Eq. (13) is non-increasing

in x and the quantity outside the brackets is positive. Thus f́X(r,n,m,k)(x) changes

sign at most once as x moves from −∞ to ∞ and any change of sign must be from

positive to negative. Therefore, fX(r,n,m,k)(x) is unimodal.

(ii) The proof follows similar to that of Theorem 2.2 with k ∈ [1,∞).

It is worth mentioning that only for the case m = −1, Theorem 3.1 requires

additional condition of f being non-decreasing.

In the next theorem, we present a weaker condition on F than that of Theorem

3.1 (i) for the smallest GOS.

Theorem 3.2. Suppose that the cdf F with pdf f is unimodal with mode at M. Let

m 6= −1, f be continuous at M, and 1/f be convex in x < M . Then, the smallest

GOS is unimodal.
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Proof. The pdf of the smallest GOS from (11) is given by

fX(1,n,m,k)(x) = γ1(F̄ (x))γ1−1f(x), x ∈ R. (14)

Using the same argument as in the Theorem 2.4, we have the result.

It is worth mentioning that Alam (1972) had shown the validity of above results

for ordinary order statistics which is obviously obtained from our Theorems 3.1

(i) and 3.2 when m = 0 and k = 1.

Finally, we give an analogue of the Theorem 3.1 for the DGOSs.

Theorem 3.3. Let F be the cdf with pdf f . Then, its DGOS is unimodal if one

of the following conditions are satisfied:

(i) m 6= −1, 0, 1
f is convex and f is non-decreasing on its support,

(ii) m = −1, 0, 1
f is convex.

Proof. (i) From (12) we have

f ′
Xd(r,n,m,k)(x) =

cr−1

(r − 1)!

[
(γr − 1)f2(x)(F (x))γr−2(gm(F̄ (x)))r−1

−(r − 1)f2(x)(F (x))m(F (x))γr−1(gm(F̄ (x)))r−2

+f ′(x)(F (x))γr−1(gm(F̄ (x)))r−1
]

=
cr−1

(r − 1)!
f2(x)(F (x))m(gm(F̄ (x)))r−1(F (x))γr−1

×
[ (γr − 1)

(F (x))m+1
− (r − 1)

gm(F̄ (x))
+
f ′(x)

f2(x)

1

(F (x))m

]
. (15)

Since, in this case, gm(F̄ (x)) is non-increasing, the result follows by assumption

similarly using the previous arguments.

(ii) For m = −1, apply Theorem 2.3 with any rael k ≥ 1 and for m = 0 the

result follows by (15).

Remark 3.1. Similar to Theorem 3.2, for the cases m = −1, 0, we have the result

for the biggest DGOS by considering the convexity of 1/f in x > M .

Remark 3.2. Note that, Theorems 3.1 and 3.3 are alike for the casem = 0. Thus,

for k = 1, reversed ordered order statistics have also unimodal distributions by

convexity of 1/f . Also, this holds for order statistics with non-integral sample size

by selecting k = α−n+1, where α ∈ R is the sample size (see Kamps (1995a), p.

51).

Example 3.1. Consider Normal, Cauchy, particular Weibull and Gamma distri-

butions. Then, sequential order statistics with parameters α1, α2, ..., αn, (αi > 0),
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mi = (n − i + 1)αi − (n − i)αi+1 − 1 and k = αn for the special case when

(n − i + 1)αi − (n − i)αi+1 = c; and Pfeifer’s record model with parameters

β1, β2, ..., βn, (βi > 0), mi = βi − βi+1 − 1, and k = βn, (i = 1, 2, ..., n − 1), (see

Kamps (1995a), p. 52-53) for the special case when βi − βi+1 = c, (c 6= 0 is a

constant), have unimodal distributions in the upper case by Theorem 3.1 (i). Note

that, if c = 0 and k ∈ N , these models would convert to the k-record model.
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Nonlinear Model For Time Series Using Mixture Of Autoregressive

Time Series With Conditional Heteroscedasticity

S. H. Alizadeh and S. Rezakhah

Department of Statistics, Amirkabir university of Technology

In this paper we introduce a new model for modeling nonlinear time series with het-
eroscedasticity, and propose a new algorithm for parameter estimation based on EM
and fisher scoring iterative algorithms. The MoE-AR-ARCH model is a flexible model
for modeling nonlinearities in time series, including burstiness,cycles and flat stretches,
since it partitions the covariate space softly into J partitions and fits an autoregressive
model with conditional heteroscedasticity in each partition.

Keywords: Nonlinear time series, Mixture Models, Conditional Heteroscedasticity.

1. Introduction

The most frequently used approaches for modeling time series assume that the

data under study are generated from a linear Gaussian stochastic process [2]. Lin-

ear time series models (such as ARMA, ARMAX and ARIMA) have been well

developed and widely used because of their tractability and ease of interpretation.

the other reasons for this popularity is that linear Gaussian models provide a num-

ber of appealing properties such as frequency domain analysis, asymptotic results,

statistical inference and many others that nonlinear models still fail to produce

consistently. However, they may be overly simplistic and fail to capture many es-

sential features of the underlying process. It is well known that real-life systems are

usually nonlinear, and certain features such as burstiness,limit-cycles, asymmetry,

amplitude-dependent frequency responses, jump phenomena, and chaos cannot be

correctly captured by linear statistical models [20].

Over recent years, several nonlinear time series models have been proposed

both in statistical approach [9] [10] and in machine learning theory [14] [18] [25].

Several nonlinear models have been developed following Tong’s seminal work on

threshold autoregressive (TAR) models. The central idea of the TAR model is to

change the parameters of a linear autoregressive model according to the value of

an observable variable, called threshold variable [22]. If this variable is a lagged

value of the time series, the model is called self-exciting threshold autoregressive
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(SETAR) model. let xt = (yt−1, ..., yt−p)
T

. The general Tong’s TAR model is

expressed as

yt =

J∑

j=1

(βj + bT
j xt)I(rj−1 ≤ yt−d < rj) + εt

Where εt are iid zero-mean random variables, 1 < d < p represents the delay, rj
represent threshold at which the level and the vector of autoregressive parameters

change into new values from those given by βj and bj (r0 = −∞ < r1 ≤ ... <

rJ = +∞), I(A) is the indicator variable (I(A) = 1 if A occurs and I(A) = 0

otherwise).

Because of difficulties in determining the thresholds empirically, the TARmodel

is usually is limited to a single threshold r1 (i.e J = 2). the threshold dose not

involve interactions among the lagged predictor variables. moreover the regression

function of yt on xt has jump discontinuities [16]. A natural generalization of the

SETAR model is the STAR model, proposed by Chan and Tong [5] and expressed

as

yt = φ
(1)
0 +

P∑

i=1

φ
(1)
0 yt−i + (φ

(2)
0 +

P∑

i=1

φ
(2)
0 yt−i)F (γyt−d − r) + εt (1)

where F (.), called transition function, is a continuous, monotonically increasing

function. The parameter γ is responsible by the smoothness of the function F (.).

When γ → ∞ , (1) becomes a SETAR model with two regimes. The scalar pa-

rameter is known as the location parameter. Although this model circumvents the

problem of jump discontinuities, but the number of autoregressive components in

the model is restricted to 2 and the other problems of Tong’s TAR model is still

remained [20]. Medeiros and A. Veiga extended STAR model with the aid of multi

layer perceptron (MLP) neural network. They proposed neuro-coefficient smooth

transition autoregressive (NCSTAR) model for forecasting nonlinear time series.

The restriction on the number of partitions was remedied in Their model, the

neurons in the hidden layer of MLP enables the model to partition the covariate

space along arbitrary hyperplanes [20]. Lai and Wong extended the tong’s TAR

model with the aid of stochastic neural networks [16]. Stochastic neural network

was used as a method for soft splitting the covariate space.

Another approach for modeling nonlinear time series consist of modeling con-

ditional distributions of time series. This idea originated from seminal work of

Raftery for modeling high order markov chains [21]. Raftery et. al. extended the

mixture transition distribution (MTD) model for continuous state space processes

and introduced GMTD model [17]. GMTD was able to model flat stretches, bursts

and outliers in time series. Wong and Li further extended GMTD model to Mix-

ture of Autoregressive (MAR) model [23]. Berchtold used MTD model with time
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varying variance components to model heteroscedastic time series [3]. Amendola

and Nigli derived the predictor distribution and for cast accuracy of threshold

models, they showed that the conditional density of time series for multi step

ahead prediction of threshold models follows a finite mixture model [1]. A special

case of finite mixture model in which both the mixture coefficients and the mix-

ture components are generalized linear model(GLIM’s) was proposed by Jordan

and Jacobs, they called this model Mixture of Experts (MoE) neural network and

derived an efficient algorithm for parameter estimation [12] [13]. In fact they used

the idea of mixture models in conjunction with soft splitting property of neural

networks for decreasing the variance of estimator. Carvalho and Tanner used Mix-

tures of Experts of Autoregressive Time Series for modeling nonlinear time series,

they derived the necessary conditions for asymptotic normality of MLE estimator

of their model.

In this paper we introduce a new model for modeling nonlinear time series with

heteroscedasticity, and propose a new algorithm for parameter estimation based

on EM and fisher scoring iterative algorithms. The MoE-AR-ARCH model is a

flexible model for modeling nonlinearity in time series, including burstiness,cycles

and flat stretches, since it partitions the covariate space softly into J partitions and

fits an autoregressive model with conditional heteroscedasticity in each partition.

2. Mixtures-of-Experts of Autoregressive Time Series with

Conditional Heteroscedasticity

The J-component Mixtures-of-Experts of Autoregressive Time with Conditional

Heteroscedasticity (MoE-AR-ARCH) model under consideration is defined by

F (yt|Ft−1) = F (yt|yt−1, θ), (2)

=

J∑

j=1

gj(yt−1, γ)Fj(yt|yt−1, θj)

=
J∑

j=1

gj(yt−1, γ)Φ(
yt − φ′jyt−1

σj,t
),

and the weighting function gj(., γ) is defined by

gj(yt−1, γ) =
eβ

′
jyt−1

∑J
i=1 e

β′
iyt−1

(3)

and the time varying variance (Heteroscedasticity) of each component is defined

by

σ2
j,t = α

j0
+ αj1ε

2
j,t−1 + ...+ αjqj ε

2
j,t−qj (4)

εj,t = yt − φj0 − φj1yt−1 − ...− φjpj yt−pj
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where Φ(.) is the distribution of standard normal random variable,

yt−1 = (1, yt−1, ..., yt−p)
′
p×1, φj = (φj0, φj1, ..., φjpj , 0, ..., 0)

′
p×1, αj =

(α
j0
, αj1, ..., αjqj )

′
p×1, βj = (βj0, βj1, ..., βjp)

′
p×1 and p = max{pj, j = 1, ...J}.

From equation (3) it is clear that weighting functions gj(yt−1) ∈ (0, 1) and∑J
j=1 gj(yt) = 1, thus the conditional distribution in model (2) is convex com-

bination of J distinct distributions, As required by finite mixture models. The

weighting function is a function of lagged time series variables, this model reduces

to finite mixture model of autoregressive time series with conditional heteroscedas-

ticity if it is constant (i.e. the MAR-ARCH model proposed by Wong and Li in

2001 [?]). Note that the order of autoregressive components are not necessarily

the same, we add the required number of zeros at the end of original φj to rise it’s

size up to p. To avoid the possibility of zero or negative conditional variance, the

following conditions for αjk must be imposed

αj0 > 0

αji ≥ 0 j = 1, ..., J, i = 1, ..., qj

The core idea of MoE-AR-ARCH model for modeling nonlinear heteroscedas-

tic time series is based on the divide-and-conquer approach for solving nonlinear

complex problems [13] and Engle’s idea for modeling heteroscedasticity in time

series. At any time point we have a certain number of heteroscedastic autoregres-

sive models, we assume the existence of latent multinomial random variable which

determines the probability of associated model for generating the observations of

time series. We adopt the multinomial logit models for modeling the distribu-

tion of latent variable. In other words the weighting functions (3) determine the

probability that the next observation of time series comes from jth component of

mixture model. In fact the weighting functions softly split the covarite space into

J partitions. By soft split, we meaning that data points may lie simultaneously

in multiple regions. On the other hand for real processes one might expect better

forecast intervals if additional information from the past were allowed to affect

the forecast variance, for this end we made use of Engle’s ARCH model [8] in

MoE-AR-ARCH model.

In MoE-AR-ARCH model, the conditional expectation of yt given the past

observations yt−i, i > 1 is

E[yt|Ft−1] = E[yt|yt−1] =
J∑

j=1

gj(yt−1, γ)φ
′
jyt−1 (5)
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and its conditional variance is

V ar(yt|Ft−1) = V ar(yt|yt−1)

=

J∑

j=1

gj(yt−1, γ)σ
2
j,t +

J∑

j=1

gj(yt−1, γ)(φ
′
jyt−1)

2

−(

J∑

j=1

gj(yt−1, γ)φ
′
jyt−1)

2 (6)

3. Estimation

Estimation of the parameters of MoE-AR-ARCH model,Θ = {θj =

{φj , αj}, βj, j = 1...J} is similar to finite mixture models but with more com-

plications. Most of this complexity is due to the components heteroscedasticity.

The EM algorithm ,the most readily available procedure in estimating mixture

type models, is used.

The EM algorithm is a general iterative technique for maximum likelihood es-

timation. Each iteration is composed of two steps: A estimation (E) step and a

maximization (M) step. An application of EM generally begins with the observa-

tion that the optimization of the likelihood function l(Θ,Y),Y = (y1, ..., yn) would

be simplified if only a set of additional variables, called ”missing” or ”hidden” vari-

ables, were known. We refer to observable data Y as the incomplete data and point

a ”complete data” set Yc that includes missing variable Z and observed data Y.

First calculate the expected value of the complete-data likelihood(lc(Θ,Yc)), given

the observed data and the current model, This is the E step:

Q(Θ,Θ(p)) = E[lc(Θ,Yc)|Y] (7)

where Θ(p) is the value of parameter at pth iteration and the expectation is taken

with respect to it. this step yields a deterministic function Q. The M step maxi-

mizes this function with respect to Θ to find the new parameter estimates Θ(p+1)

Θ(p+1) = argmax
Θ

Q(Θ,Θ(p)) (8)

Dempster proved that an increase in Q implies an increase in the incomplete

likelihood [11].

l(Θ(p+1),Y) ≥ l(Θ(p),Yc) (9)

Suppose that the Observations Y = (y1, ..., yn) is generated from the model

(2), let Z = (Z1, Z2, ..., Zn) be the missing data where Zt = (z1,t, ..., zJ,t) is a

J-dimensional unobservable random vector with it’s jth component equal to 1 if
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yt comes from the jth component of the conditional distribution function and 0

otherwise.

f(yt, zt|yt−1,Θ) =

J∏

j=1

(gj(yt−1)fj(yt|yt−1, θj))
zj,t (10)

The partial likelihood of the complete data is written as:

lc(θ,Yc) =
n∑

t=1

J∑

j=1

zj,tln(gj(yt−1)fj(yt|yt−1, θj))

=

n∑

t=1

J∑

j=1

zj,t{ln(gj(yt−1)) + ln(fj(yt|yt−1, θj))} (11)

E[zj,t|Y] = P (zj,t = 1|yt,yt−1,Θ
(p)) (12)

Using the Bayes’s rule, this prior probability can be computed based on the pos-

terior probabilities. The posterior probability is defined once both the input and

the target output are known.

P (zj,t = 1|yt,yt−1,Θ
(p)) = hj,t =

gj(yt−1)fj(yt|yt−1, θj)∑J
i=1 gi(yt−1)fi(yt|yt−1, θj)

(13)

Using previous equation and the complete data log likelihood (11), the conditional

expectation of complete data log likelihood (7) can be written az:

Q(Θ,Θ(p)) =

n∑

t=1

J∑

j=1

hj,t{ln(gj(yt−1)) + ln(fj(yt|yt−1, θj))} (14)

The M step requires maximizing Q(Θ,Θ(p)) with respect to parameters set Θ:

θ
(p+1)
j = argmax

θj

∑

t

hj,tln(fj(yt|yt−1, θj)) (15)

β
(p+1)
j = argmax

βj

∑

t

∑

j

hj,tln(gj(yt−1)) (16)

Equation (16) involves maximizing the cross-entropy between posterior probabil-

ities hj,t and the prior probabilities, gj(Yt−1). this cross-entropy is the log likeli-

hood associated with a multinomial logit probability model, in which the hj,t act

as the output observations. Thus this is a maximum likelihood problem and can

be solved using IRLS [13]. nonlinear optimization of equation (15) is done with
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an iterative algorithm. The iterations are calculated using scoring algorithm. Each

step for parameter vector θ produces estimates θi+1
j based on θij according to

θi+1
j = θij + [Îθjθj ]

−1 1

T

∑

t

∂lit
∂θj

(17)

where Î and ∂lit/∂θj are evaluated at θij .

Because of the components heteroscedasticity, direct calculation of (17) is so

complected, since

∂lit
∂φj

=
1

T
{

T∑

t=1

hj,t
2σ2

j,t

∂σ2
j,t

∂φj
(
ε2j,t
σ2
j,t

− 1)−
T∑

t=1

hj,tεj,t
2σ2

j,t

∂εj,t
∂φj

} (18)

where

∂σ2
j,t

∂φj,k
= −

k∑

i=1

2αj,iεj,t−iyt−k (19)

Lemma 3.1. Because of the block diagonality of the information matrix, the es-

timation of φj and αj can be considered separately without loss of asymptotic

efficiency. Furthermore either can be estimated with full efficiency based only on

a consistent estimate of the other where hj,t is defined in equation (13).

Proof. see Engle’s Article ”Autoregressive Conditional Heteroscedasticity With

Estimates of the Variance of United Kingdom Inflation”, [8].

Using the previous lemma, The iterative scoring algorithm for estimation of

parameters of MoE-AR-ARCH model in the M step of EM algorithm can be

summarized in the following steps:

1. As it is can be seen from equation (15), optimizing of equation (14) involves J

distinct optimization problem for determining the parameters of each compo-

nent separately.

2. Initially estimate φj by ordinary least squares, and obtain residuals.

3. From the residuals of previous step, an efficient estimate of αj can be con-

structed.

4. Based on the estimates, α̂j , efficient estimates of φj are found.

Note that in the proposed algorithm,
∂lit
∂φj

in equation (18) only contains the

second term.
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4. conclusion

In this paper we introduced a new model for modeling nonlinear time series with

heteroscedasticity, and proposed a new algorithm for parameter estimation based

on EM and fisher scoring iterative algorithms. The MoE-AR-ARCH model is a

flexible model for modeling nonlinearity in time series, including burstiness,cycles

and flat stretches, since it partitions the covariate space softly into J partitions and

fits an autoregressive model with conditional heteroscedasticity in each partition.
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The asymptotic efficiencies of the MLE based on bivariate record

values from bivariate normal distribution

M. Aminia and J. Ahmadi
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One of the most important bivariate distributions in statistical inference is the bivariate
normal distribution. In this paper we consider ML estimation of parameters of bivariate
normal distribution using bivariate record values. The asymptotic properties especially
asymptotic efficiencies of the ML estimators are studied and calculated by deriving
the Fisher information matrix about the five dimension parameter vector contained
in the vector of first n bivariate record values. The relative asymptotic efficiencies are
concerned with respect to ML estimators based on a bivariate sample of size n and the
corresponding ML estimators based on bivariate record values and inter-record times.

Keywords: Additivity; Bivariate distribution; inverse sampling.

1. Introduction and preliminaries

Let {(Xi, Yi), i ≥ 1} be a sequence of i.i.d. pair-wise random variables with the ab-

solutely continuous cumulative distribution function (cdf) F(X,Y )(x, y; θ) and the

corresponding pdf f(X,Y )(x, y; θ). Also fX(x; θ) and FX(x; θ) denote the marginal

pdf and cdf of Xs, respectively and F̄X(x; θ) = 1− FX(x; θ). The sequence of up-

per records and their concomitants is defined as (Rn, R[n]) = (XTn , YTn), n ≥ 1,

where T1 = 1 with probability one and for n ≥ 2, Tn = min{j : j > Tn−1, Xj >

XTn−1}. Suppose ∆i = Ti+1 − Ti − 1, i = 1, 2, . . . , n− 1, ∆n = 0 are the number

of trials needed to obtain new records, which are called inter-record times. Let us

denote Rn = (R1, . . . , Rn), ∆n = (∆1, . . . ,∆n),Cn = (R[1], . . . , R[n]).

The sequence of records and concomitants are called bivariate records. The

joint pdf of the first n bivariate upper records is (See Arnold et al., 1998)

f(Rn,Cn)(rn, r[n]) =

n∏

i=1

f(X,Y )(ri, si; θ)/

n−1∏

i=1

[F̄X(ri; θ)]. (1)

Using (1) the joint pdf of records, inter-record times and their concomitants is
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given by

f(Rn,∆n,Cn)(r, δ, s; θ) =

n∏

i=1

fX,Y (ri, si; θ){FX(ri; θ)}δi . (2)

So, the conditional probability mass function of ∆n given (Rn,Cn) is given by

f(∆n|Rn,Cn)(δ|r, s; θ) =
n−1∏

i=1

[FX(ri; θ)]
δi F̄X(ri; θ). (3)

We consider upper bivariate records to derive the results of this paper. Since

for standard normal distribution, we have R′
n (nth lower record) and −Rn are

identically distributed, similar results also hold for the case of lower records.

Hereafter, we will call upper records, simply, records. We denote some mo-

ments of bivariate records from standard bivariate normal distribution as follows

αi[i] = E(R0,1
i R0,1

[i] ), α
(2)
[i] = E(R0,1

[i] )
2 and α

(2)
i = E(R2

i ), where (R0,1
i , R0,1

[i] ) is

the ith bivariate record from standard normal distribution. Suppose the distribu-

tion of (Xi, Yi) is standard bivariate normal with correlation ρ for i=1,2,..., then

Yi = ρXi+εi, where the Xi and the εi are mutually independent and εi are normal

distributed with zero mean and variance equal to 1−ρ2. So by considering X-record

sequence we have for n ≥ 0, R0,1
[i] = ρR0,1

i + ε[i], where ε[i] denotes the particular

εi associated with R0,1
i . Since Xi and εi are independent so the sequence R0,1

i is

independent of ε[i], the later being mutually independent, each with the same dis-

tribution as εi. So we can conclude that αi[i] = ρα
(2)
i and α

(2)
[i] = ρ2α

(2)
i +1−ρ2.

2. ML estimation

Suppose that m independent sequences each with k bivariate records are observed

and the sampling distribution is bivariate normal distribution with parameter

θ = (µ1, σ1, µ2, σ2, ρ). Let (Ri(j), R[i](j)) denote the ith bivariate record in jth se-

quence. Our aim is to obtain the maximum likelihood estimator of θ. The likelihood

equations for bivariate record values and record times are as follows:

m∑

j=1

k∑

i=1

(
Ri(j) − µ1

σ1

)
− ρ

σ1

m∑

j=1

k∑

i=1

(
R[i](j) − µ2

σ2

)

− 1− ρ2

σ1

m∑

j=1

k∑

i=1

∆ir0

(
Ri(j) − µ1

σ1

)
= 0, (4)

m∑

j=1

k∑

i=1

R[i](j) −mkµ2 −
ρσ2
σ1




m∑

j=1

k∑

i=1

Ri(j) −mkµ1


 = 0,
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ρ (mk −
∑m

j=1

∑k
i=1(Ri(j) − µ1)

2

σ2
1

−
∑m

j=1

∑k
i=1(R[i](j) − µ2)

2

σ2
2

)

+ C∗(θ)(ρ2 + 1)−mkρ3 = 0,

where C∗(θ) =
∑m

j=1

∑k
i=1

(
Ri(j) − µ1

) (
R[i](j) − µ2

)
/(σ1σ2),

mk(1− ρ2) −
m∑

j=1

k∑

i=1

(
Ri(j) − µ1

σ1

)2

+ ρC∗(θ)

+ (1− ρ2)

m∑

j=1

k∑

i=1

∆i(Ri(j) − µ1)

σ1
r0

(
Ri(j) − µ1

σ1

)
= 0, (5)

and

mk(1− ρ2)−
m∑

j=1

k∑

i=1

(
R[i](j) − µ2

σ2

)2

+ ρC∗(θ) = 0.

For the case of bivariate record values without record times, the above equations

remain true except that (4) and (5) are replaced, respectively, with

m∑

j=1

k∑

i=1

(
Ri(j) − µ1

σ1

)

− ρ

σ1

m∑

j=1

k∑

i=1

(
R[i](j) − µ2

σ2

)

− 1− ρ2

σ1

m∑

j=1

k−1∑

i=1

h0

(
Ri(j) − µ1

σ1

)
= 0,

and

mk(1− ρ2) −
m∑

j=1

k∑

i=1

(
Ri(j) − µ1

σ1

)2

+ ρC∗(θ)

+ (1− ρ2)

m∑

j=1

k−1∑

i=1

(Ri(j) − µ1)

σ1
h0

(
Ri(j) − µ1

σ1

)
= 0.

The roots of likelihood equations have no closed form and these equations have to

be solved numerically.

3. Asymptotic properties

In this section, we study the consistency and asymptotic normality of the maximum

likelihood estimator of θ, obtained in the previous section.
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Theorem 3.1. Let θ̂m be the MLE of θ from the bivariate normal distribution

based on m independent sequences of the first k bivariate record values, then θ̂m is

a consistent estimator for θ as m→ ∞.

Proof. Let θ0 be the value of θ. Since θ̂m is the ML estimator of θ, we have

log fRm,Cm(%m, ςm; θ̂m) ≥ log fRm,Cm(%m, ςm; θ), for all θ ∈ Θ. (6)

On the other hand by Jensen’s inequality we have

Eθ0

(
log

fR,C(r, s; θ)

fR,C(r, s; θ0)

)
≤ log Eθ0

(
fR,C(r, s; θ)

fR,C(r, s; θ0)

)
= 0.

So

Eθ0 (log fR,C(r, s; θ)) ≤ Eθ0 (log fR,C(r, s; θ0)) .

Since 1
m log fRm,Cm(%m, ςm; θ) tends almost everywhere to Eθ0 (log fR,C(r, s; θ))

as m→ ∞, hence with probability one and for large enough m, we have

1

m
log fRm,Cm(%m, ςm; θ) ≤ 1

m
log fRm,Cm(%m, ςm; θ0), for all θ ∈ Θ. (7)

Setting θ = θ0 in (6) and θ = θ̂m in (7), it is deduced that θ̂m tends to θ0 with

probability one, as m→ ∞.

Theorem 3.2. Let θ̂m be as in Theorem 3.1, then the asymptotic distribution of√
m(θ̂m−θ) is N5(0 , I

−1
R,C(θ)) as m→ ∞, where I−1

R,C(θ) is the inverse of Fisher

information matrix in (R,C).

Proof. The Taylor’s expansion of ∂
∂θr

log fRm,Cm(%m, ςm; θ)
∣∣∣
θ=θ̂

for r = 1, . . . , k

around an arbitrarily θ1 is equal to

∂

∂θr
log fRm,Cm(%m, ςm; θ)

∣∣∣∣
θ=θ̂

=
∂

∂θr
log fRm,Cm(%m, ςm; θ)

∣∣∣∣
θ=θ1

+

5∑

s=1

(θ̂s − θ0)
∂2

∂θr∂θs
log fRm,Cm(%m, ςm; θ)

∣∣∣∣
θ=θ∗

,

where θ∗ is a sequence in Θ which tends in probability to θ1. The left hand side

of the above equality is equal to zero and hence

∂

∂θ
log fRm,Cm(%m, ςm; θ)

∣∣∣∣
θ=θ1

=

5∑

s=1

(θ̂s − θ1)
−∂2
∂θ∂θs

log fRm,Cm(%m, ςm; θ)

∣∣∣∣
θ=θ∗

= m(θ̂ − θ1)IR,C(θ).
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On the other hand, ∂
∂θ log fRm,Cm(%m, ςm; θ)

∣∣
θ=θ1

has a mean equal to zero and a

variance equal to mIR,C(θ). So

1√
m

∂

∂θ
log fRm,Cm(%m, ςm; θ)

∣∣∣∣
θ=θ1

=
√
m

(
1

m

∂

∂θ
log fRm,Cm(%m, ςm; θ)

∣∣∣∣
θ=θ1

− 0

)

has an asymptotic distribution N5(0 , IR,C(θ)) as m→ ∞. Hence,

√
m(θ̂m − θ) = I−1

R,C(θ)
1√
m

∂

∂θ
log fRm,Cm(%m, ςm; θ)

∣∣∣∣
θ=θ1

has an asymptotic distribution N5(0 , I
−1
R,C(θ)) as m→ ∞.

Remark: Similar asymptotic results are hold for ML estimators based on

bivariate records and inter-record times by replacing fRm,Cm(%m, ςm; θ) with

fRm,Cm,∇m(%m, ςm, δm; θ) and IR,C(θ) with IR,C,∆(θ) in Theorems 3.1 and 3.2.

4. Fisher information matrix

In order to compute the asymptotic relative efficiencies of the estimator of θ based

on m independent sequences each with k bivariate records and times (denoted

with RCT), with corresponding estimator based on similar mk bivariate records

without times (denoted with RC), and the estimator based on a bivariate random

sample of sizemk (denoted with IID), we derive the Fisher information matrices of

these three data bases. We have kIX,Y (θ) = ((Iij)); i, j = 1 . . . , 5, such that Iij =

Iji; j 6= i and I11 = k
σ2
1(1−ρ2)

, I12 = 0, I13 = −kρ
σ1σ2(1−ρ2) , I14 = 0, I15 = 0, I22 =

k(1−ρ2/2)
2σ4

1(1−ρ2)
, I23 = 0, I24 = −kρ2

4σ2
1σ

2
2(1−ρ2)

, I25 = −kρ
2σ2

1(1−ρ2)
, I33 = k

σ2
2(1−ρ2)

, I34 =

0, I35 = 0, I44 = k(1−ρ2/2)
2σ4

2(1−ρ2)
, I45 = −kρ

2σ2
2(1−ρ2)

, and I55 = k(1+ρ2)
(1−ρ2)2 . Let

L∗ = L∗(θ; ri, si) = −1

2
log(σ2

1σ
2
2(1− ρ))− 1

2(1− ρ2)

[(
ri − µ1

σ1

)2

+

(
si − µ2

σ2

)2

− 2ρ

(
ri − µ1

σ1

)(
si − µ2

σ2

)]
.

Hence, we obtain IRC(θ) = ((I ′ij)); i, j = 1 . . . , 5, such that I ′ij = I ′ji; j 6= i and

I ′11 = −
k∑

i=1

E

(
∂2

∂µ2
1

L∗(θ;Ri, R[i])

)
− 1

σ2
1

k−1∑

i=1

E(h′0(R
0,1
i ))

=
1

σ2
1

[
k

1− ρ2
+

k−1∑

i=1

E(R0,1
i h0(R

0,1
i ))−

k−1∑

i=1

E(h20(R
0,1
i ))

]
,
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I ′22 = −
k∑

i=1

E

(
∂2

∂(σ2
1)

2
L∗
)
− 1

4σ4
1

E

[
3
k−1∑

i=1

R0,1
i h0(R

0,1
i ) +

k−1∑

i=1

(R0,1
i )2h′0(R

0,1
i )

]

=
1

σ4
1

[
−k
2

+
1− 3/4ρ2

(1− ρ2)

k∑

i=1

α
(2)
i − 3

4

k−1∑

i=1

E(R0,1
i h0(R

0,1
i ))

+
1

4

k−1∑

i=1

E((R0,1
i )3h0(R

0,1
i ))− 1

4

k−1∑

i=1

E((R0,1
i )2h20(R

0,1
i ))

]
,

I ′33 = −
k∑

i=1

E

(
∂2

∂µ2
2

L∗(θ;Ri, R[i])

)
=

k

σ2
2(1− ρ2)

,

and

I ′44 = −
k∑

i=1

E

(
∂2

∂(σ2
2)

2
L∗(θ;Ri, R[i])

)

=
1

σ4
2

[
k

2
+

ρ2

4(1− ρ2)

k∑

i=1

α
(2)
i

]
.

Amini and Ahmadi (2007) showed that I ′55 =
(1−ρ2)

∑k
i=1 α

(2)
i +2kρ2

(1−ρ2)2 . Furthermore,

we obtain similarly

I ′12 =
1

σ3
1

[
1− ρ2/2

1− ρ2

k∑

i=1

αi −
1

2

{
k−1∑

i=1

E(h0(R
0,1
i ))−

k−1∑

i=1

E((R0,1
i )2h0(R

0,1
i ))

+

k−1∑

i=1

E(R0,1
i h20(R

0,1
i ))

}]
, I ′13 =

−kρ
σ1σ2(1− ρ2)

, I ′14 =
−ρ2

2σ1σ2
2(1− ρ2)

k∑

i=1

αi,

I ′15 =
−ρ

σ1(1− ρ2)

k∑

i=1

αi, I ′23 =
−ρ

2σ2
1σ2(1 − ρ2)

k∑

i=1

αi,

I ′24 =
−ρ2

4σ2
1σ

2
2(1− ρ2)

k∑

i=1

α
(2)
i , I ′25 =

−ρ
2σ2

1(1− ρ2)

k∑

i=1

α
(2)
i ,

I ′34 =
ρ

2σ3
2(1− ρ2)

k∑

i=1

αi, I ′35 =
1

σ2(1− ρ2)

k∑

i=1

αi,

and

I ′45 =
ρ

2σ2
2(1 − ρ2)

[
k∑

i=1

α
(2)
i − 2k

]
.
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The Fisher information matrix of the first k bivariate records and record times,

IRCT (θ), is obtained similarly.

5. Asymptotic relative efficiencies

The Fisher information matrices are free of µ1 and µ2. It can be seen that I−1(1, 1)

is multiple of σ2
1 , I

−1(2, 2) is multiple of σ4
1 , I

−1(3, 3) is multiple of σ2
2 , I

−1(4, 4) is

multiple of σ4
2 and I−1(5, 5) is free of σ1 and σ2, for all three mentioned information

matrices, where A(i, i) is the element of the ith row and ith column of the matrix

A.

Thus, the asymptotic relative efficiency (denoted by ARE) given below does not

depend on µi and σi, i = 1, 2. Hence, without loss of generality, we take σ1 = σ2 = 1

in evaluating I−1
RC , I

−1
RCT and I−1

IID using the above formulas. Asymptotic efficiency

of the MLE using bivariate record values and times with respect to (w.r.t.) that

using bivariate random sample of the same size, and ARE of the MLE using

bivariate record values and times w.r.t. that using bivariate record values without

times are as follows:

ARE(θ̂i,RCT ; θ̂i,IID) =
I−1
IID(i, i)

I−1
RCT (i, i)

; ARE(θ̂i,RCT ; θ̂i,RC) =
I−1
RC(i, i)

I−1
RCT (i, i)

, i = 1, . . . , 5.

Tables 1 to 5 show the values of ARE of µ1, σ1, µ2, σ2 and ρ, respectively. These

values are similar for negative and positive values of ρ. Since the values variations

for Tables 1 and 2 w.r.t. ρ are very negligible, they are shown in 8 decimal places.

The other tables’ values are shown in 3 decimal places.

Table 1:The values of ARE(µ̂1,RCT ; µ̂1,IID) (ARE(µ̂1,RCT ; µ̂1,RC)).

k
ρ 2 3 4

0.1 0.75230738(1.17312564) 0.57576506(1.28298358) 0.49074455(1.43525201)
0.3 0.75230737(1.17312564) 0.57576512(1.28298355) 0.49074457(1.43525195)
0.5 0.75230713(1.17312566) 0.57576506(1.28298357) 0.49074461(1.43525236)
0.7 0.75230716(1.17312565) 0.57576490(1.28298304) 0.49074453(1.43525122)
0.9 0.75230687(1.17312497) 0.57576826(1.28298400) 0.49074460(1.43525451)

Table 2:The values of ARE(σ̂1,RCT ; σ̂1,IID) (ARE(σ̂1,RCT ; σ̂1,RC)).

k
ρ 2 3 4

0.1 1.17304229(1.26641666) 1.13989568(1.25907952) 1.18477633(1.31711383)
0.3 1.17304227(1.26641666) 1.13989568(1.25907947) 1.18477632(1.31711383)
0.5 1.17304236(1.26641667) 1.13989570(1.25907955) 1.18477626(1.31711405)
0.7 1.17304220(1.26641663) 1.13989544(1.25907899) 1.18477616(1.31711337)
0.9 1.17304198(1.26641643) 1.13989669(1.25908029) 1.18477632(1.31711383)
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Table 3:The values of ARE(µ̂2,RCT ; µ̂2,IID) (ARE(µ̂2,RCT ; µ̂2,RC)).

ρ
k 0.1 0.3 0.5 0.7 0.9

2 0.842 (1.002) 0.834 (1.017) 0.818 (1.047) 0.796 (1.090) 0.768 (1.143)
3 0.652 (1.003) 0.645 (1.029) 0.632 (1.078) 0.613 (1.148) 0.589 (1.235)
4 0.526 (1.005) 0.523 (1.042) 0.5169(1.115) 0.508 (1.221) 0.497 (1.357)
5 0.444 (1.007) 0.446 (1.060) 0.450 (1.169) 0.457 (1.337) 0.466 (1.568)

Table 4:The values of ARE(σ̂2,RCT ; σ̂2,IID) (ARE(σ̂2,RCT ; σ̂2,RC)).

ρ
k 0.1 0.3 0.5 0.7 0.9

2 1.002 (1.00002) 1.016(1.0019) 1.043 (1.0148) 1.085 (1.059) 1.141 (1.170)
3 1.003 (1.00002) 1.030(1.0019) 1.078 (1.015) 1.130 (1.062) 1.154 (1.172)
4 1.005 (1.00003) 1.043(1.002) 1.114 (1.019) 1.191 (1.077) 1.217 (1.214)
5 1.006 (1.00003) 1.056(1.003) 1.153 (1.027) 1.280 (1.117) 1.371 (1.341)

Table 5:The values of ARE(ρ̂RCT ; ρ̂IID) (ARE(ρ̂RCT ; ρ̂RC)).

ρ
k 0.1 0.3 0.5 0.7 0.9

2 1.094(1.001) 1.093(1.011) 1.090(1.031) 1.087(1.061) 1.082(1.100)
3 1.206(1.001) 1.193(1.012) 1.168(1.033) 1.133(1.063) 1.090(1.100)
4 1.323(1.002) 1.300(1.016) 1.256(1.042) 1.196 (1.078) 1.124 (1.122)
5 1.444(1.003) 1.415(1.024) 1.361(1.065) 1.287(1.120) 1.200(1.184)

As we can see from the Tables 1 to 5, considering inter-record times along by

bivariate records, provides a distinct improve in estimation of θ. Also, bivariate

records and times lead to more precise estimators of scale and correlation param-

eters of bivariate normal distribution. On the other hand, location parameters’

estimates are more precise based on IID database. Furthermore, greater correla-

tion and smaller k leads to improvement of the estimators based on records relative

to the estimators based on iid sample.
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The exponential distribution is widely adopted as a lifetime model. Many authors
have considered the interval estimation of the parameters of two-parameter exponential
distribution based on complete and censored samples. In this paper, we consider the
interval estimation of the location and scale parameters and the joint confidence region
of the parameters of two-parameter exponential distribution based on upper records.
A simulation study is done for the performance of all proposed confidence intervals
and regions. We also propose the predictive intervals of the future records. Finally, a
numerical example is given to illustrate the proposed methods.

Keywords: Confidence interval; Confidence region; Exponential distribution; Predictive
interval; Record values.

1. Introduction

Let X1, X2, ... be a sequence of independent and identically distributed (iid) ran-

dom variables with cumulative distribution function (cdf) F (x; θ) and probability

density function (pdf) f(x; θ), where θ is an unknown parameter. An observation

Xj will be called an upper record value if its value exceeds that of all previous

observations. Thus, Xj is an upper record if Xj > Xi for every i < j. An analogous

definition can be given for lower record values. If {U(n), n ≥ 1} is defined by

U(1) = 1, U(n) = min{j : j > U(n− 1), Xj > XU(n−1)}, (1)

for n ≥ 2, then the sequence {XU(n), n ≥ 1} provides a sequence of upper record

statistics. The sequence {U(n), n ≥ 1} represents the record times. For more

details and applications of record values, see Arnold et al. (1998).

The exponential distribution is applied in very wide variety of statistical pro-

cedures, especially in lifetime data analysis and reliability. A great deal of research

has been done on statistical inference for the exponential distribution, and a very

good summary of this work can be found in Johnson et. al (1994). The cumulative

distribution function (cdf) of the two-parameter exponential distribution is given
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by

F (x;µ, σ) = 1− exp(−x− µ

σ
), x ≥ µ, σ > 0, (2)

where µ and σ are the location and scale parameters, respectively.

Recently, some authors have considered the interval estimation of the param-

eters of two-parameter exponential distribution based on censored samples. Sun

et. al. (2008) obtained confidence intervals for the scale parameter of exponential

distribution based on Type-II doubly censored samples. Wu (2007, 2010) proposed

the interval estimation of the scale parameter and the joint confidence region of

the parameters of two-parameter exponential distribution based on doubly Type-II

censored sample and progressively Type-II censored sample, respectively. But up

to now, no work has been done on confidence intervals and regions of the parame-

ters of two-parameter exponential distribution based on records. In this paper, two

methods propose for constructing confidence intervals and joint confidence regions

for the parameters of two-parameter exponential distribution based on records.

The paper is organized as follows: In Section 2, confidence intervals for µ and σ

are considered based on upper records. We also present two exact joint confidence

regions for the parameters µ and σ. In Section 3, a simulation study is performed to

compare the proposed confidence intervals and regions. In addition to the estima-

tion of the two parameters, the predictive intervals of the future record XU(n+1)

based on observed upper records are given in Section 4. Finally in Section 5, a

numerical examples is presented to illustrate the methods.

2. Confidence intervals and regions

LetXU(1) < XU(2) < · · · < XU(m) be the firstm observed upper record values from

the two-parameter exponential distribution. For notation simplicity, we will write

Xi for XU(i). Let Yi = (Xi−µ)/σ, (i = 1, 2, . . . ,m), then Y1 < Y2 < · · · < Ym are

the firstm upper record values from a standard exponential distribution. Moreover,

Z1 = Y1 and Zi = Yi−Yi−1, for i = 2, ...,m, are i.i.d standard exponential random

variables. Hence

U = 2 Z1 = 2 Y1, (3)

has a chi-square distribution with 2 degrees of freedom and

V = 2

m∑

i=2

Zi = 2 (Ym − Y1), (4)

has a chi-square distribution with 2m − 2 degrees of freedom. We can also find

that U and V are independent random variables. Now, let

T1 =
U/2

V/2(m− 1)
=

(m− 1)Y1
Ym − Y1

, (5)
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and

T2 = U + V = 2 Ym. (6)

It is easy to show that T1 has an F distribution with 2 and 2m−2 degrees of freedom

and T2 has a chi-square distribution with 2m degrees of freedom. Furthermore, T1
and T2 are independent (see Johnson et al. (1994), Page 350).

The distributions of the pivotal quantities U , V , T1 and T2 are independent

of parameters. Make use of these pivotal quantities, we can construct the confi-

dence intervals and regions for parameters. Using the pivotal quantity T1, we can

construct a confidence interval for the location parameter µ as follows:

Theorem 2.1. Suppose that X1 < X2 < · · · < Xm be the first m observed upper

record values from the two-parameter exponential distribution in (2). Then, for

any 0 < α < 1, the (1 − α)100% confidence intervals of the location parameter µ

is given by
(
X1 −

(Xm −X1)Fα
2
(2, 2m− 2)

m− 1
< µ < X1 −

(Xm −X1)F1−α
2
(2, 2m− 2)

m− 1

)
,

where Fα
2
(2, 2m− 2) is the right-tailed α

2 percentile for F distribution with 2 and

2m− 2 degrees of freedom.

Proof. From (5), we know that

T1 =
(m− 1)(X1 − µ)

Xm −X1
∼ F (2, 2m− 2),

then we have

1− α = P
(
F1−α

2
(2, 2m− 2) < T1 < Fα

2 (2,2m−2)

)

= P

(
X1 −

(Xm −X1)Fα
2
(2, 2m− 2)

m− 1
< µ < X1 −

(Xm −X1)F1−α
2
(2, 2m− 2)

m− 1

)
.

The proof is thus obtained.

Make use of the pivotal quantity V , we can construct a confidence interval for

the scale parameter σ as follows:

Theorem 2.2. Based on the first m observed upper record values X1 < X2 <

· · · < Xm, a (1−α)100% confidence interval for the scale parameter σ is given by
(
2(Xm −X1)

χ2
α
2
(2m− 2)

< σ <
2(Xm −X1)

χ2
1−α

2
(2m− 2)

)
,

where χ2
α
2
(2m − 2) is the right-tailed γ

2 percentile for chi-square distribution with

2m− 2 degrees of freedom.
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Proof. From (4), we note that

V =
2(Xm −X1)

σ
∼ χ2(2m− 2).

Hence, we have

1− α = P
(
χ2
1−α

2
(2m− 2) < V < χ2

α
2
(2m− 2)

)

= P

(
2(Xm −X1)

χ2
α
2
(2m− 2)

< σ <
2(Xm −X1)

χ2
1−α

2
(2m− 2)

)
.

Using the set of pivotal quantities U and V , we can construct a confidence

region for the parameters µ and σ in the following Theorem. We call it Method 1.

Theorem 2.3. (Method 1) Based on the pivotal quantities U and V , a (1 −
α)100% joint confidence region of two parameters µ and σ is given by





X1 − σ
2χ

2
1−

√
1−α
2

(2) < µ < X1 − σ
2χ

2
1+

√
1−α
2

(2),

2(Xm−X1)
χ2

1−√
1−α
2

(2m−2)
< σ < 2(Xm−X1)

χ2
1+

√
1−α
2

(2m−2)
.

Proof. Since U and V are independent and U = 2(X1 − µ)/σ ∼ χ2(2) and

V = 2(Xm −X1)/σ ∼ χ2(2m− 2), then for any 0 < α < 1, we have

P
(
χ2

1+
√

1−α
2

(2) < U < χ2
1−√

1−α
2

(2)
)
=

√
1− α,

and

P
(
χ2

1+
√

1−α
2

(2m− 2) < V < χ2
1−

√
1−α
2

(2m− 2)
)
=

√
1− α.

From these relationships, we obtain

P

(
χ2

1+
√

1−α
2

(2) <
2(X1 − µ)

σ
< χ2

1−√
1−α
2

(2),

χ2
1+

√
1−α
2

(2m− 2) <
2(Xm −X1)

σ
< χ2

1−√
1−α
2

(2m− 2)

)

=
√
1− α.

√
1− α = 1− α.

Equivalently,

P
(
X1 −

σ

2
χ2

1−√
1−α
2

(2) < µ < X1 −
σ

2
χ2

1+
√

1−α
2

(2),

2(Xm −X1)

χ2
1−√

1−α
2

(2m− 2)
< σ <

2(Xm −X1)

χ2
1+

√
1−α
2

(2m− 2)


 = 1− α.
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Thus the theorem follows.

Now, make use of the set of pivotal quantities T1 and T2, we can construct

another confidence region for the parameters of µ and σ in the following Theorem.

We call it Method 2.

Theorem 2.4. (Method 2) Based on the pivotal quantities T1 and T2, a (1 −
α)100% joint confidence region for the parameters of µ and σ is given by





X1 −
(Xm−X1)F 1−√

1−α
2

(2,2m−2)

m−1 < µ < X1 −
(Xm−X1)F 1+

√
1−α
2

(2,2m−2)

m−1 ,

2(Xm−µ)
χ2

1−
√

1−α
2

(2m)
< σ < 2(Xm−µ)

χ2
1+

√
1−α
2

(2m)
.

Proof. From (5) and (6), we know that

T1 =
(m− 1)(X1 − µ)

Xm −X1
,

has an F distribution with 2 and 2m− 2 degrees of freedom, and

T2 =
2

σ
(Xn − µ)

has a chi-square distribution with 2n degrees of freedom, and it is independent of

T1. Next, for 0 < α < 1, we have

P
(
F 1+

√
1−α
2

(2, 2m− 2) < T1 < F 1−√
1−α
2

(2, 2m− 2)
)
=

√
1− α,

and

P
(
χ2

1+
√

1−α
2

(2m) < T2 < χ2
1−√

1−α
2

(2m)
)
=

√
1− α.

From these relationships, we obtain

P
(
F 1+

√
1−α
2

(2, 2m− 2) < T1 < F 1−√
1−α
2

(2, 2m− 2),

χ2
1+

√
1−α
2

(2m) < T2 < χ2
1−

√
1−α
2

(2m)
)
= 1− α.

Then, the following inequalities determine (1 − α)100% joint confidence region of

two parameters µ and σ,




X1 −
(Xm−X1)F 1−√

1−α
2

(2,2m−2)

m−1 < µ < X1 −
(Xm−X1)F 1+

√
1−α
2

(2,2m−2)

m−1 ,

2(Xm−µ)
χ2

1−√
1−α
2

(2m)
< σ < 2(Xm−µ)

χ2
1+

√
1−α
2

(2m)
,

The proof is thus completed.
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3. Simulation

In this section, we carry out a Monte Carlo simulation to illustrate all the methods

discussed in this paper. The computations are performed using Visual S-PLUS

package. In this simulation, we randomly generate upper record sample X1 <

X2 < · · · < Xm from the standard exponential distribution with µ = 0 and

σ = 1, and then computed 90% confidence intervals and regions using Theorems

2.1-2.4. We replicate the process 5000 times. For given parameters (µ, σ) = (0, 1),

the simulated average confidence length and confidence area with the confidence

coefficient 1 − α = 0.90 for m = 5(1)15 are presented in Table 1. From Table 1,

we observe when m increases, the average confidence lengths for µ and σ, and the

average confidence area in both Methods, 1 and 2 are decreased. We also observe

that Method 2 has better performance than method 1, since it provides the smaller

confidence area.

Table 1. The simulated average confidence length and confi-
dence area.

Length Area
m µ σ Method 1 Method 2

5 4.4208 2.4191 29.7751 26.9818
6 4.1192 2.0251 20.4781 18.7235
7 3.8209 1.7197 14.8141 13.6641
8 3.7085 1.5484 12.3008 11.4338
9 3.5660 1.3948 10.0895 9.4405
10 3.4964 1.2908 8.8476 8.3251
11 3.4299 1.2024 7.8700 7.4409
12 3.3870 1.1330 7.1541 6.7922
13 3.3577 1.0760 6.5934 6.2824
14 3.2830 1.0113 5.9769 5.7130
15 3.3110 0.9832 5.7680 5.5286

4. Prediction interval for the future record Xm+1

In this section, we present a prediction interval for the future record Xm+1 based

on the observed record values X1, ..., Xm. Since the statistic

S =
(m− 1)(Xm+1 −Xm)

Xm −X1
,

follows a F distribution with 2 and 2m− 2 degrees of freedom, we can construct

a prediction interval for Xm+1 as follows:
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Theorem 4.1. Based on the observed record values X1 < X2 < · · · < Xm, a

(1− α)100% prediction interval for the future observation Xm+1 is given by
(
Xm +

(
Xm −X1

m− 1

)
F1−α

2
(2, 2m− 2), Xm +

(
Xm −X1

m− 1

)
Fα

2
(2, 2m− 2)

)
.

Proof. Since S ∼ F (2, 2m− 2), then we have

1− α = P

(
F1−α

2
(2, 2m− 2) <

(m− 1)(Xm+1 −Xm)

Xm −X1
< Fα

2
(2, 2m− 2)

)

= P

(
Xm +

(
Xm −X1

m− 1

)
F1−α

2
(2, 2m− 2) < Xm+1 <

Xm +

(
Xm −X1

m− 1

)
Fα

2
(2, 2m− 2)

)
.

The proof is thus completed.

5. Numerical Example

In this example, we consider a simulated sample of size n = 15 from the Exponen-

tial distribution in (2) with parameters µ = 2.5 and σ = 1. The simulated upper

records are as follows:

2.7127 3.1841 3.4990 4.0002 4.4863 4.6226 5.3125 5.9537

5.9724 0.0238 6.0357 6.8307 6.8957 7.4296 8.0229.

By Theorem 2.1 and 2.2, the 95% confidence intervals for µ and σ are obtained

as (1.44574,2.69325) and (0.25692,0.62739) with confidence lengths 1.24751 and

0.37047, respectively.

By Theorem 2.3 (Method 1), the 95% joint confidence region for µ and σ is

given by




2.7127− σ
2 8.73857 < µ < 2.7127− σ

2 0.02548,

0.22442 < σ < 0.75975,

with area 1.14763. Applying Theorem 2.4 (Method 2), the confidence region is

given by




0.76774 < µ < 2.70791,

2(8.0229−µ)
49.9138 < σ < 2(8.0229−µ)

15.3903 ,

with area 1.09604. By Theorem 4.1, the prediction interval for X16 is obtained as

(8.04239, 9.28991).
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Bivariate Maximum Entropy Models with Given Marginal

Distributions

S. Ashrafi and M. Asadi

Department of Statistics, University of Isfahan

Let X = (X1, X2) be a continuous random vector. In this paper, under the assumption
that the marginal distributions of X1 and X2 are given, we develop models for vector
X when there is some partial information about the dependence structure between X1

and X2. The models, are obtained based on well-known Principle of Maximum Entropy,
called the maximum entropy (ME) models. Our results lead to characterization of
some well-known bivariate distributions such as Generalized Gumbel, Farlie-Gumbel-
Morgenstern and Clayton bivariate distributions. The relationship between ME models
and some well known dependence notions are studied. Conditions under which the
mixture of bivariate distributions are ME models are also investigated.

Keywords: Fréchet class of distributions, Hazard gradient, Dependence, Total positive
of order 2.

1. Introduction

Let X = (X1, X2) be a continuous random vector with distribution function

F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2), x1, x2 ∈ R. Specification of a bivariate distribu-

tion requires full information about marginal distributions as well as dependence

structure between X1 and X2. There are many situations in which the marginal

distributions are known but the complete information about the dependence struc-

ture between X1 and X2 is unknown. The problem of interest, in such situations,

is to make inference about joint distribution based on constraints on some specifi-

cations of the population. A well known approach to characterize a model for the

data generating distribution is the maximum entropy method. In this approach, in-

sufficient knowledge about the data generating distribution is formulated in terms

of a set of information constraints. Usually the constraints are made on the mo-

ments of the model and the aim is to find the model that maximizes Shannon

entropy under these constraints.

In reliability engineering and survival analysis, there are several criterion which

play the central role in analyzing the lifetime data in both univariate and multi-

variate case. Among the well known measures, the hazard rate and mean resid-
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ual life function are of particular interest. The present paper provides a solution

for problem of specification of bivariate models using the well-known Principle

of Maximum Entropy; especially when partial information about the dependence

structures between X1 and X2 are available and the constraints are made based

on hazard gradient or reversed hazard gradient. In the univariate case, when the

constraints are based on hazard rate and mean residual life function, Asadi et al [1]

studied a concept of maximum dynamic entropy and Asadi et al [2] introduced

a notion of minimum dynamic discrimination information and obtained various

univariate lifetime distributions as maximum dynamic entropy and minimum dy-

namic discrimination models. Recently, Asadi et al [3] have studied a concept of

bivariate dynamic ME model and derived several bivariate distributions when par-

tial information is available on hazard gradient. This paper is a continuation of

the work by Asadi et al [3]. In first part of this study, we develop several bivariate

models based on partial information on the bivariate hazard gradient and reversed

hazard gradient. This enables us to characterize several well-known bivariate dis-

tributions, with given marginal distributions, as maximum entropy (ME) models

when partial information about hazard gradient or reversed hazard gradient are

formulated in some inequality constraints. In the second part of the paper, we char-

acterize mixture of bivariate distributions as ME models when partial information

is available on the hazard rate of mixing distribution. The paper is organized as

follows. Section 2 gives some preliminary results which are useful in subsequent

sections. Section 3 gives results about ME models based on some dependence con-

cepts such as total positivity of order 2 (TP2) and reversed regularity of order 2

(RR2) and some well known bivariate distributions are characterized as ME models

under some partial information about the hazard and reversed hazard gradient. In

Section 4 we discuss methods for characterizing bivariate mixtures as ME models

when partial information about the distribution function of dependence parameter

is available.

2. Preliminaries

in this section we give some definitions and preliminaries results which are useful

in the subsequent sections. Let M(F1, F2) be the Fréchet class of absolutely con-

tinuous bivariate distributions functions (BDF) with given marginal distribution

functions F1 and F2. The Kullback-Leibler discrimination information function

between the BDF F (x1, x2) and reference BDF F0(x1, x2) is defined by

K(F : F0) =

∫ ∫
f(x1, x2) log

f(x1, x2)

f0(x1, x2)
dx1dx2 ≥ 0,

where F is absolutely continuous with respect to F0 and f and f0 denote the

probability density functions (PDFs) of F and F0, respectively. Note that K(F :
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F0) = 0 if and only if f0(x1, x2) = f(x1, x2) with probability 1. The joint entropy

of F , denoted by H(X), is defined to be

H(X) = −
∫ ∫

f(x1, x2) log f(x1, x2)dx1dx2.

Definition 2.1. Let ΩF be the set of all bivariate distributions in M(F1, F2) that

satisfy some partial information (some constraints). The ME model in ΩF is a DF

F ∗ ∈ ΩF such that

F ∗ = arg max
F∈ΩF

H(F ).

That is, the ME model is the one that its PDF maximizes joint entropy among all

distributions in ΩF [4].

In the univariate case, the hazard rate of a continuous distribution F with

density f is defined as λ(t) = f(t)
F̄ (t)

, t > 0, where F̄ (t) = 1 − F (t). This function

plays a main role in the study of lifetime random variables. In the literature there

are various extensions of hazard rate λ(t) to the multivariate. An extension is called

the hazard gradient which is defined in the bivariate case as follows. Assume that

the bivariate random vector X has the survival function F̄ (x1, x2). The vector of

hazard gradient of X is defined as

ΛF (x1, x2) = −(
∂ log F̄ (x1, x2)

∂x1
,
∂ log F̄ (x1, x2)

∂x2
)

≡ (λF,1(x1, x2), λF,2(x1, x2)).

Note that λF,i(x1, x2) is the hazard gradient of ith component. The hazard gradient

ΛF (x1, x2) has the property that its relation to DF F (x1, x2) is one-to-one. Another

measure which is important in reliability and survival analysis is reversed hazard

rate which is defined as r(t) = f(t)
F (t) . Similar to hazard gradient, in the bivariate

case, the reversed hazard gradient is defined as

RF (x1, x2) = (
∂ logF (x1, x2)

∂x1
,
∂ logF (x1, x2)

∂x2
)

≡ (rF,1(x1, x2), rF,2(x1, x2)).

Definition 2.2. Let the bivariate random vectors X and Y have distribution

functions F and G which belong to M(F1, F2). X is said to be smaller than Y in

positive quadrant dependent order (denoted by X ≤PQD Y) if

F̄ (x1, x2) ≤ Ḡ(x1, x2) for all (x1, x2).

A function φ : R2 −→ R is said to be supermodular if for any x,y ∈ R2

φ(x) + φ(y) ≤ φ(x ∧ y) + φ(x ∨ y),
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where the operators ∧ and ∨ denote coordinatewise minimum and maximum,

respectively; see [5], p.335.

Definition 2.3. Let X and Y be two bivariate random vectors such that

E[φ(X)] ≤ E[φ(Y)] for all supermodular functions φ : R2 −→ R,

provided the expectations exist. Then X is said to be smaller than Y in super-

modular order (denoted by X ≤sm Y); see [5], p. 395.

Definition 2.4. (a) Let X1 and X2 have the joint density function f(x1, x2).

f(x1, x2) is said to be TP2 if

f(x1, x2)f(y1, y2) ≥ f(x1, y2)f(y1, x2) for all (x1, x2) < (y1, y2). (1)

(b) X2 is said to be right-tail increasing in X1 (denoted by RTI(X2|X1)) if

P (X2 > x2|X1 > x1) increasing in x1 for all x2. (2)

If the inequalities in (1) and (2) are reversed, the negative analogues can be ob-

tained. Thus, the dual of (1) and (2) are, respectively, called reverse regular of

order 2 (RR2) and right tail decreasing (RTD).

3. ME models with given marginal distributions

In this section we study conditions under which a distribution is an ME model in

ΩF . The conditions are based on partial information about hazard gradient and

reversed hazard gradient. Before giving the main results we need the following

lemma.

Lemma 3.1. Consider the bivariate random vectors X and Y with distribu-

tion functions F and G and hazard gradients ΛF (x) = (λF,1(x), λF,2(x)) and

ΛG(x) = (λG,1(x), λG,2(x)), respectively. Assume that F,G ∈ M(F1, F2). If

for all x, λF,i(x) ≥ λG,i(x), i = 1, 2 then X ≤PQD Y.

Proof: Let X and Y have survival functions F̄ (x) and Ḡ(x). The condition that

λF,i(x) ≥ λG,i(x), i = 1, 2 is equivalent to Ḡ(x)

F̄ (x)
is increasing in x. Hence Ḡ(x) ≥

F̄ (x) for all x. Using this and the assumption that F,G ∈ M(F1, F2), we have

X ≤PQD Y.

Remark 3.1. The result of Lemma 3.1 is also true if the marginal reversed hazard

gradients are ordered. That is, under the condition that F,G ∈ M(F1, F2), if

rF,i(x) ≥ rG,i(x), i = 1, 2, then X ≤PQD Y.
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Now we can prove the following Theorem.

Theorem 3.1. Let ΩF = {F (x1, x2) ∈ M(F1, F2) : ΛF (x1, x2) ≤ (≥)Q(x1, x2)}
be a set of distributions in M(F1, F2) having hazard gradient ΛF . Suppose that

there exists a distribution F ∗ ∈ ΩF with PDF f∗ such that ΛF∗(x1, x2) =

Q(x1, x2). Then

(a) F ∗ is ME in ΩF with ΛF (x1, x2) ≤ Q(x1, x2) if f
∗(x1, x2) is TP2.

(b) F ∗ is ME in ΩF with ΛF (x1, x2) ≥ Q(x1, x2) if f
∗(x1, x2) is RR2.

Proof: We prove part (a) of the theorem. Part (b) can be proved similarly. Let

X and Y denote two bivariate random vectors with distribution functions F ∗ and

F in M(F1, F2). Since ΛF (x1, x2) ≤ ΛF∗(x1, x2) for all x and F ∗ and F are in

M(F1, F2), from Lemma 3.1, we have X ≤PQD Y which is equivalent to X ≤sm Y

(see [5], p.395). Also it is easily seen that if f∗(x1, x2) is TP2 then log f∗(x1, x2)
is supermodular. Thus

E[log f∗(X)] ≤ E[log f∗(Y)] (3)

On the other hand

K(F : F ∗) = −H(Y)− E[log f∗(Y)] ≥ 0.

Using this and (3) we obtain H(X) ≥ H(Y). This completes the proof of the

theorem .

Remark 3.2. It should be pointed that usually it may be difficult to check, us-

ing the definition, that a bivariate density f∗(x1, x2) is TP2 or RR2. An alter-

native method is to use a result of Holland and Wang [6]. They showed that

if f∗(x1, x2) has second partial derivatives, then it is TP2 (RR2) if and only if
∂2

∂x1x2
log f∗(x1, x2) ≥ (≤)0.

Remark 3.3. Let f1 and f2 be marginal PDFs of distributions in M(F1, F2).

Assume that f0(x1, x2) = f1(x1)f2(x2) is a reference distribution. Using Theorem

3.1 it can be proved that the ME model in ΩF is a distribution that minimizes

Kullback-Leibler discrimination information function with respect to reference dis-

tribution f0(x1, x2). In information literature, a criterion for measuring the depen-

dency between F1 and F2 is the mutual information. If M(X1, X2) denotes the

mutual information between X1 and X2, then

M(X1, X2) = H(X1)−H(X1|X2)

= K(F : F1F2),

where H(X1|X2) denotes the entropy of conditional density f(x1|x2). Using this,

we conclude that the ME model in ΩF is a distribution which has the minimum
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dependency in the sense of mutual information. Also it is worth to note that if

no information is available about dependency between F1 and F2, i.e. we assume

ΩF = M(F1, F2), then the independent model F (x1, x2) = F1(x1)F2(x2) is ME.

This is so, because for all F ∈ ΩF we have

K(F : F1F2) = −H(F ) +H(F1F2) ≥ 0

and equality occurs if and only if F = F1F2.

In the following we characterize some bivariate distributions as ME models

where the constraints are based on hazard gradient. The key function on con-

structing the constraints is the ratio of ith element of hazard gradient Λ(x1, x2) =

(λ1(x1, x2), λ2(x1, x2)) over the hazard rate of marginal distribution functions Fi,

i = 1, 2. That is, to characterize the ME model we assume that partial information

is available on ηi(x1, x2), where

ηi(x1, x2) =
λi(x1, x2)

λi(xi)
, i = 1, 2. (4)

The function ηi(x1, x2) is closely related to well known concepts of dependency.

In other words, assume that (X1, X2) has bivariate survival function F̄ . Then it is

known that known that F̄ is both RTI(X1|X2) and RTI(X2|X1) (RTD(X1|X2)

and RTD(X2|X1)) if and only if, for all x1, x2

ηi(x1, x2) ≤ (≥)1, i = 1, 2. (5)

Also it can shown that if F̄ is TP2 (RR2) then (5) holds (see, [7]). This discussion

leads to the following proposition.

Proposition 3.1. Let ΩF = {F (x1, x2) ∈ M(F1, F2) : ΛF (x1, x2) ≤ (≥
)Q(x1, x2)}. Assume that there exists a F ∗ ∈ ΩF is such that ΛF∗(x1, x2) =

Q(x1, x2) and f∗ is TP2(RR2). Then any F ∈ ΩF is both RTI(X1|X2) and

RTI(X2|X1) (RTD(X1|X2) and RTD(X2|X1)). That is ηi(x1, x2) ≤ (≥)1, i =

1, 2..

Proof: Let ΛF (x) = (λF,1(x), λF,2(x)) be hazard gradient of a distribution F in

ΩF . First assume that f∗ is TP2. Then it can be shown that F̄ ∗ is also TP2. This

implies that λF∗,i(x1, x2) ≤ λi(xi) i = 1, 2. On the other hand, the assumption

that λF,i(x1, x2) ≤ λF∗,i(x1, x2) gives λF,i(x1, x2) ≤ λi(xi). Hence we have that F

is both RTI(X1|X2) and RTI(X2|X1). When f∗ is RR2, the same arguments show

that any F ∈ Ω is RTD(X1|X2) and RTD(X2|X1). This completes the proof.

The following theorem explores the relation between the covariance of the

elements of ME model and the covariance of elements of any other distribution in

ΩF .
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Theorem 3.2. Let (X1, X2) and (Y1, Y2) be two bivariate vectors with distribution

functions in M(F1, F2), and PDFs f∗(x) and f(x) and hazard gradients ΛF∗(x) =

(λF∗,1(x), λF∗,2(x)) and ΛF (x) = (λF,1(x), λF,2(x)),respectively.

(a) If f∗(x) is TP2 and ΛF∗(x) ≥ ΛF (x) then 0 ≤ Cov(X1, X2) ≤ Cov(Y1, Y2).

(b) If f∗(x) is RR2 and ΛF∗(x) ≤ ΛF (x) then Cov(Y1, Y2) ≤ Cov(X1, X2) ≤ 0.

Proof: We prove part (a). The proof of (b) is similar. It is known that when f∗(x)
is TP2 then Cov(X1, X2) ≥ 0 (see [8], p. 267). Since (X1, X2) and (Y1, Y2) have

distribution functions in M(F1, F2), from Lemma 3.1, if ΛF∗(x) ≥ ΛF (x) then

(X1, X2) ≤PQD (Y1, Y2) which implies Cov(X1, X2) ≤ Cov(Y1, Y2). This com-

pletes the proof.

The result of this theorem shows that when Cov(X1, X2) and Cov(Y1, Y2) are

covariances between the elements of ME model and elements of any other distri-

bution in ΩF , respectively, if f
∗(x) is ME in ΩF = {F (x) ∈ M(F1, F2) : ΛF (x) ≤

(≥)ΛF∗(x)} then |Cov(X1, X2)| ≤ |Cov(Y1, Y2)|. This means that X1 and X2, the

elements of ME model, have the minimum absolute value of the linear dependency

in the class.

Now we have ready to give some examples.

Example 3.1. Let ΩF be a subset of M(F1, F2) consisting all bivariate distri-

butions with hazard gradient Λ(x1, x2) = (λ1(x1, x2), λ2(x1, x2)) that satisfies the

following inequalities

ηi(x1, x2) ≥ (1 − δ log F̄j(xj)), 0 ≤ δ ≤ 1, i, j = 1, 2, i 6= j, (6)

where ηi(x1, x2) is defined as (4). Then, the ME model in ΩF is Generalized
Gumbel distribution with PDF

f∗(x1, x2) = f1(x1)f2(x2)[(1− δ log F̄1(x1))(1− δ log F̄2(x2))− δ]

× exp{−δ log F̄1(x1) log F̄2(x2)}, (7)

in which 0 ≤ δ ≤ 1 and f1 and f2 are marginal PDFs of distributions in M(F1, F2)

and F̄1, F̄2 are survival functions associated to f1, f2. The validity of this result

follows from part (b) of Theorem 3.1. To see this, one can easily show that

∂2

∂x1∂x2
logf∗(x1, x2) ≤ 0

which is equivalent to say that f∗ is RR2. Also it is easy to see that λi(xi)(1 −
δ log F̄j(xj)) is the ith element of hazard gradient of f∗(x1, x2).

Example 3.2. Sarmanov [9] introduced a family of bivariate densities of the form

f∗(x1, x2) = f1(x1)f2(x2){1 + ωφ1(x1)φ2(x2)}, x1, x2 ∈ R (8)
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where ω, φ1 and φ2 satisfy the following conditions
∫ ∞

−∞
φi(u)fi(u)du = 0, i = 1, 2 and 1 + ωφ1(x1)φ2(x2) ≥ 0 for all x1, x2. (9)

It can be shown that f∗(x1, x2) is TP2(RR2) if

ωφ′1(x1)φ
′
2(x2) ≥ (≤)0 for all x1, x2.

Let ΩF be a set of bivariate distributions with marginal PDFs f1 and f2 whose

hazard gradient Λ(x1, x2) = (λ1(x1, x2), λ2(x1, x2)) satisfies the following inequal-

ities

ηi(x1, x2) ≤ (≥)
1 + ωφi(xi)ψj(xj)

1 + ωψ1(x1)ψ2(x2)
, i, j = 1, 2, i 6= j (10)

where

ψi(x) =
1

F̄i(x)

∫ ∞

x

fi(u)φi(u)du, i = 1, 2

and ω, φ1, φ2 satisfy (9) with ωφ′1(x1)φ
′
2(x2) ≥ (≤)0. Using Theorem 3.1, f∗ is ME

in ΩF since the ith element of hazard gradient of f∗ is equal to

λi(x)
1 + ωφi(xi)ψj(xj)

1 + ωψ1(x1)ψ2(x2)
, i, j = 1, 2, i 6= j

where λi(x), i = 1, 2 is hazard function with respect to fi(x).

There are members of family (8) for which the condition ωφ′1(x1)φ
′
2(x2) ≥ (≤

)0 holds. One the most important member of the family is the Farlie-Gumbel-

Morgenstern (FGM) bivariate distribution with PDF

f∗(x1, x2) = f1(x1)f2(x2)[1 + α(1 − 2F1(x1))(1 − 2F2(x2))], − 1 ≤ α ≤ 1, .(11)

is a well known family of distributions with applications in various branches of

statistics. For FGM model it can be shown that

∂2

∂x1∂x2
logf∗(x1, x2) ≥ 0 (≤ 0) if 0 ≤ α ≤ 1 (−1 ≤ α ≤ 0).

In other words f∗ is TP2(RR2) if 0 ≤ α ≤ 1(−1 ≤ α ≤ 0). Let ΩF be a set of

bivariate distributions with marginal PDFs f1(x) and f2(x) and hazard gradient

Λ(x1, x2) = (λ1(x1, x2), λ2(x1, x2)) that satisfies the following inequalities

ηi(x1, x2) ≤ (≥)[1 + αFj(xj)(2Fi(xi)− 1)][1 + αF1(x1)F2(x2)]
−1, (12)

0 ≤ α ≤ 1(−1 ≤ α ≤ 0), i 6= j, i, j = 1, 2.

Under this constraint and the fact that f∗(x1, x2) is TP2(RR2) we get, from The-

orem 3.1, that f∗(x1, x2) is ME in ΩF .
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In some distributions constraints based on reversed hazard gradient are more

simple than hazard gradient. In the following we give an example of this kind.

The following theorem gives ME models in M(F1, F2), in which the constraints

are made based on reversed hazard gradient. The proof of the theorem, which is

similar to Theorem 3.1, is based on Remark 3.1 and hence is omitted.

Theorem 3.3. Let ΩF = {F (x1, x2) ∈ M(F1, F2) : RF (x1, x2) ≥ (≤)R(x1, x2)}
be a set of distributions in M(F1, F2) having reversed hazard gradient RF . Suppose

that there exists a distribution F ∗ ∈ ΩF with PDF f∗such that RF∗(x1, x2) =

R(x1, x2). Then

(a) F ∗ is ME in ΩF with RF (x1, x2) ≤ R(x1, x2) if f
∗(x1, x2) is TP2.

(b) F ∗ is ME in ΩF with RF (x1, x2) ≥ R(x1, x2) if f
∗(x1, x2) is RR2.

Example 3.3. Consider the Clayton’s bivariate distribution with PDF

f∗(x1, x2) =
(θ + 1)f1(x1)f2(x2)(F1(x1)F2(x2))

−θ−1

[(F1(x1))−θ + (F2(x2))−θ − 1]
1
θ+2

, θ > 0,

in which f1 and f2 are marginal densities with distribution functions F1 and F2,

respectively. For this distribution it can be shown that

∂2

∂x1∂x2
logf∗(x1, x2) ≥ 0.

Let ΩF be a set of bivariate distributions with marginal distribution functions F1

and F2 and reversed hazard gradient R(x1, x2) = (r1(x1, x2), r2(x1, x2)) satisfying

the following inequalities

βi(x1, x2) ≤
(Fi(xi))

−θ

[(F1(x1))−θ + (F2(x2))−θ − 1]
, , θ > 0, i = 1, 2,

where βi(x1, x2) =
ri(x1,x2)
ri(xi)

, i = 1, 2 and ri(x), i = 1, 2 is reversed hazard function

of Fi(x). Then the Clayton’s bivariate distribution is ME in ΩF . This follows

from part (a) of Theorem 3.3 and the fact that ri(xi)(Fi(xi))
−θ[(F1(x1))

−θ +

(F2(x2))
−θ − 1]−1 is ith element of reversed hazard gradient of Clayton’s bivariate

distribution.

4. ME Models for Mixtures

Let G = {Gθ(x1, x2) ∈ M(G1, G2), θ ∈ χ} be a family of bivariate distribution

functions, where χ is a subset of the real line and θ is dependence parameter

between G1 and G2. In the Bayesian context the parameter θ is assumed to the

realization of a random variable Θ with support in χ. Assuming that Θ has dis-

tribution function H , then H is known as the prior distribution. The mixture
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of G with respect to prior distribution H , which is also known as the predictive

distribution function, is defined as

F (x1, x2) =

∫

χ

Gθ(x1, x2)dH(θ), (x1, x2) ∈ R2. (13)

In this section we study the ME models in class of predictive models in bivariate

setup for which the constraints are made on hazard rate of prior distribution H(θ).

The key result is given in the following theorem.

Theorem 4.1. Let ΩH = {H : λH(θ) ≤ (≥)q(θ)} be the set of prior distributions

with support in χ and hazard function λH(θ). Consider ΩF as a set of predictive

distributions of the form (13) in which H(θ) ∈ ΩH and Gθ(x1, x2) ∈ G is given.

Suppose that there exists a prior distribution H∗ ∈ ΩH such that λH∗(θ) = q(θ)

and let F ∗ with PDF f∗ be predictive distribution with respect to H∗. If elements

of hazard gradient Gθ are decreasing in θ then

(a) F ∗ is ME in ΩF relative to ΩH with λH(θ) ≤ q(θ) if f∗(x1, x2) is TP2.

(a) F ∗ is ME in ΩF relative to ΩH with λH(θ) ≥ q(θ) if f∗(x1, x2) is RR2.

Proof: We prove part (a) of the theorem. The proof of (b) is similar. Let F (x1, x2)

and F ∗(x1, x2) be of the form (13) in which prior distributions have hazard func-

tions λH(θ) and λH∗(θ), respectively. If λH(θ) ≤ λH∗(θ) and elements of hazard

gradient Gθ are decreasing in θ then from Theorem 6.D.5 of [5],

ΛF (x1, x2) ≤ ΛF∗(x1, x2), for all (x1, x2),

in which ΛF (x1, x2) and ΛF∗(x1, x2) are hazard gradient of F and F ∗, respectively.
Now we show that F (x1, x2) ∈ M(G1, G2). Let f1(x) and f2(x) be marginal PDFs

of F (x1, x2) and gi(x) be PDF of Gi(x), i = 1, 2. Then using Fubini’s Theorem,

we have

fi(xi) =

∫ ∫
gθ(x1, x2)dH(θ)dxj =

∫ ∫
gθ(x1, x2)dxjdH(θ) = gi(xi),

i 6= j, i, j = 1, 2.

If f∗(x1, x2) is TP2 then using part (a) of Theorem 3.1 the proof is complete.

Applications of Theorem 4.1 are given in the following example.

Example 4.1.

(a) Let ΩH be the set of prior distributions with support (0, 1) having hazard

function λH(θ) such that

λH(θ) ≤ 1

1− θ
, θ ∈ (0, 1).

83



July 28, 2010 16:45 ISC10 - Proceeding proceeding

The 10th Iranian Statistical Conference University of Tabriz, August 2010

Consider F-G-M bivariate distribution with α = θ and 0 < α < 1. Let ΩF be

the class of mixtures of F-G-M bivariate distributions with respect to prior

distributionsH(θ) ∈ ΩH . The uniform mixture of F-G-M distributions, which

is F-G-M with α = 1
2 is ME in ΩF . The result follows on noting that 1

1−θ

is the hazard function of uniform distribution on (0, 1). Also it can be seen

easily that elements of hazard gradient of F-G-M distribution are decreasing

in α and that the PDF of F-G-M distribution is TP2 for α = 1
2 . Thus part

(a) of Theorem 4.1 gives the result.

(b) Using the same arguments as used to prove part (a), assuming that ΩH =

{H(θ) : λH(θ) ≥ 1
1−θ , θ ∈ (−1, 0)}, part (b) of Theorem 4.1, implies that

F-G-M distribution with α = −1
2 is ME in ΩF .
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On M/(G1, G2)/1/G(BS)/Vs with Feedback on Each Service

A. Badamchizadeh

Department of Statistics, Allameh Tabataba’i University

In this system we consider an M/G/1 queue with two phases of heterogeneous services,
Bernoulli feedback on each service and Bernoulli vacation , where the arrivals is Poisson.
After the completion of the first phase with FCFS schedule , with probability p1 the
customer feedback to the tail of original queue or with probability q1 = 1−p1 the second
phase of service starts.Again after completion of the second phase, with probability p2
the customer’s second phase of service cannot be accepted and he/she must repeat only
this phase.With probability q2 = 1−p2 the services are completed and tagged customer
departs the system. After completion of the second phase, the server takes a vacation
with probability θ or may continue to stay in the system with probability 1 − θ. The
vacation times are assumed to be general.

Keywords: M/G/1 Queue,Two phase of heterogeneous service, Bernoulli feedback,
Bernoulli vacation, Mean queue size, Mean response time.

1. Introduction

For the first time Keilson and Servi [5,6] studied the concept of Bernoulli vacation.

They introduced the concept of modified service time which has a main rule in

systems with general service and vacation .Considerable efforts have been devoted

to this model by Servi[11], Ramaswam and Servi[9],Takagi[13], Doshi[4], Choi and

Kim [2].

Choudhury and Paul[3] inspected theM/G/1 system with two phases of hetero-

geneous service and Bernoulli feedback. In this system a tagged customer may have

an unsuccessful service, then retried until a successful service is completed.He/She

with probability p(0 6 p 6 1) is feedbacked instantaneously to the tail of the

queue or departs from the system with probability q = 1− p.

Also Madan and Choudhury [7] studied a single server queue with two phases

of heterogeneous services under Bernoulli schedule and a general vacation time.

In this system, without feedback , the server after the completion of the service,

may go to vacation with probability θ or remain in system with probability 1− θ.

Shahkar and Badamchi [12] performed this system with k phase of heterogeneous

services.
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Recently author works on similar models in [1] and [10].

In many examples such as cars check up systems, production systems, bank

services, computer and communication networks, feedback occurs on each service

and customers repeat only unsuccessful phase, also he/she feedbacks to the begin-

ning of the this phase.In addition, for overhauling or maintenance of the system,

the server may go to vacation.

In this paper we analyze a single server queue with Poisson input, two phases

of heterogeneous service with Bernoulli feedback on each phase and Bernoulli va-

cation. In section 2 we deal with the mathematical model and definitions. Steady-

State conditions and generating functions are obtained in section 3.

Mean queue size, mean response time and other measures of system are com-

puted in section 4. Also, in section 5 we obtained results for some special cases

which have already been worked and are mentioned in the above references.

2. Mathematical model and definitions

We consider a queueing system such that:

i) Customers arrive at the system one by one in a Poisson stream with mean rate

λ(> 0).

ii)The server provides two phases of heterogeneous service in succession. The ser-

vice discipline is assumed to be first come, first served(FCFS). The service times

for two phases are independent random variable; we denote them by B1, B2 and

B∗
1(s), B

∗
2 (s) for their Laplace-Stieltjes transform (LST); we assume they have fi-

nite moments E(Bl
i) for l = 1 and i=1,2.

iii)After the completion of first phase of service(FPS), if the unit is dissatisfied with

its service for certain reason or if it received unsuccessful service, the customer may

immediately join the tail of the original queue as a feedback customer for receiving

another regular service with probability p1(0 6 p1 6 1).Otherwise the customer

will be led to second phase of service(SPS) with probability q1 = 1− p1.The prob-

ability of the second phase of service that is completed successfully is q2 and then

the customer departs the system, but with probability p2 = 1− q2 this phase must

be repeated, so the customer lead to the queue of the second phase.The service

discipline for feedback and new customers are FCFS. Also the service time for a

feedback customer is independent of its previous service times.

iv) As soon as the second phase of service of a customer is completed, the server

may go for a vacation of random length V with probability θ(0 5 θ 5 1) or it may

continue to serve the next customer, if any, with probability (1 − θ); otherwise,

it remains in the system and waits for a new arrival. We denote V (x), V ∗(s) and
E(V l) for distribution function(DF), LST and l’th finite moment of V respectively

where l = 1.
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Definition 2.1. The modified service time or the time required by a customer to

complete the service cycle is given by

B =

{
B1 +B2 + V with probability θ

B1 +B2 with probability (1− θ)
(1)

then the LST B∗(s) of B is given by

B∗(s) = θB∗
1 (s)B

∗
2 (s)V

∗(s) + (1− θ)B∗
1 (s)B

∗
2 (s) (2)

and

E(B) = E(B1) + E(B2) + θ E(V ) (3)

also

E(B2) = E(B2
1)+E(B2

2)+2E(B1)E(B2)+2θE(V )[E(B1)+E(B2)]+θE(V 2) (4)

Definition 2.2. The elapsed time of i-th phase of service [(PS)i]at time ’t’ is

denoted by B0
i (t) for i = 1, 2. Also V 0(t) denotes the elapsed vacation time at

time ’t’, and NQ(t) denotes the queue size at time ’t’ .For i = 1, 2 we introduce

the random variable Y(t) as follow :

Y (t) =





0 if the server is idle at time ’t’,

i if the server is busy with (PS)i at time ’t’,

3 if the server is on vacation at time ’t’.

(5)

Then we have a bivariate Markov process {NQ(t), L(t)} where L(t) = 0 if

Y (t) = 0; L(t) = B0
i (t) if Y (t) = i for i = 1, 2 and L(t) = V 0(t) if Y (t) = 3 .Now

for i = 1, 2 the following probabilities are defined as

Qn(x, t) = Prob[NQ(t) = n, L(t) = V 0(t);x < V 0(t) 6 x+ dx] x > 0, n > 0

(6)

Pi,n(x, t) = Prob[NQ(t) = n, L(t) = B0
i (t);x < B0

i (t) 6 x+ dx] x > 0, n > 0

(7)

and

R0(t) = Prob[NQ(t) = 0, L(t) = 0] (8)

Assume that

V (0) = 0, V (∞) = 1 (9)
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and for i = 1, 2

Bi(0) = 0, Bi(∞) = 1 (10)

Also V (x) and Bi(x) are continuous at x=0. Then we have the hazard rate func-

tions of V and Bi(i = 1, 2, ..., k) as follow

ν(x) =
dV (x)

1− V (x)
(11)

µi(x) =
dBi(x)

1−Bi(x)
(12)

(µi(x) be the conditional probability of the completion of i − th stage of service

during the time interval (x,x+dx), given that the elapsed service time is x.)

With the assumption that steady state exists, we let

R0 = lim
t→∞

R0(t) (13)

Pi,n(x)dx = lim
t→∞

Pi,n(x, t)dx i = 1, 2 x > 0, n > 0 (14)

Qn(x)dx = lim
t→∞

Qn(x, t)dx x > 0, n > 0 (15)

Now for i = 1, 2 the PGF of this probabilities is defined as follows:

Pi(x, z) =

∞∑

n=0

znPi,n(x) |z| 6 1, x > 0 (16)

Pi(0, z) =

∞∑

n=0

znPi,n(0) |z| 6 1 (17)

Also

Q(x, z) =

∞∑

n=0

znQn(x) |z| 6 1, x > 0 (18)

Q(0, z) =
∞∑

n=0

znQn(0) (19)
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3. Steady-state probability generating function

From Kolmogorov forward equations, for i = 1, 2 the steady-state conditions can

be written as follows

d

dx
Pi,n(x) + [λ+ µi(x)]Pi,n(x) = λPi,n−1(x) n ≥ 0, x > 0 (20)

and

d

dx
Qn(x) + [λ+ ν(x)]Qn(x) = λQn−1(x) n ≥ 0, x > 0 (21)

also

λR0 =

∫ +∞

0

ν(x)Q0(x)dx + (1 − θ)q2

∫ +∞

0

µ2(x)P2,0(x)dx (22)

We set P1,−1(x) = 0 , P2,−1(x) = 0 and Q−1(x) = 0 in (20), (21) and (22) .

At x = 0, the boundary conditions are

P1,0(0) = λR0 + {p1
∫ +∞

0

µ1(x)P1,0(x)dx + (1 − θ)q2

∫ +∞

0

µ2(x)P2,1(x)dx}

+

∫ +∞

0

ν(x)Q1(x)dx (23)

and for n > 0

P1,n(0) = {p1
∫ +∞

0

µ1(x)P1,n(x)dx + (1− θ)q2

∫ +∞

0

µ2(x)P2,n+1(x)dx}

+

∫ +∞

0

ν(x)Qn+1(x)dx (24)

P2,n(0) = p2

∫ +∞

0

µ2(x)P2,n(x)dx + q1

∫ +∞

0

µ1(x)P1,n(x)dx, n > 0 (25)

also

Qn(0) = θq2

∫ +∞

0

µ2(x)P2,n(x)dx, n > 0 (26)

Finally the normalizing condition is

R0 +

2∑

i=1

∞∑

n=0

∫ +∞

o

Pi,n(x)dx +

∞∑

n=0

∫ +∞

0

Qn(x)dx = 1 (27)

Lemma 3.1. For i = 1, 2 from (20) we have

Pi(x, z) = Pi(0, z)[1−Bi(x)]e
−λ(1−z)x x > 0 (28)

and from (21)

Q(x, z) = Q(0, z)[1− V (x)]e−λ(1−z)x x > 0 (29)
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Proposition 3.1. If for i=1,2

B∗
i (λ− λz) =

∫ +∞

0

e−λ(1−z)xdBi(x) (30)

V ∗(λ− λz) =

∫ +∞

0

e−λ(1−z)xdV (x) (31)

are the z-transform of Bi and V respectively ,then

I)Pi(z) = Pi(0, z)[1−B∗
i (λ − λz)]

1

λ(1− z)
, i = 1, 2 (32)

II)Q(z) = Q(0, z)[1− V ∗(λ− λz)]
1

λ(1 − z)
(33)

III) P2(0, z) = p2P2(0, z)B
∗
2(λ − λz) + q1P1(0, z)B

∗
1(λ − λz) (34)

and

IV )Q(0, z) = θq2P2(0, z)B
∗
2(λ− λz) (35)

V ) P1(0, z) =
λR0(z − 1)

z − {p1zB∗
1 + [(1− θ) + θV ∗] q1q2B

∗
1B

∗
2

1−p2B∗
2

}
(36)

Proof. I)By integration from x = 0 to x = +∞ in (28) we have I).

II)By integration from x = 0 to x = +∞ in (29) we have II).

III)By multiplying (25) in zn and summation from n=0 to ∞ the result is

obtained .

IV)By using the same technique on (26), we have IV) .

V)First we multiply (24) in zn and summation from n=1 to ∞, then using

(22)and (23) we obtain

zP1(0, z) = λR0(z − 1) + p1zP1(0, z)B
∗
1(λ− λz)

+ (1 − θ)q2P2(0, z)B
∗
2(λ− λz) +Q(0, z)V ∗(λ− λz) (37)

Now from (34) and (35) we obtain V).

In the rest of this section for simplification we omit (λ− λz).

Corollary 3.1.

By using (36) in (32)and (33) we have

P1(z) =
R0(1 −B∗

1)

{p1zB∗
1 + [(1− θ) + θV ∗] q1q2B

∗
1B

∗
2

1−p2B∗
2
} − z

(38)
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P2(z) =
R0q1B

∗
1 (1−B∗

2)

(1− p2B∗
2 ){p1zB∗

1 + [(1 − θ) + θV ∗] q1q2B
∗
1B

∗
2

1−p2B∗
2
} − z

(39)

Q(z) =
R0q1q2B

∗
1B

∗
2(1− V ∗)

(1− p2B∗
2){p1zB∗

1 + [(1− θ) + θV ∗] q1q2B
∗
1B

∗
2

1−p2B∗
2
} − z

(40)

Remark 3.1. The unknown constant R0 can be determined by using normalizing

condition (27) which is

R0 + P1(1) + P2(1) +Q(1) = 1 (41)

from (38),(39) and (40) by using L’Hopital rule we have

P1(1) = R0

λE(B1)
q1

1−λ[
E(B1)

q1
+

E(B2)

q2
+θE(V )]

P2(1) = R0

λE(B2)

q2

1−λ[
E(B1)

q1
+

E(B2)
q2

+θE(V )]

Q(1) = R0
λθE(V )

1−λ[
E(B1)

q1
+

E(B2)

q2
+θE(V )]

hence by substituting the above values in (36) and simplifying we have R0 = 1−ρ
where

ρ = λ[
E(B1)

q1
+
E(B2)

q2
+ θE(V )] (42)

R0 is the steady-state probability that the server is idle but available in the system,

hence ρ < 1 can be the stability condition under which the steady state solution

exists.

Now the PGF of the queue size distribution at a random epoch is

P (z) = P1(z) + P2(z) +Q(z)

= R0{
(1− p2B

∗
2)(1 −B∗

1) + q1B
∗
1 (1−B∗

2) + θq1q2B
∗
1B

∗
2 (1− V ∗)

(1 − p2B∗
2){p1zB∗

1 + [(1− θ) + θV ∗] q1q2B
∗
1B

∗
2

1−p2B∗
2

− z}

= R0
1− p1B

∗
1 − p2B

∗
2 + [p2 − q1 + θq1q2(1− V ∗)]B∗

1B
∗
2

(1− p2B∗
2 ){p1zB∗

1 + [(1− θ) + θV ∗] q1q2B
∗
1B

∗
2

1−p2B∗
2

− z}

(43)
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The PGF of the queue size distribution at departure epoch is

PQ(z) = R0 + zP (z)

= R0
(1− z)q1q2[(1− θ) + θV ∗]B∗

1B
∗
2

(1 − p2B∗
2){p1zB∗

1 + [(1− θ) + θV ∗] q1q2B
∗
1B

∗
2

1−p2B∗
2

− z}

= R0
(z − 1)q1q2[(1− θ) + θV ∗]B∗

1B
∗
2

z(1− p1B∗
1 − p2B∗

2 + p1p2B1B∗
2)− q1q2[(1 − θ) + θV ∗]B∗

1B
∗
2

(44)

4. Mean queue size and other measures of system

Let LQ be the mean number of customers in the system (i.e mean queue size),

then we have

LQ =
dPQ(z)

dz
|z=1 (45)

Proposition 4.1. From (45) and using (44) we have

LQ = λE(B) +
λ2E(B2)

2(1− ρ)

+
λ[p1

q1
E(B1) +

p2

q2
E(B2)]

1− ρ
+
λ2[p1

q1
E(B2

1) +
p2

q2
E(B2

2)]

2(1− ρ)

+ λ2
p1p2
q1q2

E(B1)E(B2) (46)

where E(B) and E(B2) are in (3) and (4).

Proof. PQ(z) has the form R0
f(z)
g(z) , where

f(z) = (z − 1)q1q2[(1− θ) + θV ∗]B∗
1B

∗
2

and

g(z) = z(1− p1B
∗
1 − p2B

∗
2 + p1p2B1B

∗
2)− q1q2[(1 − θ) + θV ∗]B∗

1B
∗
2

Since limz→1 f(z) = limz→1 g(z) = 0, then by using L’Hopital’s rule , we have

LQ = R0
f ′′(1)g′(1)− g′′(1)f ′(1)

2[g′(1)]2
(47)

where R0 = 1 − ρ and ρ is obtained from (42).By calculating f
′
(1),f

′′
(1) ,g

′
(1),

g
′′
(1) and substituting in (47) we have (46).

Now for computing the mean response time of a test customer in this model , we

use the approach of Kleinrock [7].Let W ∗
Q(s) be the LST of DF of waiting time of

a tagged customer in this model.Then we have

W ∗
Q(λ− λz)B∗(λ− λz) = PQ(z) (48)
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where B∗ is defined in (2).

If WR denotes the time interval from arrival time to the time when a tagged

customer leaves the system after the completion of service, i.e waiting time plus

service time, then

W ∗
R(s) =W ∗

Q(s)B
∗(s) (49)

and mean response time of a tagged customer is

E(WR) = −dW
∗
R(s)

ds
|s=0 (50)

By substituting from (48) in (49) we have

W ∗
R(s) = PQ(1−

s

λ
) (51)

By using (44) and from (50) we have

E(WR) =
1

λ
LQ (52)

Also the average system size is L = LQ + ρ where ρ is in (42).

5. Particular cases

i)If we set pi = 0 and qi = 1 for all i = 1, 2, ..., k, i.e there isn’t feedback in each

phase, then we obtain the results of [12]. Also with k = 2 the results of [8] are

obtained.

ii)If we set θ = 0, i.e there isn’t vacation in system, then from (44) we have

PQ(z) = R0
(z − 1)q1q2B

∗
1B

∗
2

z(1− p1B∗
1 − p2B∗

2 + p1p2B1B∗
2)− q1q2B∗

1B
∗
2

(53)

where R0 = 1− ρ and ρ = λ[E(B1)
q1

+ E(B2)
q2

].Also LQ is obtained from (46) with

E(B) = E(B1) + E(B2) and E(B2) = E(B2
1) + E(B2

2) + 2E(B1)E(B2)

iii)Finally with θ = 0,p1 = p2 = 0, q1 = q2 = 1 and B∗
2 = 0 then we have

PQ(z) = R0
(z − 1)B∗

1

z −B∗
1

(54)

where R0 = 1− ρ and ρ = λE(B1) and

LQ = λE(B1) +
λ2E(B2

1)

2(1− ρ)
(55)

which is the famous Pollaczek-Khinchine formula.
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Asymptotic Behaviors of the Lorenz Curve for Left Truncated and

Dependent Data

M. Bolbolian Ghalibaf, V. Fakoor and H.A. Azarnoosh

Department of Statistics, Ferdowsi University of Mashhad

In this paper, we consider a nonparametric estimator of the Lorenz curve under trun-
cated dependent model. We show that this estimator is uniformly strongly consistent
for the associated Lorenz curve. Also, a strong Gaussian approximation for the as-
sociated Lorenz process are established under appropriate assumptions. A law of the
iterated logarithm for the Lorenz process is also derived.

Keywords: Law of the iterated logarithm, Lorenz curve, Quantile function, Strong con-
sistency, Strong Gaussian approximation, Strong mixing, Truncated data

1. Introduction and Preliminaries

Pietra (1915) and Gastwirth (1971) independently introduced the Lorenz curve

corresponding to a non-negative random variable (rv) X with a distribution func-

tion (df) F , quantile function Q(p) and finite mean EX = µ as:

LF (t) :=
1

µ

∫ t

0

Q(s)ds, 0 ≤ t ≤ 1.

In econometrics, with X representing income, L(t) gives the fraction of total

income that the holders of the lowest tth fraction of income possesses. Most of the

measures of income inequality are derived from the Lorenz curve. An important

example is the Gini index associated with F defined by

GF :=

∫ 1

0 [u− LF (u)]du∫ 1

0
udu

= 1− 2(CL)F ,

where (CL)F =
∫ 1

0
LF (u)du is the cumulative Lorenz curve corresponding to F .

This is a ratio of the area between the Lorenz curve and the 45◦ line to the area

under the 45◦ line. The numerator is usually called the area of concentration.

Kendall and Stuart (1963) showed that this is equivalent to a ratio of a measure of

dispersion to the mean. In general, these notions are useful for measuring concen-

tration and inequality in distributions of resources, and in size distributions. For
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a list of applications in different areas, we refer the readers to Csörgő and Zitikis

(1996a).

To estimate the Lorenz curve, one can use the Lorenz statistic Ln(y) defined

by

Ln(y) :=
1

µn

∫ y

0

Qn(u)du, 0 ≤ y ≤ 1,

where µn is the sample mean and Qn(y) is the empirical quantile function con-

structed from i.i.d. sample taken from F .

Goldie (1977) proved the uniform consistency of Ln to LF and derived the

weak convergence of the Lorenz process ln(t) :=
√
n[Ln(t) − L(t)], 0 ≤ t ≤ 1 to

a Gaussian process under suitable conditions. Csörgő et al. (1986) gave a unified

treatment of strong and weak approximations of the Lorenz and other related pro-

cesses. In particular, they established a strong invariance principle for the Lorenz

process, by which Rao and Zhao (1995) derived one of their two versions of the law

of the iterated logarithm (LIL) for the Lorenz process. Different versions of the LIL

under weaker assumptions are also obtained by Csörgő and Zitikis (1996a, 1997).

In Csörgő and Zitikis (1996b), confidence bands for the Lorenz curve that are

based on weighted approximations of the Lorenz process are constructed. Csörgő

et al. (1987), obtained weak approximations for Lorenz curves under random right

censorship. Strong Gaussian approximations for the Lorenz process when data

are subject to random right censorship and left truncation are established by Tse

(2006), he is also derived a functional LIL for the Lorenz process.

However, in most economic situations, the basic sequence of observations may

not be independent. It is more realistic to assume some form of dependence among

the data are observed. Csörgő and Yu (1999), obtained weak approximations

for Lorenz curves and its inverse under the assumption of mixing dependence.

Glivenko-Cantelli-type asymptotic behavior of the empirical generalized Lorenz

curves based on random variables forming a stationary ergodic sequence with de-

terministic noise were considered by Davydov and Zitikis (2002). Davydov and

Zitikis (2003) established a large sample asymptotic theory for the empirical gen-

eralized Lorenz curves when observations are stationary and either short-range

or long-range dependent. Strong laws for the generalized absolute Lorenz curves

when data are stationary and ergodic sequences established by Helmers and Zitikis

(2005). Based on the generalized Lorenz curves Davydov et al. (2007) proposed a

statistical index for measuring the fluctuations of a stochastic process. They de-

veloped some of the asymptotic theory of the statistical index in the case where

the stochastic process is a Gaussian process with stationary increments and a

nicely behaved correlation function. The uniform strong convergence rate of the

Lorenz curve estimator under strong mixing hypothesis is obtained by Fakoor et
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al. (2009). They also established a strong Gaussian approximation for the Lorenz

process, by which they derived a functional LIL for the Lorenz process, under the

assumption of strong mixing. The counterpart of these results for the censored

dependent model was established by Bolbolian et al. (2009a).

The purpose of this paper is to provide some asymptotic results for Lorenz

process ln(t), for the case in which data are assumed to be strong mixing subject

to random left truncation.

Consider a sequence of rv’s X1,X2, . . . ,XN with common unknown absolutely

continuous df F and finite mean µ. These rv’s are regarded as the lifetimes of the

items under study which may not be mutually independent. Among the different

forms in which incomplete data appear, right censoring and left truncation are

two common ones. Left truncation may occur if the time origin of the lifetime

precedes the time origin of the study. Only subjects that fail after the start of

the study are being observed, otherwise they are left truncated. This means that

some subjects are sampled, while others are neglected. This model arises in various

fields, e.g., astronomy, economy and medical studies (see, e.g., Woodroofe, 1985).

Let T1,T2, . . . ,TN be a sequence of independent and identically distributed (iid)

random variables with continuous df G, they are also assumed to be independent of

the rv’sXi’s. In the left truncation model, (Xi,Ti) is observed only when Xi ≥ Ti.

Let (X1, T1), . . . , (Xn, Tn) be a sample which one observes (i.e.,Xi ≥ Ti), and

γ := P(T1 ≤ X1) > 0, where P is the absolute probability (related to the N -

sample). Note that n itself is a rv and that γ can be estimated by n/N (although

this estimator cannot be calculated since N is unknown). Assume, without loss of

generality, that Xi and Ti are nonnegative random variables, i = 1, . . . , N . For any

df L denotes the left and right endpoints of its support by aL = inf{x : L(x) > 0}
and bL = sup{x : L(x) < 1}, respectively. Then under the current model, as

discussed by Woodroofe (1985), we assume that aG ≤ aF and bG ≤ bF . Define

C(x) = P(T1 ≤ x ≤ X1|T1 ≤ X1) = P(T1 ≤ x ≤ X1) = γ−1G(x)(1−F (x)), (1)

where P(.) = P(.|n) is the conditional probability (related to the n-sample) and

consider its empirical estimate

Cn(x) = n−1
n∑

i=1

I(Ti ≤ x ≤ Xi), (2)

where I(.) is the indicator function. Then the product-limit (PL) estimator F̂n of

F is given by

F̂n(x) = 1−
∏

Xi≤x

(
1− 1

nCn(Xi)

)
. (3)
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The cumulative hazard function Λ(x) is defined by

Λ(x) =

∫ x

0

dF (u)

1− F (u)
. (4)

Let

F ∗(x) = P(X1 ≤ x|T1 ≤ X1) = P(X1 ≤ x) = γ−1

∫ x

0

G(u)dF (u), (5)

be the df of the observed lifetimes. Its empirical estimator is given by

F ∗
n(x) = n−1

n∑

i=1

I(Xi ≤ x).

On the other hand, the df of the observed Ti’s is given by

G∗(x) = P(T1 ≤ x|T1 ≤ X1) = P(T1 ≤ x) = γ−1

∫ ∞

0

G(x ∧ u)dF (u),

and is estimated by

G∗
n(x) = n−1

n∑

i=1

I(Ti ≤ x).

It then follows from (1) and (2) that

C(x) = G∗(x) − F ∗(x), Cn(x) = G∗
n(x) − F ∗

n(x−). (6)

Finally (1), (4) and (5) give

Λ(x) =

∫ x

0

dF ∗(u)

C(u)
.

Hence, a natural estimator of Λ is given by

Λ̂n(x) =

∫ x

0

dF ∗
n(u)

Cn(u)
=

n∑

i=1

I(Xi ≤ x)

nCn(Xi)
,

which is the usual so-called Nelson-Aalen estimator of Λ. Moreover, Λ̂n is the

cumulative hazard function of the PL estimator F̂n defined in (3).

The quantile function Q and its empirical counterpart Qn are defined by

Q(p) = inf{x ∈ R;F (x) ≥ p} and Qn(p) = inf{x ∈ R; F̂n(x) ≥ p} (7)

Suppose that 0 < p0 ≤ p1 < 1.

We defined the Lorenz curve corresponding to rv X as:

LF (p) :=
1

µ

∫ p

p0

Q(s)ds, p0 ≤ p ≤ p1,

where µ =
∫ p1

p0
Q(s)ds.
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Therefore the natural estimator for the Lorenz curve LF (t) is

Ln(p) :=
1

µn

∫ p

p0

Qn(s)ds, p0 ≤ p ≤ p1,

where µn =
∫ p1

p0
Qn(s)ds.

The main aims of this paper are to derive strong uniform consistency of the

Lorenz statistic and strong Gaussian approximation for Lorenz process, for the case

in which data are assumed to be dependent subject to random left truncation. As

a result of our strong Gaussian approximation, we obtain a functional LIL for the

Lorenz process.

In this paper we consider the strong mixing dependence, which amounts to a

form of asymptotic independence between the past and the future as shown by its

definition.

Definition 1.1. Let {Xi, i ≥ 1} denote a sequence of random variables. Given a

positive integer m, set

α(m) = sup
k≥1

{|P (A ∩B)− P (A)P (B)| ; A ∈ Fk
1 , B ∈ F∞

k+m}, (8)

where Fk
i denote the σ-field of events generated by {Xj; i ≤ j ≤ k}. The se-

quence is said to be strong mixing (α-mixing) if the mixing coefficient α(m) → 0

as m→ ∞.

Among various mixing conditions used in the literature, strong mixing is rea-

sonably weak and has many practical applications (see, e.g. Doukhan (1994) or Cai

(1998, 2001) for more details). In particular, Masry and Tjostheim (1995) proved

that, both ARCH processes and nonlinear additive AR models with exogenous

variables, which are particularly popular in finance and econometrics, are station-

ary and strong mixing.

Now we introduce our main assumption that is used to state our results gath-

ered below for easy reference.

A. {Xi}i≥1 is a sequence of stationary strong mixing rv’s with mixing coeffi-

cient α(n) = O(e−(log n)1+ν) for some ν > 0.

In the next Section, we present our main results.
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2. Asymptotic Behaviors of Lorenz Curve

2.1. Strong Uniform Consistency

Theorem 2.1 below proves the uniform strong consistency with rate of the estimator

Ln.

Theorem 2.1. Let 0 < p0 ≤ p1 < 1. Under Assumption A, assuming that F ′ = f

is bounded away from zero on [Q(p0)− δ,Q(p1) + δ), for some δ > 0. Then

sup
p0≤p≤p1

|Ln(p)− LF (p)| = O

(√
log logn

n

)
a.s. (9)

Proof. An elementary computation shows that,

Ln(p)− LF (p) =
1

µn

∫ p

p0

[Qn(s)−Q(s)]ds− µn − µ

µn
LF (p). (10)

It is easy to see that,

µn − µ =

∫ p1

p0

[Qn(s)−Q(s)]ds. (11)

Now, by using (10), (11) and Lemma 3 of Lemdani et al. (2005), we obtain the

results.

2.2. Strong Gaussian Approximation

We first introduce the following Gaussian process, which plays an important role

to present our strong approximation.

Let gj(s) = I(Xj ≤ s)− F ∗(s), j ≥ 0,

Γ(s, s′) = Cov(g1(s), g1(s
′)) +

∞∑

j=2

[Cov(g1(s), gj(s
′)) + Cov(g1(s

′), gj(s))]. (12)

Define, for 0 ≤ t ≤ b, two parameter mean zero Gaussian process

B(t, n) :=
K(t, n)/

√
n

C(t)
+

∫ t

0

K(u, n)/
√
n

C2(u)
dC(u), (13)

where {K(s, t), 0 ≤ s, t ≤ b} is a Kiefer process in Theorem 3 of Dhompongsa

(1984) with covariance function

Γ∗(t, t′, s, s′) = min(t, t′)Γ(s, s′),

and Γ(s, s′) given by (12).

We now restate below a strong approximation by Bolbolian et al. (2009b)

for the normed PL-quantile process ρn(u) :=
√
nf(Q(u))[Q(u) − Qn(u)] by a
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two parameter Gaussian process at the rate O((log n)−λ), for some λ > 0. The

statements are conditional on the observed sample size n.

Theorem 2.2. (Bolbolian et al., 2009b) Let 0 < p0 ≤ p1 < 1. Under Assumption

A, assume that F is Lipschtiz continuous and that F is twice continuously differ-

entiable on [Q(p0) − δ,Q(p1) + δ], for some δ > 0, such that f is bounded away

from zero, then there exists a two parameter mean zero Gaussian process B(x, u)

for x, u ≥ 0, such that,

sup
p0≤p≤p1

|ρn(p)− (1− p)B(Q(p), n)| = O((log n)−λ) a.s.,

for some λ > 0. �

We will give strong Gaussian approximation of the Lorenz process over re-

stricted interval [p0, p1] for fixed 0 < p0 ≤ p1 < 1.

In the full model, Langberg et al. (1980) define the total time on test transform

curve corresponding to a continuous distribution F on [0,∞), H−1
F (p), for p ∈ [0, 1]

as

H−1
F (p) =

∫ p

0

(1 − y)dQ(y) = (1− p)Q(p) +

∫ p

0

Q(y)dy, Q(0) = 0.

Obviously,H−1
F (p) ≤ H−1

F (1) := limp↑1H
−1
F (p) = µ. For the our model, we modify

the definition of H−1
F (p) as

H−1
F (p) = (p1 − p)Q(p) +

∫ p

p0

Q(y)dy, p ∈ [p0, p1]. (14)

As p0 ↓ 0 and p1 ↑ 1, H−1
F (p1) →

∫ 1

0 Q(y)dy = µ. We can regard H−1
F (p1) as a

surrogate for the finite mean µ. A natural estimator for H−1
F (p) is

H−1
n (p) = (p1 − p)Qn(p) +

∫ p

p0

Qn(y)dy, p ∈ [p0, p1].

In the next theorem, we construct a two parameter mean zero Gaussian process

that strongly uniformly approximate the empirical process ln(p).

Theorem 2.3. Let 0 < p0 ≤ p1 < 1. Under Assumption A, assume that F is

Lipschtiz continuous and that F is twice continuously differentiable on [Q(p0) −
δ,Q(p1) + δ], for some δ > 0, such that f is bounded away from zero. Then there

exists a two parameter mean zero Gaussian process B(t, u) for t, u ≥ 0, such that,
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almost surely,

sup
p0≤p≤p1

∣∣∣∣∣ln(p)

− 1

H−1
F (p1)

(∫ p

p0

(p1 − y)B(Q(y), n)

f(Q(y))
dy − LF (p)

∫ p1

p0

(p1 − y)B(Q(y), n)

f(Q(y))
dy)

) ∣∣∣∣∣
= O((log n)−λ), (15)

for some λ > 0.

Proof. See the Appendix.

2.3. Functional LIL

The next theorem gives a functional LIL for the Lorenz process. We work on the

probability space of Theorem 2.3. Let D[a, b] be the space of functions on [a, b] that

are right continuous and have left limits and B is the unit ball in the reproduce

kernel Hilbert space H(Γ∗).

Theorem 2.4. Suppose that conditions of Theorem 2.3 are satisfied. On a rich

enough probability space, ln(.)/
√
2 log logn is almost surly relatively compact in

D[p0, p1] with respect to the supremum norm and its set of limit points is

G =

{
gh : gh(u) =

1

H−1
F (p1)

(∫ u

p0

h(y)

f(Q(y))
dy − LF (u)

∫ p1

p0

h(y)

f(Q(y))
dy

)
,

p0 ≤ u ≤ p1, h ∈ H
}
,

where

H =

{
h : [p0, p1] → R, h(u) =

g(u)

C(u)
+

∫ u

0

g(x)

C2(x)
dC(x) : g ∈ B

}
.

Proof. Theorem 2.4 follows at once from (15) and Theorem A in Berkes and

Philipp (1977).

3. Appendix

In establishing Theorem 2.3, we were aided by some ideas found in Tse (2006),

but first we start with the following lemmas which is necessary for achieving the

establishment of the our results.
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Lemma 3.1. Suppose the conditions of Theorem 2.2 are satisfied. We have,

lim
n→∞

sup
p0≤p≤p1

|H−1
n (p)−H−1

F (p)| = O

(√
log logn

n

)
a.s.

Proof. By Lemma 3 of Lemdani et al. (2005), we have,

sup
p0≤p≤p1

|H−1
n (p)−H−1

F (p)| ≤ sup
p0≤p≤p1

[(p1 − p)|Qn(p)−Q(p)|]

+ sup
p0≤p≤p1

∫ p

p0

|Qn(y)−Q(y)|dy

= O

(√
log logn

n

)
a.s. �

Next, define the normed total time on test empirical process tn(p) by

tn(p) =
√
n[H−1

n (p)−H−1
F (p)], p ∈ [p0, p1].

Lemma 3.2 characterize the asymptotic limit of tn(p).

Lemma 3.2. Suppose the conditions of Theorem 2.2 are satisfied. Then there

exists a two parameter mean zero Gaussian process B(t, u) for t, u ≥ 0, such that,

sup
p0≤p≤p1

∣∣∣∣tn(p)−
(∫ p

p0

(p1 − y)B(Q(y), n)

f(Q(y))
dy +

(p1 − p)2B(Q(p), n)

f(Q(p))

)∣∣∣∣

= O((log n)−λ) a.s.

Proof. Proof of this lemma can be done using similar augment of Lemma 3.2 in

Tse (2006), we therefore omit the proof.

Next, we define the scaled total time on test transform, its statistic and asso-

ciated empirical process corresponding to F .

WF (p) :=
H−1

F (p)

H−1
F (p1)

, Wn(p) :=
H−1

n (p)

H−1
n (p1)

(16)

and

wn(p) :=
√
n[Wn(p)−WF (p)]

for p ∈ [p0, p1].

The following lemmas give the strong uniform consistency ofWn(p) and strong

Gaussian approximation of the scaled total time on test empirical process respec-

tively.
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Lemma 3.3. Suppose that conditions of Theorem 2.2 are satisfied. We have,

sup
p0≤p≤p1

|Wn(p)−WF (p)| = O

(√
log logn

n

)
a.s.

Proof. By triangular inequality and Lemma 3.1, the left hand side is bounded by

sup
p0≤p≤1

∣∣∣∣
H−1

n (p)

H−1
n (p1)

− H−1
n (p)

H−1
F (p1)

∣∣∣∣+ sup
p0≤p≤p1

∣∣∣∣
H−1

n (p)

H−1
F (p1)

− H−1
F (p)

H−1
F (p1)

∣∣∣∣

≤ sup
p0≤p≤p1

∣∣∣∣H−1
n (p)

H−1
F (p1)−H−1

n (p1)

H−1
n (p1)H

−1
F (p1)

∣∣∣∣+ sup
p0≤p≤p1

∣∣∣∣
1

H−1
F (p1)

[H−1
F (p)−H−1

n (p)]

∣∣∣∣

= O

(√
log logn

n

)
a.s. �

Lemma 3.4. Suppose that conditions of Theorem 2.2 are satisfied. Then there

exists a two parameter mean zero Gaussian process B(t, u) for t, u ≥ 0, such that,

sup
p0≤p≤p1

|wn(p)−
1

H−1
F (p1)

(∫ p

p0

(p1 − y)B(Q(y), n)

f(Q(y))
dy +

(p1 − p)2B(Q(p), n)

f(Q(p))

)

+
H−1

F (p)

(H−1
F (p1))2

∫ p1

p0

(p1 − y)B(Q(y), n)

f(Q(y))
dy| = O((log n)−λ) a.s.

for some λ > 0.

Proof. Proof can be done along the lines of Lemma 3.5 of Tse (2006), we therefore

omit the proof.

Proof of Theorem 2.3. By Definition of the Lorenz curve corresponding to F

in the our model and by using (14) and (16) we have

WF (y) =
(p1 − y)Q(y)∫ p1

p0
Q(u)du

+ LF (y). (17)

We have also

Wn(y) =
(p1 − y)Qn(y)∫ p1

p0
Qn(p)dp

+ Ln(y), y ∈ [p0, p1]. (18)

Substituting (17) and (18) in Lemma 3.4, we obtain the result. �
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10. Csörgő, M. and Zitikis, R. (1996b). Confidence bands for the Lorenz curve and

Goldie curves. In A volume in honor of Samuel Kotz. NewYork: Wiley.

11. Csörgő, M. and Zitikis, R. (1997). On the rate of strong consistency of Lorenz

curves. Statistics and Probability Letters. 34, 113-121.

12. Davydov, Y. and Zitikis, R. (2002). Convergence of generalized Lorenz curves

based on stationary ergodic random sequences with deterministic noise.

Statistics and Probability Letters. 59, 329-340.

13. Davydov, Y. and Zitikis, R. (2003). Generalized Lorenz curves and convexifi-

cations of stochastic processes. J. Appl. Probab. Vol. 40, N. 4, 906-925.

14. Davydov, Y., Khoshnevisan, D., Shic, Z. and Zitikis, R. (2007). Convex rear-

rangements, generalized Lorenz curves, and correlated Gaussian data. Jour-

nal of Statistical Planning and Inference. 137, 915-934.

15. Dhompongsa, S. (1984). A note on the almost sure approximation of the em-

pirical process of weakly dependent random variables. Yokohama Math. J.

105



July 28, 2010 16:45 ISC10 - Proceeding proceeding

The 10th Iranian Statistical Conference University of Tabriz, August 2010

32, 113-121.

16. Doukhan, P. (1994). Mixing: Properties and examples. Lecture Notes in Statis-

tics. 85, Springer-Verlag, New York.

17. Fakoor, V. and Nakhaei Rad, N. (2009). Asymptotic behaviors of the Lorenz

curve under strong mixing. Submitted.

18. Gastwirth, J. L. (1971). A general definition of the Lorenz curve. Econometrica.

39, 1037-1039.

19. Goldie, C.M. (1977). Convergence theorems for empirical Lorenz curve and

their inverses. Advances in Applied Probability. 9, 765-791.

20. Helmers, R. and Zitikis, R. (2005). Strong laws for generalized absolute Lorenz

curves when data are stationary and ergodic sequences. Proc. Amer. Math.

Soc. 133, 3703-3712.

21. Kendall, M.G. and Stuart, A. (1963). The advanced theory of statistics I. (2nd.

ed.) Charles Griffen and Company, London.

22. Langberg, N.A. and Leon, R.V. and Proschan, F. (1980). Characterization of

nonparametric classes of life distributions. Annals of Probability. 8, 1163-

1170.
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A Kolmogorov inequality for quadratic forms of NSD uniformly

bounded random variables

N. Eghbal, M. Amini and A. Bozorgnia

Department of Statistics, Ferdowsi University of Mashhad

In this paper, we present a Kolmogorov probability inequality for quadratic forms
and weighted quadratic forms of negative superadditive dependent (NSD) uniformly
bounded random variables. Using these inequalities, we evaluate complete convergence
of randomized quadratic forms under some suitable conditions. Moreover, various ex-
amples presented for which satisfy given conditions in paper.

Keywords: Kolmogorov inequality, Negative superadditive dependence, Quadratic
forms, Complete convergence.

1. Introduction

Let {Xi; i ≥ 1} be a sequence of independent identically distributed random vari-

ables (r.v.’s). Consider the following quadratic forms (Q.F.’s)

Qn =
∑

1≤i<j≤n

aijXiXj , n ≥ 2,

where {aij ; 1 ≤ i < j ≤ n} is an array of real numbers. In particular, if aij = 1 for

all i 6= j, then we define

Tn =
∑

1≤i<j≤n

XiXj , n ≥ 2.

Many authors have been studied limiting behavior of the quadratic forms and

weighted quadratic forms {Tn;n > 1} and {Qn;n ≥ 1} respectively. For instance,

Cuzich et al. (1995), Zhang (1996), Whittle (1960, 1964), Varberg (1966) and

Eghbal et al. (2010). Moreover, the study of U-statistics was initiated by Hoeffding

(1948) and applications can be found in many references, e.g. Serfling (1980).

Improvements, extensions and results related to Kolmogorov inequalities can be

found among others, in Young et al. (1987), Turner et al. (1995) and Mavrikiou

(2007). Exponential and Kolmogorov inequalities have been constructed for U-

statistics based on Bernoulli kernels in Christofides (1991, 1994). Also Mavrikiou

(2008) obtained a Kolmogorov inequality for weighted U-statistics. In this paper,
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we derive a Kolmogorov inequality for quadratic forms, Tn =
∑

1≤i<j≤n

XiXj and

weighted quadratic forms Wn =
∑

1≤i<j≤n

aijXiXj, where {Xi; i ≥ 1} is a sequence

of nonnegative NSD uniformly bounded random variables and {aij ; 1 ≤ i < j ≤
n} be an array of non-negative real numbers. Then, using these inequalities we

evaluate complete convergence of randomized quadratic forms under some suitable

conditions. Moreover, some well known multivariate distributions that possess the

NSD property and satisfy in our conditions present in section 4.

2. Preliminaries

Here, We present some well known definitions and lemmas will be used in next

section.

Definition 2.1. (Kemperman; 1977) A function φ : Rm → R is called super-

additive if φ(x ∨ y) + φ(x ∧ y) ≥ φ(x) + φ(y) for all x,y ∈ Rm, where ∨ is for

componentwise maximum and ∧ is for componentwise minimum.

Lemma 2.1. (Kemperman; 1977) If φ has continuous second partial derivatives,

then the superadditivity of φ is equivalent to ∂2φ/∂xi∂xj ≥ 0, 1 ≤ i 6= j ≤ m.

Definition 2.2. (Hu; 2000) A random vector X = (X1, X2, . . . , Xm) is said to be

negatively superadditive dependent (NSD) if

Eφ(X1, X2, . . . , Xm) ≤ Eφ(X∗
1 , X

∗
2 , . . . , X

∗
m), (1)

where X∗
1 , X

∗
2 , . . . , X

∗
m are independent with Xi

st
= X∗

i for each i and φ is a su-

peradditive function such that the expectations in (1) exist. The following lemma

that can be found in Hoeffding (1963) is based in our results.

Lemma 2.2. Let X be a random variable such that P (a ≤ X ≤ b) = 1, a < b,

and E(X) = µ. Then,

Eet(X−µ) ≤ e
1
8 t

2(b−c)2 for all t > 0.

Noting that,without loss of generality, we suppose that {Xi; i ≥ 1} is a sequence

of nonnegative random variables. Because, if assumption of nonnegativity random

variables is removed, then by |X | = X+ +X− and

|Tn| ≤
∑

1≤i<j≤n

|XiXj | =
∑

1≤i<j≤n

|Xi||Xj |

=
∑

1≤i<j≤n

X+
i X

+
j +

∑

1≤i<j≤n

X+
i X

−
j +

∑

1≤i<j≤n

X−
i X

+
j +

∑

1≤i<j≤n

X−
i X

−
j

all of our results are valid, where X+ = max{X, 0} and X− = max{0,−X}.
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3. Theoretical results

In this section, we derive a Kolmogorov inequality for quadratic forms of non-

negative NSD uniformly bounded random variables. Also, we discuss the complete

convergence of randomized quadratic forms under some suitable conditions.

Theorem 3.1. Let {Xi; i ≥ 1} be a sequence of non-negative NSD random vari-

ables with P (a ≤ Xi ≤ b) = 1, i = 1, 2, · · · . Then, for all ε > 0

P
(
Tn − E(Tn) ≥ ε

)
≤ exp

{ −4ε2

n(n− 1)(b2 − a2)2

}
.

Proof: Applying Markov’s inequality for all t > 0, we have,

P
(
Tn − E(Tn) ≥ ε

)
≤ e−tεE exp

{
t
∑

1≤i<j≤n

(XiXj − EXiXj)
}

= e−tεE
[ ∏

1≤i<j≤n

exp
{
t(XiXj − EXiXj)

}]

By Lemma 2.1, it is easy to show that the function ϕ(x1, x2, · · · , xn) =

exp
{ ∑

1≤i<j≤n

xixj

}
is superadditive. Then properties of NSD random variables

and Lemma 2.2, imply that

P
(
(Tn − E(Tn) ≥ ε

)
≤ e−tε

∏

1≤i<j≤n

E
[
exp {t(XiXj − EXiXj)}

]

≤ e−tε
∏

1≤i<j≤n

exp

{
1

8
t2(b2 − a2)2

}

= e−tε exp
{(n

2

)

8
t2(b2 − a2)2

}

= exp{f(t)},

where f(t) = −εt+ n(n−1)
16 t2(b2 − a2)2.

Minimizing f(t) we get tmin = 8ε
n(n−1)(b2−a2)2 and f(tmin) =

−4ε2

n(n−1)(b2−a2)2 .

Replacing in this arguments Xi by −Xi has a similar inequality. These complete

the proof.

Corollary 3.1. Under the assumptions of Theorem 3.1, for every ε > 0,

P
(
Un − E(Un) ≥ ε

)
≤ exp

{−ε2n(n− 1)

(b2 − a2)2

}
,

where Un =
(
n
2

)−1 ∑

1≤i<j≤n

XiXj .
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Theorem 3.2. Let {Xi; i ≥ 1} be a sequence of non-negative NSD random vari-

ables and P (a ≤ Xi ≤ b) = 1, i = 1, 2, · · · , and assume that {aij; 1 ≤ i < j ≤ n}
be an array of nonnegative real numbers. Then for all ε > 0,

P
(
Qn − E(Qn) ≥ ε

)
≤ exp

{ −2ε2

(b2 − a2)2An

}
,

where An =
∑

1≤i<j≤n

a2ij . Proof: Applying, Markov’s inequality for all ε > 0 we

have,

P
(
Qn − E(Qn) ≥ ε

)
≤ e−tεE exp

{
t
∑

1≤i<j≤n

aij(XiXj − EXiXj)
}

= e−tεE
[ ∏

1≤i<j≤n

exp
{
taij(XiXj − EXiXj)

}]

By Lemma 2.1, it is easy to show that the function ψ(x1, x2, · · · , xn) =

exp{
∑

1≤i<j≤n

aijxixj} is superadditive. Then properties of NSD random variables

and Lemma 2.2, imply that

P
(
Qn − E(Qn) ≥ ε

)
≤ e−tε

∏

1≤i<j≤n

E exp {taij(XiXj − EXiXj)}

≤ e−tε
∏

1≤i<j≤n

exp

{
1

8
t2(b2 − a2)2a2ij

}

= e−tε exp
{1
8
t2(b2 − a2)2An

}

= exp{h(t)},
where h(t) = −εt+ t2

8 (b
2 − a2)2An.

Minimizing h(t) we get tmin = 4ε
(b2−a2)2An

and h(tmin) =
−2ε2

(b2−a2)2An
.

This completes the proof.

Corollary 3.2. Under the assumptions of Theorem 3.3, for every ε > 0

P
(
Vn − E(Vn) ≥ ε

)
≤ exp

{−ε2n2(n− 1)2

2(b2 − a2)2An

}
,

where Vn =
(
n
2

)−1 ∑

1≤i<j≤n

aiajXiXj .

Remark Let {Xi; i ≥ 1} be a sequence of non-negative NSD random variables

with P (ai ≤ Xi ≤ bi) = 1 (ai < bi) and ai, bi ∈ R+,i = 1, 2, ..., then for all ε > 0

we obtain

P
(
Un − E(Un) ≥ ε

)
≤ exp

{−ε2n2(n− 1)2

2An

}
,

110



July 28, 2010 16:45 ISC10 - Proceeding proceeding

The 10th Iranian Statistical Conference University of Tabriz, August 2010

and

P
(
Vn − E(Vn) ≥ ε

)
≤ exp

{−ε2n2(n− 1)2

2Cn

}
,

where Cn =
∑

1≤i<j≤n

a2ij(bjbi − ajai)
2. and An =

∑

1≤i<j≤n

(bibj − aiaj)
2.

Cuzich et al. (1995), randomizing the sums
∑

i<j

XiXj by products of Rademacher

variables prove that

1

γn

∑

i<j

XiXj

a.e.
→ 0 ⇒ 1

γn

∑

i<j

εiεjXiXj

a.e.
→ 0 as n→ ∞,

where {εi; i ≥ 1} is a sequence of independent Rademacher variables independence

of {Xi; i ≥ 1} and {γn;n ≥ 1} be a nondecreasing sequence of positive real numbers

such that γn → ∞ as n → ∞. In the following theorems, we prove this result

using Theorem 3.1 for non-negative NSD uniformly bounded random variables and

the sequences of independent Rademacher and Bernoulli variables independence

of {Xi; i ≥ 1}.

Theorem 3.3. Let {Xi; i ≥ 1} be a sequence of non-negative NSD random vari-

ables with P (a ≤ Xi ≤ b) = 1, i = 1, 2, · · · and assume {εi; i ≥ 1} be a sequence of

independent Rademacher variables independence of {Xi; i ≥ 1}. Let {γn;n ≥ 1}
be a nondecreasing sequence of positive real numbers, then

P
[
|
∑

1≤i<j≤n

εiεjXiXj | > γnε
]
≤ exp

{
−4(γnε− b2 n(n−1)

2 )2

n(n− 1)(b2 − a2)2

}
.

Proof: Rademacher variables are generally understood as an i.i.d sequence of

random variables taking the values -1 and +1 each with probability 1/2. Set

An = {(i, j); εiεj = 1}. Since {εi; i ≥ 1} is a sequence independent of {Xi; i ≥ 1}
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we have,

P
[
|
∑

1≤i<j≤n

εiεjXiXj| > γnε
]
≤ P

[ ∑

1≤i<j≤n

|εiεj|XiXj > γnε
]

= P
[ ∑

1≤i<j≤n

|εiεj|XiXj > γnε|An

]
P [An] +

P
[ ∑

1≤i<j≤n

|εiεj|XiXj > γnε|Ac
n

]
P [Ac

n]

= P
[ ∑

1≤i<j≤n

XiXj > γnε
]

≤ e−tγnεE
[
exp(t

∑

i<j

XiXj)
]

(∀ t > 0)

≤ exp
[
− tγnε+ (tb2 +

t2(b2 − a2)2

8
)

(
n

2

)]

≤ exp

{
−4(γnε− b2 n(n−1)

2 )2

n(n− 1)(b2 − a2)2

}
,

the third inequality follow from Lemma 2.4 and properties of NSD. This completes

the proof.

Theorem 3.4. Let {Xi; i ≥ 1} be a sequence of non-negative NSD random vari-

ables with P (a ≤ Xi ≤ b) = 1, i = 1, 2, · · · and assume {εi; i ≥ 1} be a sequence of

independent Bernoulli variables independence of {Xi; i ≥ 1}. Let {γn;n ≥ 1} be a

nondecreasing sequence of positive real numbers, then

P
[
|
∑

1≤i<j≤n

εiεjXiXj | > γnε
]
≤ 1

4
P
[ ∑

1≤i<j≤n

XiXj > γnε
]
.

Proof: Set Bn = {(i, j); εiεj = 1}. Since {εi; i ≥ 1} is a sequence independent of

{Xi; i ≥ 1} we have,

P
[
|
∑

1≤i<j≤n

εiεjXiXj| > γnε
]
≤ P

[ ∑

1≤i<j≤n

|εiεj |XiXj > γnε
]

= P
[ ∑

1≤i<j≤n

|εiεj |XiXj > γnε|Bn

]
P [Bn]

=
1

4
P
[ ∑

1≤i<j≤n

XiXj > γnε
]
.

Corollary 3.3. Under the assumptions of Theorems 3.5 and 3.6, if

∞∑

n=1

exp

{
−4(γnε− b2 n(n−1)

2 )2

n(n− 1)(b2 − a2)2

}
<∞,
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then

lim
n→∞

1

γn

∑

1≤i<j≤n

εiεjXiXj = 0 completely.

In particular, if for all ε > 0 and some 0 < α < 1,

1

ε
(n

α
2

√
n(n− 1)

2
+ b2

n(n− 1)

2
) < γn ≤ n(n− 1)

2
.

Then
∞∑

n=1

exp

{
−4(γnε− b2 n(n−1)

2 )2

n(n− 1)(b2 − a2)2

}
≤

∞∑

n=1

exp(− 2nα

(b2 − a2)2
) <∞,

and γn → ∞, as n→ ∞. So,

lim
n→∞

1

γn

∑

1≤i<j≤n

εiεjXiXj = 0 completely.

4. Examples

Hu (2000) proved a number of well known multivariate distributions possess the

NSD property. Among them, multivariate FGM family with margins Fi, i =

1, 2, ..., n for which support of Fi is bounded and Dirichlet distribution satisfy

given conditions in section 3. In the following, we describe multivariate FGM fam-

ily and Dirichlet distribution.

Example 4.1 (FGM family). Let X1, X2, ..., Xn be random variables with the

following joint distribution function;

F (x1, x2, ..., xn) =

n∏

i=1

Fi(xi)[1 +
∑

i<j

θij(1− Fi(xi))(1− Fj(xj))], (1)

where, the admissible rang of θij is such that the density in (1) is non-negative.

Also, (X1, X2, ..., Xn) is NSD if θij ≤ 0, ∀ i 6= j.(for more details on FGM distri-

butions see, Mari and Kotz, 2001).

In particular, if Xi ∼ U(0, 1), i = 1, 2, ..., n, then E(XiXj) = 1
9 +

θij
124 , ∀i 6= j.

Now, applying Theorem 3.1 we have,

P


 2

n(n− 1)

∑

1≤i<j≤n

(XiXj −
1

9
− θij

124
) ≥ ε


 ≤ e−ε2n(n−1) ∀ ε > 0.

Example 4.2(The Dirichlet distribution). LetX1, X2, ..., Xn are random variables

with density function as

f(x1, x2, ..., xn) =
Γ(
∑n

i=0 θi)∏n
i=0 Γ(θi)

(1−
n∑

j=0

xj)
θ0−1

n∏

j=1

x
θj−1
j , xj ≥ 0,

n∑

j=1

xj < 1,
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where the parameter vector (θ0, θ1, ..., θn) satisfies θj ≥ 1, j = 1, 2, ..., n. Also,

(X1, X2, ..., Xn) is NSD and it is obvious P (0 ≤ Xj ≤ 1) = 1, j = 1, 2, ..., n. It is

easy to show that for all i 6= j, E(XiXj) =
θiθj

(θ0+θi+θj)(θ0+θi+θj+1) . Therefore, for

every ε > 0, we get

P


 2

n(n− 1)

∑

1≤i<j≤n

(XiXj −
1

9
− θiθj

(θ0 + θi + θj)(θ0 + θi + θj + 1)
) ≥ ε




≤ e−ε2n(n−1).
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An Economy Search Design for 2m Factorial Experiments
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Since introduction of search design by Srivastava(1975), construction of it has been done
by many researchers for 2m factorial experiments. One of the main goals in construction
of the search design is obtaining a design with a highly structured small set of runs.
The coherent structure allows for generalization of the searching property for all m.
In this paper we obtain a highly structured search design with smaller number of runs
than the former ones for all 2m factorial experiments, m > 3.

Keywords: Non-Negligible Effect; Search Designs; Search Linear Model; Bibd.

1. Introduction

Factorial designs are most commonly used designs in the area of experimental

designs. In factorial experiments, by hierarchical principal, we assume that the

lower order effects are more important than the higher order effects. That is, in a

screening stage, we assume that the interaction effects are all negligible. A main

effects plan allows us to estimate the general mean and the main effects under the

standard linear model assuming no interactions are present. Such an assumption

may not be true in reality because there can be a few nonzero interactions present.

Consequently, the estimates of the parameters are biased. This motivates the use

of search designs for estimating the general mean and main effects as well as

searching for identifying the nonzero interactions under the search linear model

introduced in Srivastava (1975). Search designs have been constructed based on

various statistical models. Several authors have investigated search designs for

the main effect plus k plans which are capable of estimating all main effects and

identifying and estimating up to k unknown interactions. For example, Shirakura

(1991, 1993), Ghosh and Talebi(1993), Mukerjee and Chatterjee (1994), Chatterjee

et al.(2001), Shirakura et al.(2002). Consider the following linear model for a 2m

factorial experiment with N runs, N < 2m,

y = A1ξ1 +A2ξ2 + e, V ar(e) = σ2I, (1)

where y(N × 1) is a vector of observations, Ai(N × νi) are known design matrices

and ξi(νi × 1) are vectors of factorial effects for i = 1, 2, e is an error random
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vector, σ2 is the error variance and I is the identity matrix. The elements of ξ1
are unknown parameters. We know that at most k elements of ξ2 are nonzero

but we do not know which elements. The goal is to search for and identify the

nonzero elements of ξ2 and then estimate them along with the elements of ξ1.

Such a model is called a search linear model and the corresponding design matrix

is called search design. Let A22 be any (N × 2k) submatrix of A2. A design is a

search design (Srivastava, 1975) if, for every A22,

rank[A1;A22] = ν1 + 2k. (2)

For a 2m factorial experiment consider the search linear model (1) where ξ1
consists of the general mean and main effects and ξ2 is restricted to 2- and 3-factor

interactions. Let the matrix T1 = [1′
m : Im] , where Im and 1m are the identity

matrix of order m and vector of ones, respectively. Consider a symmetric BIB

design with parameters v = b = 4λ − 1, r = k = 2λ and λ, where λ(≥ 2) is a

positive integer. Let T2(m ×m) be its incidence matrix with m = v = b. Ghosh

and Talebi(1993) showed that the design T = [T1 : T2] is a search design with

2m+ 1 runs for k = 1. Main effect plans that allow search and estimation of one

nonzero element of ξ2 are called main effect plus one (MEP.l) plans.

Due to decrease cost of running an experiment, it is desired to choose a de-

sign with smaller number of runs from set of designs which are considered for a

particular purpose. In this paper, we show that in T1 the run 1′
m is redundant.

That is, the reduced design obtained after removing the first row from T do the

search problem job with 2m runs. In section 2, we present some preliminaries and

notations. The main result is given in section 3 for noiseless case, σ2 = 0. The

noisy case, σ2 > 0, will be considered in section 4.

2. Preliminaries and notations

Consider a factorial experiment with m factors each at two levels. A treatment

combination is denoted by (t1, t2, ..., tm), where ti, the level of the i − th factor,

is 0 or 1 for i = 1, ...,m. Thorough the paper, 0m denote the vector with all

m elements 0 and by On×m we mean the n ×m matrix with all elements 0. Let

T be a design with m factors and N treatments(runs) which has been written as

an N ×m matrix. We assume that four-factor and higher order interactions are

negligible. So, the whole model matrix for T is given by

[1N ;U1;U2;U3]; (3)
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where 1N is the column corresponding to the general mean, U1, U2 and U3 are

defined as

U1 = [u1, u2, ..., um]

U2 = [u12, u13, ..., um−1,m]

U3 = [u123, ..., um−2,m−1,m],

(4)

in which ui for i = 1, ...,m is the column corresponding to the main effect of factor

i , uij (1 ≤ i < j ≤ m) is the column for the two-factor interaction of factors i and

j and uijk for (1 ≤ i < j < k ≤ m) is the column for the three-factor interaction

of factors i , j and k. Note that

ui = 2ti − 1, i = 1, ...,m,

uij = ui ∗ uj, 1 ≤ i < j ≤ m,

uijk = ui ∗ uj ∗ uk, 1 ≤ i < j < k ≤ m,

(5)

where ti is the i − th column of T and ∗ denotes the Hadamard product. The

matrices A1 and A2, in (1) are [1;U1] and [U2;U3], respectively. For the MEP.1

plan (2) is reduced to

rank[A1;A22] = m+ 3 (6)

Using (5) we define ti, tij and tijk, according to Chatterjee et.al. (2001), as the

following

(ui + 1)/2 = ti,

(uij + 2(ti + tj)− 1)/4 = ti ∗ tj = tij,

−(uijk − 2(ti + tj + tk) + 1)/4 = −2ti ∗ tj ∗ tk + ti ∗ tj + ti ∗ tk + tj ∗ tk = tijk.
(7)

Clearly, an element in vector tij is 1 when the corresponding elements of both ti
and tj are 1. It is also can be seen that an element in tijk is 1 when at least two of

the corresponding elements of ti , tj and tk are 1. Implying the elementary column

operations in (7) on whole model matrix (3), gives the following matrix

[1; T1; T2; T3]; (8)

where T1 = [t1, t2, ..., tm], T2 = [t12, t13, ..., tm−1,m] and T3 =

[t123, ..., tm−2,m−1,m].

Note that this transformation on design matrix do not change the rank in (6).

This implies that we can directly verify condition (6) in (3) using (8).

3. Main result

Consider the matrix

T =

[
Im
T2

]
, (9)
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where T2(m×m) is the incidence matrix of a symmetric BIBD(4λ−1, 2λ, λ) with

m = v = b and λ(≥ 2) is a positive integer. From the properties of the symmetric

BIBD, it is known that any two columns of T2 have λ (1, 1), (1, 0) and (0, 1) and

λ− 1 (0, 0). Note that the matrix in (8) for design T in (9) is
[
1m Im O

m×(m2 )
O

m×(m3 )
1m T2 T22 T33

]
(10)

where T22 and T33 are the m×
(
m
2

)
and m×

(
m
3

)
submatirx of T2 and T3 corre-

sponding to T2, respectively. The following lemmas and their corollaries are useful

for the subsequent results.

Lemma 3.1. Suppose i1, i2 and i3 are three distinct columns of a symmetric

BIBD(4λ− 1, 2λ, λ) incidence matrix. The number of each triple (1, 1, 0), (1, 0, 1)

and (0, 1, 1) as rows of (i1, i2, i3) are at least 1.

Lemma 3.2. Consider every four columns, say,i1, i2, i3 and i4, of a symmet-

ric BIBD(4λ − 1, 2λ, λ) incidence matrix. At least one of the rows (1, 1, 0, 0) or

(0, 0, 1, 1) occurs in (i1, i2, i3, i4).

Remark 3.1. It is true that both occurs in case of rows (1, 1, 1, 1) or (0, 0, 0, 0)

occurs at least once. Note that these two lemmas are direct consequent of lemma

1, 2 and 3 and their remarks of Ghosh and Talebi(1993).

Corollary 3.1. Any two columns in T22 has at least a copy of set rows

{(1, 0), (0, 1), (0, 0)}. Proof : Any two columns in T22 are corresponding to 2-

factor interactions which either have a common or no common factor. Consider

the tij defined in (7). For the former case the proof is obtained from lemma 3.1.

For the later case by lemma 3.2 and noting that any two columns in T2 contains

λ− 1 copies of (0, 0) the proof is clear.

Corollary 3.2. Any two columns, one from T22 and another from T33 have at

least a copy of set rows {(1, a), (0, 1), (0, 0)}, where a is either 0 or 1. Proof :

Suppose the columns in T22 and T33 are denoted by ti1j1 and ti2j2k2 , where the

sets {i1, j1} and {i2, j2, k2} correspond to factors. There exist three possible cases

for two sets: i) no common factors, ii) one common factor, say j1 = i2 and iii)

two common factors, say i1 = i2 and j1 = j2. For (i), we can always arrange the

columns i1, j1, i2, j2 and k2 in T2 as Table 1. There must always be a run with

(i1, j1) = (0, a) or (a, 0) in the 3 − th block row for λ > 2. Otherwise, in order to

have λ− 1 possible (0, 0) for (i1, i2) and (j1, i2) all must occur in the 4− th block

row. Having λ rows in this block restrict a to be 0 such that the total number of

(0, 0) for (i1, j1) must be at least λ − 2. By similar argument consider all λ − 1

possible (0, 0) of columns (j1, j2) and (i1, j2) in the 2-nd block row and noting that
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Table 1. Arranged T2 in terms of
columns i2 and j2

i1 j1 i2 j2 k2
1λ 1λ

1λ 0λ

0λ−1 0λ−1

0λ 1λ

total number of (0, 0) for (i1, j1) in these 2 blocks must be at most λ− 1. It leads

to that have 2(λ − 2) < λ − 1. That is, λ < 3 which contradicts the assumption

λ > 2. Therefore, the 3− th row of Table 1 must have some runs 0 for columns i1
and j1. So, by having a (0, 0) run in the 3− th row of Table 1 for (i1, j1) and from

lemma 3.1 and this fact that column ti1j1 has λ elements 1, the proof is clear. For

λ = 2 the proof is simple by completing Table 1.

For (ii), by considering columns i1, j1 and j2 in T2 and lemma 3.1, we obtain the

row (0, 1) for (ti1j1 , ti2j2k2). From rows (0, 0) of columns j1 and j2, row (0, 0) is

also obtained. Note that the number of 1 in column ti1j1 is λ. This complete the

proof for this case.

Finally, for (iii), by considering the rows (1, 1) and (0, 0) for columns i1 and j1 in

T2 and by lemma 3.1 the proof is clear.

Corollary 3.3. Any two columns in T33 has at least a copy of set rows

{(1, a), (b, 1), (0, 0)} or {(1, 1), (1, 0), (0, 1)}, where a and b are either 0 or 1, not

both 1 simultaneously. Proof : Let two columns in T33 are denoted by ti1j1k1

and ti2j2k2 , where the sets {i1, j1, k1} and {i2, j2, k2} correspond to factors. The

two sets can be common in 0, 1 or 2 elements. Suppose that these two sets are

common in two elements, say j1 = i2 and k1 = j2. So, in this case we have 4

distinct columns. By considering all possible combinations for columns j1 and k1
and lemma 3.2 the proof is clear. Now, suppose that these two sets are common in

one element, say k1 = i2. We arrange the matrix T2 in terms of columns j1 and k1
similar to Table 1 and consider the columns j1, k1(i2), j2 and k2. Set rows (1, a)

and (b, 1) are obtained by lemma 3.1 and lemma 3.2. By the argument similar to

Corollary 3.2(i) for four columns j1, k1, j2 and k2 the row (0, 0) is obtained for

two columns. This complete the proof. At last, suppose that sets {i1, j1, k1} and

{i2, j2, k2} have no common element. Consider four columns j1, k1, i2 and j2 . Con-

sider two possible cases whether at least one of the rows (1, 1, 1, 1) or (0, 0, 0, 0)

occurs in these columns or not. If it does then by lemma 2 and its remark we

have the set rows {(0, 0), (1, 0), (0, 1)} or {(1, 1), (1, 0), (0, 1)}. Otherwise, there

exist two possible nonisomorphic rows sets for these 4 columns given in Table 1

of lemma 3 of Ghosh and Talebi(1993). These possible cases give the set rows

{(0, 0), (b, 1), (1, a)} and the proof is complete.
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Lemma 3.3. Let W11 be an m×m matrix, W12 an m× q matrix, W21 an n×m

matrix, and W22 an n× q matrix. If rank(W11) = m, then

rank

[
W11 W12

W21 W22

]
= m+ rank(W22 −W21W

−1
11 W12).

See page 98 of Harville(1997) for a proof.

Theorem 3.1. Design T in (9) is an MEP.1 with N = 2m runs. Proof : In

order to prove T in (9) is a search design we need to show that condition (6) is

valid for (10), from equivalence rank property of (10) with model matrix in (3).

That is, for any two distinct columns ti1 and ti2 of [T22;T33] we need to show

that

rank

[
1m Im 0m 0m

1m T2 ti1 ti2

]
= m+ 3.

Applying Lemma 3.3 by taking W11 = Im, W21 = T1, W12 = [1m;0m;0m] and

W22 = [1m; ti1 ; ti2 ], the proof is reduced to show that rank(W22−W21W
−1
11 W12)=

rank(W22) = 3. There are three possible choices in choosing two columns from

[T22;T33]:

Case i. two columns from T22,

Case ii. one column from T22 and another from T33,

Case iii. two columns from T33.

For the first case Corollary 3.1 guarantees that W22 has rank 3, as we always can

identify the following sub-matrix of W22



1 0 0

1 1 0

1 a 1


 , (11)

whose rank is 3. The proof for cases ii and iii are obtained from Corollaries 3.2

and 3.3, respectively. This completes the proof.

Theorem 3.2. For m = 4λ − 1 − υ, λ ≥ 2 and υ = 1, 2, 3 consider design

T =
[
Im : T2(−υ)

]
. Then T is an MEP.1 with N = 2m+υ where T2(−υ) is obtained

from T2 in (9) by removing any υ columns. The proof is clear from Theorem 3.1.

4. Some comparisons in the noisy case

For the noisy case, σ2 > 0, condition (2) is still necessary but is not sufficient.

Srivastava(1975) proposed a procedure to minimized the sum of square error of

rival models to come up with the true model. Shirakura et al.(1996) developed this

by considering the probability, P [SSE(M0) < SSM(M)], where M0 is the true
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model and M is any alternative model, called the search probability(SP). This

leaded to the criterion G(x, ρ) = 1 − Φ(c1ρ) − Φ(c2ρ) + 2Φ(c1ρ)Φ(c2ρ), where c1
and c2 are functions of x. This criterion depends on design through the x and

size of the effect through ρ. One can use G for choosing the better design, where

the higher value of G is more desired. In this section the G-criterion is used to

compare the proposed designs in this paper with the robust designs obtained by

Ghosh-Talebi(1993) for 4 ≤ m ≤ 6. Figure 1 shows the G-curve for 0 < ρ < 4.

For m = 4, there are two isomorphic classes of designs in search probability for

both Ghosh-Talebi(GT) and designs in this paper. The graph on the left shows

SP curves for m = 4. For m = 5, there are two classes in SP for GT and one class

for designs in this paper, which its SP curve is shown by ’.’ in the Figure 1. For

m = 6, there are one class in SP for both designs, which their curves are given in

the right side of Figure 1.
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5. Conclusion

Researchers in their early attempts for constructing the search designs for 2m

factorial experiments made these designs for different values of m, say m = 4, 5, 6

and 7, separately. After a while, construction of the designs with search property

for general m has been considered. This arise a need for a highly structural set of

runs as a design. Ghosh and Talebi(1993) presented such a design for all m(> 3),

using the incidence matrix of symmetric BIBD(4λ − 1, 2λ, λ). However, due to

reduce the cost of experiments, obtaining search designs with smaller number of

runs encourage us to do more challenge. In this paper the new search designs

obtained from Ghosh and Talebi(1993) with one less number of runs, yet preserve

the searching property of the designs for all m = 4λ− 1, λ ≥ 2. These designs are

very competitive with robust search designs obtained by Ghosh and Talebi(1993)

for m 6= 4λ − 1. The competition is in number of runs for noiseless case and in

searching probability capability for noisy case.
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In this paper, we consider a Bayesian approach to estimate the Power normal Distri-
bution parameters. The Bayes estimators are derived for the two unknown parameters
and reliability function. The Bayes estimators are derived with respect to conjugate
prior for the shape parameter and, discrete prior for the scale parameter of this model.
A numerical example and a Monte Carlo simulation study are presented to illustrate
the results.

Keywords: Symmetric and asymmetric loss functions; Maximum likelihood estimation;
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1. Introduction

Let Y be a continuous random variable with distribution function F (y). Then

we define another random variable X with distribution function [F (x)]α, α >

0. This model has been called in the literature Lehmann alternatives. Lehmann

(1953) has studied such alternatives to define various non-parametric hypotheses

and has computed approximate power of certain rank test using large sample

theory. Gupta et al. (1998) studied this model from a reliability point of view

discussed the monotonicity of failure rates.In a series of papers Gupta and Kundu

(2001a,2002) have developed generalized exponential distribution as an alternative

to the gamma, weibull, log-nornal distribution to analyze lifetimes skew data sets.

The distribution of X is called a generalized exponential distribution if F (.) is

the distribution function. We defined the class of power normal distribution whose

distribution function is given by [Φ(x)]α, α > 0. That is, X is said to have a power

normal distribution if its pdf is given by

f(x, α) = α[Φ(x)](α−1)φ(x),−∞ < x >∞, α > 0. (1.1)

Note that the density in (1.1) is a weighted normal density with the weight function

[Φ(x)]α−1. For α = 1 it reduces to the standard normal distribution. The power

normal density is a unimodel density which is skewed to the right if α > 1 and
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to the left if 0 < α < 1. The power normal distribution, denoted by PN(x, α),

has a nice physical interpretation when α is an integer. Let Z be a power normal

random variable with the pdf, given in (1.1).Let X = σZ. σ > 0. Then the pdf of

X is given by

f(x, α, σ) =
α

σ
[Φ(

x

σ
)]α−1φ(

x

σ
). (1.2)

and cumulative distribution function (cdf) and reliability function (at some time

t)of a two-parameter PN distribution are given, respectively, by

F (x, α, σ) = [Φ(
x

σ
)]α. (1.3)

R(t, α, σ) = 1− [Φ(
t

σ
)]α. (1.4)

Here σ is the scale parameter and α is the shape parameter. The purpose of this

paper is to study the Power normal distribution from the Bayesian point of view.

Section 2 contains some preliminaries. In Section 3, we obtain the Bayes estimators

of the unknown parameters and reliability function. A numerical example and a

Monte Carlo simulation study are given in Section 4.

2. Maximum Likelihood Estimation

Let X1, ..., Xn be a random sample of size n from (1.2). Then the likelihood func-

tion L(σ, α) is

L(α, σ|x) = αn

σn

n∏

i=1

[Φ(
xi
σ
)]α−1(

1√
2π

)n exp(
−1

2σ2

n∑

i=1

x2i ) (2.1)

The log-likelihood function is

L = lnL(σ, α|x)

= n lnα− n lnσ + (α− 1)

n∑

i=1

ln[Φ(
xi
σ
)]− n ln

√
2π − −1

2σ2

n∑

i=1

x2i . (2.2)

Form (2.2), we obtain the likelihood equations as

∂L

∂σ
= −n

σ
− (α− 1)

σ2

n∑

i=1

xiφ(
xi

σ )

Φ(xi

σ )
+

1

σ3

n∑

i=1

x2i = 0, (2.3)

and

∂L

∂α
=
n

α
−

n∑

i=1

lnΦ(
xi
σ
) = 0. (2.4)
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The MLEs α̂ and σ̂ can be obtained by solving the likelihood equations. Solving

(∂L/∂α) = 0 for α gives,

α̂ =
−n∑n

i=1 lnΦ(
xi

σ )
., (2.5)

where σ̂ is the solution of

−n
σ
− 1

σ2
(

−n∑n
i=1 lnΦ

xi

σ − 1)

n∑

i=1

xiφ(
xi

σ )

Φ(xi

σ )
+

1

σ3

n∑

i=1

x2i = 0. (2.6)

Newton-Raphson iteration is employed to solve (2.6). The corresponding MLE of

the reliability function R(t), is given respectively by (1.4) after replacing α, and σ

by their MLE α̂, and σ̂.

2.1. Loss Function

In the literature, the most commonly used useful asymmetric loss function is the

linear-exponential loss function (LINEX). This loss function was introduced by

Varian (1975) and was extensively discussed by Zellner (1986), Soliman (2005)

and Soliman et al. (2006). This function rises approximately exponentially on one

side of zero, and approximately linearly on the other side.

Under the assumption that the minimal loss occurs at φ∗ = φ, LINEX loss

function for φ = φ(α, σ) can be expressed as

L(∆) ∝ exp(d∆) − d∆− 1, d 6= 0, (2.7)

where ∆ = (φ∗ − φ), φ∗ is an estimate of φ. The sign and magnitude of the shape

parameter d represents the direction and degree of symmetry, respectively. (If

d > 0, the overestimation is more serious than underestimation, and vice-versa.)

For d close to zero, the LINEX loss is approximately SEL and there fore almost

symmetric. The posterior expectation of the LINEX loss function (2.7) is

Eφ[L(φ
∗ − φ)] ∝ exp(dφ∗)Eφ[exp(−dφ)]− d(φ∗ − Eφ(φ)) − 1, (2.8)

where Eφ(·) denotes the posterior expectation with respect to the posterior density

of φ. The Bayes estimator of φ, denoted by φ∗BL under the LINEX loss function is

the value φ∗ which minimizes (2.8). It is

φ∗BL = −1

d
ln{Eφ[exp(−dφ)]}, (2.9)

provided that the expectation Eφ[exp(−dφ)] exists and is finite. The problem of

choosing the value of the parameter d is discussed in Calabria and Pulcini (1996).

Another useful asymmetric loss function is the Entropy loss

L(φ∗ − φ) ∝
(
φ∗

φ

)1

− log

(
φ∗

φ

)
− 1, (2.10)
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whose minimum occurs at φ∗ = φ. The Bayes estimate φ∗BG of φ under Entropy

loss (2.10) is

φ∗BG =
(
Eφ(φ

−1)
)−1

, (2.11)

provided that Eφ(φ
−1) exists and is finite.

3. Bayes Estimation

Under the assumption that both the parameters α and σ are unknown, speci-

fying a general joint prior for α and σ leads to computational complexities for

the Bayes estimates. To solve this problem and simplify the Bayesian analysis,

we consider the method advocated by Soland (1969). In this method, we use a

conjugate continuous-discrete joint prior distribution for the parameters α and σ.

The continuous component of this distribution is related to α and the discrete one

is related to σ. This method has been further used by Soliman (2005) and Soli-

man et al. (2006) who have discussed Bayesian analysis for Weibull and Burr-XII

distributions, respectively.

We assume that the scale parameter σ is restricted to a finite number of values

σ1, σ2, · · · , σN with prior probabilities η1, η2, · · · , ηN respectively, where 0 ≤ ηj ≤

1, and

N∑

j=1

ηj = 1, i.e.

π(σj) = pr(σ = σj) = ηj , j = 1, 2, ..., N.

Further, suppose that conditional upon σ = σj , j = 1, 2, ..., N , α has a natural

conjugate gamma prior with parameters aj and bj

π(α|σj) =
b
aj

j α
aj−1e−αbj

Γ(aj)
, aj , bj, α > 0. (3.1)

Combining the likelihood function in (2.1) and prior pdf (3.1), we obtain the

conditional posterior pdf of α given σ = σj as

π∗(α|σj ;x) =
B

Aj

j αAj−1

Γ(Aj)
exp(−αBj), Aj , Bj , α > 0, (3.2)

where

Aj = n+ aj , Bj = bj −
n∑

i=1

lnΦ(
xi
σj

). (3.3)

The joint prior density π(α, σj) can be obtained by multiplying π(α|σj) by π(σj).
Now, by multiplying the likelihood function by the joint prior density, the joint
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posterior density of α and σj is

π∗(α, σj |x) =
b
aj

j uj ηj α
Aj−1e

−α[bj−
∑n

i=1 ln Φ(
xi
σj

)]

G Γ(aj)σn
j

, (3.4)

and the marginal posterior probability of σj is

pj = pr(σ = σj |xj) =
b
aj

j ηjujΓ(Aj)

GΓ(aj)σn
j B

Aj

j

, (3.5)

where

G =

N∑

j=1

ujb
aj

j ηjΓ(Aj)

σn
j Γ(aj)B

Aj

j

and

uj =

n∏

i=1

φ( xi

σj
)

Φ( xi

σj
)
. (3.6)

Under a squared error loss function, the usual estimate of a parameter is the

posterior mean. Thus, Bayes estimates of the parameters and reliability function

are obtained by using (3.2) and (3.5). The Bayes estimates α̃BS , and σ̃BS of

parameters α, and σ are

α̃BS =
N∑

j=1

pj
(n+ aj)

[bj −
∑n

i=1 lnΦ(
xi

σj
)]
. (3.7)

and

σ̃BS =

N∑

j=1

pjσj (3.8)

The Bayes estimate, R̃BS(t), of the reliability function R ≡ R(t), is

R̃BS(t) =

N∑

j=1

pj

∫ ∞

0

[
1− [Φ(

t

σj
)]α]

)
π∗(α|σj ,xj)dα

=

N∑

j=1

pj


1−

[
1−

ln( t
σj
)

[bj −
∑n

i=1 lnΦ(
xi

σj
)]

]−Aj

 . (3.9)

Under the LINEX loss function (2.7), the Bayes estimates α̃BL, and σ̃BL of pa-

rameters α, and σ are

α̃BL =
−1

d
log




N∑

j=1

pj

[
1 +

d

(bj −
∑n

i=1 lnΦ(
xi

σj
))

]−Aj

 . (3.10)
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and

σ̃BL =
−1

d
log

N∑

j=1

pje
−dσj . (3.11)

similarly, the Bayes estimator for the reliability function R(t) is given by

R̃(t)BL =
−1

d
log




N∑

j=1

∞∑

s=0

pj
e−dds

s!

[
1−

s logΦ( t
σj
)

[bj −
∑n

i=1 lnΦ(
xi

σj
)]

]−Aj

 . (3.12)

Under the entropy loss function (2.10), the Bayes estimates α̃BG, and σ̃BG, of

parameters α, and σ, are

α̃BG =




N∑

j=1

pj(bj −
∑n

i=1 lnΦ(
xi

σj
))

(n+ aj − 1)!



−1

. (3.13)

and

σ̃BG =




N∑

j=1

pjσ
−1
j



−1

. (3.14)

Similarly, the Bayes estimator for the reliability function R(t) is given by

R̃(t)BG =




N∑

j=1

∞∑

s=0

pj

[
1−

s logΦ( t
σj
)

(bj −
∑n

i=1 lnΦ(
xi

σj
))

]−Aj


−1

. (3.15)

To implement the calculations in this section, it is first necessary to elicit the

values of (σj , ηj) and the hyper parameters (aj , bj) in the conjugate prior (3.6),

for j = 1, 2, · · · , N . The hyper parameters (aj , bj) can be obtained based on the

expected value of the reliability function R(t) conditional on σ = σj , which is

given using (1.4) and (3.1) by

Eα|σj
[R(t)|σ = σj ] =

∫ ∞

0

[
1− [Φ(

t

σj
)]α
]
b
aj

j α
aj−1

Γ(aj)
e−αbjdα

= 1−
[
1−

ln[Φ( t
σj
)]

bj

]−aj

. (3.16)

Now, suppose that prior beliefs about the lifetime distribution enable one to specify

two values (R(t1), t1), (R(t2), t2). Thus, for these two prior values R(t = t1) and

R(t = t2), the values of aj and bj for each value σj , can be obtained numerically

from (3.16). If there are no prior beliefs, the non parametric procedure

R̃(t = x(i)) = 1− i

n+ 1
,

can be used to estimate the reliability function R(t).
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3.1. Numerical Example.

For given values of α = 2, σ = 1, a sample of size n = 10 is generated from the

power normal distribution. This sample is:

0.0069 1.1519 0.1334 -0.3368 0.5271 0.8132 0.8037 0.4316 1.085

0.2718

The MLE of α, and σ, using a New-Raphson method when solving (2.5), and (2.6),

are obtained as α̂ = 1.92 and σ̂ = 0.7805. Substituting α̂ and σ̂ into (1.4), we obtain

MLE of the reliability function at t = 2 as R̂(2) = 1. To obtain Bayes estimates,

it is first necessary to elicit the values of (σj , ηj) and the hyper parameters (aj , bj)

in the conjugate prior (3.1), for j = 1, 2, · · · , N . These values are derived by the

following steps:

1. Based on observations, we estimate two values of the reliability function as

R̃(t = 0.0069) = 1− i

n+ 1
= 1− 2

11
= 0.81

and

R̃(t = 0.2718) = 1− i

n+ 1
= 1− 4

11
= 0.63,

2. Since the MLE of σ is σ̂ = 0.7805, we assume that σj takes the values 0.5(0.1)1.4,

each with probability 0.1.

3. The two prior values obtained in step 1 are substituted into (3.16), where aj
and bj are solved numerically for each given σj , j = 1, 2, · · · , 10, using the Newton-

Raphson method. Table 1 gives the values of the hyper parameters and the poste-

rior probabilities derived for each σj . The MLEs (·)ML, and the Bayes estimates

((·)BG, (·)BS , (·)BL) of α, σ and R(t) computed and the results are displayed in

Table 2.

Table 1: prior information, Hyper parameter
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values and the posterior probabilities

j 1 2 3 4 5

σj 0.5 0.6 0.7 0.8 0.9

ηj 0.1 0.1 0.1 0.1 0.1

aj 2 0.5012 0.1779 0.1458 1.066 e−001

bj 3 0.0144 0.0005 0.00006 1.60e−006

uj 1630.67 598.51 304.37 187.09 129.64

pj 9.74e−001 2.48e−002 7.32e−004 9.12e−005 1.37e−005

j 6 7 8 9 10

σj 1 1.1 1.2 1.3 1.4

ηj 0.1 0.1 0.1 0.1 0.1

aj 1.064e−001 1.062 1.060e−001 1.060e−001 1.058e−001

bj 1.58e−006 1.49e−006 1.31e−006 e−006 1.26e−006

uj 97.35 77.37 64.09 54.76 47.93

pj 3.60e−006 1.09e−006 3.78e−007 1.44e−006 6.007 e−008

Table 2: Estimators of α, σ and R(t) with t = 2

(·)ML (·)BG (·)BS (·)BL

d = −0.5 d = 0.5 d = 1
α 1.9200 1.2858 1.3648 1.4852 1.3382 1.3136
σ 0.7805 0.5044 0.5058 0.5076 0.5055 0.5053

R(t) 0.9846 0.9930 0.9996 0.9997 0.9996 0.9995
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Estimation of Parametric Functions for Discrete Distributions

Generated by Cauchy Stable Law

D. Farbod and K. V. Gasparian

Department of Statistics, Islamic Azad University - Mashhad Branch

Yerevan State University, Yerevan

In this paper, we consider some useful parametric functions for discrete distributions
generated by stable law. Then, using the asymptotic properties of the maximum like-
lihood (ML) estimators of the scale parameter γ, we conclude related asymptotic be-
havior results for such parametric functions.

Keywords: Asymptotic properties, Cauchy stable Law, ML, Stable Laws

1. Introduction

Some well-known discrete distributions are widely used in large-scale biomolecular

systems. But the diversity of such systems requires to generate new ones satisfying

in empirical statistical properties (see [1]). Based on the empirical facts in large-

scale biomolecular systems, Astola and Danielian [1, 2] considered the families of

unimodal frequency decreasing distributions with right-side asymmetry (as many

Stable Laws) which are log-downword convex.

The Stable Laws form a rich class of probability distributions allowing skew-

ness, heavy tails and have many ”useful” mathematical properties. The notion of

Stable Laws was introduced by Paul Levy in the 1920s. For more details on this

see [14].

Definition 1. ([12], p.7) Non-degenerate random variable X is stable if and only

if for all n ≥ 2, there is constant dn ∈ R such that

X1 +X2 + ...+Xn
d
= n1/αX + dn,

where X1, X2, ..., Xn are independent, identical copies of X and α ∈ (0, 2]. (The

symbol
d
= means equality in distribution).

133



July 28, 2010 16:45 ISC10 - Proceeding proceeding

The 10th Iranian Statistical Conference University of Tabriz, August 2010

Any stable density s(x;α, β, γ, δ) depends on the following parameters: α ∈
(0, 2] - is the index of stability, β ∈ [−1, 1] - the skewness parameter, γ ∈ (0,∞)

- the scale parameter, and δ ∈ R - the location parameter. If α = 1 and β = 0,

then the distribution is called Cauchy stable distribution which has the following

density (see [6], [14]):

s(x; γ, δ) = s(x; 1, 0, γ, δ) =
γ

2(π
2

4 γ
2 + (x− δ)2)

, −∞ < x <∞. (1)

In the present paper we suppose that

Θ = {(γ, δ) : 0 < γ <∞, δ = 0},

and also G is an arbitrary open subset of Θ whose closure G is also contained in

Θ.

Let us now consider the following discrete distribution (see [6]):

g(x; γ) = c−1
γ · s(x; γ) x = 0, 1, 2, ..., (2)

where cγ =
∑∞

y=0 s(y; γ).

The reminder of the paper is organized as follows. In Section 2 we give the

regularity conditions (RC) for the model (2), under which the well-known asymp-

totic properties of the ML estimator of the scale parameter γ are met (see [6]).

The main results of the paper are given in Section 3.

2. ML Estimators

Supposing Xn = (X1, ..., Xn), with realization xn = (x1, ..., xn), is a sample from

(2). We consider the following RC:

RC-conditions:

1. Θ ⊂ R is a compact subset of R;

2. g(x; γ1) 6= g(x; γ2) for all γ1 6= γ2, γ1, γ2 ∈ Θ;

3. probability distributions, say Pγ , have a common support, that is the set

supp Pγ = {x : g(x; γ) > 0}

does not depend from γ ∈ Θ;
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4. the function ln g(x; γ) is twice continuously differentiable by γ for all x =

0, 1, 2, ..., moreover, there exists a function D(x) for which

|∂
2 ln g(x; γ)

∂γ2
| ≤ D(x),

and

Eγ(D(X1)) <∞;

5. for the true value γ0 ∈ G,

Eγ0 [ sup
γ∈Θ−G

ln
L(Xn; γ)

L(Xn; γ0)
] <∞,

where L(Xn; γ) =
∏n

i=1 g(Xi; γ) is likelihood function;

6. for all γ ∈ Θ the Fisher’s information measure I(γ), contains in observation

X1, satisfies the following condition

0 < I(γ) = Eγ [
∂ ln g(X1; γ)

∂γ
]2 = −Eγ [

∂2 ln g(x; γ)

∂γ2
] <∞,

and is continuous at γ.

It was proved in [6], that the RC-conditions are met for the ML estimator of

the scale parameter γ of the model (2). Under satisfying this conditions, the fol-

lowing Theorem takes place (see [4], [11]):

Theorem 1. Assume that the RC-conditions are fulfilled and γ0 ∈ G. Then, the

likelihood equation

∂ lnL(xn; γ)

∂γ
= 0, (3)

has a unique solution γ̂n = γ̂(Xn) in G. This solution is a ML estimator and has

the following properties:

(a). strong consistency, asymptotic normality and asymptotic efficiency, i.e. as

n −→ ∞ then:

ω̂n ≡ √
n(γ̂n − γ)

d−→ η ∈ N(0, I−1(γ)).

(b). convergence of moments, that is

Eγ ω̂
k
n −→ Eγη

k, ∀ k ≥ 1. (4)
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Remark 1. From (4) when k = 1 the property of asymptotic unbiasedness also

satisfies, i.e.

Eγ γ̂n = γ + o(n− 1
2 ).

(c). If f(t) is a differentiable function on R such that f ′(t) 6= 0, then

√
n(f(γ̂n)− f(γ))

d−→ η ∈ N(0,
[f

′
(γ)]2

I(γ)
). (5)

Remark 3. From k = 2 in (5), there take place

Eγ(γ̂n − γ)2 =
1 + o(1)

n I(γ)
.

The relation (5) can also be represented as follows

Eγ(f(γ̂n)− f(γ))2 =
[f

′
(γ)]2

n I(γ)
· (1 + o(1)).

3. Estimation of Some Parametric Functions

Let us denote

s
′
(x; γ) =

∂s(x; γ)

∂γ
, (cγ)

′
=
∂cγ
∂γ

.

Lemma 1. The Fisher’s information measure I(γ) of the model (2) can be repre-

sented as follows

I(γ) = V arγ{U [s(X1; γ)]},

where U [s(X1; γ)] = [ln s(x; γ)]
′
= s

′
(x;γ)

s(x;γ) is contribution function of X1 for the

Cauchy stable law (1).

Proof. It is easily seen that

U [g(x, γ)] =
s′(x, γ)

s(x, γ)
− (cγ)

′

cγ
,

and

Eγ [U(s(X1, γ))] = U(cγ).

We have

I(γ) = EγU
2[g(X1, γ)] = EγU

2[s(X1, γ)]− (
(cγ)

′

cγ
)2 = V arγ{U [s(X1, γ)]}.

The finiteness of I(γ) is obvious. The proof of Lemma 1 is complete.
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With the help of Theorem 1 and Lemma 1 we find now the estimators of some

useful parametric functions of the model (2). Here they are:

1.
√
n(I(γ̂n)− I(γ))

d−→ N(0,
[I

′
(γ)]2

I(γ)
),

for τ(γ) = I(γ).

2.
√
n(g(x; γ̂n)−g(x; γ)) d−→ N(0,

[g
′
(x; γ)]2

I(γ)
),

for τx(γ) = g(x; γ) = s(x;γ)
cγ

, x ∈ N ∪ {0}, where

g
′
(x; γ) = U [s(X1; γ)]− g(x; γ) ·EγU [s(X1; γ)].

3. for τt(γ) = F γ(t) ≡ 1− Fγ(t) =
∑∞

x=t g(x; γ), t ∈ (0,∞),

√
n(F γ̂n

(t)− F γ(t))
d−→ N(0,

[F
′

γ(t)]
2

I(γ)
),

where

F
′

γ(t) = (1X1≥t − F γ(t)) · EγU [s(X1; γ)].

4. for τ(γ) = cγ =
∑∞

y=0 s(y; γ),

√
n(cγ̂n

− cγ)
d−→ N(0,

[(cγ)
′
]2

I(γ)
),

where (cγ)
′
= cγ · EγU [s(X1; γ)].

5. for τ(γ) =
(cγ)

′

cγ
= U(cγ)

√
n(U(cγ̂n

)− U(cγ))
d−→ N(0,

[U ′(cγ)]2

I(γ)
),

where U ′(cγ) = EγU
′
[s(X1; γ)].
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Modelling RLC Electrical Circuits By Stochastic Differential

Equations

R. Farnoosh and P. Nabati

Department of Applied Mathematics, Iran University of Science and Technology

The main aim of this study is to solve the RLC electrical circuit when one or some of the
coefficients are effected by noise. For this purpose the deterministic model is replaced
by stochastic model and then this model will be solved analytically and numerically.
Computer programs in MATLAB are used to generate numerical simulations and their
graphical representations.

Keywords: Stochastic Differential Equation, White noise, Simulation, Electrical Cir-
cuits.

1. Introduction

In this work we motivate the use of second order stochastic differential equations

(SDEs) in RLC electrical circuits. In recent decades important advance have been

made in modelling based on SDEs. These have been applied in many scientific fields

such as engineering, environmental modelling, biology and etc. The main part of

stochastic calculus are the Ito calculus and Stratonovich. We consider SDEs of

kind Ito in this paper. A general SDE is given by

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t), (1)

where f(t,X(t)) and g(t,X(t)) are drift and diffusion term, respectively, andW (t)

is a Wiener process. Sometimes SDEs can not be solved analytically. It is extremely

difficult and even not impossible that we solve their exact solutions in most cases,

therefore we can obtain their approximate numerical solution through numerical

simulation. This paper focus on the Euler-Maruyama scheme that has a strong

order of accuracy. The outline of this paper is as follows. In section 2, the problem

formulation in deterministic and stochastic models will be presented. Section 3 de-

scribe the method of analytical solution for solving two dimensional SDEs. Finally

numerical solutions are obtained using the Euler scheme in section 4.
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2. Problem formulation

Any electrical circuit consists of resistor(R), capacitor(C) and inductor(L). These

circuit elements can be combined to form an electrical circuits in four distinct

ways: the RC, RL, LC and RLC circuits. Then, an (RLC) circuit, is an electrical

circuit composed of resistor, capacitor and inductor driven by a voltage or current

source. The charge Q(t) at time t at a fixed point in an electrical circuit according

Kirchhoff’s law satisfies the differential equation [8]

−V (t) +RI(t) + L
dI

dt
+

1

C

∫
I(t)dt = 0, (2)

where I(t) = dQ(t)
dt then

LQ̈(t) +RQ̇(t) +
1

C
Q(t) = V (t), Q(0) = Q0, Q̇(0) = I0, (3)

where V (t) is the potential source at time t.

Now we may have a situation where some of the coefficients, say V (t), are not

deterministic but of the form

V ∗(t) = V (t) +′ noise′.

Observation indicated that the noise can be described as a multiple of the so called

”white noise process” denoted by W (t), we get the following equation,

LQ̈(t) +RQ̇(t) +
1

C
Q(t) = V (t) + αWt, Q(0) = Q0, Q̇(0) = I0, (4)

where α is the intensity of noise. This is a second order stochastic differential

equation.

3. The Analytical Solution

In order to solve analytically equation(4), we introduce the vector

X =

(
X1(t)

X2(t)

)
=

(
Q(t)

Q̇(t)

)
and obtain

{
dX1(t) = X2(t)dt

LdX2(t) = (−RX2(t)− 1
CX1(t) + V (t))dt + αdBt,

(5)

or in matrix form

dX(t) = AX(t)dt+H(t)dt+KdB(t), (6)

where dX =

(
dX1(t)

dX2(t)

)
A =

(
0 1
−1
CL

−R
L

)
H(t) =

(
0

1
LV (t)

)
K =

(
0
α
L

)
,
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and Bt is one dimensional Brownian motion. Rewrite equation (6) as

exp(−At)dX(t) = exp(−At)AX(t)dt+ exp(−At)[H(t)dt+KdBt], (7)

where for a general n ∗ n matrix A we define exp(A) =
∑∞

n=0
1
n!A

n. Applying a 2

dimensional version of the Ito formula for the function g : [0,∞) ∗R2 → R2 given

by g(t, x1, x2) = exp(−At)
(
x1(t)

x2(t)

)
we obtain,

d(exp(−At)X(t)) = (−A)exp(−At)X(t)dt+ exp(−At)dX(t) (8)

substituted in (7) this gives

exp(−At)X(t)−X(0) =

∫ t

0

exp(−As)H(s)ds+

∫ t

0

exp(−As)KdBs (9)

or

X(t) = exp(At)[X(0) + exp(−At)KBt +

∫ t

0

exp(−As)[H(s) +AKBs]ds] (10)

by integration by parts [9].

Lemma 1: let A =

(
0 1

−a −b

)
then

exp(At) =
e−λt

ξ
{(ξ cos(ξt) + λ sin(ξt))I +A sin(ξt)},

where,

λ =
b

2
, ξ =

√
a− b2

4
.

Using this lemma the analytical solution can be achieved explicitly.

The solution X(t) is a random process and for it’s expectation we have for every

t > 0,

E(X(t)) = exp(At)E(X0)+E(

∫ t

0

exp(A(t− s))H(s)ds+

∫ t

0

exp(A(t− s))KdBs).

Since E(
∫ t

0 f(s)dBs) = 0, then it can be easily shown that

E(X(t)) = exp(At)E(X0) +

∫ t

0

e−A(s−t)H(s)ds.
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4. Numerical Solution and Simulation

To simulate Q(t), numerical techniques have to be used. The simplest numerical

scheme, the stochastic Euler scheme, is based on numerical methods for ordinary

differential equations. The Euler scheme for system equation (5) is as follows [7],
{
X1(n+ 1)−X1(n) = X2(n) ·∆tn
X2(n+ 1)−X2(n) = (−R

L X2(n)− 1
CLX1(n) +

1
LV (∆tn))∆tn + α

L∆Bn.
(11)

Where Bn+1 −Bn ∼ N(0,∆tn), X1(0) = Q(0), X2(0) = I(0).

Example: Let us consider the RLC electrical circuit, when L,R,C and V(t) are

constants, I0 = 0. Using the Euler scheme we compute and graph the mean and

three sample pass of stochastic solutions for I(t) and Q(t) with α = 10 in fig. 1,

and α = 100 in fig. 2.
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Fig. 1. The mean and three sample pass of stochastic solution with α = 10.
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Fig. 2. The mean and three sample pass of stochastic solution with α = 100.
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Sum, Products and Ratios for Kibble’s Bivariate Gamma Distribution
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Kibble’s bivariate gamma distribution has been around since the 1940s and has been
applied in several areas of electrical and electronic engineering. However, it seems that
no explicit expressions for its Sum, Products and Ratios are available. In this short
note, we derive exact distributions of Sum, Products and Ratios and the corresponding
moment properties are derived when X and Y Kibble’s bivariate gamma distributions.
Keywords: Kibble’s bivariate gamma distribution, Modified Bessel function, Modified
Laguerre polynomial.

1. Introduction

Kibbles bivariate gamma distribution (Kibble, 1941) This distribution has received

applications in several areas. Some of them are:

(a) Electric counter system: Lampard (1968) built up Kibbles distribution in the

conditional manner, h = f(x)g(y|x); his context was a system of two reversible

counters (i.e. an input can either increase or decrease the cumulative count), with

two Poisson inputs (an increase process and a decrease process). Output events

occur when either of the cumulative counts decreases to zero. The sequence of time

intervals between output events forms a Markov chain, and the joint distribution

of successive intervals is of Kibbles form. Lampard also gave an interpretation of

the same process in terms of a queueing system.

(b) Hydrology: Phatarford (1976) used Kibbles distribution as a model to describe

summer and winter stream flows.

(c) Rain: As the gamma distribution is a popular univariate choice for the descrip-

tion of amount of rainfall, Izawa (1965) proposed Kibbles distribution to describe

the joint distribution of rainfall at two nearby rain gauges.

(d) Wind gusts: Smith and Adelfang (1981) reported analysis of wind gust data

using Kibbles distribution. The two variates were magnitude and length of the

gust.
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This distribution has given by the joint pdf

fX,Y (x, y) =
(xy)(α−1)/2

Γ(α)(1 − ρ)ρ(α−1)/2
exp

(
−x+ y

1− ρ

)
Iα−1

(
2
√
xyρ

1− ρ

)
(1)

for x > 0, y > 0, α > 0and 0 ≤ ρ < 1, where Iv(.) denotes the modified Bessel

function of the first kind of orderν .

Explicit expressions for the pdfs and moments of Z = X + Y ,R = X/Y and

U = XY for these distribution are derived in Sections 2-3 and Conditional PDF

and moments are derived in Sections 4.The calculations involve several special

functions, including the complementary error function defined by

the Jacobi polynomial defined by

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β dn

dxn
{(1− x)−α+n(1 + x)−β+n}

the modified Bessel function of the first kind defined by

In(x) =

∞∑

k=0

x2k+ν

22k+νΓ(ν + k + 1)k!

for n is an integer.

Iν(x) = i−νJν(ix)
∞∑

k=0

x2k+ν

22k+νΓ(ν + k + 1)k!

for ν is an real.

The modified Bessel function of the secund kind of order ν defined by

Kν(x) =
π

2

I−ν(x) − Iν(x)

sin(νπ)

with Kn(.) interpreted as the limit

Kn(x) = lim
ν→n

Kν(x)

the modified Laguerre polynomial defined by

Lν
n(x) =

x−ν exp(x)

n!

dn

dxn
{xn+ν exp(−x)}

the Gauss hypergeometric function defined by

2F1(a; b; c;x) =

∞∑

k=0

(a)k(b)k
(c)k

xk

x!

where (α)k = α(α + 1)...(α+ k − 1)denotes the ascending factorial. We also need

the following important lemmas.
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Lemma 1 :[Equation (2.15.3.2), Prudnikov et al., 1986, volume 2].For α+ ν > 0

andp > c,

∫ ∞

0

xα−1 exp(−px)Iν(cx)dx

= p−(α+ν)(
c

2
)ν
Γ(ν + α)

Γ(ν + 1)
2F1(

α+ ν

2
,
α+ ν + 1

2
; ν + 1;

c2

p2
)

Lemma 2 :[Equation (2.15.2.6), Prudnikov et al., 1986, volume 2]. For a > 0,β >

0and ν > −1,
∫ a

0

xν+1(a2 − x2)β−1Iν(cx)dx = 2β−1aν+βc−βΓ(β)Iν+β(ac)

Lemma 3: [Equation (2.15.5.4), Prudnikov et al., 1986, volume 2]. For p > 0 and

ν > −1,
∫ ∞

0

xν+2n+1 exp(−px2)Iν(cx)dx =
n!cν

2ν+1pn+ν+1
exp(

c2

4p
)Lν

n(−
c2

4p
)

Lemma 4: [Equation (2.263.1), Gradshteyn and Ryzhik, 2000]. Form < 2n,
∫

xm

(a+ bx+ cx2)n+1/2
dx =

xm−1

(m− 2n)c(a+ bx+ cx2)n−1/2

− (2m− 2n− 1)b

2(m− 2n)c

∫
xm−1

(a+ bx+ cx2)n+1/2
dx

− (m− 1)a

(m− 2n)c

∫
xm−2

(a+ bx+ cx2)n+1/2
dx

Lemma 5: [Equation (2.263.2), Gradshteyn and Ryzhik, 2000].
∫

x2n

(a+ bx+ cx2)n+1/2
dx = − x2n−1

(2n− 1)c(a+ bx+ cx2)n−1/2

− b

2c

∫
x2n−1

(a+ bx+ cx2)n+1/2
dx+

1

c

∫
x2n−2

(a+ bx+ cx2)n+1/2
dx

Lemma 6 :[Equation (2.263.4), Gradshteyn and Ryzhik, 2000]. Forn ≥ 1
∫

1

(a+ bx+ cx2)n+1/2
dx =

2(2cx+ b)

(2n− 1)(4ac− b2)(a+ bx+ cx2)n−1/2

×{1 +
n−1∑

k=1

8k(n− 1)(n− 2)...(n− k)ck

(2n− 3)(2n− 5)...(2n− 2k − 1)(4ac− b2)k
(a+ bx+ cx2)k}
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Lemma 7: [Equation (17.8.1.1),Alan Jeffrey , 2000].

In+1/2(x) =
1√
2πx

[ex
n∑

k=0

(−1)k(n+ k)!

k!(n− k)!(2x)k
+ e−x(−1)n+1

n∑

k=0

(n+ k)!

k!(n− k)!(2x)k
]

Lemma 8:[Equation (17.10.2.3),Alan Jeffrey , 2000].

xIν−1(x) = x
d

dx
[Iν(x)] + νIν(x)

Lemma 9: [Equation (3.471.9), Alan Jeffrey,Daniel Zwillinger 2000].
∫ ∞

0

xν−1e−
β
x−γxdx = 2(β/γ)ν/2Kν(2

√
βγ)

forβ > 0 and γ > 0.

2. Pdfs

Theorems(1),(2) and (3) derive the pdfs of Z = X + Y , R = X/Y and U = XY

when X and Y are distributed according to Eq.(1).

Theorem 1. If X and Y are jointly distributed according to Eq.(1) then

fZ(z) =

√
π21/2−αzα−1/2ρ1/4−α/2

Γ(α)
√
1− ρ

exp(− z

1− ρ
)Iα−1/2

(
z
√
ρ

1− ρ

)
(2)

for 0 < z <∞.

Proof.From Eq.(1), the pdf of Z = X + Y becomes

f(z) =

∫ +∞

−∞
f(x, z − x)dx =

∫ z

0

f(x, z − x)dx

=
exp(−z/1− ρ)

Γ(α)(1 − ρ)ρ(α−1)/2

∫ z

0

(x(z − x))(α−1)/2Iα−1

(
2
√
x(z − x)ρ

1− ρ

)
dx

Thus the pdf of Z can be written as

f(z) =
exp(−z/1− ρ)

Γ(α)(1 − ρ)ρ(α−1)/2
J(z) (3)

where

J(z) =

∫ z

0

(x(z − x))(α−1)/2Iα−1

(
2
√
x(z − x)ρ

1− ρ

)
dx

Substituting u =
√
x(z − x), the integral J (z ) can be rewritten as

J(z) =

∫ z/2

0

2uα(z2 − 4u2)−1/2Iα−1

(
2
√
ρ

1− ρ
u

)
du (4)
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Direct application of Lemma(2) shows that Eq.(4),and Substituting v = 2u

can be calculated as

J(z) =

∫ z

0

2−αvα(z2 − v2)−1/2Iα−1

( √
ρ

1− ρ
v

)
du (5)

The result of the theorem follows by combining Eq.(3) and Eq.(5).�

Theorem 2. If X and Y are jointly distributed according to Eq.(1) then

fR(r) =
Γ(2α)(1 − ρ)αrα−1(1 + r)

Γ2(α)((1 + r)2 − 4ρr)α+1/2
(6)

for 0 < R <∞.

Proof.Using Eq.(1), one can write

f(r, y) =
r(α−1)/2yα

Γ(α)(1 − ρ)ρ(α−1)/2
exp

(
−y(r + 1)

1− ρ

)
Iα−1

(
2
√
rρ

1− ρ
y

)
(7)

Thus

f(r) =
r(α−1)/2

Γ(α)(1 − ρ)ρ(α−1)/2

∫ ∞

0

yα exp

(
−y(r + 1)

1− ρ

)
Iα−1

(
2
√
rρ

1− ρ
y

)

Direct application of Lemma(1) shows that one can calculate f(r) as

f(r) =
r(α−1)/2

Γ(α)(1 − ρ)ρ(α−1)/2

(
r + 1

1− ρ

)−2α

( √
rρ

1− ρ

)α−1
Γ(2α)

Γ(α)
2F1(α, α + 1/2, α;

4ρr

(1 + r)2
) (8)

Upon using the property that

2F1(a, b, a;x) = (1 − x)−b

one can reduce (8) to The result of the theorem.�

Using special properties of the Bessel function of the first kind, one can derive

elementary forms for the pdfs in Eq.(2) . This is illustrated in the corollary below.

Lemma 10. If X and Y are jointly distributed according to Eq.(1) and if α ≥ 1

is an integer then

fZ(z) =
zα−2(1− ρ)1/2√
πΓ(α)2αρ(α+1)/2

exp(− z

1− ρ
)

[
exp(

z
√
ρ

1− ρ
)

n∑

k=0

(−1)k(n+ k)!

k!(n− k)!

(1− ρ)kρ−k/2

(2z)k
(n+ z

√
ρ

1− ρ
)

+ (−1)n+1 exp(− z
√
ρ

1− ρ
)

n∑

k=0

(n+ k)!

k!(n− k)!

(1− ρ)kρ−k/2

(2z)k
(n− z

√
ρ

1− ρ
)
]

(9)
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Proof.It follows from Lemma(7) Then according Lemma(8) that

xIn−1/2(x) = x
d

dx
[In+1/2(x)] + (n+ 1/2)In+1/2(x)

Then

xIn−1/2(x) =
1√
2πx

[ex
n∑

k=0

(−1)k(n+ k)!

k!(n− k)!(2x)k
(n+ x− k)

+e−x(−1)n+1
n∑

k=0

(n+ k)!

k!(n− k)!(2x)k
(n− x− k)] (10)

The result of the lemma follows by combining Eq.(2) and Eq.(10).�

Theorem 3. If X and Y are jointly distributed according to Eq.(1) then

fU (u) =
u(α−1)/2

Γ(α)(1 − ρ(α−1)/2)
Iα−1

(
2
√
uρ

1− ρ

)
K0(

2
√
u

1 − ρ
) (11)

for 0 < u <∞.

Proof.From Eq.(1), the joint pdf of (X,U) becomes

f(x, u) =
u(α−1)/2

Γ(α)(1 − ρ)ρ(α−1)/2

1

x
exp

(
− x

1− ρ
− u

(1− ρ)x

)
Iα−1

(
2
√
uρ

1− ρ

)

Thus, the pdf of U can be written as

f(U) =
u(α−1)/2

Γ(α)(1 − ρ)ρ(α−1)/2
Iα−1

(
2
√
uρ

1− ρ

)

×
∫ ∞

0

1

x
exp

(
− x

1− ρ
− u

(1− ρ)
.
1

x

)
dx (12)

Direct application of Lemma(9) shows that Eq.(12) can be calculated as
∫ ∞

0

1

x
exp

(
− x

1− ρ
− u

(1− ρ)
.
1

x

)
dx = K0(

2
√
u

1− ρ
)

Thus, the pdf of U can be written as

fU (u) =
u(α−1)/2

Γ(α)(1 − ρ(α−1)/2)
Iα−1

(
2
√
uρ

1− ρ

)
K0

(
2
√
u

1− ρ

)
(13)

where

K0(x) = −[ln
x

2
+γ]I0(x)+

1/4x2

1!
+(1+1/2)

(1/4x2)2

(2!)2
+(1+1/2+1/3)

(1/4x2)3

(3!)2
+...

where γ is Eulers constant (also known as the EulerMascheroni constant) defined

as

γ = lim
n→∞

(
1 +

1

2
+

1

3
+ ...+

1

n
− lnn

)
= 0.57721566...

the proof is complement.�
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3. Moments

Now, we derive the moments of Z = X+Y , U = XY and R = X/Y when X and

Y are distributed according to Eq.(1). We need the following theorem.

Theorem 4. If X and Y are jointly distributed according to Eq.(1) then [6],

E(XmY n) =
n!Γ(m+ α)(1− ρ)n

Γ(α)
P (α−1,m−n)
n (

1 + ρ

1 − ρ
) (14)

for m ≥ 1andn ≥ 1.

Corollary1. If X and Y are jointly distributed according to Eq.(1)., then

Cov(X,Y ) = αρ , Corr(x, y) = ρ (15)

The moments of Z = X + Y are now simple consequences of this lemma as illus-

trated in Theorem(5). The moments of R = X/Y require a separate treatment as

shown by Theorem(4).

Theorem 5. If X and Y are jointly distributed according to Eq.(1) then

E(Zn) =

n∑

k=0

n!Γ(n− k + α)(1 − ρ)k

(n− k)!Γ(α)
P (α−1,n−2k)
n (

1 + ρ

1− ρ
) (16)

forn ≥ 1.

Proof. The result in Eq.(16) follows by writing

E((X + Y )n) =

n∑

k=0

(
n

k

)
E(Xn−kY k)

and applying theorem(4) to each expectation in the sum.�

Theorem 6. If X and Y are jointly distributed according to Eq.(1) and if α is an

integer then

E(Rn) =
Γ(2α)(1 − ρ)α

Γ2(α)

n+α−1∑

k=0

(−1)k
(
n+ α− 1

k

)
J(n++α− k) (17)

forn ≥ 1.where J (m) satisfies the recurrence relations for n− k < α

J(n+ α− k) = − 1

n− α− k
+

(2n− 2k − 1)2ρ

n− α− k
J(n+ α− k − 1)

− (n+ α− k − 1)4ρ

n− α− k
J(n+ α− k − 2) (18)

and for n− k = α

J(2α) =
1

2α− 1
+ 2ρJ(2α− 1) + J(2α− 2) (19)
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form 6= 2α,with the initial values

J(0) =
2ρ− 1

(2α− 1)4ρ(1− ρ)
{1 +

α−1∑

k=1

(α− 1)(α− 2)...(α− k)

(2α− 3)(2α− 5)...(2α− 2k − 1)2kρk(1− ρ)k
}

(20)

and J(1) = 1
2α−1 + 2ρJ(0).

Proof. It follows from Eq.(6) that

E(Rn) =
Γ(2α)(1 − ρ)α

Γ2(α)

∫ ∞

0

rn+α−1(1 + r)

((r + 1)2 − 4ρr)α+1/2
dr

which follows after setting1 + r = w then

Γ(2α)(1 − ρ)α

Γ2(α)

∫ ∞

1

(w − 1)n+α−1w

(w2 − 4ρw + 4ρ)α+1/2
dw

=
Γ(2α)(1 − ρ)α

Γ2(α)

×
∫ ∞

1

w

(w2 − 4ρw + 4ρ)α+1/2

{
n+α−1∑

k=0

(−1)k
(
n+ α− 1

k

)
wn+α−k−1

}
dw

=
Γ(2α)(1− ρ)α

Γ2(α)

n+α−1∑

k=0

(−1)k
(
n+ α− 1

k

)
J(n+ α− k)

where

J(m) =

∫ ∞

1

wm

(4ρ− 4ρw + w2)α+1/2
dw

. This establishes the result in Eq.(17). The recurrence relations in Eq.(18) and

Eq.(20) follow by applying Lemmas(4) and (5). The initial value in Eq.(20) follows

by applying Lemma(6). Finally, since it follows that J(1) = 1
2α−1 + 2ρJ(0).�

Theorem7.If U distributed according to Eq.(11) then

E(Un) =
n!Γ(n+ α)(1 − ρ)n

Γ(α)
P (α−1,0)
n (

1 + ρ

1− ρ
) (21)

for n ≥ 1.

Proof.The result in Eq.(14) follows by writing m = n.�

4. Conditional PDF and moment’s

Theorems(8) and(9) derive the conditional distributions corresponding to kibble’s

bivariate gamma distribution

Theorem 8.If X and Y are jointly distributed according to Eq.(1), the conditional
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pdf of X given Y = y is given by

f(x|y) = 1

(1− ρ)ρ(α−1)/2

(
x

y

)(α−1)/2

exp

(
− 1

1− ρ
(x+ ρy)

)
Iα−1

(
2
√
xyρ

1− ρ

)

(22)

Proof.

fX(x) =
(x)(α−1)/2e−x/(1−ρ)

Γ(α)(1 − ρ)ρ(α−1)/2

∫ ∞

0

y(α−1)/2exp(−y/(1− ρ))Iα−1

(
2
√
xyρ

1− ρ

)

Substituting u =
√
y and then using the lemma (3) , one can obtain the expression

f(x) =
x(α−1)/2e−x/(1−ρ)

Γ(α)(1 − ρ)ρ(α−1)/2
J(x) (23)

where

J(x) = 2

∫ ∞

0

uαexp

(
− u2

1− ρ

)
Iα−1

(
2
√
xρ

1− ρ
u

)
du

Direct application of Lemma(3) shows that J(x),can be calculated as

J(x) = (1− ρ)(xρ)(α−1)/2exp

(
ρ

1− ρ
x

)
(24)

By combining Eq.(23) and Eq.(24).

f(x) =
1

Γ(α)
xα−1 exp(−x) (25)

for 0 ≤ x <∞.

Corollary 3. In a similar manner

f(y) =
1

Γ(α)
yα−1 exp(−y) (26)

for 0 ≤ y <∞.

�

Theorem 9.For the conditional pdf of X given Y =y is given by the Eq.(23),

E (Xm|Y = y) = m!(1− ρ)mL(α−1)
m

(
− ρ

1− ρ
y

)
(27)

Proof.

E (Xm|Y = y) =
e−

ρ
1−ρy

y(α−1)/2(1− ρ)ρ(α−1)/2

∫ ∞

0

xm+α−1
2 e−

x
1−ρ Iα−1

(
2
√
xyρ

1− ρ

)

Substituting u =
√
x and then using the lemma (3) , one can obtain the expression

E (Xm|Y = y) =
e−

ρ
1−ρy

y(α−1)/2(1− ρ)ρ(α−1)/2
2

∫ ∞

0

u2m+αe−
u2

1−ρ Iα−1

(
2
√
yρ

1− ρ
u

)
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= m!(1− ρ)mL(α−1)
m

(
− ρ

1− ρ
y

)

proof is complement.�
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Asymptotic Deficiency for Inhomogeneous Poisson Processes

Kh. Fazli (Invited)

Department of Statistics, University of Kurdistan

In this work, based on a realization of an inhomogeneous Poisson process whose in-
tensity function depends on an unknown real parameter, we consider a simple null
hypothesis against a sequence of close (contiguous) one-sided alternatives. The main
object is to obtain the asymptotic deficiency of the score test with respect to the
Neyman-Pearson test.

Keywords: Inhomogeneous Poisson processes, Hypotheses testing, asymptotic defi-
ciency, Pitman’s asymptotic relative efficiency, Power loss, Score test.

1. Introduction and Preliminaries

Inhomogeneous Poisson process is widely used in many fields. The diverse choice of

intensity function makes it a suitable model for many real phenomena. Estimation

theory for spatial Poisson process was extensively developed (see [3], [9] and the

references therein). For the problem of goodness of fit testing with the simple

basic hypothesis and a nonparametric alternative see [8]. One can refer to [4]

and [2] where a simple Poissonian null hypothesis is tested against a large classes

of alternatives of the type of stationary point processes. In the present work we will

consider a simple null hypothesis against the one sided parametric alternative when

the parameter is one dimensional. The second order efficiency of the Rao score test

has been proved in [5]. The power loss of this test which measures the asymptotic

gap of its power with the Neyman-Pearson test under the close alternatives is

obtained in [7]. In this work we will obtain the asymptotic deficiency of score

test with respect to the Neyman-Pearson test, i.e., the asymptotic ”number” of

additional observations needed for the score test to have the same power as the

most powerful test under the close alternatives.

Let X(n) be an inhomogeneous Poisson process observed on some increasing sub-

sets An, n = 1, 2, . . . of d dimensional Euclidian space Rd with intensity function

S (ϑ, x) , x ∈ An depending on the real parameter ϑ ∈ Θ. Let
{
P

(n)
ϑ , ϑ ∈ Θ

}
de-

note the parametric family of distributions of the random element X(n). Based on

X(n) we are interested in the problem of testing H0 : ϑ = ϑ0 against H1 : ϑ > ϑ0,
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where ϑ0 is a given value in the parameter space Θ. Let us fix a preassigned level

of significance α between 0 and 1 and consider the class of tests φn at asymptotic

level α, i.e., limn→∞ Eϑ0φn
(
X(n)

)
= α, where Eϑ denotes the mathematical ex-

pectation with respect to the probability measure P
(n)
ϑ . Following the Pitman’s

approach ( [10]) we consider the so-called close (contiguous) alternatives, i.e., a

sequence of simple alternatives Hu : ϑ = ϑ0 + ϕn u, where u > 0 and the normal-

izing factor ϕn converges to zero with a certain rate. The most powerful test for

H0 : ϑ = ϑ0 against Hu : ϑ = ϑ0 + ϕnu is the Neyman-Pearson test, denoted by

φ̃n, based on the log-likelihood ratio. By using the Edgeworth type expansion we

can construct a second order efficient test, i.e., a test φ∗n such that for any K > 0,

sup
0≤u≤K

|Eϑu φ̃n

(
X(n)

)
−Eϑuφ

∗
n

(
X(n)

)
| = O(ε2n),

for some sequence εn → 0, where ϑu = ϑ0 + ϕn u ( [5], see also (3)). Indeed, φ∗n is

the score test based on the derivative of the log-likelihood ratio with respect to ϑ

at ϑ = ϑ0 (see (2) and (4)). Hence to measure the performance φ∗n it is natural to

consider the power loss of φ∗n with respect to the most powerful test φ̃n, which is

defined by

r(u) = lim
n→∞

ε−2
n

(
Eϑu φ̃n

(
X(n)

)
−Eϑuφ

∗
n

(
X(n)

))
, (1)

for u > 0, see [7]. The power loss is closely related to the deficiency of φ∗n with

respect to φ̃n which is the ”number” of additional observations, denoted by dn,

needed for this test to have the same power as the most powerful test. This re-

quires to take into account higher order terms in the Edgeworth expansions of

the distribution functions of the test statistics. The main object of this work is

to obtain the explicit form of asymptotic deficiency of the score test φ∗n, i.e., to
obtain d = limn→∞ dn, based on a realization X(n) of a nonhomogeneous Pois-

son process with intensity function S (ϑ, x) , x ∈ An. We apply these results in

several models. For the deficiency and power loss results in the i.i.d. case see [1]

and the references therein. The definitions of the spatial Poisson processes as well

as their properties and examples can be found in many books devoted to point

processes (see, e.g., Daley and Vere-Jones [3]). Let P
(n)
ϑ denote the probability law

induced by the random element (realization) X(n) of a Poisson process observed

on An with intensity function S(ϑ, x), x ∈ An. If the intensity measures Λ
(n)
ϑ0
,Λ

(n)
ϑ

defined by Λ
(n)
ϑ (B) =

∫
B
S(ϑ, x) dx, where B ⊆ An, are equivalent then the cor-

responding probability measures P
(n)
ϑ0

and P
(n)
ϑ are equivalent with the following

log-likelihood ratio

ln
dP

(n)
ϑ

dP
(n)
ϑ0

(
X(n)

)
=

∫

An

ln
S(ϑ, x)

S(ϑ0, x)
X(n)(dx) −

∫

An

[S(ϑ, x)− S(ϑ0, x)] dx (2)
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See [9] page 28. In the above relation the stochastic integral with respect to X(n)

is defined by
∫
An
f(x) X(n)(dx) =

∑
xi∈An

f(xi), for a large class of functions f

defined on An where {xi} are the events (random points) of the Poisson process

( [9]). Following [9], we present the conditions under which the distribution function

Fn(y) = P
(n)
ϑ {I(fn) < y} of the stochastic integral I(fn) =

∫
An
fn (x) π

(n)(dx),

admits a three terms Edgeworth type expansion, where π(n) (dx) = X(n) (dx) −
S(ϑ, x) dx, is the centered Poisson process. The cumulant γr,n of order r of I(fn)

is given by γr,n =
∫
An
fn(x)

r S(ϑ, x) dx, r = 2, 3, 4, ... See [9], page 20. Without

loss of generality we suppose the variance of I(fn) is equal to 1, i.e., γ2,n = 1. The

expansion is obtained under the following two conditions:

B1. There exists a sequence of real numbers εn → 0, as n → ∞ and constants

Cr > 0, r = 3, 4, 5, such that
∫
An

|fn(x)|r S(ϑ, x) dx ≤ Cr ε
r−2
n .

B2. There exist constants γ ≥ 5/2 and c0 > 0 enough small such that

inf
c0ε

−1
n
2 <t<

ε
−2
n
2

∫
An

sin2 (tfn(x)) S(ϑ, x) dx ≥ γ ln ε−1
n for all large n.

Note that γr,n = O(εr−2
n ), r = 3, 4 by B1. The condition B1 concerns the cumulants

of the stochastic integral I(fn) and B2 is Cramér-type condition which implies that

the tails of the distribution of I(fn) are enough small. Let us introduce the Hermite

polynomials: H2(y) = y2 − 1, H3(y) = y3 − 3y, H5(y) = y5 − 10y3 + 15y.

Theorem 1.1. Let the conditions B1, B2 be fulfilled. Then (i) uniformly in y ∈ R

Fn(y) = N (y)− γ3,n
3!

H2(y)n(y)−
γ4,n
4!

H3(y)n(y)−
γ23,n
72

H5(y)n(y) +O(ε3n),

for all n large. Here N (y) and n(y) denote the distribution and density func-

tions of the standard Gaussian law, respectively; (ii) for given 0 < α < 1 the

equation Fn(y) = 1 − α + O(ε3n) has a solution y = cn,α = zα +
γ3,n

3! H2(zα) +
γ4,n

4! H3(zα) +
γ2
3,n

72 H5(zα), where zα is the 1 − α quantile of standard Gaussian

law, i.e., P {ζ > zα} = α where ζ ∼ N(0, 1).

For the proof see [?], page 40. The first part of the theorem is a special case of

a general theorem given by Kutoyants, where the expansion is obtained by the

powers of εn up to order εkn, k = 1, 2, ... ( [9], page 131).

2. Pitman’s Asymptotic Relative Efficiency

Let βn (ϑu, φn) denote the power of a test φn at the local alternative ϑu = ϑ0+ϕnu,

i.e., βn (ϑu, φn) = Eϑuφn(X
(n)). We introduce the score test φ∗n

φ∗n

(
X(n)

)
=

{
1, if ∆n (ϑ0) > cn

0, if ∆n (ϑ0) ≤ cn,
(3)
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based on the score statistic

∆n (ϑ0) = ϕn

∫

An

S(1) (ϑ0, x)

S (ϑ0, x)
π(n) (dx) , (4)

for some threshold cn (see the next section) where π(n) (dx) = X(n) (dx) −
S (ϑ0, x) dx is the centered Poisson process, S(1) (ϑ, x) denotes the first deriva-

tive of S (ϑ, x) with respect to ϑ, and ϕn = In(ϑ0)
−1/2, where In(ϑ0) is the Fisher

information at ϑ0

In(ϑ0) =

∫

An

S(1) (ϑ0, x)
2

S (ϑ0, x)
dx.

We suppose that ϕn → 0 as n → ∞. By the Neyman-Pearson lemma the most

powerful test for H0 : ϑ = ϑ0 against the local alternative Hu : ϑ = ϑ0 + ϕnu

with u > 0, is given by

φ̃n

(
X(n)

)
=

{
1, if Λn(u) > bn(u)

0, if Λn(u) < bn(u)

where Λn(u) = ln
dP

(n)
ϑu

dP
(n)
ϑ0

(
X(n)

)
is the log-likelihood ratio and the constant bn(u)

can be chosen such that Eϑ0 φ̃n
(
X(n)

)
= α. The power of φ̃n as a function of

u is called the envelope power function . Note that φ̃n is not a test for the

main hypotheses H0 and H1 because it depends on the parameter u. The Pit-

man’s asymptotic relative efficiency of φ∗n with respect to φ̃n, is defined as the

limit e = limn→∞
kn

n , where kn denotes the ”number” of observations needed

for the score test to have the same power under the local alternative ϑu as the

most powerful test. As the Pitman’s asymptotic efficiency problem is in the ac-

curacy level o(1), hence instead of the equation βkn

(
ϑu, φ

∗
kn

)
= βn(ϑu, φ̃n), it

is sufficient to consider βkn

(
ϑu, φ

∗
kn

)
= βn(ϑu, φ̃n) + o(1), as n → ∞. It is

well known that, under local asymptotic normality (LAN) conditions at ϑ0, the

Rao score test is locally asymptotically uniformly most powerful, i.e., for any

sup0≤u≤K |βn(ϑu, φ̃n) − βn (ϑu, φ
∗
n)| = o(1) for any K > 0, u > 0 and the powers

admit the representations

βn (ϑu, φ
∗
n) = N (u − zα) + o(1), βn(ϑu, φ̃n) = N (u − zα) + o(1).

Now we can write

βkn

(
ϑu, φ

∗
kn

)
=βkn

(
ϑ0 + ϕnu, φ

∗
kn

)
= βkn(ϑ0 + ϕkn

ϕn

ϕkn

u, φ∗kn
) =

= βkn

(
ϑ0 + ϕkn un, φ

∗
kn

)
= βkn (ϑun , φ

∗
n) ,
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where un = ϕn

ϕkn
u. Setting kn = n + o(n) and assume ϕn ∼ C n−p for some

constants C > 0 and p > 0, we have limn→∞ un = u. By considering the above

representations of the powers, we get

βkn

(
ϑu, φ

∗
kn

)
= βkn

(
ϑ0 + ϕkn un, φ

∗
kn

)
= N (un − zα) + o(1) =

= N (u− zα) + o(1) = βn

(
ϑu, φ̃n

)
+ o(1),

as desired. Hence the Pitman’s asymptotic efficiency e = 1. This quantity doesn’t

say anything about the asymptotic of the differences dn = kqn−nq for some q > 0.

For q = 1 the quantity dn = kn−dn is the so-called deficiency of φ∗n with respect to

the Neyman-Pearson test φ̃n, i.e., the ”number” of additional observations needed

for the score test to have the same power as the most powerful test (see [1]). Our

goal is to obtain the asymptotic deficiency of φ∗n defined by

d = lim
n→∞

dn.

3. Asymptotic Deficiency

Let S(j)(ϑ, x) denote the j−th derivative of S(ϑ, x) with respect to ϑ. We introduce

the following conditions:

D1. The intensity function S(ϑ, x) is two times differentiable with respect to ϑ in

a right neighborhood of ϑ0 and the normalizing factor ϕn ∼ C n−p for some

p > 0 and C > 0.

D2. The conditions B1 and B2 are satisfied for the stochastic integrals ∆n(ϑ0) and

Λn(u) under H0 and Hu with some sequence εn → 0, where εn = O(n−q/2)

for some q > 0.

D3. There exists some functions fj(x), x ∈ An j = 0, 1, 2 not depending on ϑ

such that S(ϑ, x) ≥ f0(x), |S(j)(ϑ, x)| ≤ fj(x), j = 0, 1, 2 for all x ∈ An and

all ϑ in a right neighborhood of ϑ0. We suppose also that (for k = 2, 3, 4)

ϕk
n

∫

An

|f1(x)|k
f0(x)k−1

dx = O(εk−2
n ), ϕ4

n

∫

An

f2(x)
2

f0(x)
dx = O(ε2n).

D4. For any sequence {kn} of integers satisfying ϕn

ϕkn
= 1+O(ε2n) and An ⊆ Akn ,

we have (for j = 1, 2)

ϕ2j
n

∫

Akn−An

fj(x)
2

f0(x)
dx = O(ε2jn ), ϕ4

n

∫

Akn−An

f1(x)
4

f0(x)3
dx = O(ε4n).

D5. For any sequence {kn} of integers satisfying ϕn

ϕkn
= 1+O(εn) and An ⊆ Akn ,

we have (for j = 1, 2)

ϕ2j
n

∫

Akn−An

fj(x)
2

f0(x)
dx = O(ε2j−1

n ), ϕ3
n

∫

Akn−An

|f1(x)|3
f0(x)2

dx = O(ε2n).
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Remark 3.1. In the condition D1, we can suppose without loss of generality

that the normalizing factor ϕn = C n−p, for some C > 0. Because one can write

ϑu = ϑ0 + ϕn u = ϑ0 + C n−p un, where un → u as n→ ∞.

Example 1. Let X(n) be a realization of a Poisson process on the set An = [ 0, n]

with positive intensity function S(ϑ, x) = ϑS(x) + λ (amplitude parameter) or

S(ϑ, x) = S(ϑ+ x)+λ (phase parameter), where S(·) is a two times differentiable

periodic function and λ > 0 (dark current) is a known parameter. In both cases

the conditions D3 − D5 are satisfied with ϕn ∼ C n−1/2 for some C > 0 and

εn = n−1/2. For the frequency modulation model S(ϑ, x) = S(ϑx) + λ we have

ϕn ∼ C n−3/2 and εn = n−1/2.

The condition D2 allows us to write the powers as follows:

βn (ϑu, φ
∗
n) = N (∆) + n(∆)E

(n)
1 (u, zα) εn + n(∆)E

(n)
2 (u, zα) ε

2
n +O(ε3n)

βn

(
ϑu, φ̃n

)
= N (∆) + n(∆)E

(n)
1 (u, zα) εn + n(∆)F

(n)
2 (u, zα) ε

2
n +O(ε3n), (5)

where ∆ = ∆(u) = u − zα. The equality of the second terms in the right hand

sides follows from the second order efficiency of the score test φ∗n which is given

by

E
(n)
1 (u, zα) εn =

u(zα − 2u)

6
γ3,n +

ϕ3
n u

2

2

∫

An

S(1)(ϑ0, x)S
(2)(ϑ0, x)

S(ϑ0, x)
dx.

See [5] and [7]. The deficiency arises from the following nonequal terms E
(n)
2 (u, zα)

and F
(n)
2 (u, zα) (of orders O(1)):

E
(n)
2 (u, zα) ε

2
n =

γ3,n(u)

6
(1− a2n)(an −∆)∆− (an −∆)2

2
∆+

+
γ4,n(u)

4!
H3(∆) +

γ23,n(u)

72
H5(∆)

F
(n)
2 (u, zα) ε

2
n = An − an −

γ′3,n(u)− γ3,n(u)

6
(1−∆2)− (An −∆)2

2
∆+

+
γ′4,n(u)

4!
H3(∆) +

γ′23,n(u)

72
H5(∆).
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Below we give the terms appeared in the above right hand sides and in what

follows.

mn(u) = Eϑu∆n (ϑ0) = ϕn

∫

An

S(1) (ϑ0, x)

S (ϑ0, x)
(S (ϑu, x)− S (ϑ0, x)) dx,

η2n(u) = Eϑu (∆n(ϑ0)−mn(u))
2
= ϕ2

n

∫

An

S(1) (ϑ0, x)
2

S (ϑ0, x)
2 S (ϑu, x) dx,

γr,n(u) =
ϕr
n

ηrn(u)

∫

An

S(1) (ϑ0, x)
r

S (ϑ0, x)
r S (ϑu, x) dx r = 3, 4, (6)

and the corresponding terms for Λn(u) under the local alternative

µn(u) = EϑuΛn(u) =

∫

An

(
ln
S (ϑu, x)

S (ϑ0, x)
S (ϑu, x)− S (ϑu, x) + S (ϑ0, x)

)
dx,

σ2
n(u) = Eϑu (Λn(u)− µn(u))

2 =

∫

An

(
ln
S (ϑu, x)

S (ϑ0, x)

)2

S (ϑu, x) dx (7)

γ′r,n(u) =
1

σn(u)r

∫

An

(
ln
S (ϑu, x)

S (ϑ0, x)

)r

S (ϑu, x) dx r = 3, 4.

We introduce also the normalized thresholds

an =
mn(u)− cn
ηn(u)

, An =
µn(u)− bn(u)

σn(u)
.

Since the investigation is at accuracy level O(ε3n), by Theorem 1.1, part (ii) we

can write:

cn = zα +
γ3,n
3!

H2(zα) +
γ4,n
4!

H3(zα) +
γ23,n
72

H5(zα), (8)

where

γr,n = ϕr
n

∫

An

S(1) (ϑ0, x)
r

S (ϑ0, x)
r−1 dx, r = 3, 4.

With this choice of cn, the probability of the error of the first kind of φ∗n is equal

to α+O(ε3n). Similarly we have

bn(u) = µn + σn

(
zα +

γ′3,n
6

H2(zα) +
γ′4,n
4!

H3(zα) +
γ′23,n
72

H5(zα)

)
,
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up to order O(ε3n), where

µn = Eϑ0Λn(u) =

∫

An

(
ln
S (ϑu, x)

S (ϑ0, x)
− S (ϑu, x)

S (ϑ0, x)
+ 1

)
S (ϑ0, x) dx,

σ2
n = Eϑ0 (Λn(u)− µn)

2 =

∫

An

(
ln
S (ϑu, x)

S (ϑ0, x)

)2

S (ϑ0, x) dx,

γ′r,n =
1

σr
n

∫

An

(
ln
S (ϑu, x)

S (ϑ0, x)

)r

S (ϑ0, x) dx, r = 3, 4.

The main result is the following theorem.

Theorem 3.1. Let the conditions D1 −D6 be fulfilled. Then for any u > 0,

d =
q

p u
lim
n→∞

(
ε2n n

q
(
F

(n)
2 − E

(n)
2

))
,

provided that the limit exists.

If εn = n−q/2, then

d =
q r(u)

u p n(u − zα)

where r(u) is the power loss of φ∗n with respect to φ̃n, given by

r(u) =
u3 n(u− zα)

8
lim
n→∞

(
ε−2
n Jn

)
,

for any u > 0 (see [7]) and

Jn = ϕ4
n

∫

An

(
S(1) (ϑ0, x)

2 − S (ϑ0, x)S
(2) (ϑ0, x)

)2

S (ϑ0, x)
3 dx−

−


ϕ3

n

∫

An

S(1) (ϑ0, x)
(
S(1) (ϑ0, x)

2 − S (ϑ0, x)S
(2) (ϑ0, x)

)

S (ϑ0, x)
2 dx




2

.

Proof. Here we shall sketch the proof of the theorem and omit the details. As

mentioned earlier, the problem of asymptotic deficiency is at the accuracy level

O(ε3n), hence instead of βkn

(
ϑu, φ

∗
kn

)
= βn(ϑu, φ̃n), it is sufficient to consider

βkn

(
ϑu, φ

∗
kn

)
= βn(ϑu, φ̃n) +O(ε3n), (9)

as n→ ∞. Now we show that this implies

ϕn

ϕkn

= 1 +O(ε2n) (10)

as n → ∞. If we consider just the first term in (5), we have βn(ϑu, φ̃n) =

N (u− zα)+O(εn), and the power of φ∗kn
at the local alternative ϑu = ϑ0+ϕn u =
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ϑ0+ϕkn

ϕn

ϕkn
u, can be written as βkn

(
ϑu, φ

∗
kn

)
= N

(
ϕn

ϕkn
u− zα

)
+O(εkn). Hence

(9) implies that N
(

ϕn

ϕkn
u− zα

)
= N (u− zα) +O(εn), from which we get

ϕn

ϕkn

= 1 +O(εn). (11)

Again using (5) we can write

βkn

(
ϑu, φ

∗
kn

)
= N (un − zα) +Qkn(un)n(un − zα) +O(ε2n),

where Qn(u) = E
(n)
1 (u, zα) εn and un = ϕn

ϕkn
u. Hence

Qkn(un) =
un (zα − 2 un)

6
γ3,kn +

ϕ3
kn
u2n

2

∫

Akn

S(1)(ϑ0, x)S
(2)(ϑ0, x)

S(ϑ0, x)
dx.

From D3, D5 and (11) we obtain

γ3,kn = ϕ3
kn

∫

Akn

S(1) (ϑ0, x)
3

S (ϑ0, x)
2 dx =

ϕ3
kn

ϕ3
n

ϕ3
n

∫

An

S(1) (ϑ0, x)
3

S (ϑ0, x)
2 dx+

ϕ3
kn

ϕ3
n

ϕ3
n

∫

Akn−An

S(1) (ϑ0, x)
3

S (ϑ0, x)
2 dx = (1 +O(εn)) γ3,n +O(ε2n) = γ3,n +O(ε2n).

Note that γ3,n = O(εn) by D3. In a similar way from (11), D5 and the Cauchy-

Schwartz inequality we have

ϕ3
kn

∫

Akn

S(1)(ϑ0, x)S
(2)(ϑ0, x)

S(ϑ0, x)
dx = ϕ3

n

∫

An

S(1)(ϑ0, x)S
(2)(ϑ0, x)

S(ϑ0, x)
dx+O(ε2n).

Therefore Qkn(un) = Qn(u) +O(ε2n) and consequently from (11) we have

βkn

(
ϑu, φ

∗
kn

)
= N (∆) + u

(
ϕn

ϕkn

− 1

)
n(∆) +Qn(u)n(∆) +O(ε2n),

where ∆ = u− zα. Now using (5) and (9), we can write

βn

(
ϑu, φ̃n

)
= N (∆) + u

(
ϕn

ϕkn

− 1

)
n(∆) +Qn(u)n(∆) +O(ε2n) =

N (∆) + n(∆)E
(n)
1 (u, zα) εn + n(∆)F

(n)
2 (u, zα) ε

2
n +O(ε3n) =

N (∆) +Qn(u)n(∆) +O(ε2n),

which proves (10). Using (10) and D4 we have

E
(kn)
1 (un, zα)n(

ϕn

ϕkn

u− zα) εkn = E
(n)
1 (u, zα)n(u− zα) εn +O(ε3n)

E
(kn)
2 (un, zα)n(

ϕn

ϕkn

u− zα) ε
2
kn

= E
(n)
2 (u, zα)n(u− zα) ε

2
n +O(ε3n).
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Here we used the fact that γ3,kn(u) = γ3,n(u) + O(ε3n) and γ4,kn(u) = γ4,n(u) +

O(ε3n), which follows from D4. Therefore

βkn

(
ϑu, φ

∗
kn

)
= N (∆) +

(
ϕn

ϕkn

− 1

)
u n(∆) + E

(n)
1 (u, zα)n(∆) εn+

+ E
(n)
2 (u, zα)n(∆) ε2n +O(ε3n)

and consequently (9) leads to
(
ϕn

ϕkn

− 1

)
u =

(
F

(n)
2 (u, zα)− E

(n)
2 (u, zα)

)
ε2n +O(ε3n).

Since ϕn = Cn−p and εn = O(n−q/2) for some C > 0 and p > 0 we obtain
((

kn
n

)p

− 1

)
u =

(
(F

(n)
2 (u, zα)− E

(n)
2 (u, zα))

)
ε2n +O(ε3n).

Now using the mean value theorem

kqn − nq =
q

p u
ξn

(
(F

(n)
2 (u, zα)− E

(n)
2 (u, zα))

)
nq ε2n +O(ε−q/2

n ),

where the intermediate point ξn → 1 as n→ ∞. This proves the theorem.

Example 2. We observe the Poisson process X(n) with intensity function

S(ϑ, x) = esin(ϑ r), ϑ > 0, x ∈ An = {x : |x| ≤ n} ⊂ R2, n = 1, 2, ..., the point

x = (x1, x2) and r = |x| =
√
x21 + x22. We test H0 : ϑ = ϑ0 against the one sided

alternative H1 : ϑ > ϑ0. It can be shown that the conditions of the theorem are

fulfilled, ϕn ∼ C n−2 for some C > 0 and εn = n−1, i.e., p = q = 2. Hence we will

obtain

lim
n→∞

dn = lim
n→∞

(
k2n − n2

)
=

r(u)

u n(u− zα)
,

where the power loss is given by r(u) = 1
8 π u

3 n(u − zα) C
−3
0 (4C0 C1 − C2

2 ), for

any u > 0 and some constants C0, C1 and C2 (see [7]).

Example 3. Suppose that we observe a realization X(n) of a Poisson process on

the set An = [ 0, n], n = 1, 2, · · · with the intensity function S(ϑ, x) = ϑS(x) +

λ, ϑ > 0 where λ is a known positive constant (dark-current) and S(x) is a

known, nonconstant, differentiable and periodic function with period τ > 0. The

intensity function S(ϑ, x) is supposed to be positive in a right neighborhood of ϑ0
and all x. The conditions of the theorem are fulfilled and ϕn ∼ C n−1/2 for some

C > 0 and εn = n−1/2. In this case p = 1/2 and q = 1. The asymptotic deficiency

is equal to

lim
n→∞

dn = lim
n→∞

(kn − n) =
2 r(u)

u n(u − zα)
,

where r(u) = 1
8 u

3 n(u− zα) D
−3
0 (D0D1 −D2

2), for any u > 0 and some constants

D0, D1 and D2 (see [7]).
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A Note On Computer Simulation Of Geometric Stable Random

Vectors

M. Firouzi, H. Zare and A. Mohammadpour

Department of Statistics, Amirkabir University of Technology

In this paper, a modified representation of Kozubowski and Panorska’s method, 1999,
for simulating geometric stable random vectors on a computer is presented. The method
is based on a representation for these vectors as mixtures of α-stable random vectors.
A S-PLUS function for simulating such vectors and a simulation study for compare
with the previous method are given.

Keywords: Geometric stable random vectors, Spectral measure, Simulation.

1. Introduction

Geometric stable distributions provide good approximations for normalized sums

of i.i.d. random variables, where the number of terms in the summation has a

geometric distribution with the parameter p that p converging to zero and is in-

dependent from the terms. Geometric stable distributions have many applications

in financial modeling (see, e.g., [1])

In [2] has introduced a representation for α-stable random vectors as a linear

combination of vector multiples of independent totally skewed to the right stable

random variables with 0 < α < 2. On the basis of this representation, in [3] has

introduced a method for simulating geometric stable random vectors.

In this paper, we modified the Kozubowski and Panorska’s simulating method

and represented a faster algorithm for simulation. In section 2, we recall the defi-

nition of geometric stable random vectors and present a representation of them in

terms of α-stable random vectors. Modified method and its corresponding simula-

tion algorithm described in section 3. Eventually in a simulation study we compare

modified algorithm with the previous one.
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2. Geometric stable random vectors

Let Y 1,Y 2, . . . be a sequence of i.i.d. random vectors in R
d. If sp be a geometric

random variable with parameter 0 < p < 1 and the following probability function

P (sp = n) = p(1− p)n−1, n = 1, 2, . . . ,

independent of {Y i}, then we have the following definition for a geometric stable

random vector.

Definition 2.1. A random vectorX is said to have a geometric stable distribution

if it has a domain of (geometric) attraction, i.e., there is a geometric random

variable sp independent of sequence of i.i.d. random vectors Y 1,Y 2, . . ., and a(p) >

0, b(p) ∈ Rd such that

a(p)

sp∑

i=1

(Y i + b(p))
d⇒ X, as p→ 0.

The best way to describe the distribution of a geometric stable random vector X

is by its characteristic function. A random vector X = (X1, . . . , Xd) is said to be

a geometric stable random vector in Rd if and only if there exists a finite measure

Γ on the unit sphere Sd of Rd, and a vector µ ∈ Rd, such that

ΦX (t) =
(
1 +

∫

Sd

ψ(< t, s >)Γ(ds)− i < t,µ >
)−1

, (1)

where

ψ(u) =





|u|α{1− i tan πα
2 sign(u)}, α 6= 1,

|u|{1 + i 2π sign(u) log |u|}, α = 1.

The vector X is said to have spectral representation (Γ,µ), and denote as X ∼
GS(Γ,µ). The measure Γ can approximated by a discrete measure with a finite

number of point masses, i.e.,

Γ(·) =
n∑

j=1

γjδsj (·). (2)

where weight γj > 0, and δsj
’s are the point masses at sj ∈ Sd, j = 1, . . . , n. In

this case, 1 reduce to

ΦX (t) =
(
1 +

n∑

j=1

ψ(< t, sj >)γj − i < t,µ >
)−1

. (3)

The following theorem, which appeared in [1], represents geometric stable random

vectors as mixture representations of α-stable random vectors.
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Theorem 2.1. Let X be a geometric stable random vector with index α, spectral

measure Γ, and a location parameter µ, and let Y be an α-stable random vector

with the same spectral measure and location parameter 0. Let Z be an exponentially

distributed random variable with mean 1, independent of Y . Then

X
d
=




Z

1
αY + µZ, α 6= 1,

ZY + ( 2πZ logZ)g + µZ, α = 1,
(4)

where

g = (g1, g2, . . . , gd), gk =

∫

Sd

skΓ(ds).

3. simulation

Let V be a stable random variable with the following characteristic function

φV (t) =





exp{−γα|t|α{1− iβsign(t) tan πα
2 }+ iδt}, α 6= 1,

exp{−γ|t|{1 + iβ 2
π sign(u) log |t|} + iδt}, α = 1,

where α ∈ (0, 2] is the index of stability, β ∈ [−1, 1] is the skewness parameter,

γ > 0 is the scale parameter and δ ∈ R is the location parameter. We will use

the symbol S(α, β, γ, δ) for the α-stable distributions. If γ = 1 and δ = 0 the

distribution is standard and we denote by S(α, β). If V ∼ S(α, 1), we will say V

is totally skewed to the right.

The following representation for stable random vector Y with a location pa-

rameter 0 and discrete spectral measure 2, appeared in [2].

Y
d
=





∑n
j=1 γ

1
α

j Vjsj , α 6= 1,

∑n
j=1 γj(Vj +

2
π log γj)sj , α = 1,

(5)

where Vj ∼ S(α, 1), j = 1, . . . , n.

The following result, that obtained from 4 and 5, was given in [3], and gives a

representation of a geometric stable random vector in terms of vector multiples of

independent totally skewed to the right stable random variables.

Theorem 3.1. Let X ∼ GS(Γ,µ), where Γ is as in 2, and 0 < α < 2. Let Z

be a exponential random variable with mean 1, and let V1, . . . , Vn be i.i.d. S(α, 1)

random variables, independent of Z. Then

X
d
= Z

[
Z

1
α−1

n∑

j=1

γ
1
α

j (Vj + I{1}(α)
2

π
log(γjZ))sj + µ

]
, (6)

where I denote indicator function.

168



July 28, 2010 16:45 ISC10 - Proceeding proceeding

The 10th Iranian Statistical Conference University of Tabriz, August 2010

We call this method M1 and obtain the following algorithm to simulating geometric
stable random vectors.
Algorithm 1.

• Generate n independent random variables Vj , j = 1, . . . , n from S(α, 1).
• Generate a standard exponential random variable Z, independent of Vj ’s.
• Compute

X = Z
1
α (AV + b) +∆

where V = (V1 + I{1}(α)
2
π logZ, . . . , Vn + I{1}(α)

2
π logZ)′, A = (γ

1
α
1 s1, . . . , γ

1
α
n sn), b =

I{1}(α)
2
πAc, c = (log γ1, . . . , log γn)

′, and ∆ = (zµ1, . . . , zµd)
′. The following S-PLUS

function can be use for generate N pseudo stable random vectors based on M1 method.
Function name: rmvgstab1

function(N, alpha, LG, Ga, mu) {
# LG = location of point masses on the unit sphere
# Ga = vector of point masses, (n positive elements)

n <- dim(LG)[1] # n = number of point masses
d <- dim(LG)[2] # d = dimension of random vectors (rv)
Z1 <- matrix(rexp(N), nrow = N, ncol = n)
Z <- Z1[, c(1:d)]
V <- matrix(rstab(N * n, alpha, 1) + if(alpha == 1) (2/pi) * log(Z1)

else tan((pi * alpha)/2), ncol = n)
Ga1 <- matrix(Ga, nrow = n, ncol = d)
A <- LG * Ga1^(1/alpha)
b <- matrix(if(alpha == 1) (2/pi) * log(Ga) %*% A

else 0, nrow = N, ncol = d, byrow = T) * Z^(1/alpha)
mu <- matrix(mu, nrow = N, ncol = d, byrow = T) * Z + b
(V %*% A) * Z^(1/alpha) + mu

}

When Γ is a symmetric discrete measure on Sd, there are an even number of point
masses and it be assumed that γj = γj+m, sj = −sj+m, for j = 1, . . . ,m, and n = 2m.
Then 3, reduces to

ΦX (t) =
(
1 + 2

m∑

j=1

ψ(< t, sj >)γj − i < t,µ >
)−1

.

In this case 5, takes the following form

Y
d
=

m∑

j=1

(2γj)
1
αWjsj ,

where Wj ∼ S(α, 0), j = 1, . . . ,m, (see, [2]).
If the spectral measure has some symmetric point masses, then simulation time can be

reduced. The following lemma that appeared in [4] and next theorem give a representation
of a nonsymmetric geometric stable random vector with a discrete spectral measure that
can decrease the simulation times.

Lemma 3.1. Let 0 < α < 2, γ1, . . . , γn > 0, s1, . . . , sn ∈ Sd, γj = γj+m, sj = −sj+m,
for j = n1 + 1, . . . , n1 +m, 0 ≤ n1 ≤ n, n − n1 = 2m, and V1, . . . , Vn1 be independently
distributed with S(α, 1), Wn1+1, . . . ,Wn1+m be independently distributed with S(α, 0). If
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Y be an α-stable random vector with discrete spectral measure 2, and location parameter
0. Then

Y
d
=

n1∑

j=1

γ
1
α
j (Vj + I{1}(α)

2

π
log γj)sj +

n1+m∑

j=n1+1

(2γj)
1
αWjsj . (7)

Theorem 3.2. Let X ∼ GS(Γ,µ), where Γ is as in 2, and 0 < α < 2. Let Z be a
exponential random variable with mean 1, V1, . . . , Vn1 be i.i.d. S(α, 1) random variables
and Wn1+1, . . . ,Wn1+m be i.i.d. S(α, 0) random variables, independent of Z and Vj ’s.
Then

X
d
= Z

[
Z

1
α−1

[ n1∑

j=1

γ
1
α
j (Vj + I{1}(α)

2

π
log(γjZ))sj

+

n1+m∑

j=n1+1

(2γj)
1
α (Wj + I{1}(α)

logZ

π
)sj

]
+ µ

]

Proof. 1. Case of α 6= 1: From 4, and 7, we have

X
d
= Z

1
αY + µZ

d
= Z

1
α

[ n1∑

j=1

γ
1
α
j Vjsj +

n1+m∑

j=n1+1

(2γj)
1
αWjsj

]
+ µZ

d
= Z

[
Z

1
α−1

[ n1∑

j=1

γ
1
α
j Vjsj +

n1+m∑

j=n1+1

(2γj)
1
αWjsj

]
+ µ

]
.

2. Case of α = 1: From 2, 4, and 7, we have

X
d
= ZY + (

2

π
Z logZ)g + µZ

d
= Z

[ n1∑

j=1

γj(Vj +
2

π
log γj)sj +

n1+m∑

j=n1+1

2γjWjsj

]

+
2

π
Z log(Z)

n1∑

j=1

γjsj +
2

π
Z log(Z)

n1+m∑

j=n1+1

γjsj + µZ

= Z
[ n1∑

j=1

γj(Vj +
2

π
log(γjZ))sj +

n1+m∑

j=n1+1

2γj(Wj +
logZ

π
)sj + µ

]

We call this method M2. The following algorithm that follows from theorem 3.2, can be
use for faster simulating of geometric stable random vectors.
Algorithm 2.

• Generate n1 independent random variables Vj , j = 1, . . . , n1 from S(α, 1).
• Generate m independent random variables Wj , j = n1+1, . . . , n1+m from S(α, 0).
• Generate a standard exponential random variable Z, independent of Vj ’s andWj ’s.
• Compute

X = Z
1
αBW +∆
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where

W = (V1 + I{1}(α)
2

π
log(γ1Z), . . . , Vn1 + I{1}(α)

2

π
log(γn1Z),

Wn1+1 + I{1}(α)
logZ

π
, . . . ,Wn1+m + I{1}(α)

logZ

π
)′,

B = (γ
1
α
1 s1, . . . , γ

1
α
n1sn1 , (2γn1+1)

1
α sn1+1, . . . , (2γn1+m)

1
α sn1+m),

and ∆ = (zµ1, . . . , zµd)
′. The following S-PLUS function can be use for generate N

pseudo stable random vectors based on M2 method.
Function name: rmvgstab2

function(N, alpha, LG, Ga, mu)
{
# nSym = number of symmetric points in the last nSym columns
# of LG, (corresponding Ga should be doubled)

nrow <- dim(LG)[1]
symvec <- symindex <- rep(0, nrow)
for(i in 1:nrow) {
j <- i + 1; count <- T
while(count && j <= nrow) {

if(all(LG[i, ] == - LG[j, ])) {
symvec[i] <- i
symindex[c(i, j)] <- c(i, j)
count <- F

}
else j <- j + 1

}
}
index <- rbind(symindex, symvec)
newLG <- rbind(LG[index[1, ] == 0, ], LG[index[2, ] != 0, ])
newGa <- c(Ga[index[1, ] == 0], 2 * Ga[index[2, ] != 0])
noSym <- sum(index[2, ] != 0)
LG <- newLG
Ga <- newGa
nSym <- noSym
n <- dim(LG)[1]; d <- dim(LG)[2]
Z <- rexp(N)
n1 <- n - nSym; n2 <- ifelse(n1 == 0, n, n1)
Z1 <- matrix(Z, nrow = N, ncol = d)
W <- matrix(rstab(N * n2, alpha, sign(n1)) + if(n1 == 0) {

if(alpha == 1) rep((1/pi) * log(Z), each = n2) else 0 }
else if(alpha == 1) rep((2/pi) * log(Ga[1:n2]), N) +

rep((2/pi) * log(Z), each = n2)
else tan((pi * alpha)/2), ncol = n2, byrow = T)

if(nSym > 0 && nSym < n)
W <- cbind(W, matrix(rstab(N * nSym, alpha) + if(alpha == 1)

rep((1/pi) * log(Z), each = nSym) else 0,
ncol = nSym, byrow = T))

Ga1 <- matrix(Ga, nrow = n, ncol = d)
B <- LG * Ga1^(1/alpha)
mu <- matrix(mu, nrow = N, ncol = d, byrow = T) * Z1
(W %*% B) * Z1^(1/alpha) + mu

}

4. simulation study

In order to compare the new method M2 with previous method M1, we run rmvgstab1 and
rmvgstab2, using a laptop PC by HP, model G60, equipped with 1.90 GHz AMD Athlon
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Dual-Core Ql-60 processor, 2.00 GB of RAM and Windows VistaTM home premium
operating system.

We generate samples of size 500,000 from multivariate geometric stable random vec-
tors of M1 and M2 with location of point masses are given in table 1. Table 2 shows the
averages of execution times (in seconds) that are based on 100 simulations using each
generator.
Table 1. Location of point masses for simulating samples of multivariate geometric stable
distribution.

Case symmetric points nonsymmetric points

(a) (1,0)(-1,0) (0,1)

(b) (1,0)(-1,0)( 12 ,
√
3
2 )(−1

2 ,−
√
3

2 ) (−1
2 ,

√
3
2 )(

√
3
2 ,−1

2 )

(c) (1,0)(-1,0) (
√
2
2 ,

√
2
2 )(−

√
2

2 ,
√
2
2 )

(d) (1,0)(-1,0)(0,1)(0,-1) (
√
2
2 ,

√
2
2 )

(e) (−1
2 ,

√
3
2 )( 12 ,

−
√
3

2 ) (1,0)

(f) (1,0)(-1,0)(0,1)(0,-1)

(g) (
√
2
4 ,

√
2
4 ,

√
3
2 )(−

√
2

4 ,−
√
2

4 ,−
√
3

2 ) (−1
2 ,0,

√
3
2 )

(−
√
2

4 ,
√
6
4 ,

√
2
2 )(

√
2
4 ,−

√
6

4 ,−
√
2

2 )

(h) (
√
2
2 ,0,0,−

√
2

2 )(−
√
2

2 ,0,0,
√
2
2 ) (0,

√
3
3 ,−

√
3

3 ,−
√
3

3 )

(−1
2 ,12 ,

1
2 ,

−1
2 )( 12 ,

−1
2 ,−1

2 ,12 )

Table 1. Execution time averages (in seconds) along with standard deviations (in
brackets), for simulating samples of size 500,000 from method of M1 and M2 with
α = 0.75,µ = 0, γj = 0.25, and γj = 0.5 for symmetric and nonsymmetric locations,
respectively.

Case M1 method M2 method

(a) 3.33938(0.1598597) 2.30244(0.1347350)

(b) 4.95785(0.3175116) 4.15462(0.2992480)

(c) 3.85863(0.1990990) 2.89112(0.1814689)

(d) 4.48686(0.2561435) 3.47789(0.2252744)

(e) 3.36542(0.1970318) 2.84639(0.1843554)

(f) 3.99871(0.2237170) 2.29487(0.1512818)

(g) 5.31875(0.2303287) 3.34969(0.1950943)

(h) 6.07894(0.2689873) 3.88684(0.2443736)
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Statistical Analysis of Power in Cross Classified Models via Simulation

M. Golalizadeh

Department of Statistics Tarbiat Modares University

The multilevel models are used for the application of statistical models to problems
where data exhibit an underlying hierarchical structure. They are simply a generaliza-
tion of both linear regression models and analysis of variance. When the individuals are
belonging to more than one group units the suitable models to deal with these situa-
tions are the cross classified (XC) models in which the units are cross classified as well
as clustered. Determination of sample size in the multilevel models were mostly concen-
trated on either simple variance components model or empirical studies on exploring
the effects of some sampling components. We propose simple simulation algorithm to
determine the optimum sample size combinations. It is more complicated in XC models
due to complexity of structural design. Two simple approaches are described and then
compared in an example using fake data constructed as XC model.

Keywords: Multilevel models, Cross classified models, Design effect, Sample size, Power
curve.

1. Introduction

The multilevel models are generalization of classical regression and analysis of variance.
The model are applied to data which exhibit a hierarchical structure, such as students
within schools, patients within wards, etc (Goldstein, 1995)[ [1]] . Implementing these
models in diverse fields of sciences including sociology, medicine, geography, politics and
so on made a great attention over the last three decades or so. In all these fields, the
number of subjects to be considered such that a predefined effect will be statistically
significant is of great important to answer some scientific questions. In another word, the
researchers in these fields are interested on determining the sample size for the subjects
in various levels before performing an observational or experimental study. This issue
inherently invokes the power, hypothesis test and intensive computer programming.

It is well known that the cluster sampling can be performed, at least, in two ways
(Cochran, 1977)[ [2]]. They are one-stage and two-stage cluster sampling. Other popular
sampling techniques in this framework are stratified cluster sampling and sampling with
probability proportional to size. It sounds that sampling in the multilevel models are
mostly similar to cluster sampling and so the procedure to compute the sample size is
easy. However, there are some challenges, particularly in XC models.

Most activities in sample size calculation in multilevel models focused on simulation
studies with some exceptions. For example, Bosker et al. (2003) have provided a computer
programme called PINT in performing power analysis for two level models [ [3]]. The
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programme uses the approximate standard errors for the parameters in two level models
and assume the balance at level two unit. The theoretical issue behind the programme
is given in Snijder and Bosker (1993)[ [4]]. However, their programme is not based upon
simulation study. Hence, we cannot use PINT here and make a comparison with our
simulation approach. Other research including Afshartous (1995)[ [5]] and Mok (1995)[
[6]] consider the empirical studies for particular problem in multilevel model aiming to
explore the impact of random effects in the model based upon some combinations of
sample sizes through simulation. Our method is, spiritually, similar to the procedure
suggested by Gelman and Hill (2007, Ch. 20), except they illustrate the approach for a
particular variance components and two level models [ [7]]. The procedure in this paper
has already been implemented in the free software MLPOWSIM written by the author
and his colleagues (Browne, et al. 2009)[ [8]]. It is worth to mention that tackling sample
size determination in multilevel models from statistical Bayesian view is studied by Wang
and Gelfand (2002)[ [9]].

In Section 2, we present the sample size determination in variance components model
as a motivation. In Section 3, we propose a theoretical procedure to calculate the sample
size in XC models. A simulation study for these models based upon particular fake data
is given in Section 4. The paper is ended with conclusion.

2. Sample Size Determination in Variance Components Model

To start our discussion, the following approximate equation, for testing equality of the
population mean of a univariate Normal distributed variable to a fixed value, illustrates
the relationship between the sample size and other sampling parameters (see, for example,
Bain and Engelhardt 2000 [ [10]]).

γ

s.e.(γ)
' Z1−α + Z1−β , (1)

where s.e.(γ) denotes the standard error of γ (or of the parameter of interest, if we want
to be precise in statistical sense) and Zq is q-quantile of the standard Normal distribution.
Note that, assuming the sampling fraction is approximately one, the value of the sample
size (n) appearers in above equation as s.e.(γ) = s.d.(γ)/

√
n, where s.d.(γ) stands for

the standard deviation of γ.
In multilevel models, one cannot directly use the equation (1) to derive the optimum

sample sizes. Instead, we describe a simple method to derive approximate power and
choose proper sample size using simulation algorithm. To clarify the subject, we describe
the procedure for the variance components model. Method can be easily extended to
other multilevel models.

The variance components model is defined as (see, for example, Goldstein, 1995 [ [1]])

yi j = β0 + uj + εi j , j = 1, . . . , N, i = 1, . . . , n (2)

where uj
iid∼ N(0, σ2u) and εi j

iid∼ N(0, σ2e), and the random residuals uj and εi j are
assumed to be independent. Note that the model is balanced at level two, i.e. equal
numbers of level 1 units per level two. To simulate hierarchical data from the model (2),
we can write a function for various combination of the lower (n) and higher (N) level
units while the other parameters, i.e. β0, σ

2
u, and σ2e , are fixed in advance (to be given

by the user in his/her preference). Then, the power for each sample combination can be
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calculated using any statistical techniques. We present a simple method here based upon
converting the confidence interval.

Assume the interest is to test the hypothesis{
H0 : β0 = 0
H1 : β0 6= 0

at the significant level α. Since the user knows the sign (positive or negative) of the fixed
effects in advance, a fair decision can be made in rejecting the null hypotheses based upon
the upper and lower limits for particular sample size combination. In this particular case
(and also in other circumstances), if the lower (upper) bound is greater (less) than zero,
the null hypothesis can be rejected. Now, the user can simulate the model given in (2)
for the large number of times, say 1000, and approximate the power of test to be the
percentage of times when the null hypothesis is rejected. This procedure can be repeated
for other sample size combinations. A simple inspection through a table or plot give an
impression for the required sample size to attain an specific power.

From theoretical point of view, the design effect can be utilized to derive the power for
particular sampling design. This, then, is used to check whether or not the approximated
power given by simulation studies based upon sample size combination under a new design
has attained the power derived from (1). To justify this, let us consider the balanced model
given by (2), with n lower units in each of N upper units. Then, the design effect (DEFF)
of this model is (see, for example, Snijder and Bosker, 1993 [ [4]])

DEFF = 1 + (n− 1)ρ,

where ρ is the intraclass correlation. Now, if we know the required sample size for a given
power in a simple random sample (srs) design we should multiply it by the above design
effect to get corresponding sample in the model given by (2).

Now, we derive the design effect for the XC models before using it in a simulation
study.

3. Cross Classified Models

The implemented notations here are the same as those described in Goldstein (1995)
[ [1]]. Consider the null XC model

yi ( j k) = β0 + u
(2)
j + v

(3)
k + ei ( j k) i = 1, . . . , n, j = 1, . . . , nu , k = 1, . . . , nv , (3)

where u
(2)
j ∼ N(0, σ2u), v

(3)
k ∼ N(0, σ2k) and ei ( j k) ∼ N(0, σ2) and a further assumption

in which these three errors are mutually independents. It can be seen that this model is a
balance model in which the number of observations for each combination of the first and
second XC factors are fixed n in each combination of the first and second XC samples,
i.e. nu and nv, respectively.

The estimator of β in (3), with superscript xc referring to XC model, is

β̂xc0 =

∑
i j k yi ( j k)

nnu nv
,

and its variance is

Var
(
β̂xc0
)
=

Var
(∑

i j k yi ( j k)

)

(nnu nv)2
. (4)
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Clearly, the expression (4) involves the variance of yi ( j k) and covariance of distinct

yi ( j k)’s. Using (3), the variance term turns out as σ2u + σ2v + σ2. However, outcome of
the covariance terms depend on the how the indexes i, j and k appear in distinct yi ( j k)’s.
It is seen from (3) that, for every i, j, and k,

Cov(yi ( j k), yi′ ( j k)) = σ2u + σ2v , i 6= i′,

Cov(yi ( j k), yi′ ( j′ k)) = σ2v , i 6= i′, j 6= j′,

Cov(yi ( j k), yi′ ( j k′)) = σ2u, i 6= i′, k 6= k′. (5)

Now, using these information we can expand the expression (4) as follows:

Var
(
β̂xc0
)
=

1

(nnu nv)2

[
nnunv(σ

2 + σ2u + σ2v) + n(n− 1)nunv(σ
2
u + σ2v)

+n2nunv(nv − 1)σ2u + n2nvnu(nu − 1)σ2v

]

=
σ2 +

[
1 + n− 1 + n(nv − 1)

]
σ2u +

[
1 + n− 1 + n(nu − 1)

]
σ2v

nnu nv

=
σ2 + nnvσ

2
u + nnuσ

2
v

nnu nv
. (6)

In order to compare the efficiency of XC modeling with srs allocation of samples, we
do need to derive the variance of the estimator for the parameter of the model, i.e. β̂0,
under the srs design with the same numbers of observation, i.e. nnu nv. Since under the
srs design the random variables yi ( j k)’s given in (3) are independent samples from the

Normal distribution with mean zero and variance σ2 + σ2u + σ2v , we can expand (4) for
srs design as

Var
(
β̂srs0

)
=
var
(∑

i j k yi ( j k)

)

(nnu nv)2
=

∑
i j k var(yi ( j k))

(nnu nv)2

=

∑
i j k(σ

2 + σ2u + σ2v)

(nnu nv)2
=
σ2 + σ2u + σ2v
nnu nv

. (7)

Consequently, the relative efficiency of the srs design with respect to the XC design is
the ratio of the variances in (6) to (7). It is the DEFF of the XC design in (3), simplified
as,

DEFF =
σ2 + nnvσ

2
u + nnuσ

2
v

σ2 + σ2u + σ2v
. (8)

If we define the intraclass correlation coefficients of the first and second XC factors,

respectively, as ρIu =
σ2
u

σ2+σ2
u+σ2

v
and ρIv =

σ2
v

σ2+σ2
u+σ2

v
, then (8) can be written as

DEFF = 1 + (nnv − 1)ρIu + (nnu − 1)ρIv . (9)

As a result, if we know the total sample size and further assume the effect size,
variances and the significant level are given in advance we could derive the power of test
about β0 with multiplying the above design effect in the sample size obtained with srs
design and, then, plugging it in the formula (1).
Next, recalling the above discussion we describe a simulation study and present the results
in following section.
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4. A Simulation Study

We are encountered with two simulation scenarios here. One is that dealing with sim-
ulating the model under study (to generate fake data) and the another concerns about
how the power analysis should be carried out. To deal with the first scenario, one can
benefit the facility of the statistical softwares such as MLwiN, SAS and others. We, instead,
write a programme in R mimicking the XC structure represented by (3). The estimate
of model parameters given by the function lmer from the package lme4 in R have been
further compared with popular multilevel software MLwiN. The results were quite similar,
although the latter software are faster than the former.

To deal with the second scenario, i.e. obtaining the power of the fixed parameter, we
have implemented two approaches. Obviously, there might be some other approaches in
literature. However, our approaches are very easy to implement in programming and also
have interesting intuitive interpretation.

The first approach is the same procedure as described for variance components model.
That is to evaluate, approximately, whether or not the effect size is inside our estimated
confidence interval. In a long simulation, say Iteration, we consider the average of 0/1
values as an approximate value for the power. We name this approach as 0/1 approach

and indicate the power obtained by this approach with z0/1. We, further, derive an ap-
proximate confidence interval for power in this approach with the lower and upper limits,

respectively, z
0/1
L and z

0/1
U . Since the approximate power follows a Binomial probability

function with the number of trials Iteration and probability of success z0/1, using the
Normal approximation to Binomial distribution, the 100(1−α)% confidence interval for
the approximate power turns out as

(z0/1 − Zα
2

√
z0/1(1− z0/1)

Iteration
, z0/1 + Zα

2

√
z0/1(1− z0/1)

Iteration
).

In the second approach, we indirectly employ the approximate equality in (1). The
procedure is as follows:

Assume in the first iteration of our simulation, i.e. Iteration=1, we fit the model given
by (3) for our simulated data and get the standard error s.e.(β0). This can be added to
the standard error obtained in the second stage (Iteration=2) of model fitting and so on.
At the end, the average of these standard errors can be considered as an estimate for the
standard error s.e.(β0). Now, having the standard error and effect size of β0 along with
the significant level α, we can utilize (1) to derive an estimate for the power. In addition,
we can obtain the empirical variance, say Var(zs), of the standard errors given in each
iteration to build a confidence interval for the power. Calling this method as s approach,
we name the power derived in this approach by zs and the corresponding confidence
bounds by zsL and zsU . Note that the 100(1 − α)% confidence interval for the power in
this approach will be

(zs − Zα
2

√
Var(zs)

Iteration
, zs + Zα

2

√
Var(zs)

Iteration
).

We have programmed these approaches along with constructing the model (3) in R.
Some sampling parameters have been fixed as follows:

n = 5, nu = nv = 20, α = 0.05, Iteraion = 1000.
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We further fix the value σ2 + σ2u + σ2v to 10 and the effect size to 0.1728 such that, using
these values in the srs design and equation (1), the power of test about β0 turns out as
1− β ' 0.79.

Keeping the value σ2+σ2u+σ
2
v fixed to 10, we alter variances in our simulation study

while fitting XC model represented by (3). Then, power of test about β0 using both two
approaches along with their corresponding lower and upper limits were obtained. These
values along with different values of variance parameters are given in Table 1. Note that
the theoretical power value in each row can be obtained by solving a modification of
(1). For example, using (9) the design effect for the fifth row with parameter values
σ2u = σ2v = 0.5, and σ2 = 9, is 10.9. So, we have

Z1−β =
0.1728√
10

2000DEFF
− 1.645 =

0.1728√
10

200010.9
− 1.645 = −0.907.

Consequently, the theoretical power for the fifth row will be 1− β = 0.18. Similarly, for
the other rows the theoretical power can be derived. They are 0.79, 0.78, 0.72, 0.41, from
the first to fourth row, respectively. Having these value, one can check which approach
is more sensible compared with another. It is seen that as the variance of measurement
error decreases there is less power to reject β0 = 0. The length of CI using 0/1 approach
is about 5% overally while it is about 1% in s approach, indicating the accuracy of the
latter approach. Moreover, for the higher variance of measurement error, the CI using s
approach cover the true value of the power more precisely.

Table 1. Approximate powers and their 95% CIs for β0 using 0/1 and s approaches

Variances in XC model (3) z
0/1
L z0/1 z

0/1
U zsL zs zsU

σ2
u = σ2

v = 0 σ2 = 10 0.722 0.749 0.776 0.705 0.710 0.715
σ2
u = σ2

v = 0.001 σ2 = 9.998 0.706 0.733 0.760 0.699 0.705 0.710
σ2
u = σ2

v = 0.01 σ2 = 9.98 0.675 0.703 0.731 0.668 0.674 0.680
σ2
u = σ2

v = 0.1 σ2 = 9.8 0.412 0.443 0.474 0.409 0.414 0.419
σ2
u = σ2

v = 0.5 σ2 = 9 0.174 0.199 0.224 0.183 0.184 0.186

5. Conclusion

The traditional approaches to determine the sample size for multilevel surveys is more
involved than simple design structure. With availability of fast computing softwares, the
simulation based study to perform power analysis is paid more attention. We presented
two simple methods to study the sample size determination in multilevel cross classified
models using simulation studies. As the approaches are simple and intuitively tractable,
it can be, roughly speaking, implemented for other multilevel models. It is more user
friendly than traditional method in which one needs to know the sample before carrying
out a research to investigate some scientific questions.
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Using Approximate MLE for Testing Normality Based on

Kullback-Leibler Information with Progressively Type-II Censored

Data

A. Habibi Rad and F. Yousefzadeh

Department of Statistics, Ferdowsi University of Mashhad

Department of Statistics, Birjand University

We will use the joint entropy of progressively censored order statistics in terms of an
incomplete integral of the hazard function, and provide a simple estimate of the joint
entropy of progressively Type-II censored data, has been introduced by Balakrishnan
et al. (2007). Then We construct a goodness-of-fit test statistic based on Kullback-
Leibler information for Normal distribution by using approximate MLE. Finally, we
used Monte Carlo simulations, the power of the test is estimated and compared against
several alternatives under different progressive censoring schemes.

Keywords: Approximate Maximum Likelihood Estimate, Entropy, Goodness-of-fit test,
Hazard function, Monte Carlo simulation, Progressively Type-II censored data.

1. Introduction

Suppose a random variable X has a distribution function F (x) and a continuous density
function f(x). The differential entropyH(f) of the random variable is defined in Shannon
(1948), to be

H(f) = −
∫ ∞

−∞
f(x) log f(x)dx. (1)

The first time, the test normality performed based on sample entropy by Vasicek (1976)
and the power compared with some leading test statistics for complete samples.
The entropy difference H(f)−H(g) has been considered in Dudewicz et al. (1981) and
Gokhale (1983) for establishing goodness-of-fit tests for the class of the maximum entropy
distributions.

The Kullback-Leibler (KL) information in favor of g(x) against f(x) is defined in
Kullback (1959) to be

I(g : f) =

∫ ∞

−∞
g(x) log

g(x)

f(x)
dx,

which is an extended concept of entropy.
Because I(g : f) has the property that I(g : f) ≥ 0, and the equality holds if g = f , the
estimate of the KL information has also been considered as a goodness-of-fit test statistic
by some authors including Arizono et al. (1989) and Ebrahimi et al. (1992), for complete
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samples. Park (2005) and Balakrishnan et al. (2007), respectively, for Type-II censored
data and progressively Type-II censored data.
Now, in this paper we will extend the goodness-of-fit test based on KL information with
progressively Type-II censored data for Normal distribution.

The rest of the paper is organized as follows: In Section 2 as Preliminary, we introduce
Type-II progressive censoring data, the joint entropy of progressively censored data in
terms of the hazard function and the nonparametric estimate of the joint entropy. In Sec-
tion 3, we define the KL information for progressively Type-II censored data and propose
a goodness-of-fit test for Normality based on KL information, in Section 4. Finally, in
Section 5 we use Monte Carlo simulations to evaluate the power under different Type-II
progressive censoring schemes.

2. PRELIMINARY

2.1. Progressively Type-II Censored Data

Suppose n identical items are placed on a life-testing experiment. Assume that their life-
times are independent and identically distributed with probability distribution function
(cdf) F (x; θ) and probability density function (pdf) f(x; θ), where θ is a vector of pa-
rameters.

There are several scenarios in life-testing and reliability experiments in which units
that are subject to test are lost or removed from the experiment before failure. Such
units are usually called the censored unites. The two most common censoring schemes
are termed as conventional Type-I and Type-II censoring schemes which are extensively
studied in statistical and reliability literature, Balakrishnan and Cohen (1991). Briefly,
they can be described as follows: Consider n items under observations in a particular
experiment. In the conventional Type-I censoring scheme, the experiment continues up a
pre-specified time T. The conventional Type-II censoring scheme requires the experiment
to continue until a pre-specified number of failures m(≤ n) occur.
One of the drawbacks of the conventional Type-I, Type-II censoring schemes is that they
do not allow for removal of units at points other than the terminal point of the experi-
ment. One censoring scheme known as Type-II progressive censoring scheme, which has
this advantage, so it becomes very popular for the last few years. It can be described as
follows: Consider n units in a study and suppose m(≤ n) is fixed before the experiment.
Moreover,m other integers, R1, · · ·Rm are also fixed before so that R1+· · ·+Rm+m = n.
At the time of the first failure, say X1:m:n, R1 of the remaining units are randomly re-
moved. Similarly, at the time of the second failure, say X2:m:n, R2 of the remaining units
are randomly removed and so on. Finally, at the time of the m− th failure, say Xm:m:n,
the rest of the Rm units are removed. Fore further details on Type-II progressive censor-
ing, refer to Balakrishnan and Aggarwala (2000).

The joint probability density function (pdf) of all m progressively Type-II censored
order statistics (X1:m:n, · · ·Xm:m:n) which is define in Balakrishnan (2000) to be

fX1:m:n,X2:m:n,··· ,Xm:m:n
(x1, x2, · · · , xm) = c

m∏

i=1

f(xi){1− F (xi)}Ri ,
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x1 < x2 < · · · < xm,
where

c = n(n−R1 − 1) · · · (n−R1 −R2 − · · · −Rm−1 −m+ 1).

2.2. Entropy of Progressively Censored Data in Terms of the Hazard
Function

The joint entropy of X1:m:n, · · · , Xm:m:n defined in literature (Park, 2005), to be

H1···m:m:n = −
∫ ∞

−∞
· · ·
∫ x2:m:n

−∞
fX1:m:n,X2:m:n,··· ,Xm:m:n

(x1, x2, · · · , xm)

× log fX1:m:n,X2:m:n,··· ,Xm:m:n
(x1, x2, · · · , xm)dx1:m:n · · · dxm:m:n,

where fX1:m:n,X2:m:n,··· ,Xm:m:n
(x1, x2, · · · , xm) is the joint pdf of all m progressively

Type-II censored order statistics.
H1···m:m:n is an m-dimensional integral, and we need to simplify this multiple inte-

gral.
The simple calculation of the entropy of the usual single and consecutive order statis-

tics has been studied in Wong et al. (1990) and Park (1995). The multiple integral of the
entopy for Type-II censored data be simplified to a single-integral by Park (2005) and the
joint entropy of progressively Type-II censored order statistics in terms of an incomplete
integral of the hazard function , h(x), has been simplified by Balakrishnan et al. (2007),

H1···m:m:n = − log c+ nH1···m:m:n,

where

H1···m:m:n =
m

n
− 1

n

∫ ∞

−∞

m∑

i=1

fXi:m:n
(x) log h(x)dx.

2.3. Nonparametric Entropy Estimate

The nonparametric estimate of the joint entropy (H1···m:m:n) was obtained, as

H1···m:m:n(w, n,m) = − log c+ nH(w, n,m),

where

H(w,n,m) =
1

n

m∑

i=1

log

(
(xi+w:m:n − xi−w:m:n)

E(Ui+w:m:n)−E(Ui−w:m:n)

)
− (1− m

n
) log(1− m

n
).

(Balakrishnan et al., 2007).

3. Goodness-of-fit Test Based on the Kullback-Leibler Information

For a null density function f0(x; θ), the KL information from a progressively Type-II
censored data is given by

I1···m:m:n(f : f0) =

∫ ∞

−∞
· · ·
∫ x2:m:n

−∞
fX1:m:n,X2:m:n,··· ,Xm:m:n

(x1, x2, · · · , xm; θ)

× log
fX1:m:n,X2:m:n,··· ,Xm:m:n

(x1, x2, · · · , xm; θ)

f0X1:m:n,X2:m:n,··· ,Xm:m:n
(x1, x2, · · · , xm; θ)

dx1 · · · dxm,
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where fX1:m:n,X2:m:n,··· ,Xm:m:n
(x1, x2, · · · , xm) is the joint pdf of all m progressively

Type-II censored order statistics.

The KL information can be estimated by

I1···m:m:n(f : f0) = −nH1···m:m:n −
m∑

i=1

log f0(xi; θ)−
m∑

i=1

Ri log
(
1− F 0(xi; θ)

)
. (2)

Thus, the test statistic based on 1
nI1···m:m:n(f : f0) is given by

T (w, n,m) = −H(w,n,m)− 1

n

[
m∑

i=1

log f0(xi; θ̂) +
m∑

i=1

Ri log(1− F 0(xi; θ̂))

]
, (3)

where θ̂ is an estimation of θ.

4. Test for Normality

Suppose we are interested in goodness-of-fit test for

H0 : f0 = (2πσ2)
−1
2 exp{−(x − µ)2/2σ2} vs HA : f0 6= (2πσ2)

−1
2 exp{−(x − µ)2/2σ2}

where θ = (µ, σ2) is unknown.
Then, the KL information for a progressively Type-II censored data can be approximated,
by (3) and we estimate the unknown parameters (µ, σ2) by the maximum likelihood
estimate (MLE).
The MLE for progressively Type-II censored sample from a Normal(µ, σ2) distribution
obtain by solving the below equations, (Balakrishnan and Aggarwala, 2000)

∑m
i=1 xi
m

= x = µ− σ

m

m∑

i=1

RiZi,

∑m
i=1(xi − x)2

m
= s2 = σ2{1− 1

m

m∑

i=1

RiξiZi − (
1

m
)2

m∑

i=1

(RiZi)
2},

where Zi =
ϕ(ξi)

1−φ(ξi)
and ϕ(.) is the probability density function of the standard normal

distribution.
At the first we used a simple iterative procedure such as Newton’s method for solving the
above equations, but the MLE can not be obtained in explicit form so the next section
we propose the approximate maximum likelihood estimates which have explicit forms.

4.1. Approximate Maximum Likelihood Estimates for Normal
Distribution

In this section, we use the approximate maximum likelihood estimation method (AMLE)
developed by Balakrishnan (1989 a,b, 1990 a,b,c) to estimate the scale and location
parameters µ and σ.The likelihood function based on progressive Type-II censored sample
x1:m:n, ..., xm:m:n with censoring scheme R1, ..., Rm can be written as

L(µ, σ) = c
1

σm

m∏

i=1

f(zi:m:n)(F̄ (zi:m:n))
Ri ,
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where c = n(n−R1−1) · · · (n−R1−R2−· · ·−Rm−1−m+1), zi:m:n = xi:m:n−µ
σ , F (.) =

1− F (.) and f, F are the probability density function(pdf) and cumulative distribution
function (cdf) of Normal standard distribution, respectively.
Upon partial differentiation of the logarithm of the likelihood function with respect to µ
and σ, the score equations to be solved for µ and σ in this case are given by

∂ lnL

∂µ
=

1

σ

m∑

i=1

zi:m:n +
1

σ

m∑

i=1

Ri
f(zi:m:n)

F̄ (zi:m:n)
= 0 (4)

∂ lnL

∂σ
= −m

σ
+

1

σ

m∑

i=1

z2i:m:n +
1

σ

m∑

i=1

Rizi:m:n
f(zi:m:n)

F̄ (zi:m:n)
= 0, (5)

Clearly, (4) and (5) do not have explicit solutions. We expand the function
f(zi:m:n)
F̄ (zi:m:n)

in

Taylor series around the point ξi = F−1(pi), where pi = 1 − qi = 1 −∏m
j=m−i+1 αj .

Balakrishnan and Aggarwala(2000) deduced that: if Ui:m:n, i = 1, · · · ,m denote a
progressive Type-II censored sample from the uniform(0, 1) distribution obtained from
a sample of size n with the censoring scheme (R1, · · · , Rm), then Vi, i = 1, · · · ,m are all

independent random variables with Vi = Beta(i +
m∑

j=m−i+1
Rj , 1), i = 1, · · · ,m, such

that

Ui:m:n = 1−
m∏

j=m−i+1

Vj , i = 1, · · · ,m,

and

E(Ui:m:n) = 1−
m∏

j=m−i+1

αj , i = 1, · · · ,m,

where

αj =

j +
m∑

i=m−j+1
Ri

1 + j +
m∑

i=m−j+1
Ri

, j = 1, · · · ,m.

Then we consider the following approximations

f(zi:m:n)

F̄ (zi:m:n)
' αi + βizi:m:n, (6)

where

αi =
f(ξi)

F̄ (ξi)
− ξi

[
−ξi

f(ξi)

F̄ (ξi)
+

(
f(ξi)

F̄ (ξi)

)2
]
,

βi = −ξi
f(ξi)

F̄ (ξi)
+

(
f(ξi)

F̄ (ξi)

)2

.
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Using the approximations (6) in (4) and (5), we obtain

m∑

i=1

zi:m:n +
m∑

i=1

Ri(αi + βizi:m:n) = 0, (7)

−m+
m∑

i=1

z2i:m:n +
m∑

i=1

Rizi:m:n(αi + βizi:m:n) = 0. (8)

From (7) we obtain the AMLE of µ as

µ̂ = B + σ̂C,

where

B =

mx̄+
m∑
i=1

Riβixi:m:n

m+
m∑
i=1

Riβi

,

C =

m∑
i=1

Riαi

m+
m∑
i=1

Riβi

.

From (8), we obtain σ̂ as a solution of the quadratic equation

A1σ
2 + A2σ + A3 = 0,

where

A1 = −m,A2 =
m∑

i=1

Riαi(xi:m:n −B),

A3 =
m∑

i=1

(1 +Riβi)(xi:m:n −B)2 > 0.

Therefore

σ̂ =
−A2 −

√
A2
2 − 4A1A3

2A1
,

is the only positive root.

5. Implementation of Test

Because the sampling distribution of T (w, n,m) is intractable, we determine the percent-
age points using 10,000 Monte Carlo simulations from Normal distribution. In determin-
ing the window size w which depends on n,m and α, we define the optimal window size
w to be one which gives minimum critical points. However, we find from the simulated
percentage points that the optimal window size w varies much according to m rather
than n, and does not vary much according to α, if α ≤ 0.1. In view of these observations,
our recommended values of w for different m are as given in Ebrahimi (1992) and Park
(2005).
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To obtain the critical values, after deciding about the value of w, simulate the whole
procedure by taking the observation from Normal(0, 1) distribution and calculate the
value of T (w,n,m), for about 10,000 times. Critical values can then be the percentage
points of the thus derived (empirical) distribution of T .

5.1. Power Results for Normal Distribution

As the proposed test statistic is related to the hazard function of the distribution, we
consider the alternatives according to the type of hazard function as follows:
a) Monotone increasing hazard: Gamma and Weibull (shape parameter 2),
b) Monotone decreasing hazard: Gamma and Weibull (shape parameter 0.5),
c) Nonmonotone hazard: Center Beta (shape parameter 0.5),

Log-normal (shape parameter 1).
We used 10,000 Monte Carlo simulations for n = 10, 20, to estimate the power of our
proposed test statistic. The simulation results are summarized in Tables 1 and 2.

We can see from Tables 1 and 2 that the scheme (R1 = 0, · · · , Rm−1 = 0, Rm = n−m)
(the conventional Type-II censored data) shows better power than the other schemes
when the alternative is monotone increasing hazard function. For the alternative with
monotone decreasing hazard functions, the scheme (R1 = n −m,R2 = 0, · · · , Rm = 0)
shows better power; finally, for the alternative with nonmonotone hazard function, some-
times the former censoring scheme gives higher power and sometimes the latter censoring
scheme does.
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Table 1:Power for different hazard alternatives at 10% significance level for several pro-
gressively censored samples when the sample size is n = 10.

monotone increasing monotone decreasing nonmonotone
hazard alternatives hazard alternatives hazard alternatives

m schemes Gamma Weibull Gamma Weibull Center Beta Log-normal
(R1, · · · , Rm) shape 2 shape 2 shape 0.5 shape 0.5 shape 0.5 shape 1

5 5,0,0,0,0 .198 .123 .555 .705 .341 .403
5 0,5,0,0,0 .196 .118 .563 .700 .387 .388
5 1,1,1,1,1 .165 .116 .516 .624 .417 .274
5 0,0,0,5,0 .123 .101 .435 .566 .312 .214
5 0,0,0,0,5 .173 .133 .464 .539 .422 .235

7 3,0,0,0,0,0,0 .272 .137 .709 .853 .420 .564
7 0,3,0,0,0,0,0 .272 .142 .711 .851 .426 .563
7 1,0,0,1,0,0,1 .262 .148 .704 .825 .507 .486
7 0,0,0,0,0,3,0 .165 .118 .567 .719 .395 .326
7 0,0,0,0,0,0,3 .262 .163 .681 .789 .561 .433

9 1,0,0,...,0,0,0 .319 .147 .808 .926 .501 .660
9 0,1,0,...,0,0,0 .325 .149 .809 .928 .505 .673
9 0,0,...,1,...,0,0 .288 .131 .798 .920 .490 .636
9 0,0,0,...,0,1,0 .249 .141 .735 .876 .506 .542
9 0,0,0,...,0,0,1 .355 .188 .834 .930 .596 .654

Table 2:Power for different hazard alternatives at 10% significance level for several
progressively censored samples when the sample size is n = 20.

monotone increasing monotone decreasing nonmonotone
hazard alternatives hazard alternatives hazard alternatives

m schemes Gamma Weibull Gamma Weibull Center Beta LogNormal
(R1, · · · , Rm) shape 2 shape 2 shape 0.5 shape 0.5 shape 0.5 shape 1

5 15,0,0,0,0 .194 .114 .586 .727 .388 .401
5 0,15,0,0,0 .230 .136 .639 .762 .482 .429
5 3,3,3,3,3 .158 .121 .576 .644 .546 .221
5 0,0,0,15,0 .129 .102 .584 .671 .499 .223
5 0,0,0,0,15 .167 .144 .493 .535 .482 .196

10 10,0,0,...,0,0,0 .354 .148 .906 .973 .667 .745
10 0,10,0,...,0,0,0 .409 .181 .918 .977 .708 .769
10 1,1,1,...,1,1,1 .332 .175 .912 .960 .830 .595
10 0,0,0,...,0,10,0 .146 .123 .651 .788 .507 .265
10 0,0,0,...,0,0,10 .346 .224 .890 .930 .847 .515

15 5,0,0,...,0,0,0 .438 .182 .967 .995 .836 .856
15 0,5,0,...,0,0,0 .472 .204 .969 .996 .846 .869
15 1,1,...,1,...,1,1 .526 .263 .981 .996 .907 .851
15 0,0,0,...,0,5,0 .260 .182 .789 .918 .657 .468
15 0,0,0,...,0,0,5 .558 .302 .982 .996 .934 .833

18 2,0,0,...,0,0,0 .480 .209 .980 .998 .897 .904
18 0,2,0,...,0,0,0 .492 .210 .981 .998 .898 .902
18 1,0,0,...,0,0,1 .630 .287 .996 .999 .948 .940
18 0,0,0,...,0,2,0 .379 .212 .935 .987 .826 .740
18 0,0,0,...,0,0,2 .670 .324 .997 .999 .962 .945
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A weighted Average of n independent continuous random variables
X1, · · · , Xn with random proportions is introduced. A formula between the Stieltjes
transforms of the weighted average and X1, · · ·Xn is expressed. In particular when
X1, · · · , Xn have a common distribution F , we show the weighted average is distributed
as X1, · · · ,Xn if and only if F is a Cauchy distribution. Then we give examples for
them.

1. Introduction

The work of Van Assche (1987) was commentated by Johnson and Kotz (1990). By

considering the direct method of analysis based on the calculation of moments, they

argued that simple and direct approaches sometimes appear to be more advantageous

than advanced techniques, such as the Stieltjes transform technique employed by Van

Assche (1987). They proceeded further and highlighted a derivation for the Result (i),

from their method, but acknowledged that their approach was not useful to obtain the

Result (ii). Johnson and Kotz (1990) viewed the random variable S as a random weighted

average of X and Y with random proportions U and 1 − U , S = UX + (1 − U)Y , U

uniform [0, 1] independent of X and Y . Soltani and Homei (2009) also expressed their

interests in the extension of the Van Assche (1987) results when more than two random

variables are involved, but In this work, we review the work of them.

1.1. Definition

Definition: Let X = (X1, · · ·Xn) and W = (W1, · · ·Wn), where X1, · · ·Xn be i.i.d

with common distribution F and W1,W2, ...,Wn are nonnegative random variables and

subject to
∑n

i=1Wi = 1, then

X̄W =W1X1 +W2X2 + · · ·+Wn−1Xn−1 +WnXn,

X̄W is defined to be RWA

Example 1: As especially case , if

P (W1 =
1

n
, · · · ,Wn =

1

n
) = 1.
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We get the sample mean, which is usually denoted by x̄, that is

x̄ =

∑n
i=1 xi
n

the following example is a useful example in studding one dimensional disorder systems

Example 2: Let {(α1, β1), (α2, β2), ...} be independent random vectors on the unite

square [0, 1]× [0, 1] with common distribution function F (x, y) = P (αi ≤ x, βi ≤ y)

With this sequence we can construct random 2× 2 matrices

(
αn 1− αn

βn 1− βn

)

and their products

(
αn 1− αn

βn 1− βn

)
=

(
αn 1− αn

βn 1− βn

)(
αn−1 1− αn−1

βn−1 1− βn−1

)
...

(
α1 1− α1

β1 1− β1

)

Where αi, βi are independent. These matrices are stochastic since all the entries are

positive and the elements of every row add up to unity. The product Occur in physics in

study of one-dimensional disordered systems.

Notice that the sequence {(Xn, Yn), n = 1, 2, ...} can be obtained by a random differ-

ence equation





Xn = αnXn−1 + (1− αn)Yn−1,

Yn = βnXn−1 + (1− βn)Yn−1, n = 2, 3...

It is very clear that {(Xn, Yn), n = 1, 2, ...} is a bivaiate Markov process.

Where Xn and Yn are RWA.

Example 3: (General Regression Neural Networks) Let

Zi = E[Z | x, y] + εi

where εi are independent, have zero mean, and have variance σ2(x, y). The conditional

mean of Z given (x,y) known as a regression of Z on (x,y) is the solution minimizing

mean squared error. If f(x,y,z) is the joint continuous probability density function then

the conditional mean can be expressed by the following relation:

E[Z | x, y] =
∫∞
−∞ zf(z | x, y)dz
∫∞
−∞ zf(z | x, y)

If the error is normally distributed and homoskedastic εi ∼ N(0, σ2) The regression

estimate becomes the best linear unbiased estimate in the maximum likelihood sense.

Let us consider basic formulas concerning GRNN used in the study. This part of the

work is based The density function f(x,y,z) can be estimated from the data by using

nonparametric consistent estimators
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f(x, y, z) =
1

2π1.5h3n

n∑

i=1

exp(−2D2
i /2h

2)exp[−(z − zi)
2/2h2]

where Gaussian kernel is used , and n is the number of measurements in training data

set, h - is a bandwidth, and distance metric is:

D2
i = (x− xi)

2 + (y − yi)
2

Substituting the joint probability estimate into the conditional mean, gives the desired

conditional mean Z given (x,y), also called Nadaraya-Watson kernel estimator (Hardle,

1989):

Zm(X,Y ) =

∑n
i=1 Ziexp(−2D2

i /2h
2)∑n

i=1 exp(−2D2
i /2h

2)
=

n∑

i=1

Wi(X,Y )Zi

where the weights are:

exp(−2D2
i /2h

2)∑n
i=1 exp(−2D2

i /2h
2)

=Wi(X,Y )

n∑

i=1

Wi(X,Y ) = 1

That, Zm(X,Y ) =
∑n

i=1Wi(X,Y )Zi is RWA.

2. RWA Formed On Observe Sample

This section has written for finding distribution RWA that an interesting kind of dis-

tribution has introduced. We follow conditional distribution for given distinct values

X1 = x1, ..., Xn = xn.

Theorem 1: The conditional distribution of the RWA X̄U , for given distinct values

X1 = x1, ..., Xn = xn at z, −∞ < z < +∞ where x1 > x2 > ... > xn will be given by
{
K(z|x1, ..., xn) =

∑i
j=0

(z−xn−j)
n−1

C(xn−i; x1,...,xn)
,

xn−i < z ≤ xn−i−1, i = 0, · · · , n− 2,
(1)

where

C(xn−j ; x1, ..., xn) =

n−j−1∏

k=1

(xk − xn−j)

n∏

k=n−j+1

(xk − xn−j), j = 0, · · · , n− 1.

.

Example 4: As specially case n = 4, conditional distribution function is

G(z) =





(z−x4)
3

x14 x24 x34
, x4 < z ≤ x3

(z−x4)
3

x14 x24 x34
− (z−x3)

3

x13 x23 x34
, x3 < z ≤ x2

(z−x4)
3

x14 x24x34
− (z−x3)

3

x13 x23x34
+

(z−x2)
3

x12 x23 x24
, x2 < z ≤ x1.
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where xij = xi − xj and x4 < x3 < x2 < x1
Also when n = 3, we have

F (z) =





(z−x3)
2

x13 x23
, x3 < z ≤ x2

(z−x3)
2

x13 x23
− (z−x2)

2

x12 x23
, x2 < z ≤ x1.

(z − x3)
2

x13 x23
− (z − x2)

2

x12 x23
= 1− (x1 − z)2

x13 x12
x2 < z ≤ x1.

Density function of distribution function F (z) is:

f(z) =





2(z−x3)
x13 x23

, x3 < z ≤ x2

2(x1−z)
x13 x12

, x2 < z ≤ x1.

f(z) is Two sided power distributions (soltani and homei (2009)).

Theorem 2: The conditional distribution of the X̄U , for given distinct values X1 =

x1, ..., Xn = xn at z, −∞ < z < +∞ will be given by (1).

3. distribution of RWA

In this section we present the main result of this chapter. we are going to profound theo-

rem which according to that we are able to get Stieltjes transforms for RWAU to Stieltjes

transform for random variables X1, ..., Xn. Therefore ,with distibutin of X1, ..., Xn , we

can find distribution of [RWA]U by the using of the Stieltjes transform theorem. This is

following by unique property of Stieltjes transform.

Theorem 3: Under the assumption that X1, · · · , Xn are independent and continu-

ous,

(−1)n−1

(n− 1)!

dn−1

dzn−1
S(FX̄U

, z) =

n∏

i=1

S(FXi
, z), z ∈ C

n⋂

i=1

(suppFXi
)c. (2)

Example 7: Let X1, X2 be i.i.d with Arcsin distribution on [-1,1], then

S(Xi, z) =
1√

1− z2

By using theorem, we have

− d

dz
S(FX̄U

, z) =
1

z2 − 1
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S(FX̄U
, z) =

∫
1

1− z2
dz

=
1

2

∫
1

1− z
dz +

1

2

∫
1

1 + z
dz

=
1

2
(− ln(z − 1) + ln(z + 1))

=

∫ 1

−1

1

z − x

1

2
dx

= S(FX̄U
, z)

Where FX̄U
is uniform distribution on [-1,1].

Example 8: Let X1, X2, X3 be i.i.d with cauchy distribution , then

S(Xi, z) =
1

z + c

By using theorem, we have

(−1)2

2!

d2

dz2
S(FX̄U

, z) = (
1

z + c
)3

S(FX̄U
, z) = 2

∫ ∫
1

(z + c)3
dzdz

=
1

z + c

=

∫ ∞

−∞

1

z − x

1

π(1 + x)
dx

= S(FX̄U
, z)

Therefore, FX̄U
is cauchy distribution.

Example 9: Let X1, · · · , Xn be i.i.d with uniform distribution on [0,1], then

S(Xi, z) =

∫ 1

0

1

(z − x)
dx

= ln(z − 1)− ln z

By using theorem, we have

(−1)n−1

(n− 1)!

dn−1

dzn−1
S(FX̄U

, z) = (ln(z − 1)− ln z)n

As specially case n = 2 we have

− d

dz
S(FX̄U

, z) = (ln(z − 1)− ln z)2
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4. Conjugate

In the following of discussion about RWA , this question is defined that:

What distribution should we are use for X1, ..., Xn to has the same one for RWA ? Is

cauchy that distribution we are looking for? To find the distribution X̄W we can use the

characterization function technique and double conditional expectation. Then Randomly

Weighted Average has cauchy distribution for any n, that is, Randomly Weighted Average

has the same distribution as one of its components.

Theorem 4: Let X̄U be [RWA]U and X1, ..., Xn are independent and identically

distributed continuous random variables with a common distribution function F. Then

X̄U has distribution F if and only if

(−1)n

(n− 1)!

dn−1

dzn−1
S(F, z) = [S(F, z)]n, z ∈ C. (3.6.1)

A solution for S(F, z) in (3.6.1) is

S(F, z) = 1

z − a+ ib
, Im(z) > 0, b 6= 0,

which is the Stieltejes Transform of the Cauchy distribution.

5. Arc Sin Distribution

Theorem 5:X̄U is uniform on [−1, 1] if and only if X1, ..., Xn have Stieltejes Transform

S(F, z) =
{

1

2(n− 1)

(z + 1)n−1 − (z − 1)n−1

(z2 − 1)n−1

} 1
n
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In many statistical problems, there exists bounds on the values that unknown param-
eters can take. In this paper in a class of discrete distributions including Bernoulli(θ),
Binomial(k, θ), Discrete Wiebull(θ), ..., we consider minimax estimation of the param-
eter θ when it lies in a bounded interval of the form [0,m] under LINEX loss function.
We give conditions on m for which the Bayes estimator of θ ∈ [0,m] is minimax under
LINEX loss function.

Keywords: Bayes estimator, Bounded parameter space, LINEX loss function, Minimax
estimation.

1. Introduction

Estimation in bounded parameter space is one of the most important problems in statis-

tical inference. While the assumption of boundedness of the parameter can be useful in

practice, it introduce some surprising difficulties in theory. Initial attempts to investigate

estimation of bounded parameter space were made by Hammersley (1950), in which the

Maximum Likelihood (ML) estimators of Normal and Poisson means are considered. ML

estimators are usually inadmissible in bounded parameter space. Minimax estimation is

one of the common methods that used in bounded parameter space and usually leads to

admissible estimators. For a review of admissible and minimax estimation in bounded

parameter space see Marchand and Strawderman (2004) and van Eeden (2006).

Marchand and Parsian (2006) for a vast class of discrete distributions includes

Binomial(k, θ) and Poisson(θ), give sufficient and necessary conditions for which the

boundary supported Bayes estimator of θ ∈ [0, m] is minimax under Squared Error Loss

(SEL) function. In this paper we consider a class of discrete distributions, including

Binomial (k, θ), Discrete Wiebull (θ), Consul (k, θ),..., and derive minimax estimator of

θ when it lies in a bounded interval of the form θ ∈ [0, m] under the LINEX loss function

given by

L(θ, δ) = c{ea(δ−θ) − a(δ − θ)− 1}, c > 0, a 6= 0. (1)

The LINEX loss function was introduced by Varian (1975) and is convex in δ and is not
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symmetric. This loss function is useful when overestimation is more (less) serious than

underestimation of the same magnitude. For a review of estimation under LINEX loss

function see Parsian and Kirmani (2002). clearly the value of c > 0 does not have any

influence on our results, therefore without loss of generality, we shall take c = 1 in the

rest of the paper.

In section 2 we state some preliminary results and introduce the class of discrete

distributions. In section 3, we derive the least favorable prior and minimax estimator of

θ ∈ [0, m] in the class of discrete distributions under LINEX loss function.

2. Preliminary Results and Class of Discrete Distributions

Let X = (X1, · · · , Xn), n ≥ 1 be a set of discrete random variables with joint probability

function f(x, θ), where θ ∈ [0, m] for some m > 0. It follows from the work of DasGupta

(1985) that the least favorable prior is quite generally supported on the boundary {0, m}
of the parameter space, and that the corresponding Bayes estimator is minimax for small

enough m. So our results are based on the following well-known criteria for minimaxity

applied to boundary two-point priors.

Lemma 2.1: A two-point boundary prior π on {0, m} is least favorable, and the corre-

sponding Bayes estimator δπ(x) is minimax, if and only if

R(0, δπ) = R(m,δπ) = sup
0≤θ≤m

R(θ, δπ). (2)

For finding the equalizer rule, i.e., the Bayes rule which satisfy R(0, δπ) = R(m,δπ),

we use the following notations and result of Wan et al. (2000).

Let X = (X1, ..., Xn) be a set of random variables and Pθ be the distribution of X

with the parameter space θ ∈ [ν, β], ν < β. Assume that Pθ is dominated by some σ-finite

measure µ. Further let f(x, θ) be the Radon-Nikodym derivative of Pθ with respect to

µ. Assume that:

(i) f(x, ν) + f(x, β) 6= 0 for all x ∈ X, where X is the sample space, and

(ii) Pθ{x : f(x, ν)f(x, β) > 0} > 0 when θ = ν and θ = β.

Consider the following two point prior

π(ν) = η , π(β) = 1− η, (3)

where 0 < η < 1. Following Wan et al. (2000), the corresponding Bayes estimator under

the LINEX loss function (1) is

δπ(x) =
1

a
ln

{
ηf(x, ν) + (1− η)f(x, β)

ηf(x, ν)e−aν + (1− η)f(x, β)e−aβ

}
. (4)

Note that δπ(x) = β if f(x, ν) = 0, and δπ(x) = ν if f(x, β) = 0.

Theorem 2.1 (Wan et al., 2000). Under the LINEX loss function (1), there exists a

unique η∗ ∈ (0, 1) such that R(0, δπ∗) = R(m,δπ∗), where π∗ is the prior distribution
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for η = η∗. Moreover, R(0, δπ) < R(m,δπ) for η ∈ (η∗, 1) and R(0, δπ) > R(m,δπ) for

η ∈ (0, η∗).

In the next section we use Theorem 2.1 to construct equalizer rule that satisfy mini-

maxity condition (2). Now, we introduce the class of discrete distributions that used in

this paper.

Let X = (X1, · · · , Xn); n ≥ 1 where X′
is are identically but not necessarily inde-

pendent distributed, discrete random variables with joint probability function f(x, θ) =

Pθ(X = x) and the support of X is lower bounded by (s, . . . , s). We consider minimax

estimation of θ under LINEX loss function when θ is bounded to a small enough known

interval [b, d] ⊂ Θ where Θ is the unconstrained parameter space and the distribution

of X under θ = b is degenerate at (s, · · · , s). Since we can translate Xi to Xi − s, we

assume hereafter s = 0. Also, since δ(X) is minimax for θ under the LINEX loss function

(1) if and only if δ(X)− b is minimax for θ − b, so without loss of generality we assume

hereafter that [b, d] = [0, m].

Let A = {x ∈ Rn :
n∑

i=1
xi = 0} and G(n, θ) = Pθ(X ∈ A), then G(n, 0) = 1 by

assumption. Marchand and Parsian (2006) and Jafari Tabrizi and Nematollahi (2009)

considered the following classes of discrete distributions

C∗ = {f(., θ) : G(n, 0) = 1, (−1)k
∂k

∂θk
G(n, θ) > 0 for θ ≥ 0 and k = 1, 2, 3} (5)

and

C1 = {f(., θ) : G(n, θ) = eα(n)θ, α(n) < 0, θ ≥ 0} ⊂ C∗

respectively. They derive sufficient (and necessary) conditions for which the Bayes es-

timator of θ with respect to a boundary supported prior on {0, m} be minimax under

SEL and LINEX loss function, respectively. We are interested in minimax estimation of

θ under the LINEX loss function (1) in a subclass C of C∗ given by

C = {f(., θ) : G(n, θ) = (1− θ)α(n), α(n) ≥ 1, θ ≥ 0} (6)

where α(n) is a function of n and known parameters and does not depend on θ. Some

discrete distributions that belong to the class C are:

1- X′
is are independently distributed Bernoulli(θ), with G(n, θ) = (1− θ)n.

2- X′
is are independently distributed Binomial(k, θ), with known k, G(n, θ) = (1− θ)kn.

3- X′
is are independently distributed Negative Binomial(r, 1−θ), with known r, G(n, θ) =

(1− θ)rn.

4- X′
is are independently distributed Discrete Wiebull(1− θ), with G(n, θ) = (1− θ)n.

5- X′
is are independently distributed Generalized Negative Binomial(k, θ), with known

k, G(n, θ) = (1− θ)kn.

6- X′
is are independently distributed Consul(k, θ) with pf

f(x, θ) =
Γ(kx+ 1)

Γ(x+ 1)Γ(kx− x+ 2)
(

θ

1− θ
)x−1(1− θ)kx, x = 1, 2, · · · , 0 < θ ≤ 1,
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where k ∈ {1, 2, ...} is known, G(n, θ) = (1− θ)kn.

The above family of distributions and also some other distributions that belong to

the class C can be found in Johnson et al. (2005).

3. Minimax Estimation of θ

Let X = (X1, · · · , Xn) has a joint probability function f(., θ) belong to class C of discrete

distributions of the form (6). In this section we want to find minimax estimator of θ when

θ ∈ [0, m]. Since Pθ(X ∈ A) = Pθ(X1 = 0, · · · , Xn = 0) = G(n, θ) > 0 for all θ > 0

and G(n, 0) = 1, therefore it can be easily seen that the conditions (i) and (ii) of Section

2 hold for f(., θ) in class C. So, we can use the results of Section 2 to obtain minimax

estimator of θ.

Using two-point prior (3), the corresponding Bayes estimator (4) in class C is given

by

δπ(x) =





1
a ln

{
η + (1− η)(1−m)α(n)

η + (1− η)(1−m)α(n)e−am

}
x = 0

m x 6= 0

= yIA(x) +m(1− IA(x)) (7)

where 0 = (0, 0, · · · , 0), y = 1
a lnB,B =

η + (1− η)(1−m)α(n)

η + (1− η)(1−m)α(n)e−am
, and IA(.) is the

indicator function. From Theorem 2.1, there exists a unique η∗ ∈ (0, 1) such that the

Bayes estimator δπ∗ with respect to the two-point prior

π(0) = η∗ , π(m) = 1− η∗ (8)

is equalizer Bayes rule, i.e., R(0, δπ∗) = R(m, δπ∗). To show that this equalizer Bayes rule

is minimax, i.e., satisfy (2), we use convexity of R(θ, δπ) on [0, m]. Sufficient condition

for convexity of R(θ, δπ) when α(n) ≥ 1 is given in the following theorem.

Theorem 3.1. For α(n) ≥ 1 the risk function R(θ, δπ) of the Bayes estimator δπ is

strictly convex on [0, m] for every η ∈ (0, 1), if one of the following conditions holds:

(i) a ≥ −α(n) and m ≤ m0, where m0 ∈ (0, 1) is the unique root of the equation

(−2aα(n)− α(n)(α(n) − 1))eam + α(n)(α(n) − 1)am

+ (a+ α(n))2 − α(n) = 0 (9)

or

(ii) a < −α(n) and m ≤ m1, where m1 ∈ (0, 1) is the unique root of the equation

(a2 + α(n))eam + α(n)(α(n)− 1)am− α(n) = 0 (10)

Proof. From (7) the risk function of δπ under the loss (1) is

R(θ, δπ) = [ea(m−θ) − a(m− θ)− 1] + [e−aθ(B − eam)

− (lnB − am)](1− θ)α(n). (11)
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The second derivative of R(θ, δπ) with respect to θ is

R′′(θ, δπ) = e−aθ(1− θ)α(n)−2
{

a2eam

(1− θ)α(n)−2
+ (B − eam)([a(1− θ) + α(n)]2

− α(n))− α(n)(α(n)− 1)(lnB − am)eaθ
}
. (12)

(i) If a > 0 then 1 < B < eam and [a(1− θ) + α(n)]2 < (a+ α(n))2, therefore from (12)

we have

R′′(θ, δπ) ≥ e−aθ(1− θ)α(n)−2{a2eam + (B − eam)[(a+ α(n))2 − α(n)]

− α(n)(α(n) − 1)(lnB − am)}.

Let ϕ1(t) = [(a + α(n))2 − α(n)]t − α(n)(α(n) − 1) ln t, then ϕ1(t) is a strictly convex

function of t for t > 0 and has a minimum at t =
α(n)(α(n)− 1)

(a+ α(n))2 − α(n)
< 1. Hence

ϕ1(B) > ϕ1(1) = (a+ α(n))2 − α(n), and

R′′(θ, δπ) > e−aθ(1− θ)α(n)−2 {(−2aα(n) − α(n)(α(n) − 1))eam

+ α(n)(α(n) − 1)am+ (a+ α(n))2 − α(n)
}

= e−aθ(1− θ)α(n)−2ψ1(m) (say). (13)

Note that ψ′
1(m) = −2α(n)a2eam+aα(n)(α(n)−1)(1−eam) < 0, hence ψ1(m) is strictly

decreasing in m when m > 0. Also lim
m→0+

ψ1(m) = a2 > 0 and for α(n) ≥ 1,

lim
m→1−

ψ1(m) = [−2aα(n) − α(n)(α(n) − 1)]ea + α(n)(α(n) − 1)a

+ (a+ α(n))2 − α(n)

≤ [−2α(n)a − α(n)(α(n) − 1)](a+ 1) + α(n)(α(n) − 1)a

+ (a+ α(n))2 − α(n)

= a2(1− 2α(n)) < 0. (14)

Therefore there exists a unique m0 ∈ (0, 1), the root of the equation (9), such that

ψ1(m0) = 0 and ψ1(m) > ψ1(m0) = 0 for m < m0. Hence from (12), R′′(θ, δπ) > 0 for

m ≤ m0.

If −α(n) ≤ a < 0 then eam < B < 1 and [a(1− θ) +α(n)]2 > (a+α(n))2. Therefore

from (12) we have

R′′(θ, δπ) ≥ e−aθ(1− θ)α(n)−2{a2eam + (B − eam)[(a+ α(n))2 − α(n)]

− α(n)(α(n)− 1)(lnB − am)}.

Note that ϕ′
1(t) = [(a + α(n))2 − α(n)] − α(n)(α(n) − 1)

t
. If 0 < (a + α(n))2 < α(n) <

[α(n)]2 then ϕ1(t) is strictly decreasing in t when t > 0, and if 0 < α(n) < (a+α(n))2 <

[α(n)]2 then ϕ1(t) is strictly decreasing in t when 0 < t < 1 <
α(n)(n− 1)

(a+ α(n))2 − α(n)
. In
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either case ϕ1(B) > ϕ1(1) = (a + α(n))2 − α(n). The remainder of the proof is similar

to the proof of the case a > 0. See the appendix for a proof of lim
m→1−

ψ1(m) ≤ 0 when

−α(n) ≤ a < 0.

(ii) If a < −α(n) then eam < B < 1, therefore from (12) we have

R′′(θ, δπ) ≥ e−aθ(1− θ)α(n)−2{a2eam − α(n)(B − eam)

− α(n)(α(n)− 1)(lnB − am)}.

Let ϕ2(t) = −α(n)t−α(n)(α(n)−1) ln t, then ϕ2(t) is strictly decreasing in t when t > 0.

Hence ϕ2(B) > ϕ2(1) = −α(n), and

R′′(θ, δπ) ≥ e−aθ(1− θ)α(n)−2
{
(a2 + α(n))eam + α(n)(α(n) − 1)am− α(n)

}

= e−aθ(1− θ)α(n)−2ψ2(m) (say). (15)

Note that ψ′
2(m) = a(a2 + α(n))eam + α(n)(α(n) − 1)a < 0, hence ψ2(m) is strictly

decreasing in m when m > 0. Also lim
m→0+

ψ2(m) = a2 and for α(n) ≥ 1, lim
m→1−

ψ2(m) =

(a2 + α(n))ea + α(n)(α(n) − 1)a − α(n) = g1(a). Note that g′1(a) = (a + 1)2ea +

(α(n) − 1)ea + α(n)(α(n) − 1) > 0, hence g1(a) < g1(0) = 0 for a < 0, which implies

lim
m→1−

ψ2(m) < 0.

Therefore there exists a unique m1 ∈ (0, 1), the root of the equation (10), such that

ψ2(m1) = 0 and ψ2(m) > ψ2(m1) = 0 for m < m1. Hence from (15), R′′(θ, δπ) > 0 for

m ≤ m1.

Remark 3.1. It is easy to show that for a < 0 and a 6= −α(n), ψ1(m) > ψ2(m) and on

the boundary value a = −α(n), ψ1(m) = ψ2(m). So for a = −α(n) we can compute m0

and m1 from either equations (9) or (10).

Remark 3.2. If a > −α(n) and m > m0, then from the proof of Theorem 3.1.(i) we

have ψ1(m) < ψ1(m0) < 0 and

lim
θ→0+,η→1−

R′′(θ, δπ) = (−2aα(n)− α(n)(α(n) − 1))eam + α(n)(α(n) − 1)am

+ (a+ α(n))2 − α(n) = ψ1(m) < 0.

So there exists δ > 0 and ε > 0 such that R′′(θ, δπ) < 0 for θ ∈ (0, δ) and η ∈ (1− ε, 1),

i.e., R(θ, δπ) is strictly concave in (0, δ) and hence not convex on [0, m] for η ∈ (1− ε, 1).

Thus condition (i) of Theorem 3.1 is also a necessary condition for R(θ, δπ) to be strictly

convex function of θ ∈ [0, m] for every η ∈ (0, 1). It seems that the condition (ii) of

Theorem 3.1 is also a necessary for R(θ, δπ) to be strictly convex function of θ ∈ [0, m],

but we can not prove it.

Now, since δ∗π is equalizer Bayes rule with respect to the two point prior (8), and

under the conditions (i) and (ii) of Theorem 3.1 R(θ, δπ∗) is strictly convex on θ ∈ [0, m],

therefore the condition (2) hold. So, we have the following result.
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Theorem3.2 Suppose either conditions (i) or (ii) of Theorem 3.1 holds, then the two

point prior π∗(0) = η∗, π∗(m) = 1−η∗ is the least favorable prior, and the corresponding

Bayes estimator

δπ∗(x) =





1

a
ln

{
η∗ + (1− η∗)(1−m)α(n)

η∗ + (1− η∗)(1−m)α(n)e−am

}
x = 0

m x 6= 0

is the minimax estimator of θ.

Remark 3.3. The Bernoulli(θ) distribution is in class C with α(n) = n. So, the minimax

estimator of Jafari Tabrizi and Nematollahi (2009) is a special case of our minimax

estimator.

4. Appendix

From(14)

lim
m→1−

ψ1(m) = [−2aα(n)− α(n)(α(n)− 1)]ea + α(n)(α(n)− 1)a

+ (a+ α(n))2)− α(n)

= g(a) (say).

For −α(n) ≤ a < 0 and α(n) ≥ 1,
a+α(n)
α(n) ≥ a+ 1. Therefore

g′(a) = [−2α(n) − 2aα(n)− α(n)(α(n) − 1)]ea + α(n)(α(n)− 1) + 2(a+ α(n))

≥ −[2(a+ α(n)) + α(n)(α(n) − 1)]ea + α(n)(α(n)− 1) + 2(a+ α(n))

= [2(a + α(n)) + α(n)(α(n) − 1)](1− ea) ≥ 0.

Therefore g(a) is increasing in a when −α(n) ≤ a < 0, and hence g(a) ≤ g(0) = 0.
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Maximize the Sharpe Ratio and Minimize a VaR

H. Jafarpour and R. Maller
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School of Finance and Application Statistics, Australian National University

In addition to its role as the optimal ex ante combination of risky assets for a risk-
averse inves-tor, possessing the highest potential return-for-risk tradeoff, the tangency
or Maximum Sharpe Ratio portfolio in the Markowitz [1952], [1991] procedure plays
an important role in asset management, as it minimizes the probability that a future
portfolio return falls below the risk-free or reference rate. This is a kind of Value at
Risk (VaR) property of the portfolio. In this paper we demonstrate the way this VaR,
and related quantities, vary along the efficient fron-tier, emphasizing the special role
played by the tangency portfolio.

Keywords: Efficient portfolio, portfolio, Sharpe ratio, tangency portfolio, Value at Risk
(VaR).

1. The ”Maximum Sharpe Ratio” and ”Tangency” Portfolios

Given a universe of d ≥ 2 risky assets having raw return vector µ and excess mean return
vector µ = µ̃ − ri (relative to a reference rate r), and returns covariance matrix Σ, form
a portfolio by taking an allocation, that is, a linear combination with coefficients given
by a vector, Xp, say, of the assets.

a The ”reference rate” could be the prevailing risk-free
rate, if there is one, or some other benchmark rate, such as the expected market return
for the period, etc. Let Rp be the ex post excess return achieved from this portfolio,
after the portfolio has been in place for a speci-fied, fixed, time period. Suppose Rp has
expectation µP and variance σ2p. Thus

E(Rp) = µP = X
′

pµ and V ar(Rp) = σ2p = X
′

pΣXp (1)

Assume that, for all such portfolios, the standardized ex post excess returns

Rp − µP

σp

areidentically distributed, having the same distribution as a random variable Z,

say, where E(Z) = 0 and V ar(Z) = 1.

aHere i denotes a d-vector, each of whose elements is one, and a prime will denote a vector or
matrix transpose
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Define the population Maximum Sharpe Ratio as

SR := max
i′x=1

(
X

′

µ√
X

′

ΣX

)
(2)

This quantity has long been used in portfolio theory and practice (Sharpe [1963]),

either in an ex ante fashion, where it can be used to decide on an optimal alloca-

tion giving an optimal return-risk tradeoff, or ex post , as a portfolio performance

evaluation tool. It plays a significant role in both discrete and continuous time

finance, and is an object of interest in research right up to the present day (see,

e.g., Christensen and Platen [2007]).

The maximization in (2) is over all portfolios satisfying the ”total allocation”

constraint i
′

X = 1, that a unit amount of resources is invested. There is no

requirement that the components of the vector X be nonnegative, so short selling

of assets is allowed. The ratio in (2) is maximized taking its sign into account,

as advocated, e.g. by Sharpe [1994]; we are interested in maximiz-ing the actual

(risk-adjusted) return - that is, a measure sensitive to losses, as well as to gains.b

In this paper, we consider an optimality property of the ”Maximum Sharpe

Ratio” portfolio, that is, the portfolio achieving the maximum value in Eq.(2),

which it possesses with regard to ”Value at Risk”. The ideas are illustrated with

a textbook example in the next section. The third section has some necessary

background material. We then go on in the fourth section to develop some ideas

regarding realized returns on efficient portfolios, which are illustrated with the

same textbook data, and in the fifth section, we examine the performance of a

spectrum of portfolios calculated from monthly data on US stocks prior to the

October 1987 stock market crash, showing how the tangent portfolio, and various

other selected portfolios, per-formed prior to, and on, the day of the crash.

To conclude this section we mention some further facts we will need, concerning

the connection between the maximum Sharpe ratio and what we will call the

”tangency” portfolio. The quantity SR in Eq.(2) is the maximum Sharpe ratio

achievable from the d assets. In textbooks, and in applications, the corresponding

portfolio is often found or illustrated by drawing a tangent line in the (σp, µ̃p)

plane from the point (0, r) (where r is the risk-free or reference rate) to the efficient

frontier constructed from µ̃ and Σ. The coordinates of this point, (σp, µ̃p), say,

give the location of the maximum Sharpe ratio portfolio in the (σp, µ̃p) plane, and

the slope of the tangent line gives the maximum Sharpe ratio available for any

portfolio constructed from this universe of assets. The corresponding allocation

vector XT can be calculated from Equation (41) in Merton [1972].

bIn some studies, the quantity in Eq. (2) is squared before the maximization is done. While this
simplifies the algebra, it unrealistically ignores possible expected losses on the portfolio.
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Merton [1972] showed further, however, that this procedure can be misleading

or in error, since a tangency point producing a maximum Sharpe ratio need not

in fact exist. He gave a necessary and sufficient condition for this to be the case

(Theorem II in Merton [1972]). Of course a maximum value of the Sharpe ratio

still exists (and is finite), but it has to be found by other means; see, e.g., the

method outlined in Maller & Turkington [2002]. The probability calculation in (3)

below uses only the existence of the maximum Sharpe ratio portfolio, how-ever

calculated; it does not require the existence of a tangent point to the efficient

frontier. Nevertheless, we shall continue to refer to the portfolio with maximum

Sharpe ratio as the ”tangent portfolio” whether or not such exists. For all the data

considered in this paper, it turns out that the tangent portfolio does in fact exist,

so no confusion should result from this.

2. Value at Risk Property of the Maximum Sharpe Ratio

Portfolio

Let XT be the allocation vector corresponding to the portfolio obtained as a result
of the maximization in Eq. (2). As discussed in the previous section, we will refer
to this as the ”tangency portfolio”. Recall that the excess mean return vector µ
equals µ = µ̃ − ri, where µ̃ is the mean raw return vector, and r is the reference
rate. We can write

SR =
µ̃− r

σT
=
µT

σT
,

where µ
T
= X

′

Tµ, µ̃ = X
′

T µ̃ and σT = X
′

TΣXT . The maximum Sharpe Ratio
portfolio possesses a certain optimality property with respect to VaR, as the fol-
lowing simple calculation shows. For an arbitrary portfolio with allocation Xp, we
have

SR ≥


 X

′

µ√
X

′

pΣXp


 =

µP

σp
.

Letting RT be the excess return on the tangency portfolio, we can calculate

P (Rp ≤ 0) = P

(
RP − µP

σp
≤ −µP

σp

)

= P

(
Z ≤ −µP

σp

)

≥ P (Z ≤ −SR) (3)

= P

(
RT − µT

σT
≤ −µT

σT

)

= P (RT ≤ 0)

It follows that
min
XP

P (RP ≤ 0) ≥ P (RT ≤ 0),
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and the minimum is achieved for the tangency portfolio. Thus, an allocation of

assets according to the tangency portfolio has the lowest probability of the investor

receiving a return below the reference rate; in other words, it has the smallest VaR

relative to this rate.

As portfolios move away from the maximum Sharpe Ratio allocation, this prob-

ability increases. We can illustrate the magnitude of this increase by plotting the

probability for portfolios on the efficient frontier, that is, those having expected

return and standard deviation (µ̃P , σp), against σp, thus obtaining a representa-

tion of the way this VaR changes along the efficient frontier. We have to assume

a distribution for Z, the standardized return, and for this we will consider a stan-

dard normal, as well as a t-distribution with 4 degrees of freedom. These represent

extreme distributions between which returns distributions are likely to lie. While

the normal distribution is often assumed for returns, especially over longer periods,

it has been long recognized that returns distributions in reality are more heavy

tailed and leptokurtic than the nor-mal distribution (Fama, [1965]; Embrechts et

al. [1997]; Platen and Sidorowicz [2007]); therefore, we utilize a t-distribution with

small degrees of freedom to simulate this feature of the data.
We illustrate the concepts using some data from Ruppert’s text book [2004,

p.150]. There are d = 3 assets for which the (raw) mean vector and covariance
matrix are

µ̃ =




0.08
0.03
0.05


 and Σ =




0.30 0.02 0.01
0.02 0.15 0.03
0.01 0.03 0.18


 .

The efficient frontier for this example is shown on p.155 of that book. In Fig.1.

we plot the function P (RP ≤ 0) = P (Z ≤ −µ
P
/σp) for portfolios on the efficient

frontier, as a function of the portfolio risk, σp. As expected, the curves have a

minimum at the tangent point, and the curve for the t-distribution is higher than

for the normal; the probability of a return below the risk-free rate is much higher

for the heavier-tailed t-distribution.

A ”Value at Risk” is usually thought of as a quantile below which a return

falls with a specified (low) probability; thus, we should also consider P (RP ≤ q),

for values of q not equal to zero. It is not the case in general that this quantity

is minimized for the Maximum Sharpe Ratio allocation, but by observation this

seems to remain approximately true for q not too far from zero (recall that we are

optimizing excess returns, relative to a benchmark). In Fig.2. , the probabilities of

efficient portfolio returns lower than q are shown for various values of q. For exam-

ple, from the lowest curve in Fig.2. (left plot) can be read that the probability of a

future excess return less than -0.02 for the tangent point portfolio is approximately

0.441. Thus the tangency portfolio is expected to return more than 0.02 below the

reference rate at most 44.1% of the time. For the t4 distribution in the right plot,
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on the other hand, such a loss happens ap-proximately with probability 0.445.

Although it is not necessarily the case that the minima of the curves in Fig.2.

should occur at the tangent point (expected for the cases q = 0), in fact this

happens for this data.

Fig. 1. Ruppert Data, Normally and t4 Distributed Returns

The probability of receiving a negative return, as a function of the standard devi-

ation of the efficient portfolio. The curve labeled ”N” depicts normally distributed

returns and the curve labeled ”T” depicts t4 distributed returns. The curves start

at the standard deviation of the minimum variance portfolio on the left, and show

the position of the tangent point portfolio (indicated by dot points).

Fig. 2. Ruppert Data, Values at Risk for Normally and t4

Distributed Returns

The probability of receiving an excess return lower than q, where q is specified by

the numbers at the right hand ends of the curves, as a function of the standard
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deviation of the efficient portfolio. The left hand diagram depicts normally dis-

tributed returns; the right hand diagram t4 distributed returns. The curves start

at the standard deviation of the minimum variance portfolio on the left, and show

the position of the tangent point portfolio (indicated by dot points).

3. Efficient Portfolio Returns

To investigate the performances of portfolios on the efficient frontier, we need some
facts concerning them. These are derived from Merton [1972]. In our notation, the
quantities on p.1853 of his paper are:

A = i
′

Σ−1
µ̃, B = µ̃Σ−1

µ̃, C = i
′

Σ−1
i, D = BC − A2 > 0

(Recall that µ̃ denotes the raw returns and µ = µ̃ − ri are the excess returns on
the d assets.) We assume that a tangent point exists, so the quantity

TPC = i
′

Σ−1
µ = A− rC

is positive (Merton[1972], p. 1863). The coordinates in the (µ̃, σ) plane of the
minimum variance and tangent point portfolios are given by

σ2m =
1

C
, µ̃m =

A

C

and

σ2T =
µ

′

Σ−1µ

(i
′

Σ−1µ)
2
, µ̃T = r +

µ
′

Σ−1µ

i
′

Σ−1µ
.

The corresponding portfolio allocations are

Xm =
Σ−1i

C
and XT =

Σ−1µ

i
′

Σ−1µ
.

(Note: we have µ, not µ̃, in σT , µ̃ and XT .)
The equation of the efficient frontier in (σ, µ̃) space is

F (σ) =
A+

√
D(Cσ2 − 1)

C
(4)

(We use the ”F” notation for ”frontier”, rather than Merton’s ”E” notation, which
we reserve for ”expectation”.) The portfolio allocation corresponding to a portfolio
with coordinates (σ, µ̃) on the efficient frontier is given by the vector

X =
F (σ)(CΣ−1µ̃− AΣ−1i) +BΣ−1i− AΣ−1µ̃

D
(5)

(Merton [1972], p.1856 and p.1845).
It is easily checked by differentiation that the curve

F (σ)− r

σ
(6)
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in (σ, µ̃) space has a maximum at the point σT which satisfies

σ2T =
B − 2rA+ r2C

(A− rC)2
(7)

this of course is the variance of the tangent point portfolio. (Note that the denom-

inator in Eq. (7) is (TPC)2 > 0.) The function in Eq. (6) increases for σ < σT
and decreases for σ > σT . Fig. 3. shows the curve for the Ruppert data, taking

r = 0.02 as on p.155 of Ruppert [2004].

Fig. 3. Sharpe Ratios for Efficient Portfolios from the Ruppert

Data

Plot of the Sharpe ratio (Eq. (2)) for portfolios on the efficient frontier, against

their standard deviation, Ruppert textbook data. The tangent point portfolio is

indicated by a dot.
Now suppose we have a new observation vector, R̃, on the returns of the d

assets. We can think in terms of the efficient portfolio with mean F (σ) and standard
deviation σ being put in place at a certain time, then evaluated using the future
return R̃. Using Eq. (5), and after some algebra, we can write

R̃X − r

σ
=
F (σ)− r

σ
+

(R̃− µ̃)((C − A)Σ−1µ̃+ (B − A)Σ−1i)

σD
. (8)

Here R̃X represents the return on the efficient portfolio corresponding to the

returns R̃ on the d assets, and the quantity on the left of Eq. (8) is the standardized

excess return, i.e., the ex post Sharpe ratio for the portfolio. On the right of Eq. (8)

is the population Sharpe ratio for the port-folio plus a random term corresponding

to the new return, R̃. If R̃ is drawn from the same population as that from which
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the efficient portfolio was constructed, so that E(R̃) = µ̃ and V ar(R̃) = Σ, it is

clear that the expectation of the random term in Eq. (8) is zero, and its variance

is one (as can also be checked after some algebra). Fig. 4. shows a plot of Eq. (8)

for 13 returns generated randomly as observations on N(µ̃,Σ), using Ruppert’s

values of µ̃ and Σ. (Ruppert does not supply the original returns for which his µ̃

and Σ were calculated, so we simulated the observations.) We took 13 returns so

as to correspond with the 1987 crash data in the next section. It is clear from Fig.

4. that Eq. (8), as a function of σ, need not resemble Eq. (6), as shown plotted

in Fig. 3. For this data, the random component in Eq. (8), which has a standard

deviation of one, overwhelms its expectation, which for this data peaks at about

0.13 (cf. Fig. 3.).

Fig. 4. Standardized Returns on Efficient Portfolios for Ruppert

Data

Ex post Sharpe ratios for returns on portfolios on the efficient frontier, corre-

sponding to a new return, against their standard deviations, Ruppert textbook data.

The tangent point portfolio is indicated by a dot.

While the simulated future return curves sometimes peak close to the tangency

point, at other times the maximum occurs for much higher risk portfolios, and

sometimes the curves are even convex. For such data (and the data in the next

section has similar features), unfortunately, investing in the tangency portfolio

produces very little benefit for individual future returns. Only when averaged over

a relatively large number of returns will curves calculated from Eq.(8) begin to

resemble those from Eq.(6).
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Discussion and Conclusion

Maximizing the return to risk trade-off through investing in the tangency portfo-

lio is very well-known and understood by educated investors. Rational investors,

especially investors whose trustees focus only on returns, will want to guard at

all cost against the possibility that their portfolio will earn less than the risk-free,

or reference, rate. Our work demonstrates the way that maximizing the expected

Sharpe ratio through selecting the tangency portfolio minimizes the chances, not

only of a return lower than the reference rate, but of even lower returns as well,

across the range of efficient portfolios. These VaR minimizing properties of the

tangency portfolio have not, to our knowledge, been implemented in a practical

situation, and, as a result, the very desirable consequences of implementing a sim-

ple ”black-box” approach to portfolio selection have not been thoroughly explored.
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Point Prediction of Order Statistics from Uniform Distribution

S. M. T. Kamel Mirmostafaee and J. Ahmadi

Department of Statistics, Ferdowsi University of Mashhad

In this paper, we consider the prediction problem in two sample while the sampling
distribution is one parameter uniform distribution. Several approaches are discussed in
order to find point predictors for future order statistics in a future sample on the basis
of record statistics coming from the same distribution. At the end, a simulation study
is given for illustrating the proposed procedures.

Keywords: Beta distribution, Order statistics, Point prediction, Record values.

1. Introduction

Let X1, · · · , Xm be a random sample, if these random variables are arranged in as-

cending order of magnitude and then written as X1:m ≤ X2:m ≤ · · · ≤ Xm:m, then

Xi:m is said to be the ith order statistic in a sample of size m. Order statistics and

functions of these statistics play an important role in a wide range of theoretical

and practical problems such as characterization of probability distributions and

goodness-of-fit tests, entropy estimation, analysis of censored samples, reliability

analysis, quality control and strength of materials; see David and Nagaraja (2003)

Arnold et al. (2008) and the references therein for more details.

Next, let X1, X2, · · · be an infinite sequence of random variables. Then, an ob-

servationXj is said an upper record value if it exceeds all its previous observations,

i.e., if Xj > Xi for every i < j. Record data arise in a wide variety of practical

situations including industrial stress testing, meteorological analysis, hydrology,

seismology, sporting and athletic events, and oil and mining surveys. Interested

readers may refer to the book by Arnold et al. (1998) and the references therein.

Several authors have studied the problem of predicting future order statistics

based on observed order statistics in parametric or nonparametric models and also

prediction future records on the basis of observed records from the same distri-

bution. See for example, Lawless (1977), Dunsmore (1983), Raqab and Nagaraja

(1995), Ahmadi et al.(2005), Ahmadi and Doostparast (2006) and the references

therein. Recently, Ahmadi and Balakrishnan (2009) have obtained several non-

parametric prediction intervals for future order statistics ( record values ) from
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an independent Y-sequence based on order statistics ( records ) from X-sequence.

Also, Ahmadi and Mirmostafaee (2009) have discussed the problem of predict-

ing future order statistics based on observed usual records from an exponential

distribution.

Let us denote the first n upper record values by R = (R1, . . . , Rn), and suppose

the parent distribution is uniform (0, σ) with probability density function(pdf)

f(x;σ) =
1

σ
, 0 ≤ x ≤ σ. (1)

Note that (1) belongs to the scale family of distributions with pdf 1
σf(

x
σ ). The

main aim of this paper is predicting the future order statistics from (1) in terms

of R. In this regard, first we obtain best linear unbiased predictors(BLUPs) of

the jth order statistic of a future sample of size m based on R in section 2. In

section 3, we derive best linear invariant predictors(BLIPs). In section 4, another

method is proposed for predicting order statistics by substituting the maximum

likelihood estimator(MLE) of σ which is obtained from observed record data, to

the expectation. Finally, in section 5, we use a simulated data set to present some

numerical results for illustrating all the inferential methods developed here.

2. Best Linear Unbiased Predictor

In this section, we obtain the BLUP of the jth order statistic of a future sam-

ple of size m, i. e. Yj:m. From the results on the generalized linear model due

to Goldberger (1962), one can obtain the BLUP of Yj:m from a scale-parameter

distribution as follows

Y ∗
j:m = σ∗αj:m + ωTΣ−1(RT − σ∗α), (2)

where σ∗ is the best linear unbiased estimator(BLUE) of σ, αj:m equals 1
σE(Yj:m),

R = (R1, . . . , Rn), α is the vector of means of record values from the standard

distribution, Σ is the variance-covariance matrix of standard record values and

ωT =
1

σ2
(cov(R1, Yj:m), . . . , cov(Rn, Yj:m)).

In our plan, we have two sample prediction, so R and Yj:m are independent which

yields ωT = (0, 0, . . . , 0) and (2) simplifies as

Y ∗
j:m = σ∗αj:m.

Here, as mentioned before, we consider (1) as the underlying distribution. It is

well-known that the jth order statistic of a sample of size m from a standard

uniform distribution, denoted by Uj:m, has beta distribution with parameters j
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and (m − j + 1), i.e. Uj:m ∼ Beta(j,m − j + 1). Noting that 1
σYj:m

d
= Uj:m, we

conclude αj:m = j
m+1 . Also the BLUE of σ on the basis of R is

σ∗ =
4

3n − 1

[
R1 +

n∑

i=2

3i−1(Ri −
1

2
Ri−1)

]
,

and its variance is 2σ2(3n+1 − 3)−1 [see for example Arnold et. al. (1998)]. So by

substituting, the BLUP of Yj:m based on observed R is given by

Y ∗
j:m =

4j

(3n − 1)(m+ 1)

n∑

i=1

3i−1Wi, (3)

where

Wi =

{
R1 for i = 1,

Ri − 1
2Ri−1 for i = 2, 3, . . . , n.

(4)

Using the fact that Y ∗
j:m and Yj:m are independent and 1

σYj:m ∼ Beta(j,m−j+1),

the mean squared prediction error(MSPE) of Y ∗
j:m is given by

MSPE(Y ∗
j:m) = E

(
Y ∗
j:m − Yj:m

)2

= Var(Y ∗
j:m) + Var(Yj:m)

=
jσ2

(m+ 1)2

(
2j

3(3n − 1)
+
m− j + 1

m+ 2

)
,

which is decreasing with respect to n and m when other components are kept

fixed.

3. Best Linear Invariant Predictor

We discussed the best linear unbiased prediction in the previous section. In this

section, we focus our attention on linear predictors that are invariant with respect

to location and scale transformations and also have the minimum MSPE among

all invariant linear predictors. From the results of Mann (1969) and Kaminsky et

al. (1975), we can get the BLIP of Yj:m from a scale-parameter distribution based

on R as

Ỹj:m = Y ∗
j:m −

(
V

1 + V

)(
αj:m − ωTΣ−1α

)
σ∗, (5)

where ω, Σ and α are as given in section 2 and σ2V = Var(σ∗). By independency

of Yj:m and R, we have ωT = (0, 0, . . . , 0). If we consider (1) as the underlying
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distribution, by using the results of the previous section and simplifying them, we

obtain

Ỹj:m =
12j

(3n+1 − 1)(m+ 1)

n∑

i=1

3i−1Wi, (6)

where Wis are defined in (4). Ỹj:m is not an unbiased predictor as we have

E(Ỹj:m) =
3j(3n − 1)σ

(3n+1 − 1)(m+ 1)
6= E(Yj:m).

By (5), we have Ỹj:m = Y ∗
j:m − 2αj:m(3n+1 − 1)−1σ∗, so using this relation we

obtain

MSPE(Ỹj:m) = E
(
Y ∗
j:m − 2αj:m(3n+1 − 1)−1σ∗ − Yj:m

)2

= MSPE(Y ∗
j:m)− 4j2σ2

3(m+ 1)2(3n+1 − 1)(3n − 1)
(7)

=
jσ2

(m+ 1)2

(
2j

3n+1 − 1
+
m− j + 1

m+ 2

)
,

which is decreasing with respect to n andm when other components are considered

to be fixed. From (7), we see that MSPE(Ỹj:m) < MSPE(Y ∗
j:m). From the results

due to Mann (1969), the best linear invariant estimator(BLIE) of σ is

σ̃ =
σ∗

1 + V
=

12

(3n+1 − 1)

n∑

i=1

3i−1Wi,

where V is as before and Wis are defined in (4). By plugging this estimator into

E(Yj:m) = j
m+1σ, we arrive at same results for Ỹj:m as in (6).

4. Plug-in the MLE of σ into the Expectation of Yj:m

In this section, we propose other kinds of predictors for the jth order statistic in

a future sample of size m. As we mentioned before 1
σYj:m ∼ Beta(j,m− j+1), so

E(Yj:m) =
j

m+ 1
σ. (8)

We suggest plugging the MLE of σ based on observed records into (8) in order to

obtain a predictor for Yj:m. Note that if we plug the BLUE and BLIE of σ into

(8), the BLUP and BLIP of Yj:m will be obtained , respectively as in (3) and (6).

Thus, it is reasonable to use other kinds of estimators of σ like its MLE to find

other kinds of predictors for Yj:m. The MLE of σ based on R is σ̂ = Rn [see e.g.

Arnold et. al. (1998)], so a predictor for Yj:m can be given by

Ŷj:m =
j

m+ 1
Rn,
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which is simple in comparison with the BLUP and BLIP of Yj:m. Clearly this

predictor is not an unbiased one as E(σ̂) = (1− 2−(n+1))σ. An unbiased estimator

which can be used instead of σ̂ is σ̂u = (1−2−(n+1))−1Rn. So an unbiased predictor

for Yj:m becomes

Ŷ u
j:m =

j

(m+ 1)
(
1− 2−(n+1)

)Rn,

Using the knowledge that Var(σ̂) = (3−(n+1) − 4−(n+1))σ2, [see Arnold et. al.

(1998)], the MSPE of Ŷj:m is computed to be

MSPE(Ŷj:m) = E(Ŷj:m − Yj:m)2

=

(
j

m+ 1

)2

E(R2
n) + E(Y 2

j:m)− 2
j

m+ 1
E(Yj:mRn)

=
jσ2

(m+ 1)2

(
j

3n+1
+
m− j + 1

m+ 2

)

= MSPE(Ỹj:m)− j2σ2(3n+1 + 1)

(m+ 1)23n+1(3n+1 − 1)
. (9)

From (9) we conclude that MSPE(Ŷj:m) < MSPE(Ỹj:m), note that Ŷj:m is not a

location invariant predictor, so this result is not unexpected. The MSPE of Ŷ u
j:m

is given by

MSPE(Ŷ u
j:m) = E(Ŷ u

j:m − Yj:m)2

= Var(Ŷ u
j:m) + Var(Yj:m)

=
jσ2

(m+ 1)2

(
[3−(n+1) − 4−(n+1)]j

(1− 2−(n+1))2
+
m− j + 1

m+ 2

)
.

It can be shown that for n ≥ 1

3n+1 > 2n+2 − 1,

which is equivalent with

[3−(n+1) − 4−(n+1)]

(1 − 2−(n+1))2
<

1

3n+1
.

Therefore MSPE(Ŷ u
j:m) < MSPE(Ŷj:m). Finally, from the above result, (7) and (9)

we have

MSPE(Ŷ u
j:m) < MSPE(Ŷj:m) < MSPE(Ỹj:m) <MSPE(Y ∗

j:m). (10)
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5. Illustrative Example

In this section, we have utilized a simulated set of record data in order to illus-

trate the procedures developed in this paper. The first n = 5 upper records were

simulated from a one parameter uniform with pdf (1) with scale parameter σ = 10

using MINITAB version 11. They are as follows:

2.28, 4.75, 8.65, 9.12, 9.22.

Suppose we are interested in predicting some of the order statistics of a future

sample of size 5, 10 and 20 in terms of these observed record values from the

parent distribution, i.e. U(0, 10). The BLUE, BLIE and MLE of σ are 9.53, 9.50

and 9.22, respectively. Table 1 contains the point predictors of some selected order

statistics of a future sample of size m, (m = 5, 10, 20) and their MSPEs based on

the procedures discussed in this paper.

Table 1. Point predictors of some selected order statistics of a future sample of size
m, (m = 5, 10, 20).

m j Y ∗
j:m Ỹj:m Ŷj:m Ŷ u

j:m MSPE(Y ∗
j:m) MSPE(Ỹj:m ) MSPE(Ŷj:m ) MSPE(Ŷ u

j:m)

(BLUP) (BLIP)
5 1 1.59 1.58 1.54 1.56 1.9918 1.9918 1.9917 1.9874

4 6.35 6.34 6.15 6.24 3.2970 3.2967 3.2965 3.2263
5 7.94 7.92 7.68 7.81 2.1754 2.1749 2.1746 2.0649

10 1 0.87 0.86 0.84 0.85 0.6910 0.6910 0.6910 0.6897
4 3.47 3.46 3.35 3.41 1.9648 1.9647 1.9647 1.9438
8 6.93 6.91 6.71 6.81 1.7986 1.7982 1.7980 1.7144
10 8.67 8.64 8.38 8.51 0.9164 0.9158 0.9154 0.7849

20 1 0.45 0.45 0.44 0.45 0.2068 0.2068 0.2068 0.2064
4 1.82 1.81 1.76 1.78 0.7109 0.7109 0.7108 0.7051
10 4.54 4.53 4.39 4.46 1.1963 1.1961 1.1960 1.1602
17 7.71 7.69 7.46 7.58 0.8814 0.8809 0.8807 0.7771
20 9.08 9.05 8.78 8.92 0.4560 0.4553 0.4550 0.3117

Although (10) is confirmed by Table 1(note that rounding error made the

MSPEs seem equal for a few cases), the differences between MSPE(Y ∗
j:m),

MSPE(Ỹj:m), and MSPE(Ŷj:m) are not noticeable. However MSPE(Ŷ u
j:m) is sen-

sibly less than the others. It is also observed that all the MSPEs are decreasing

with respect to m when other components are kept fixed but do not have a stable

behavior with respect to j.
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Accelerated life tests (ALTs) are frequently used in practice to obtain failure time
data quickly under high stress levels in order to predict product life performance under
design stress conditions. Most of the previous works on ALT were concerned with the
case where a single stress is employed for acceleration (For an excellent review, this is
referred to Nelson [1] or Meeker and Escobar [2]).However, as components or products
become more reliable due to advanced technology, it has become more difficult, even
with a single-stress ALT, to obtain a sufficient amount of failure-time data within a
reasonable amount of time.Multiple stress have been employed as a means of overcoming
such difficulties.
In this paper; we discuss different models for accelerated life tests with two stresses
that relate the failure data at stress conditions with design or operating conditions.

Keywords: Accelerated Failure Time Model, Proportional Hazards Model, Extended
Hazard Regression Model,Proportional Mean Residual Life Model, Proportional Odds
Models

1. introduction

Accelerated life testing (ALT) is a widely used approach for reliability demonstra-

tion and prediction of components or system reliabilities at normal operating con-

ditions using data obtained at accelerated condition. Conducting an ALT requires

the determination or development of a reliability inference model that relates the

failure data at stress conditions with design or operating conditions. The accuracy

of the model is important as it usually predicts reliability at tens or hundreds

of years. There are many studies that had done on ALTS that used two stresses

with different models, such as, E.A. Elsayed, Hao Zhang [3,4], Jung-Won Park and

Bong-Jin Yum [5], Wenbiao Zhao [6] and Huan-Jyh Shyura, E.A. Elsayed and

T.L James [7].

The most common models include:

1. 1). accelerated failure time models (AFT) where the failure times are inversely

proportional to the applied stresses, i.e., failure times of the products at higher

stresses are shorter than those tested at lower stresses [5].
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2. 2). proportional hazards (PH) models where the failure rates are proportional

to the applied stresses, i.e., the failure rates at higher stresses are higher than

those at lower stresses [3].

3. 3). extended linear hazards regression models (ELHR) where both AFT and

PH models are special cases of ELHR when some conditions are satisfied [7].

4. 4). proportional mean residual life models where the mean residual lives are

inversely proportional to the stresses, i.e., the mean residual life at higher

stresses is shorter than that at lower stresses [6];

5. 5). proportional odds (PO) models where the odds functions under different

stress levels are proportional to each other [4].

2. Accelerated Failure Time models

The task of finding an ALT model can be divided into two steps:

1. 1). Choose an appropriate statistical distribution to describe lifetime at fixed

levels of the accelerating variable(s). Typically the same distribution is used

at all levels of stress.

2. 2). Choose a model to describe the relationship between the lifetime distri-

butions and the accelerating variables.

If components are tested at different accelerated stress levels s1, s2, . . . , sn The

failure times at each stress level are then used to determine the most appropriate

failure time probability distribution, along with its parameters. Under the accel-

erated failure time model assumptions, the failure times at different stress levels

are linearly related to each other. Moreover, the failure time distribution at stress

level s1 is expected to be the same at different stress levels s2, s3, . . . , sn as well

as under the normal operating conditions. In other words, the shape parameters

of the distributions are the same for all stress levels (including normal conditions)

but the scale parameters may be different. Thus, the fundamental relationships

between the operating conditions and stress conditions are summarized as follows:

1. Failure times:

t0 = AF · ts (1)

Where:

to : is the failure time under operating conditions.

ts : is the failure time under stress conditions.

AF : is the acceleration factor (the ratio between product life under normal

conditions and life under accelerated conditions).

2. Cumulative distribution functions (CDFs) :

F0(t) = Fs

(
t

AF

)
(2)

221



July 28, 2010 16:45 ISC10 - Proceeding proceeding

The 10th Iranian Statistical Conference University of Tabriz, August 2010

3. Probability density functions:

f0(t) =

(
1

AF

)
· fs
(

t

AF

)
(3)

4. Failure rates:

h0(t) =

(
1

AF

)
· hs

(
t

AF

)
(4)

The accelerated failure time models are classified as parametric models and the

most widely used models for the life distributions are the exponential and Weibull

and lognormal models.

The life distribution is independent of applied stress so we can get the acceler-

ated factor from life-stress relationship.

The most widely used basic relationships are:

1. 1). The Arrhenius relationship for temperature-accelerated tests.

2. 2). The inverse power relationship.

These relationships are for single applied stress, but because that our interest here

is in utilization ALT with two stresses we will discuss in more details about these

relationships. The generalized Eyring life-stress relationship is given by:

L(V, U) =
1

v
eA+B

V +CU+D U
V (5)

Where:

• V is the temperature in absolute units (such as Rankine or Kelvin).

• U is the non-thermal stress (i.e. voltage, vibration, etc.).

• A, B, C, D is the parameters to be determined.

The Eyring relationship is a special case of the generalized Eyring relationship

where C = D = 0 and AEyr = −AGEyr.

The generalized Eyring relationship includes the interaction of U and V as de-

scribed by the D fracUV term. In other words, this model can estimate the effect

of changing one of the factors depending on the level of the other factor. The

acceleration factor for the generalized Eyring relationship is given by:

AF =
Luse

Laccelerated
=

1
VU
e
A+ B

VU
+CUU+D

UU
VU

1
VA
e
A+ B

VA
+CUA+D

UA
VA

(6)

Where:

• LUSE is the life at use stress level.

• Laccelerated is the life at the accelerated stress level.

• VU is the use temperature level.

• VA is the accelerated temperature level.
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• UA is the accelerated non-thermal level.

• UU is the use non-thermal level.

There are two alternative life-stress relationships that do not consider interactions

between stresses: the temperature-nonthermal life-stress relationship and the gen-

eral log-linear relationship the two models are given by:

General Log-Linear:

L(U, V ) = eα0+
α0
V +α1U (7)

Temperature-NonThermal:

L(U, V ) =
c

Une(
B
V )

(8)

There are another life-stress relationships that employ high temperature and

humidity.Such as Pecks relationship:

τ = A(RH)−nexp[
E

KT
] (9)

Intel (1988) uses another Eyring relationship:

τ = Aexp(−B ·RH)exp[
E

KT
] (10)

Intel notes that this differs little from Pecks relationship relative to uncertain-

ties in such data.

3. Proportional Hazards PH Model

We assume the following model for the accelerated life test with two stresses:

1. 1). Two stresses z1 and z2 are used in the test, let z = (z1,z2) be the vector

of stress levels.

2. 2). The proportional hazards model is employed to relate the reliability per-

formance under different stress levels, it is expressed as:

λ(t; z) = λ0(t)exp(β1Z1 + β2Z2) (11)

Where: β1 and β2 are unknown model parameters.

3. 3). The baseline hazard function λ0(t) is quadratic:

λ0(t) = γ0 + γ1t+ γ2t
2 (12)

Where: γ0 , γ1 and γ2 are unknown parameters.

The hazard function λ(t; z); is obtained by substituting λ0(t) into the PH model

as:

λ(t; z) = (γ0 + γ1t+ γ2t
2)exp(β1Z1 + β2Z2) (13)
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We obtain the corresponding cumulative hazard function Λ(t; z), reliability

function R(t; z) and density function f(t; z) respectively, as follows:

Λ(t; z) =

∫ t

0

λ(u) du

Λ(t; z) =

∫ t

0

(γ0 + γ1t+ γ2t
2)exp(β1Z1 + β2Z2) du

Λ(t; z) = (γ0t+
γ1t

2

2
+
γ2t

3

3
exp(β1Z1 + β2Z2) (14)

R(t; z) = exp(−Λ(t; z))

R(t; z) = exp

(
−(γ0t+

γ1t
2

2
+
γ2t

3

3
exp(β1Z1 + β2Z2)

)
(15)

f(t; z) = Λ(t; z)R(t; z)

f(t; z) = (γ0 + γ1t+ γ2t
2)exp(β1Z1 + β2Z2) (16)

· exp
(
−(γ0t+

γ1t
2

2
+
γ2t

3

3
)exp(β1Z1 + β2Z2)

)
(17)

In order to obtain the values of the model parameters, we utilize the maximum

partial likelihood estimation (MLE) procedure [3].

4. Extended hazard Regression Model

Let Λ(t; z) denote the hazard rate at time t for a component with covariate vector

z( stress z). The vector z is a set of applied stresses accounting for the effects of

environmental stresses on the hazard rate. The basic extended hazard regression

model is defined as follows:

λ(t; z) = g1(α · z) · λ0(g2(β · z)t) (18)

If we assume that g1(x) = g2(x) = exp(x) then the EHR model is:

λ(t; z) = eαz · λ0(eβ cdotz · t) (19)

Where:

αz = α1z1 + α2z2 + · · ·+ αkzk
and βz = β1z1 + β2z2 + · · ·+ βkzk

Based on the EHR model, we generate the corresponding mathematical func-

tions of reliability and mean time to failure (MTTF ). The reliability function
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is:

Λ(t; z) = eαz · λ0(eβ·z · t) (20)

R(x; z) = exp

(
−
∫ t

0

λ(x; z) dx

)
(21)

ln(R(x; z)) = −
∫ t

0

λ(x; z) dx

ln(R(x; z)) = −
∫ t

0

eαz · λ0(eβ cdotz · x) dx

ln(R(x; z)) = eαz
[
−
∫ t

0

λ0(e
β cdotz · x) dx

]

ln(R(x; z)) =
eαz

eβz

[
−
∫ ζ

0

λ0(u) du

]

ln(R(x; z)) =
eαz

eβz
ln

[
exp

(
−
∫ ζ

0

λ0(u) du

)]

ln(R(x; z)) =
eαz

eβz
ln [S0(ζ)] (22)

Where :

ζ = eβz · t
S0(ζ) = exp

(
−
∫ ζ

0 λ0(u) du
)

The baseline hazard function λ0 is specified by a quadratic spline function to

estimate the unknown underlying distribution. The formula is given by:

λ0(u) =
2∑

n=0

γnµ
n +

l∑

m=1

θm(µ− τm)2 (23)

Where:

l is the number of knots.

τm is the location of knots.

θm is the added linear effect following of knots.

And γn are the coefficients of the underlying base polynomial (Splines are presented

as a nonparametric function estimating technique. A spline function of degree m

is a piecewise m-degree polynomial with pieces joining at defined points, which are

called knots. [8]). The unknown parameters of the EHR model are estimated by

use the maximum likelihood approach [7].

5. Proportional Mean Residual Life Regression Model

Two distributions with reliability functions R0 and R with mean residual lives at

time x of e0(x) and e(x) respectively, are said to have proportional MRL functions,
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if they are related as follows.

e(x) = θe0(x) ∀x, θ > 0 (24)

Therefore:

R(x, θ) =
e(0)

e(x)
exp

(
−
∫ x

0

du

e(u)

)

R(x, θ) = R0(x)

[∫ x

0

∞
R0(u)du

µ0

] 1
θ−1

(25)

where: µ0 = e0(0)

Thus the probability density function is:

f(t) =
e0(0)

e20(t)
exp

(
−
∫ t

0

du

θe0(u)

)(
1

θ
+ e

′

0(t)

)
(26)

We extend the model to a more general framework with a vector Z .

e(t | z) = exp(βT · z)e0(t) (27)

We refer to this model as the proportional mean residual life regression model

which we utilize to model accelerated life testing. Clearly e0(t) serves as the MRL

corresponding to a baseline reliability function R0(x) and e(t | z) is the conditional
mean residual life function and Z Covariates (applied stresses) or explanatory

variables are of primary importance in accelerated life testing. It is of a great

interest to model the effect of covariates on failure times. For instance, temperature

and electric field are some of the covariates of interest.

ZT = (Z1, Z2, . . . , Zp ) and βT = (β1, β2, . . . , βp)

Typically, we obtain experimental data in the form ((ti, zi); i = 1, . . . , n) which

represents the set of failure times and the vectors of covariates for each unit.

The PMRL model is a nonparametric multiple regression approach for reliability

estimation, in which the baseline MRL function is modified multiplicatively by the

covariates. If we assume the baseline MRL e0(t) to be exponential with time:

e0(t) = γ0exp(γ1t) (28)

Substituting e0(t) into the PMRL model, we obtain:

e(t; z) = γ0exp(β
T · z + γ1t) (29)

We obtain the corresponding hazard function, and the reliability function R(t; z)
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as:

λ(t; z) =
e′0(t) + exp(−βT · z)

e0(t)

λ(t; z) =
γ0γ1exp(γ1t) + exp(−βT · z)

γ0exp(γ1t)
(30)

R(t; z) =
e0(0)

e0(t)
exp

(
−
∫ t

0

du

θe0(u)

)

R(t; z) = exp(−γ1t)exp
(
−exp(−βT · z)−

∫ t

0

exp(−γ1t)du
γ0

)

R(t; z) = exp[−γ1t+
exp(−βT · z)(exp(−γ1t)− 1)

γ0γ1
] (31)

The pdf is obtained as:

f(t; z) =
e0(0)

e20(t)
exp

(
−
∫ t

0

du

θe0(u)

)(
1

θ
e′0(t)

)

f(t; z) =
exp(−2γ1t)

γ0
exp

(
−exp(−βT · z) ·

∫ t

0

exp(−γ1t)du
γ0

)
(32)

· (exp(−βT · z) + γ0γ1exp(γ1t))

f(t; z) =
1

γ0
exp

[
−2γ1t+

exp(−βT · z)(exp(−γ1t)− 1)

γ0γ1

]
(33)

· (exp(−βT · z) + γ0γ1exp(γ1t)) (34)

With the maximum likelihood method we can estimates the parameter γ0,γ1
and β of the model [6].

6. Proportional odds PO Model

This model is referred to Proportional Odds (PO) model since the odds ratios

under different stress levels are proportional to each other as:

F (t)

1− F (t)
= eβz

F0(t)

1− F0(t)
(35)

Assuming two stresses exist, after mathematical manipulation, last equation could

be expressed as:

λ(t) =
eβ1z1+β2z2λ0(t)

1− (1 − eβ1z1+β2z2)F0(t)
(36)

The baseline hazard function λ0(t) is assumed to be quadratic:

λ0(t) = γ0 + γ1t+ γ2t
2 (37)
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So we rewrite λ(t) as:

λ(t) =
eβ1z1+β2z2(γ0 + γ1t+ γ2t

2)

eβ1z1+β2z2 + (1 − eβ1z1+β2z2)e−(γ0t+γ1t2/2+γ2t3/2)
(38)

We also have:

F0(t) = 1− e−
∫

t
0
λ0(u)du = 1− e−(γ0t+γ1t

2/2+γ2t
3/2) (39)

R0(t) = exp[−Λ0(t)] = 1− F0(t) = e−(γ0t+γ1t
2/2+γ2t

3/2)] (40)

Λ0(t) =

∫ t

0

λ0(u) du = γ0t+ γ1t
2/2 + γ2t

3/2 (41)

Λ(t; z) =

∫ t

0

λ(u; z) du =

∫ t

0

eβzλ0(u)

eβz + (1− eβz)R0(u)
du

Λ(t; z) =

∫ t

0

eβ1z1+β2z2(γ0 + γ1t+ γ2t
2)

eβ1z1+β2z2 + (1 − eβ1z1+β2z2)e−(γ0t+γ1t2/2+γ2t3/2)
(42)

The values of γ0 , γ1 , γ2 , β1 and β2 can be estimated by maximizing log

likelihood function which are obtained by numerical method [3].

7. Conclusion

In the accelerated failure time models components are tested at different stress lev-

els and the failure times are then used to determine the most appropriate failure

time distribution and its parameters. In this case the failure times follow the same

general distributions for all different stress levels, including the normal operating

conditions. But When the failure time data involve a complex lifetime distribution

or when the number of observations is small, making it difficult to fit the failure

time distribution accurately, the rest models (proportional hazards (PH), extended

linear hazards regression ELHR, proportional mean residual life PMRL, propor-

tional odds (PO) models ) which are classified as non-parametric models appear

to be a very attractive approach to predict reliability at different stress levels.The

advantage of these models is that they are essentially ”distribution free”.
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In this article, a new approach is given for the equality of coefficient of variation of k
normal populations. This approach is based on parametric bootstrap method. Simula-
tion studies show that the size of this test is smaller than nominal level and the new
approach is better than other existing methods. Two real examples are proposed for
illustrating our new approach.

Keywords: Coefficient of Variation, Monte Carlo simulation, Parametric bootstrap

1. Introduction

Coefficient of variation (CV) is an important unitless of measure of relative vari-

ability and widely used in many practical applications such as biological and fi-

nancial sciences, diagnostic areas, medicine, and clinical experiments. It is defined

as the ratio of mean to standard deviation and populations can have a same CV

even if the means and variances are different. If the variances of the populations

are equal or known then we can use ANOVA or a similar ANOVA test for equality

of CV’s of populations. But in applications variances are unknown and there is

not any information about them.

Many tests have been proposed for the equality of CV’s of k normal popula-

tions; Bennett (1976) presented a likelihood ratio test using Makay approximation.

Doornbos and Dijkstra (1983) developed a noncentral t test. Shafer and Sullivan

(1986) presented a modified version of Bennett’s test. Miller (1991b) provided a

nonparametric square rank test. Miller (1991a) and Feltz and Miller (1996) de-

rived one, two and k-sample tests for CV of normal populations. Rao and Vidya

(1992), Gupta and Ma (1996), and Rao and Jose (2001) providedWald tests for the

equality of two and more than two populations. Pardo and Pardo (2000) obtained
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a test based on Renyi’s divergence. Nairy and Rao (2003) developed likelihood

ratio test, Wald test and score test for the equality of inverse CV’s. Verrill and

Johnson (2007a) provided a likelihood ratio test based on one step Newton estima-

tors. Tsou (2009) obtained a robust score test for the equality of CV’s of k normal

and nonnormal populations.

Simulations studies are performed by Feltz and Miller (1996), Gupta and Ma

(1996), Fung and Tsang (1998), Pardo and Pardo (2000), Nairy and Rao (2003).

The aim of this article is to develop a parametric bootstrap (BP) approach for

testing the equality of several normal populations. Bootstrap is used frequently

in applied statistics. In fact, it is a computer method that applied on observed

data by Monte Carlo Simulation (Efron and Tibshirani, 1993). When the data

have a certain model, this method is called parametric bootstrap and usually has

higher efficiency than when the model is unknown (nonparametric bootstrap).

Krishnamoorthy et al. (2007) proposed a PB approach for testing the equality of

means of several normal populations. We used this idea for comparing the CV’s

of k normal populations.

This paper is organized as follows; In Section 2, a parametric bootstrap test

is developed for testing the equality of CV’s and a computational Algorithm is

described, and also, we review some other approximation methods, briefly. A sim-

ulation study is performed in Section 3 for comparing the sizes of approaches that

are given is Section 2. Two real examples are illustrated in section 4.

2. Approaches for the equality of CV’s

Let Xij , i = 1, ..., k, j = 1, ..., ni, be k independent random samples of size ni from

normal populations with E(Xij) = µi, and V ar(Xij) = σ2
i , i.e. Xij ∼ N(µi, σ

2
i ).

The CV for the ith population is defined as ϕi =
σi
µi

, i = 1, ..., k. The hypotheses

of interest are

H0 : ϕ1 = ... = ϕk = ϕ vs. H1 : ϕi 6= ϕj , for some i 6= j (1)

where ϕ is the unknown common CV parameter.

Denote the sample mean and sample variance of the ith population as X̄i, and

S2
i , respectively, where X̄i =

1
ni

∑ni

j=1Xij and S2
i = 1

ni−1

∑ni

j=1(Xij − X̄i)
2.

Consider θi =
1

ϕi
=

µi

σi
is the inverse CV for ith population. Then the hy-

potheses in (1) are equivalent to

H0 : θ1 = ... = θk = θ vs. H1 : θi 6= θj , for some i 6= j (2)

where θ is unknown.
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We know that
X̄i

σi
∼ N(θi,

1

ni
). Therefore

Hy ∼ Nk−1(Hθ
∼
,HVH′),

where y = (
X̄1

σ1
, ...,

X̄k

σk
), V = [diag(

1

n1
, ...,

1

nk
)], θ

∼
= (θ1, ..., θk), H = [1 : B],

1 = (1, ..., 1)′, and B = [diag(−1, ...,−1)].

If σ2
i ’s are known, then a natural statistic for testing (2) is given by

Q(X̄i, ..., X̄k;σ1, ..., σk) =

k∑

i=1

ni

[
X̄i

σi
− θ̂

]2
=

k∑

i=1

niX̄
2
i

σ2
i

− (
∑k

i=1 niX̄i/σi)
2

n

= (Hy)′(HVH′)−1(Hy), (3)

where n =
∑k

i=1 ni, and θ̂ =

∑k
i=1 niX̄i/σi

n
is Maximum likelihood estimation

(MLE) for θ.

Therefore, Q(X̄1, ..., X̄k;σ1, ..., σk) has a noncentral chi-square distribution

with k − 1 degrees of freedom and noncentrality parameter λ. It can be easily

shown that the noncentrality is

λ = (Hθ
∼
)′(HVH′)−1(Hθ

∼
) =

k∑

i=1

niθ
2
i −

(
∑k

i=1 niθi)
2

n
.

If null hypothesis in (2) occurs then λ = 0. Thus Q(X̄i, ..., X̄k;σ1, ..., σk) rejects

H0 in level α iff

Q(X̄1, ..., X̄k;σ1, ..., σk) > χ2
k−1,α,

where χ2
k−1,α is the (1 − α)th quantile of a chi-square distribution with k − 1

degrees of freedom.

In general, the σ2
i ’s are unknown; in this case by replacing σi in (3) by Si, we

obtain a test statistic that is given by

Q(X̄1, ..., X̄k;S1, ..., Sk) =

k∑

i=1

niX̄
2
i

S2
i

− (
∑k

i=1 niX̄i/Si)
2

n

=

k∑

i=1

niθ̂
∗2
i − (

∑k
i=1 niθ̂

∗
i )

2

n
, (4)

where θ̂∗i =
X̄i

Si
, and for large n, Q(X̄1, ..., X̄k;S1, ..., Sk) has a chi-square distri-

bution with k − 1 degrees of freedom.
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2.1. Parametric bootstrap

In this section, we develop a parametric method for testing the equality of CV’s.

This parametric bootstrap approach involves sampling from estimated models and

the parametric bootstrap pivotal variable can be developed as follows.

The log-likelihood function of Xij , i = 1, ..., k, j = 1, ..., ni under the null

hypothesis in (2) can be written as

`(σ1, ..., σk, θ) = −1

2

k∑

i=1

niln2πσ
2
i −

k∑

i=1

1

2σ2
i

((ni − 1)s2i + ni(x̄i − θσi)
2).

Let (σ̃1, ..., σ̃k, θ̃) be the MLE of (σ1, ..., σk, θ), which can be calculated using

the numerical methods.

Let X̄Bi ∼ N(θ̃,
1

ni
) and S2

Bi ∼ χ2
ni−1/(ni−1), i = 1, ..., k. Then the parametric

bootstrap pivotal variable based on the test statistic in (4) is given by

Q(X̄B1, ..., X̄Bk;SB1, ..., SBk) =

k∑

i=1

niX̄
2
Bi

S2
Bi

− (
∑k

i=1 niX̄Bi/SBi)
2

n
. (5)

Note that X̄Bi is distributed as
1√
ni
Zi + θ̃, where Zi is a standard normal

random variable. Therefore the parametric bootstrap pivotal variable in (5) is

distributed as

QB =

k∑

i=1

ni(
1√
ni
Zi + θ̃)2

χ2
ni−1/(ni − 1)

−
(
∑k

i=1 ni

√
ni − 1(

1√
ni
Zi + θ̃)/

√
χ2
ni−1)

2

n
. (6)

For given θ̃, MLE of θ, the parametric bootstrap test rejects the null hypothesis

in (2) at level α when

P (QB ≥ QB0) ≤ α (7)

where QB0 is observed value of Q(X̄1, ..., X̄k;S1, ..., Sk) in (4).

The probability in (7) can be estimated using the Monte Carlo simulation given

in following Algorithm.

Algorithm 2.1. For given (n1, ..., nk), (x̄1, ..., x̄k), and (s21, ..., s
2
k),

compute QB0 in (4).

calculate θ̃, MLE of θ.

For j = 1, ...,M

generate Zi ∼ N(0, 1) and χ2
ni−1, i = 1, ..., k.

compute QB using (6).

Let Wj = 1 if QB > QB0, else Wj = 0.
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(end loop)
1

M

∑M
j=1Wj is a Monte Carlo estimate of p-value in (7).

2.2. Bennet’s test

Consider the following test statistic

BT = (n− k)log

(∑k
i=1 d

∗
i

n− k

)
−

k∑

i=1

(ni − 1)log

(
d∗i

ni − 1

)
, (8)

where d∗i =
niϕ̂

∗2
i

ϕ̂∗2
i + 1

, ϕ̂∗
i =

Si

X̄i
, and S2

i =
1

ni − 1

∑k
i=1(Xij − X̄i)

2.

BT under the null hypothesis has a chi-square distribution with k − 1 degrees

of freedom and rejects H0 if BT> χ2
α,(n−1).

2.3. Modified Bennet’s test

Shafer and Sullivan (1986) consider the modified Bennet’s test statistic as

MBT = (n− k)log

(∑k
i=1 di
n− k

)
−

k∑

i=1

(ni − 1)log

(
di

ni − 1

)
, (9)

where di =
niϕ̂

2
i

ϕ̂2
i + 1

, ϕ̂i =
Si(b)

X̄i
, and S2

i(b) =
1

ni

∑k
i=1(Xij − X̄i)

2.

MBT under the null hypothesis also has a chi-square distribution with k − 1

degrees of freedom and rejects H0 if MBT> χ2
α,(n−1).

2.4. Wald test

Nairy and Rao (2003) consider a Wald test for equality of inverse CV’s as the

following statistic

WT = ĥ′1

[
HV̂ H ′

]−1

ĥ1, (10)

where h = (θ1 − θ2, ..., θ1 − θk), θi =
µi

σi
, V̂ =

[
diag(

2 + θ̂21
2n1

, ...,
2 + θ̂2k
2nk

)

]
, H is the

matrix in (3.3), and θ̂i =
X̄i

Si(b)
. Easily, we can show that

WT =

k∑

i=1

2niθ̂
2
i

2 + θ̂2i
−

(
∑k

i=1

2niθ̂i

2 + θ̂2i

)2

∑k
i=1

2ni

2 + θ̂2i

. (11)
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WT under the null hypothesis has a chi-square distribution with k− 1 degrees

of freedom and rejects H0 if BT> χ2
α,(n−1).

2.5. Modified Miller test

Feltz and Miller (1996) suggested a modified Miller test. Their proposed test statis-

tic

MT = ϕ−2(0.5 + ϕ2)−1

[
k∑

i=1

(ni − 1)

(
ϕ̂∗
i −

∑k
i=1(ni − 1)ϕ̂∗

i

n− k

)]
, (12)

where ϕ̂∗
i =

Si

X̄i
, is asymptotically chi-square distributed with k−1 degrees of free-

dom under the null hypothesis. If ϕ is replaced by

∑k
i=1(ni − 1)ϕ̂∗

i

n− k
, the asymptotic

distribution of statistic is unaffected.

3. Simulation study

A Monte Carlo simulation is performed for comparing the estimated type I error

probabilities of the given approaches in Section 2. ni, i = 1, ..., k observations were

generated from k normal populations with mean 100 and standard deviation 10a,

a = 1, ..., 5. In fact, all populations have a same CV, 0.1a. In practice, CV rarely

exceed 0.5 for medical and biological sciences (Fung and Tsang, 1998). In this

simulation we we consider α = 0.05, and used 10000 times runs for each of the

sample size and parameter configurations.

In Tables 1, we only present the results of simulations for a = 1, i.e. when the

CV’s of populations equal 0.1. For other cases we found similar results and did

not give here. It can be found that the type I error probabilities of PB are always

smaller than nominal level, α = 0.05, but size of other approaches are greater than

nominal level, especially when the sample sizes are small.
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Table 1. Estimated type I error probabilities for tests at α = 0.05.

Test
(n1, ..., nk) PB BT MBT WT MT

(3,3,3,3,3) 0.030 0.087 0.089 0.077 0.069
(3,4,5,6,7) 0.035 0.074 0.073 0.066 0.058
(3,3,3,5,5) 0.030 0.076 0.075 0.064 0.055
(3,10,10,10,10) 0.034 0.073 0.072 0.066 0.060
(3,20,20,20,20) 0.047 0.068 0.062 0.058 0.050
(5,5,5,5,5) 0.029 0.066 0.070 0.063 0.060
(5,5,5,10,30) 0.040 0.068 0.061 0.057 0.044
(5,5,5,30,30) 0.043 0.072 0.063 0.060 0.044
(5,6,7,8,9) 0.034 0.065 0.065 0.062 0.058
(5,10,15,20,25) 0.046 0.062 0.059 0.056 0.050
(5,10,10,20,20) 0.040 0.063 0.061 0.059 0.054
(5,30,30,30,30) 0.046 0.060 0.058 0.057 0.052
(7,7,7,7,7) 0.031 0.061 0.061 0.058 0.056
(7,8,9,10,11) 0.035 0.059 0.060 0.058 0.054
(7,7,7,30,30) 0.044 0.059 0.054 0.055 0.045
(7,30,30,30,30) 0.044 0.056 0.055 0.055 0.052
(10,10,10,10,10) 0.036 0.058 0.058 0.060 0.058
(10,11,12,13,14) 0.037 0.056 0.056 0.056 0.054
(10,10,10,20,20) 0.039 0.057 0.057 0.056 0.053
(10,20,20,30,30) 0.042 0.053 0.053 0.054 0.052
(20,20,20,20,20) 0.039 0.052 0.052 0.054 0.053
(20,21,21,23,24) 0.041 0.055 0.055 0.055 0.055
(20,20,20,30,30) 0.038 0.053 0.051 0.052 0.052
(20,30,30,30,30) 0.044 0.056 0.057 0.056 0.055
(30,30,30,30,30) 0.042 0.052 0.052 0.051 0.051

4. Real Data Analysis

We shall illustrate the introduced methods in Section 2 for testing the equality of

CV’s of populations using two real examples; (i) Parametric bootstrap (PB) (ii)

Bennet’s test (BT) (iii) Modified Bennet’s test (MBT) (iv) Wald test (WT) (v)

Modified Miller test (MT). These two real examples are proposed by Nairy and

Rao (2003). We note that the p-value for PB is obtained using Algorithm 1 with

M = 100000.

Example 4.1. Over nine years from 1991-1999 for the State of Karnataka, India,

this data is collected to catches of four kinds of fish . For these four kinds of

fish the estimate of CV’s, x̄i, i = 1, 2, 3, 4, are 605.67, 109.00, 303.00, and 93.44,

respectively. Also s2i , i = 1, 2, 3, 4, 44460.00, 13313.50, 12983.25, and 6886.78,

respectively. The p-values for PB, BT, MBT, WT, and MT are 0.0809, 0.0534,

0.0439, 0.0301, and 0.0609, respectively
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Example 4.2. This data refers to survival of patients from four hospital, which

is a part of the data in Appendix D of the Fleming and Harrinton (1991). The

sample size for these hospitals are 5, 4, 3, and 10. x̄i, i = 1, 2, 3, 4, are 168.00,

59.50, 45.67, and 155.50, respectively. Also s2i , i = 1, 2, 3, 4, are 6880.50, 4460.33,

714.33, and 9105.61, respectively. The p-values for PB, BT, MBT, WT, and MT

are 0.8353, 0.7064, 0.7064, 0.6277, and 0.6051, respectively.
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A Note on The Mean Residual Life Function of a Coherent System

With Exchangeable or Nonidentical Components
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This article investigates some properties of the mean residual life function of a coherent
system consisting of n components in two different cases, when the lifetimes of the
system components are independent random variables but not necessary identically
distributed and when the joint distribution of the components lifetimes is exchangeable.
Our results are mainly about the two following mean residual life functions of a (n −
k + 1)−out-of-n system

Hk
n(t) = E(Tk:n − t|T1:n > t),

Mr,k
n (t) = E(Tk:n − t|Tr:n > t), 1 ≤ r ≤ k ≤ n

where T1:n, T2:n, . . . , Tn:n are the ordered statistics corresponding to T1, T2, . . . , Tn

the lifetimes of the system components. We obtain a sufficient condition for Hk
n(t)

to be a decreasing(increasing) function of t, in nonidentical case and for H1
n(t) in

exchangeable case. We have shown in nonidentical case that when the components of
the system have increasing failure rate, Mr,k

n (t) is decreasing in time. In both above

mentioned cases it is shown that Mk,k
n (t) ≤ Mr,k

n (t) ≤ Hk
n(t). Also it is shown in both

cases that Mr,k
n (t) is a decreasing function of r. We show that Hk−1

n−1(t) ≤ Hk
n(t) ≤

Hk
n−1(t), if Tn is independent of T1, . . . , Tn−1. Finally using properties of Samaniego’s

signature, the extension to a general coherent system with exchangeable components
is given. Our results extend the results in Khanjari (2008 Comm. in Statistics) for
the case of a parallel system with nonidentical components and the results in Asadi
and Goliforushani (2008, IEEE Trans. on Rel.) for the case of a coherent system with

independent and identical components.

Keywords: Mean residual life function, Order statistics, (n − k + 1)-out-of-n system,
Nonidentical components, Exchangeable components, Failure rate, IFR, DFR, Signa-
ture1. Introduction

Consider a coherent system consisting of n components and let T1, T2, . . . , Tn
denote the lifetimes of the system components which are nonnegative and abso-

lutely continuous random variables. We first assume that Ti’s are independent but

not identical and then assume that Ti’s have an exchangeable joint distribution.

We also use T1:n, T2:n, . . . , Tn:n to represent the ordered lifetimes of the compo-

nents. It is well known that the lifetime of a (n − k + 1)-out-of-n system is Tk:n.

The mean residual life (MRL) function of this system is considered in Section 2.

Under two different described cases for components lifetimes, some properties of
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Hk
n(t) = E(Tk:n−t|T1:n > t) andM r,k

n (t) = E(Tk:n−t|Tr:n > t), 1 ≤ r ≤ k ≤ n are

obtained. Hk
n(t) is the MRL function of a (n− k+1)-out-of-n system in which, at

time t, all components of the system are operating but in M r,k
n (t) at least n−r+1

components of the system are working at the same time t. We obtain a sufficient

condition forHk
n(t) to be a decreasing(increasing) function of t, in nonidentical case

and for H1
n(t) in exchangeable case. We have shown in nonidentical case that when

the components of the system have increasing failure rate,M r,k
n (t) is decreasing in

time. In both above mentioned cases it is shown that Mk,k
n (t) ≤M r,k

n (t) ≤ Hk
n(t).

Also it is shown in both cases that M r,k
n (t) is a decreasing function of r. We show

that Hk−1
n−1(t) ≤ Hk

n(t) ≤ Hk
n−1(t), if Tn is independent of T1, . . . , Tn−1.

Using the concept of signature introduced by Samaniego (1985), the MRL

function of a coherent structure with exchangeable components is considered in

Section 3. A brief conclusion remarks is given in Section 4.

2. MRL function of a (n − k + 1)-out-of-n system with nonidentical or

exchangeable components

Let T1, T2, . . . , Tn denote the lifetimes of n components which are connected in

a (n−k+1)-out-of-n structure, k = 1, 2, . . . , n. Suppose furthermore, that Ti’s are

nonnegative and absolutely continuous random variables. in IID case when Ti’s

are independent and have a common distribution function F and survival function

F̄ = 1 − F , Asadi and Goliforushani (2008) showed that M r,k
n (t) can be written

as a convex combination of Hk−i
n−i(t) as follow

M r,k
n (t) = E(Tk:n − t|Tr:n > t) =

r−1∑

i=0

Pi(t)H
k−i
n−i(t) (1)

where Pi(t) =
(ni)φ

i(t)
∑r−1

j=0 (
n
j)φi(t)

, φ(t) = F (t)

F̄ (t)
and Hk−i

n−i(t) = E(Tk−i:n−i− t|T1:n−i > t).

When Ti’s are independent but not identical, the similar expression forM r,k
n (t)

is obtained in Theorem 1. Suppose Fi(x) = 1− F̄i(x) is the distribution function

of Ti. We assume that ∩n
i=1(ai, bi) 6= ∅ where ai and bi are left extremity and

right extremity of Fi, respectively. In other words, we assume that a < b where

a = max{ai, i = 1, . . . , n} and b = min{bi, i = 1, . . . , n} and then define M r,k
n (t)

for any a < t < b.

Theorem 1. In nonidentical case, for a < t < b we have

M r,k
n (t) = E(Tk:n − t|Tr:n > t) =

r−1∑

i=0

∑

Ci

PCi(t)H
k−i
C′

i
(t) (2)

where PCi(t) =
φCi

(t)
∑r−1

j=0

∑
Cj

φCj
(t)

, φCj (t) =
∏

l∈Cj

Fl(t)
F̄l(t)

, Cj is a subset of C =

{1, 2, . . . , n} with cardinality j, C′
j = C−Cj andH

k−i
C′

i
(t) = E(Tk−i:n−i−t|T1:n−i >
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t) is the MRL function of a (n − k + 1)-out-of-(n − i) subsystem consisting of

components belong to C′
i. We assume that φ∅(t) = 1 where ∅ is the empty set.

Proof. Using the joint distribution of Tk:n and Tr:n one can show that

P (Tk:n − t > x|Tr:n > t) =
P (Tk:n > t+ x, Tr:n > t)

P (Tr:n > t)

=

r−1∑

i=0

∑

Ci

∏

l∈Ci

Fl(t)

k−i−1∑

u=0

∑

C′
i(u)

∏

l∈C′
i(u)

[F̄l(t)− F̄l(t+ x)]
∏

l∈C′
i−C′

i(u)

F̄l(t+ x)

r−1∑

j=0

∑

Cj

∏

l∈Cj

Fl(t)
∏

l∈C′
j

F̄l(t)

where C′
i(u) is a subset of C′

i = C − Ci with cardinality u. Hence we have

M r,k
n (t) =

∫ ∞

0

P (Tk:n − t > x|Tr:n > t)dx =

∫ ∞

t

P (Tk:n > x|Tr:n > t)dx

=

∫ ∞

t

r−1∑

i=0

∑

Ci

∏

l∈Ci

Fl(t)
∏

l∈C′
i

F̄l(t)
k−i−1∑

u=0

∑

C′
i(u)

∏

l∈C′
i(u)

[1− θt,l(x)]
∏

l∈C′
i−C′

i(u)

θt,l(x)

r−1∑

j=0

∑

Cj

∏

l∈Cj

Fl(t)
∏

l∈C′
j

F̄l(t)

dx

where θt,l(x) =
F̄l(x)

F̄l(t)
, x > t and we assume that multiplication over the empty

set is 1. Using the expression of PCi(t) we can write

M r,k
n (t) =

r−1∑

i=0

∑

Ci

PCi(t)

∫ ∞

t

k−i−1∑

u=0

∑

C′
i(u)

∏

l∈C′
i(u)

[1− θt,l(x)]
∏

l∈C′
i−C′

i(u)

θt,l(x)dx (3)

If we take r = 1 in equation (3) we get

Hk
n(t) = M1,k

n (t) = E(Tk:n − t|T1:n > t) =
∫∞
t

∑k−1
u=0

∑
Cu

∏
l∈Cu

[1 −
θt,l(x)]

∏
l∈C′

u
θt,l(x)dx

and hence if we consider the components belong to C′
i and we replace in above

equation n and k by n− i and k − i, respectively, we then have

Hk−i
C′

i
(t) = E(Tk−i:n−i − t|T1:n−i > t) =

∫∞
t

∑k−i−1
u=0

∑
C′

i(u)

∏
l∈C′

i(u)
[1 −

θt,l(x)]
∏

l∈C′
i−C′

i(u)
θt,l(x)dx.

Using this the equation (3) is simply reduces to the equation (2) and the proof of

the theorem is completed.

We now consider the case where Ti’s are exchangeable random variables that is

all n! permutations of T1, . . . , Tn have the same joint distribution. Hence Ti’s are
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identically distributed and have a common marginal distribution. The following

theorem gives some properties of Hk
n(t) = E(Tk:n − t|T1:n > t) when Ti’s are

exchangeable random variables.

Theorem 2. Suppose T1, . . . , Tn are exchangeable random variables. We have

(a) E(T1 − t|T1:n > t) = 1/n
∑n

k=1H
k
n(t), n = 1, 2, . . .

(b) The following recurrence relation holds for Hk
n(t).

nHk
n−1,n(t) = (n− k)Hk

n(t) + kHk+1
n (t), k = 1, 2, . . . , n− 1

where Hk
n−1,n(t) = E(Tk:n−1 − t|T1:n > t).

Proof. (a) Let T 1,k,n
t = Tk:n−t|T1:n > t denote the residual lifetime of a (n−k+1)-

out-of-n system under the condition that all components of the system are working

at time t. We have

P (T 1,k,n
t > x) =

P (Tk:n > t+ x, T1:n > t)

P (T1:n > t)

=

∑k−1
i=0

(
n
i

)
P (t < T1 < t+ x, . . . , t < Ti < t+ x, Ti+1 > t+ x, . . . , Tn > t+ x)

P (T1 > t, T2 > t, . . . , Tn > t)
.

(4)

This shows that when Ti’s are exchangeable random variables, T 1,k,n
t

st
= T k:n

t

where T k:n
t is the kth order statistics from the sample consisting of T i

t = Ti −
t|T1:n > t, i = 1, 2, . . . , n which are exchangeable random variables and

st
= stands

for distribution. We have

Hk
n(t) = ET 1,k,n

t = ET k:n
t and we get

∑n
k=1H

k
n(t) =

∑n
k=1 ET

k:n
t . But we

note that
∑n

k=1 T
k:n
t =

∑n
k=1 T

k
t =

∑n
k=1(Tk − t|T1:n > t), a.s., therefore∑n

k=1 ET
k:n
t =

∑n
k=1 E(Tk−t|T1:n > t), that is

∑n
k=1H

k
n(t) = nE(T1−t|T1:n > t)

as T k
t , k = 1, 2, . . . , n are identically distributed. This completes the proof of part

(a).

(b) We note that if Ti’s are exchangeable then P (Tπ(1)
< Tπ(2)

< · · · < Tπ(n)
) =

1/n!, for any permutation π of the numbers {1, 2, . . . , n}. Hence we have P (Tr:n =

Ti) = 1/n, i, r = 1, 2, . . . , n. In view of this the equation (3.4.1) in David and

Nagaraja (2003, page 44) is also true for exchangeable random variables. If we

use this equation for the exchangeable random variables T i
t = Ti − t|T1:n > t,

i = 1, 2, . . . , n, we have

nP (Tk:n−1 − t < x|T1:n > t) = kP (Tk+1:n − t < x|T1:n > t) + (n− k)P (Tk:n − t <

x|T1:n > t).

It simply implies that

nP (Tk:n−1 − t > x|T1:n > t) = kP (Tk+1:n − t > x|T1:n > t) + (n− k)P (Tk:n − t >

x|T1:n > t).

By integrating both sides of the above equation with respect to x, the proof of the

theorem follows.
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Remark 1. In IID case when Ti’s are independent and have a common distribution

function F , we note that E(T1 − t|T1:n > t) = E(T1 − t|T1 > t) = mF (t). Hence

mF (t) = 1/n
∑n

k=1H
k
n(t), a result obtained by Asadi and Goliforushani (2008).

In this case we also note that Hk
n−1,n(t) = E(Tk:n−1 − t|T1:n > t) = E(Tk:n−1 −

t|T1:n−1 > t) = Hk
n−1(t). It seems that the argument given in the proof of part (a)

of Theorem 2 is simpler than that of given in Asadi and Goliforushani (2008) for

IID case, as the integrating operations are not required.

The following lemma gives a result on Hk
n(t) in nonidentical case which extends

the corresponding result in IID case, mF (t) = 1/n
∑n

k=1H
k
n(t), obtained by Asadi

and Goliforushani (2008).

Lemma 1. In nonidentical case we have

n∑

k=1

mFk
(t) =

n∑

k=1

Hk
n(t)

where mFk
= E(Tk − t|Tk > t) and Fk is the distribution function of Tk, k =

1, . . . , n.

Proof. Since Ti’s are independent we have

P (T 1,k,n
t > x) =

P (Tk:n > t+ x, T1:n > t)

P (T1:n > t)

=

∑k−1
i=0

∑
Ci

∏
l∈Ci

[F̄l(t)− F̄l(t+ x)]
∏

l∈C′
i
F̄l(t+ x)

∏n
i=1 F̄i(t)

= P (T k:n
t > x) (5)

where T 1,k,n
t = Tk:n − t|T1:n > t and T k:n

t here is the kth order statistics from

the sample consisting of Ti − t|Ti > t, i = 1, . . . , n when Ti’s are independent but

not identical. We note that T 1,k,n
t

st
= T k:n

t hence we have E(T 1,k,n
t ) = E(T k:n

t )

and
∑n

k=1 T
k:n
t =

∑n
k=1(Tk − t|Tk > t), a.s., therefore

∑n
k=1 E(T 1,k,n

t ) =∑n
k=1 E(T k:n

t ) = E
∑n

k=1(Tk − t|Tk > t), that is
∑n

k=1H
k
n(t) =

∑n
k=1mFk

(t).

This competes the proof of the lemma.

We now give some other results onHk
n(t) in both nonidentical and exchangeable

cases.

Theorem 3. Hk
n(t) = E(Tk:n − t|T1:n > t) is a decreasing function of n

in nonidentical case and in exchangeable case we have Hk
n(t) ≤ Hk

n−1,n(t) =

E(Tk:n−1 − t|T1:n > t).

Proof. From Equation (5), in nonidentical case we can write

P (T 1,k,n
t > x) =

k−1∑

i=0

∑

Ci

∏

l∈Ci

F̄l(t)− F̄l(t+ x)

F̄l(t)

∏

l∈C′
i

F̄l(t+ x)

F̄l(t)
= P (

n∑

j=1

Zj
t,x ≤ k−1)

(6)
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where Zj
t,x, j = 1, . . . , n are independent random variables and Zj

t,x is distributed

as Binomial (1,
F̄j(t)−F̄j(t+x)

F̄j(t)
). It is easy to see that

P (T 1,k,n
t > x)− P (T 1,k,n−1

t > x) = P (

n∑

j=1

Zj
t,x ≤ k − 1)− P (

n−1∑

j=1

Zj
t,x ≤ k − 1)

= P (Zn
t,x = 1)[P (

n−1∑

j=1

Zj
t,x ≤ k − 2)− P (

n−1∑

j=1

Zj
t,x ≤ k − 1)] ≤ 0.

Hence we have

Hk
n(t)−Hk

n−1(t) =

∫ ∞

0

[P (T 1,k,n
t > x) − P (T 1,k,n−1

t > x)]dx ≤ 0.

In exchangeable case from Part (b) of Theorem 2, we have nHk
n−1,n(t) = (n −

k)Hk
n(t)+kH

k+1
n (t). It implies thatHk

n(t)−Hk
n−1,n(t) = k/n[Hk

n(t)−Hk+1
n (t)] ≤ 0,

since Hk
n(t)−Hk+1

n (t) = E(Tk:n−Tk+1:n|T1:n > t) which is obviously non positive.

This implies that Hk
n(t) ≤ Hk

n−1,n(t) = E(Tk:n−1 − t|T1:n > t).

Remark 2. Let (T1, . . . , Tn−1) be an exchangeable random vector and Tn is inde-

pendent of (T1, T2, . . . , Tn−1), it then can be easily shown that Tk:n−1 − t|T1:n >
t

st
= Tk:n−1 − t|T1:n−1 > t and hence Hk

n−1,n(t) = E(Tk:n−1 − t|T1:n > t) =

E(Tk:n−1 − t|T1:n−1 > t) = Hk
n−1(t). Therefore in view of Theorem 3 we have

Hk
n(t) ≤ Hk

n−1(t).

The following lemma shows in both described cases, that Hk
n(t) is expressible in

terms of simpler MRL functions of the minimum in samples of sizes n−k+1, . . . , n.

Lemma 2. (a) In exchangeable case we have

Hk
n(t) = ET 1,k,n

t = E(Tk:n − t|T1:n > t)

=

n∑

j=n−k+1

(−1)j−n+k−1

(
n

j

)(
j − 1

n− k

)
H1

j,n(t)

where

H1
j,n(t) = E(T1:j − t|T1:n > t) =

∫ ∞

0

F̄ (

j︷ ︸︸ ︷
t+ x, . . . , t+ x,

n−j︷ ︸︸ ︷
t, . . . , t)

F̄ (t, . . . , t)
dx,

and F̄ (x1, . . . , xn) = P (T1 > x1, . . . , Tn > xn).

(b) In nonidentical case we have

Hk
n(t) = E(Tk:n − t|T1:n > t) =

n∑

j=n−k+1

(−1)j−n+k−1

(
j − 1

n− k

)∑

Cj

H1
Cj
(t)
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where

H1
Cj
(t) = E(minTl − t|minTl > t, l ∈ Cj) =

∫ ∞

0

∏

l∈Cj

F̄l(t+ x)

F̄l(t)
dx

is the MRL of a series system consisting of components belongs to Cj and Cj is a

subset of C = {1, . . . , n} with cardinality j.

Proof. (a) Using Equation (3.4.3) in David and Nagaraja (2003, page 46) we have

P (Tk:n − t > x|T1:n > t)

=

n∑

j=n−k+1

(−1)j−n+k−1

(
n

j

)(
j − 1

n− k

)
P (T1:j − t > x|T1:n > t).

By integrating both sides of the above equation with respect to x, the proof of

part (a) follows.

(b) Using Equation (3.4.2) in David and Nagaraja (2003, page 46), we can write

P (Tk:n − t > x|T1:n > t)

=

n∑

j=n−k+1

(−1)j−n+k−1

(
j − 1

n− k

)∑

Cj

∏
l∈Cj

F̄l(t+ x)
∏

l∈C′
j
F̄l(t)

∏n
i=1 F̄i(t)

=

n∑

j=n−k+1

(−1)j−n+k−1

(
j − 1

n− k

)∑

Cj

P (minTl > t+ x|minTl > t, l ∈ Cj).

Again by integrating both sides with respect to x the proof follows.

Remark 3. In view of Equation (2) and part (b) of Lemma 2, we note in non-

identical case that:

M r,k
n (t) = E(Tk:n − t|Tr:n > t)

=

r−1∑

i=0

∑

Ci

PCi(t)

n∑

j=n−k+1

(−1)j−n+k−1

(
j − 1

n− k

)∑

C′
i(j)

H1
C′

i(j)
(t) (7)

where C′
i(j) is a subset of C′

i = C −Ci with cardinality j and H1
C′

i(j)
(t) is similarly

defined toH1
Ci
(t) which is defined in Lemma 2. The Equation (7) shows in noniden-

tical case that M r,k
n (t), as well as Hk

n(t), can also be expressed in terms of simpler

MRL of the minimum in samples of sizes n−k+1, . . . , n. Using Part (a) of Lemma

2 we can simply obtain an expression for Hk
n(t) = E(Tk:n − t|T1:n > t) in terms of

the joint survival function of Ti’s, F̄ (x1, . . . , xn) = P (T1 > x1, . . . , Tn > xn) which

is useful in practical applications.

Remark 4. From Equation (4), in exchangeable case we can write

H1
n(t) = E(T1:n − t|T1:n > t) =

∫ ∞

0

F̄ (t+ x, . . . , t+ x)

F̄ (t, . . . , t)
dx,
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which is easily decreasing (increasing) in t, if F̄ (t+x,...,t+x)

F̄ (t,...,t)
is decreasing (increasing)

in t for x ≥ 0. A sufficient condition for this is that the joint distribution of Ti’s be

a multivariate IFR (DFR) distribution (see, for example, Barlow and Proschan,

(1975)).

Similarly in nonidentical case we have H1
n(t) =

∫∞
0

∏n
j=1

F̄j(t+x)

F̄j(t)
dx which is obvi-

ously decreasing (increasing) in t, if Fj ’s j = 1, . . . , n are IFR (DFR) distributions.

We recall that a distribution Fj is said to be an IFR (DFR) distribution function

if the corresponding failure rate, rFj (t) =
fj(t)

F̄j(t)
is increasing (decreasing) in t. In

this case and in view of Equation (6) we have

Hk
n(t) = E(Tk:n − t|T1:n > t) =

∫ ∞

0

P (

n∑

j=1

Zj
t,x ≤ k − 1)dx

where Zj
t,x, j = 1, . . . , n are independent random variables and Zj

t,x is distributed

as Binomial(1,1-
F̄j(t+x)

F̄j(t)
). It is easy to show that Hk

n(t) is decreasing (increasing)

in t, if 1-
F̄j(t+x)

F̄j(t)
, j = 1, 2, . . . , n are increasing (decreasing) in t or equivalently

Fj ’s are IFR (DFR) distributions.

In the following lemma we obtain an upper bound and a lower bound for M r,k
n (t)

in nonidentical case.

Lemma 3. In nonidentical case we have

minC′
r−1

Hk−r+1
C′

r−1
(t) ≤M r,k

n (t) ≤ Hk
n(t).

Proof. We first show that Hk
n(t)−Hk−1

n−1(t) ≥ 0. We have

P (Tk:n − t > x|T1:n > t) = P (

n∑

j=1

Zj
t,x ≤ k − 1)

where Zj
t,x is defined in Remark 4. It is easy to show that

Hk
n(t)−Hk−1

n−1(t)

=

∫ ∞

0

(P (Tk:n − t > x|T1:n > t)− P (Tk−1:n−1 − t > x|T1:n−1 > t)) dx

=

∫ ∞

0


P (

n∑

j=1

Zj
t,x ≤ k − 1)− P (

n−1∑

j=1

Zj
t,x ≤ k − 2)


 dx

=

∫ ∞

0

F̄n(t+ x)

F̄n(t)
P (

n−1∑

j=1

Zj
t,x = k − 1)dx

245



July 28, 2010 16:45 ISC10 - Proceeding proceeding

The 10th Iranian Statistical Conference University of Tabriz, August 2010

which is obviously nonnegative. Using this and from Equation (2) we have

M r,k
n (t) = E(Tk:n − t|Tr:n > t)

=

r−1∑

i=0

∑

Ci

PCi(t)H
k−i
C′

i
(t) ≤

r−1∑

i=0

∑

Ci

PCi(t)H
k
n(t) = Hk

n(t).

For each 0 ≤ i ≤ r − 1 and Ci there exists Cr−1 such that C′
r−1 ⊆ C′

i. As

Hk
n(t) ≥ Hk−1

n−1(t) we have Hk−i
C′

i
(t) ≥ Hk−r+1

C′
r−1

(t). Hence we can write

M r,k
n (t) =

r−1∑

i=0

∑

Ci

PCi(t)H
k−i
C′

i
(t)

≥
r−1∑

i=0

∑

Ci

PCi(t)minC′
r−1

Hk−r+1
C′

r−1
(t) = minC′

r−1
Hk−r+1

C′
r−1

(t).

This completes the proof of the lemma.

In IID case we note that

minC′
r−1

Hk−r+1
C′

r−1
(t) = Hk−r+1

n−r+1(t) = E(Tk−r+1:n−r+1 − t|T1:n−r+1 > t).

Lemma 4. If Ti, i = 1, 2, . . . , n− 1 are exchangeable random variables and Tn is

independent of (T1, T2, . . . , Tn−1) then H
k
n(t) ≥ Hk−1

n−1(t).

Proof. In view of the proof of Part (a) of Theorem 2, we note that

Tk:n − t|T1:n > t
st
= T k:n

t

where T k:n
t is the kth order statistics from the sample consisting of T i,n

t = Ti −
t|T1:n > t, i = 1, 2, . . . , n in which T i,n

t for i = 1, 2, . . . , n − 1 are exchangeable

random variables with common survival function

Ḡn,t(x) = P (T i,n
t > x) =

P (T1 > t+ x, T2 > t, . . . , Tn > t)

P (T1 > t, T2 > t, . . . , Tn > t)
.

T n,n
t is independent of (T 1,n

t , T 2,n
t , . . . , T n−1,n

t ) and its survival function is
P (Tn>t+x)
P (Tn>t) . Since Tn is independent of (T1, T2, . . . , Tn−1) we have Ḡn,t(x) =

Ḡn−1,t(x). In other words T i,n
t

st
= T i,n−1

t , i = 1, 2, . . . , n− 1. We also note that

P (Tk:n − t > x|T1:n > t) = P (T k:n
t > x) = P (

n∑

j=1

W j,n
t,x ≤ k − 1)

whereW j,n
t,x , j = 1, 2, . . . , n−1 are exchangeable random variables andW j,n

t,x is dis-

tributed as Binomial(1,1- Ḡn,t(x)).W
n,n
t,x is independent ofW j,n

t,x , j = 1, 2, . . . , n−1
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and is distributed as Binomial(1,1-P (Tn>t+x)
P (Tn>t) ). Note that W j,n

t,x
st
= W j,n−1

t,x , j =

1, 2, . . . , n− 1. Now from above discussion it is easy to show that

P (Tk:n − t > x|T1:n > t)− P (Tk−1:n−1 − t > x|T1:n−1 > t)

= P (T k:n
t > x)− P (T k−1:n−1

t > x)

= P (

n∑

j=1

W j,n
t,x ≤ k − 1)− P (

n−1∑

j=1

W j,n−1
t,x ≤ k − 2)

= P (Wn,n
t,x = 0)P (

n−1∑

j=1

W j,n−1
t,x = k − 1)

which is obviously nonnegative. By integrating both sides with respect to x the

proof of the lemma follows.

Remark 5. In view of Remark 2 and Lemma 4, under the condition that Tn is

independent of exchangeable random vector (T1, T2, . . . , Tn−1) we have

Hk−1
n−1(t) ≤ Hk

n(t) ≤ Hk
n−1(t).

Although the above inequality is always true in nonidentical case, however it is

not generally hold in exchangeable case. See the following example.

Example. Suppose that the joint distribution of T1, . . . , Tn is Marshal and Olkin’s

multivariate exponential with survival function

F̄ (x1, . . . , xn)

= exp{−
n∑

i=1

λixi −
∑ ∑

i1<i2

λi1,i2max(xi1 , xi2)− · · · −λ12...nmax(x1, . . . , xn)}.

For the special case λ1 = . . . = λn = λ12 = . . . = λ12...n = λ, F̄ (x1, . . . , xn) is

exchangeable. It can be simply shown that

F̄ (

j︷ ︸︸ ︷
t+ x, . . . , t+ x,

n−j︷ ︸︸ ︷
t, . . . , t)

F̄ (t, . . . , t)
= exp{−(2n − 2n−j)λx}

and hence using Part (a) of Lemma 2 we have

Hk
n(t) = λ−1

n∑

i=n−k+1

(−1)i+k−n−1

2n − 2n−i

(
n

i

)(
i− 1

n− k

)

= λ−1
k−1∑

i=0

(−1)k−i−1

2n − 2i

(
n

i

)(
n− i− 1

n− k

)
,
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which is a positive constant. For λ = 1, n = 3 and k = 2 we have Hk
n(t) = 0.21,

Hk
n−1(t) = 0.66 and Hk−1

n−1(t) = 0.33. It shows that the inequality given in Remark

5 is not hold and the assumption Tn is independent of (T1, . . . , Tn−1) is required.

Now in nonidentical case we will show in the following theorem, that M r,k
n (t) =

E(Tk:n− t|Tr:n > t), 1 ≤ r ≤ k ≤ n is decreasing in t, if Fj ’s are IFR distributions.

Theorem 4. In nonidentical case if Fi, i = 1, . . . , n are IFR distributions then

M r,k
n (t) = E(Tk:n − t|Tr:n > t), 1 ≤ r ≤ k ≤ n is a decreasing function of t.

Proof. From Equation (2) we have

M r,k
n (t) = E(Tk:n − t|Tr:n > t) =

∑r−1
i=0

∑
Ci
PCi(t)H

k−i
C′

i
(t) where PCi(t) =

φCi
(t)

∑r−1
j=0

∑
Cj

φCj
(t)

and φCj (t) =
∏

l∈Cj

Fl(t)
F̄ (t)

. Since φCj (t) is an increasing function

of t, without loss of generality we assume that φCj (t) = tj . Hence we show that

M(t) =

∑r−1
i=0

∑
Ci
tiHk−i

C′
i
(t)

∑r−1
j=0

(
n
j

)
tj

is a decreasing function of t. We have, on differentiating both sides of this last

equation,

M ′(t) =
1

(∑r−1
j=0

(
n
j

)
tj
)2

(
r−1∑

i=0

∑

Ci

iti−1Hk−i
C′

i
(t)

r−1∑

j=0

(
n

j

)
tj

−
r−1∑

j=0

j

(
n

j

)
tj−1

r−1∑

i=0

∑

Ci

tiHk−i
C′

i
(t) +

r−1∑

i=0

∑

Ci

ti(Hk−i
C′

i
(t))′

r−1∑

j=0

(
n

j

)
tj

)
. (8)

As stated in Remark 4, Hk−i
C′

i
(t) is decreasing in t, since Fj ’s are IFR distributions,

and hence the last term on the right hand side of the Equation (8) is non positive.

We show that the difference between the first and the second terms is also non

positive. Let we denote this difference by D. After some algebraic manipulations

it can be shown that

D =
1

(∑r−1
j=0

(
n
j

)
tj
)2

r−1∑

i=0

∑

Ci

r−1∑

j=i

(j − i)
∑

Cj

(
Hk−j

C′
j
(t)−Hk−i

C′
i
(t)
)
ti+j−1.

We know that for each Cj (j = 1, . . . , n) there exist subsets C1, C2, . . . , Cj−1 such

that C′
j ⊂ C′

i, i = 1, 2, . . . , j − 1. It is shown in the proof of Lemma 3, that

Hk
n(t)−Hk−1

n−1(t) ≥ 0, hence D is non positive and this completes the proof of the

theorem.

Remark 6. In view of the proof of Theorem 4 we can conclude in nonidentical

case, that if the MRLs Hk−i
C′

i
(t), i = 1, 2, . . . , r− 1 are decreasing functions of time

then the MRL M r,k
n (t) is also decreasing in time. We have already seen in Remark
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4, that if Fi, i = 1, . . . , n are DFR distributions then Hk
n(t) is increasing in t. This

result, however, is not generally true for M r,k
n (t) (see Asadi and Goliforushani

(2008) for a counterexample in IID case).

Khanjari(2008) showed in nonidentical case that M r,n
n (t) = E(Tn:n − t|Tr:n >

t), 1 ≤ r ≤ n is decreasing in r. Now using a different argument and in

both nonidentical and exchangeable cases we show in the following theorem that

M r,k
n (t) = E(Tk:n − t|Tr:n > t), 1 ≤ r ≤ k ≤ n is also a decreasing function of r.

Theorem 5. In both described cases we haveM r−1,k
n (t) ≥M r,k

n (t), 2 ≤ r ≤ k ≤ n.

Proof. We note that Tk:n− t|Tr:n > t
st
= Zt,r

k:n where Zt,r
k:n is the kth order statistics

from the sample consisting of Zi,t,r = Ti − t|Tr:n > t, i = 1, . . . , n. We first

show that Zi,t,r ≤st Zi,t,r−1. Suppose x < 0 is given and Zi,t,r−1 ≤ x, that is

Ti − t ≤ x|Tr−1:n > t. This means Ti is ordered between the first r − 2 smallest of

T1, . . . , Tn. Obviously Ti is also between the first r − 1 smallest of Tj ’s. Hence if

Tr:n > t then Ti ≤ t+x that is Zi,t,r ≤ x. Now suppose x > 0 and Zi,t,r > x that is

Ti−t > x|Tr:n > t. It means Ti is between the last n−r+1 and consequently n−r+2

largest values of T1, . . . , Tn. This implies that if Tr−1:n > t then Ti > t + x that

is Zi,t,r−1 > x. Therefore Zi,t,r ≤st Zi,t,r−1. We now show that Zt,r
k:n ≤st Z

t,r−1
k:n .

Suppose x > 0 and Zt,r
k:n > x. That is at most k − 1 out of Zi,t,r, 1 ≤ i ≤ n

are less than x. We show that Zt,r−1
k:n > x. Suppose not that is at least k out of

Zi,t,r−1, 1 ≤ i ≤ n are less than x. Since Zi,t,r ≤st Zi,t,r−1, 1 ≤ i ≤ n, there

exist at least k out of Zi,t,r, 1 ≤ i ≤ n which are less than x and this is a

contradiction. Therefore Zt,r−1
k:n > x. Similarly for x < 0 it can be shown that the

event Zt,r−1
k:n < x is a subset of the event Zt,r

k:n < x. Hence Zt,r
k:n ≤st Z

t,r−1
k:n and

we get M r,k
n (t) = EZt,r

k:n ≤ EZt,r−1
k:n = M r−1,k

n (t). This completes the proof of the

theorem.

Remark 7. In both nonidentical and exchangeable cases and in view of Theorem

5, for t > 0 and 1 ≤ r ≤ k ≤ n we have

Mk,k
n (t) = E(Tk:n − t|Tk:n > t) ≤M r,k

n (t) = E(Tk:n − t|Tr:n > t) ≤M1,k
n (t)

= E(Tk:n − t|T1:n > t)

where M1,k
n (t) = Hk

n(t).

3. Mean residual life function of a coherent system

In this section we consider a coherent system consisting of n components. Let

Ti, i = 1, 2, . . . , n and T = φ(T1, . . . , Tn) which are nonnegative and absolutely

continuous random variables, denote the lifetimes of components and the system,

respectively. Samaniego (1985) introduced the concept of the signature of φ as the

probability vector p = (p1, . . . , pn) where pi = P{φ(T1, . . . , Tn) = Ti:n} and Ti:n,

i = 1, 2, . . . , n represent ordered lifetimes of the components. In IID case Kochar
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et al.(1999) showed that

P (T > t) =

n∑

i=1

piP (Ti:n > t). (9)

Navarro et al.(2005) have shown that this relation is also true in exchangeable

case. It should be noted in nonidentical case that the Equation (9) is not generally

true (see a counterexample in Navarro et al.(2008)). In both IID and exchangeable

cases, one can show that pi = ni

n! in which ni is the number of permutations of

T1, . . . , Tn such that T = φ(T1, . . . , Tn) = Ti:n.

Here we consider the mean residual life of the system with exchangeable com-

ponents, when all components of the system are working at time t, MR1
n(t) =

E(T − t|T1:n > t). From Equation (9), MR1
n(t) can be written as follow

MR1
n(t) =

∫ ∞

0

P (T − t > x|T1:n > t)dx =

n∑

i=1

pi

∫ ∞

0

P (Ti:n − t > x|T1:n > t)dx

=

n∑

i=1

piH
i
n(t).

From Part (a) of Lemma 2, we have the following equation in exchangeable case:

MR1
n(t) =

n∑

i=1

pi

n∑

j=n−i+1

(−1)j−n+i−1

(
n

j

)(
j − 1

n− i

)
H1

j,n(t)

where

Hj,n(t) = E(T1:j − t|T1:n > t) =

∫ ∞

0

F̄ (

j︷ ︸︸ ︷
t+ x, . . . , t+ x,

n−j︷ ︸︸ ︷
t, . . . , t)

F̄ (t, . . . , t)
dx

and F̄ (x1, . . . , xn) = P (T1 > x1, . . . , Tn > xn) is the joint survival function of Ti’s.

Since
∑n

i=1 pi = 1 it is easy to see that

H1
n(t) = E(T1:n − t|T1:n > t) ≤MR1

n(t)

= E(T − t|T1:n > t) ≤ Hn
n (t) = E(Tn:n − t|T1:n > t).

Now suppose that there exists 1 < k ≤ n such that pi = 0 for i = 1, 2, . . . , k−1.

(n− k+1)-out-of-n structure and consecutive-k-out-of-n:F system are well known

examples of the systems that have this property. For such a system we define mean

residual life as follow:

MRr,k
n (t) = E(T − t|Tr:n > t) =

n∑

i=k

piE(Ti:n − t|Tr:n > t)

=

n∑

i=k

piM
r,i
n (t), 1 ≤ r ≤ k ≤ n.
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In view of Theorem 5, we note that MRr,k
n (t) is a decreasing function of r, r =

1, 2, . . . , k. Hence we have

MRk,k
n (t) = E(T − t|Tk:n > t) ≤MRr,k

n (t) = E(T − t|Tr:n > t) ≤MR1,k
n (t)

= E(T − t|T1:n > t).

4. Coclusion Remarks

We obtained in Section 2, several results about the two mean residual life functions

of a (n− k + 1)-out-of-n system

Hk
n(t) = E(Tk:n − t|T1:n > t), M r,k

n (t) = E(Tk:n − t|Tr:n > t), 1 ≤ r ≤ k ≤ n

when the lifetimes of the system components are independent random variables

but not necessary identically distributed and when the joint distribution of the

components lifetimes is exchangeable. A sufficient condition for Hk
n(t) to be a de-

creasing(increasing) function of t, in nonidentical case and for H1
n(t) in exchange-

able case is given. We have shown in nonidentical case that when the components

of the system have increasing failure rate, M r,k
n (t) is decreasing in time. In both

above mentioned cases it is shown that Mk,k
n (t) ≤ M r,k

n (t) ≤ Hk
n(t). Also it is

shown in both cases that M r,k
n (t) is a decreasing function of r. We showed that

Hk−1
n−1(t) ≤ Hk

n(t) ≤ Hk
n−1(t), if Tn is independent of T1, . . . , Tn−1. Using the con-

cept of signature introduced by Samaniego (1985), the MRL function of a coherent

structure with exchangeable components is considered in Section 3.
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Testing hypothesis about a parameter vector is an important statistical problem re-
ceived much attention in parametric and nonparametric settings. In this work, we
investigate connection between some types of directional tests and establish that two
elements of the above class of tests are equivalent.
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1. Introduction

Suppose that H0 : β = 0 denotes the hypothesis of interest, where β =

(β1, . . . , βk)
′ is a k dimensional vector and 0 is the zero vector. The parameters can

represent, for example, different types of treatment. An estimator β̂ = (β̂1, . . . , β̂k)
′

of β can be obtained by maximizing an objective function Hn(β,λ,xn), where λ

is a vector of nuisance parameters and xn denotes data provided by n indepen-

dent samples. Some choices for objective function are likelihood, partial likelihood,

etc. Assuming some regularity conditions, β̂ can be shown to be consistent and

asymptotically normal under H0 : β = 0, i.e. β̂
p→ 0 and

√
nβ̂

d→ (0,Σ), (1)

as n→ ∞, where Σ is a covariance matrix with rank k. There are situations that

we want to have a test to be sensitive to alternatives of the form β = dβ∗, where
d = (d1, . . . , dk)

′ is known and the scaler β∗ 6= 0 satisfies

β1
d1

= . . . =
βk
dk

= β∗. (2)

For example, d = (1, . . . , 1)′ represents a directional test in which the elements of

β are equal. Also, d1 ≤ . . . ≤ dk implies a trend among the elements of β.

A systematic approach to construct a directional test is adding (2) (as a con-

straint) to the objective function. This is equivalent to maximizing the function

Hn(dβ
∗,λ,xn) with respect to β∗. Let β̂∗ maximizes Hn(dβ

∗,λ,xn) and consider

directional test statistic T1(d) = n(β̂∗)2/σ̂2, where σ̂2 is a consistent estimator of
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the variance of
√
nβ̂∗. From (1), it follows that T1(d) is asymptotically distributed

as χ2
1 under H0. The test is invariant to changes to d. When the objective func-

tion is a likelihood, T1(d) is Wald test, and Thus asymptotically equivalent to the

corresponding likelihood ratio and score tests of H0 (Cox and Hinkley, 1974).

Another approach for obtaining a directional test is forming a linear com-

bination of the components of β̂ obtained from the unconstrained objective

function Hn(β,λ,xn). That is to define the directional test statistic T2(c) =

n(c′β̂)2/(c′Σ̂c), where c is k × 1 vector. Again using (1) it follows that T2(c)

asymptotically has χ2
1 distribution under H0, and it is invariant to scale changes

to c.

Examples of tests are numerous in the literature. A commonly used test is

the Cochran-Armitage trend test for binary responses which arises as a score test

from logistic and other regression models (Tarone and Gart, 1980) in which there

is a single covariate with values d1, . . . , dk corresponding to k groups. A trend

test similar to the constrained test for detecting a dose-response was discussed by

Tukey et al. (1985).

To motivate this study, we mention two important examples of previous studies

on this issue. The first one is the method proposed byWei et al. (1989) for analyzing

multivariate survival time data using the marginal distributions of an individual’s

K survival times. Let βk be the log-risk ratio between two treatment groups for

the kth of K survival times. The objective function can be expressed as

Hn(β,xn) =
∏

k

∏

i

( exp(βkzi)∑
j Ykj(xki) exp(βkzj)

)δki

, (3)

where zi denotes treatment indicator of subject i (i = 1, . . . , n), xkj is the observed

portion of the kth event for the ith subject, δkj is the censoring indicator for the

kth event and ith subject, and Ykj(xki) indicates if subject j is in the risk set at

time xki for the kth event. That is β1, . . . , βk = β∗. Thus we obtain the model

Hn(1β
∗,xn) =

∏

k

∏

i

( exp(β∗zi)∑
j Ykj(xki) exp(β

∗zj)

)δki

, (4)

where β∗ is the common treatment effect. Lin (1994) proposed a directional test

of H0 based on (4). The estimate of common risk ratio β̂∗ can be obtained by

maximizing (4), and then one can construct the test T1(d). Similarly, the test

T2(c) can be obtained using the estimates by maximizing the model (3). Wei et

al. (1989) proposed such a test by taking c = (Σ̂−11)/(1′Σ̂−11), where Σ̂ is a

consistent estimate of the covariance matrix of β̂.

As a second example, an objective function with the same form as (3) arises in

comparing two treatment groups with respect to survival time when a stratified

proportional hazard model is used (Kalbfleisch and Prentice, 2002), with strati-
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fication based on the levels of a categorical covariate. In this situation, the most

common method of testing for a treatment difference is a T1(d) type test that

assumes a common treatment relative risk across strata.

Despite the extensive use of these directional tests, little effort has been made

on investigating relationship between them. To this end, we consider the following

sequence of alternatives to H0

Hn
A : β =

µ√
n
, (5)

where µ = (µ1, . . . , µk)
′ is a constant vector and n is the sample size. We assume

that the objective function leads to a consistent and asymptotically normal esti-

mate of β. Section 2 is devoted to introducing some notations. The main result of

the paper is given in Section 3. We end in Section 4 with a summary.

2. Notations

In this section we introduce some notations which facilitate presentation of the

proof in the next section. If (1) holds, then under the sequence of alternatives in

(5),

√
nβ̂

d→ (µ,Σ)

as n→ ∞. In general, Σ = Iββ
−1
V ββIββ

−1
(see Rao, 1973), where

Iββ = Iββ − IβλI
−1
λλ Iλβ

and

V ββ = Vββ − IβλI
−1
λλ Vλβ − VβλI

−1
λλ Iλβ + IβλI

−1
λλ VλλI

−1
λλ Iλβ .

In the above expressions, Vββ , Vβλ, Vλβ and Vλλ are the elements of the covariance

matrix V of the score vector from H(β,λ,xn) and Iββ , Iβλ, Iλβ and Iλλ are the

components of the probability limits ID of the negative of the second derivative

of H(β,λ,xn)/n with respect to β and λ, where

V =

(
Vββ Vβλ
Vλβ Vλλ

)

and

ID =

(
Iββ Iβλ
Iλβ Iλλ

)
.

When H is a likelihood function, ID is the corresponding information matrix.
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3. Theoretical results

Assume the distribution of xn depends on parameters (β,λ) and the objective

function Hn(β,λ,xn) is continuous and has first and second derivatives. Let β0

and λ0 maximizes H(β,λ) = E(Hn(β,λ,xn)) under the sequence of alternatives

Hn
A in (5), so that H(β,λ) is maximized at (0,λ0) as n→ ∞. Define

Uβ(β,λ) =
∂

∂β
Hn(β,λ,xn)

and

Uλ(β,λ) =
∂

∂λ
Hn(β,λ,xn)

and assume that

1√
n

(
Uβ(β0,λ0)

Uλ(β0,λ0)

)
d→ N(0, V ) (6)

under Hn
A, where V is a covariance matrix and Vββ , Vβλ, Vλβ and Vλλ are the

corresponding covariance submatrices for parameters β and λ in V . From (6) we

have
√
n(β̂ − β0) =

1√
n
(Iββ − IβλI

−1
λλ Iλβ)

−1
(
Uβ(β0,λ0)− IβλI

−1
λλ Uλ(β0,λ0)

)
+ op(1),

(7)

where Iββ , Iβλ, Iλβ and Iλλ are defined as the probability limits of the negative

of the second derivative of Hn(β,λ,xn)/n with respect to β and λ. Therefore
√
nβ̂

d→ (µ,Σ).

Consider the model Hn(dβ
∗,λ,xn) which is obtained by setting β = dβ∗.

H(dβ∗,λ) is maximized at (β∗
0 ,λ

∗
0) under the sequence of alternatives in (5).

Since β∗
0 → 0 as n → ∞, it follows that H(dβ∗,λ) is maximized at (0,λ0) as

n→ ∞.

Let β∗
0 = (d′Iβββ0)/(d

′Iββd). Since β∗
0 tends to zero as n→ ∞

1√
n

(
Uβ(dβ

∗
0 ,λ0)

Uλ(dβ
∗
0 ,λ0)

)
d→ N(0, V ).

Let (β̂∗, λ̂
∗
) be the solution of d′Uβ(dβ

∗,λ) = 0 and Uλ(dβ
∗,λ) = 0. A Taylor

series expansion of (d′Uβ(dβ
∗
0 ,λ0), Uλ(dβ

∗
0 ,λ0))

′ at (β̂∗, λ̂
∗
)/
√
n gives

√
n(β̂∗ − β∗

0) =
1√
n

d′(Uβ(dβ
∗
0 ,λ0)− IβλI

−1
λλ Uλ(dβ

∗
0 ,λ0))

d′(Iββ − IβλI
−1
λλ Iλβ)d

+ op(1). (8)

And it follows that

√
n(β̂∗ − β∗

0)
d→ N(0,

d′V ββd

(d′Iββd)2
).
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If we consider T2(c) with c = (Iββd)/(d′Iββd), then from (7) and (8) we have
√
n(β̂∗ − c′β̂)

p→ 0.

Hence we conclude T1(d)− T2(c)
p→ 0 as n→ ∞.

4. Conclusion

Testing hypothesis about a parameter vector is an important statistical problem.

In this article we investigated relationship between some elements of the class

of directional tests and showed there exists an equivalence property. For a given

T1(d), consider T2(c), for which c is proportional to Iββd. It was shown that as

the sample size increases, the probability that these two tests will differ more than

any arbitrarily small value goes to zero.
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This paper describes the application of six-sigma control limits in serially correlated
data. Performance of traditional control limits has been investigated in autocorrelated
data. Modified control limits have established via longevous variation of process that
guarantee the certain inferences and reliable consequences. The behavior of traditional
and modified control limits was evaluated for independent and correlated data. Average
Run Length criterion was used to discover a shift in the mean of process and to compare
the efficiency of control limits based on longevous and pseudo variation.
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1. Introduction

Statistical process control, SPC, refers to a number of different methods for mon-

itoring and assessing the quality of manufactured goods. Combined with methods

from the Design of Experiments, SPC is used in programs that define, measure,

analyze, improve, and control development and production processes. These pro-

grams are often implemented using Design for Six Sigma methodologies.

Briefly, a control chart is a graphical method for detecting if the underlying

distribution of variation of some measurable characteristic of the product seems

to have undergone a shift. Such a shift likely reflects a subtle drift or change to

the desired manufacturing process that needs to be corrected in order to maintain

good quality output, Shewhart, W. (1931).

In traditional SPC, it is assumed that the observations are independently and

normally distributed, but independence of data may not be established practically.

Our goal is to determine the impression of correlation on the efficiency of tradi-

tional control limits for the mean by using Average Run Length, ARL, criterion.
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ARL criterion has been of interest in the literature of SPC, Goldsmith, P. L. and

H. Whitfield (1961).

2. Average Run Length

Suppose Xt denotes independent observations of a continuous quality characteris-

tics with normal distribution, in other words:

Xt ∼ N(µt, σ
2
X) for t ∈ N ,

where N denotes the set of natural numbers. We assume that a harmony causes

a shift in the mean at an unknown time T,

µt =

{
µ for t < T ,

µ+ δσX for t > T .

In SPC, the six-sigma control limits are the form of µ± 3σX . After a shift in

the mean, an observation may not fall between Lower Control Limit, LCL, and

Upper Control Limit, UCL. We denote the probability of falling an observation

within control limits by P (δ),

P (δ) = P (µ− 3σX ≤ Xt ≤ µ− 3σX)

= Φ(δ + 3)− Φ(δ − 3).

where Φ(·) is the Cumulative Distribution Function of the standard normal distri-

bution. Suppose N denotes the number of observations until the first out-of-control

one; N has Geometric distribution with parameter P (δ) and The ARL is the av-

erage of N , i.e:

ARL(δ) =
1

1− P (δ)

The ARL curve of a six-sigma and five-sigma control limits are represented in

Fig. 1. For δ = 0, ARL is maximum and ARL(δ) is decreasing function of δ.

2.1. Evaluating Autoregressive process data in traditional limits

Suppose Yt denotes the AR(1) time series, i.e:

Yt − µ = θ(Yt−1 − µ) + ξt, (1)

where ξt are pairwise independently and identically distributed, i.i.d, random vari-

ables of N(0, σ2
ξ ); it is easy to prove that σ2

Y = σ2
ξ/(1− θ).
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Fig. 1. ARL curve of a traditional control limits.

Suppose Y1, · · ·Yn are observations of AR(1) process. In traditional SPC, cen-

tral line of control chart is determined by sample mean Y = 1
n

∑n
i=1 Yi and stan-

dard deviation is substituted by MR/d(2), where

MR =
1

n− 1

n∑

i=2

MRi, MRi = |Yi − Yi−1|

and d(2) ' 1.13 is commonly used in the literature of SPC, Montgomery, D. C.

(1996).

To evaluate the behavior of AR(1) process in SPC, we simulate a sequence of

size 1000 from model (1) with µ = 0, σ2
ξ = 1 and five values of θ = - 0.8; - 0.4; 0;

0.5; 0.9; This simulation is repeated 10,000 times and the results is given in table

1. Values of σY calculated by the relation between θ and σ2
ξ , but E[MR/d(2)] and

ARL(δ) are the average of the values generated in every step of simulation process.

In table 1, comparing σY , real or longevous variation, and E[MR/d(2)], pseudo

or short term variation, shows over-estimation and under-estimation of AR(1) pro-

cess variance for negative θ and positive θ respectively.

For negative θ, the width of control limits is so large for negative θ and values
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Table 1. Evaluating traditional six-sigma control limits in correlated data.

θ σY E[MR/d(2)] LCL UCL ARL(0) ARL(1)

-0.8 2.7778 2.6448 -7.9344 7.9344 32582.98 1186.43
-0.4 1.1905 1.2241 -3.6723 3.6723 3451.85 219.18
0 1.0000 1.0012 -3.0036 3.0036 353.93 61.22
0.5 1.3334 0.7985 -2.3955 2.3955 41.99 13.52
0.9 2.2942 0.6998 -2.0994 2.0994 9.23 3.46

of two last columns show puzzling and unexpected number of observations until

first out-of-control case. Vise versa, for positive θ, nearly all of observations are

recognized out-of-control. Therefore, using traditional control limits to evaluating

correlated data may cause serious problems in the interpretation of SPC design.

A suggestion to overpowering these problems is to construct LCL and UCL based

on σY instead of MR/d(2).

3. Modified control limits for autocorrelated data

In this section, modified control limits will be established in base of longevous

variation of process. Subsequently, the new limits will be evaluated using ARL

criterion.

Suppose Yt is an AR(1) time series with parameter θ, i.e:

Yt − µt = θ(Yt−1 − µt−1) + ξt, for t ∈ Z

where |θ| < 1 and ξt is an i.i.d sequence of N(0, σ2
ξ ) distribution. The value of Yt is

exactly determined by Yt−1 and so, the AR(1) model is known as Morkov process,

Box, G. E. P. and Jenkins, G. M. (1976).

Suppose Y1, · · · , Yn are the realizations of AR(1) process; similar to i.i.d data,

We estimate the central line of control chart through Y = 1
n

∑n
i=1 Yi. LCL and

UCL are determined by Y ± 3σ̂Y . In practice, the values of σY and σξ can be

estimated by the following equalities:

σ̂Y = C0 =
1

n

n∑

t=1

(Yt − Y )2, σ̂ξ =
C0

1 + θ̂2

r =

∑n−1
t=1 (Yt − Y )(Yt−1 − Y )∑n

t=1(Yt − Y )2
, r =

−θ̂
1 + θ̂2

where r denotes the autocorrelation estimator.
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In the remaining of this section, we assume values of θ and σY are known;

Otherwise it is easy to estimate the unknown parameters from a realization of

process that is accessible in practical situations.

3.1. Evaluating Autoregressive data in modified control limits

Suppose a phenomenon causes a shift in the mean from µ to µ+δσY at an unknown

instant of T. Therefore, the model (1) can be rewritten as:

(Yt − µ)− δσY = θ(Yt−1 − µ)− θδσY + ξt

For Yt−1 = s, the value of Yt is equal to

v = µ+ δσY + θ(s− (µ+ δσY )) + ξt

= θs+ (1− θ)µ+ (1 − θ)δσY + ξt.

The Run Length equals one if the value of v falls out of control limits. Oth-

erwise, it is one plus Run Length of AR(1) process with initiation point v. We

denote the ARL of AR(1) process by Lθ(δ, s) that s is the beginning state of

process. Referring to discussion above, we have:

Lθ(δ, s) = 1 +

∫

ξ|µ−3σY ≤v≤µ+3σY

Lθ(δ, v)f(ξ)dξ

= 1 +

∫ µ+3σY

µ−3σY

Lθ(δ, v)f(v − θs− (1− θ)(µ+ δσY ))dv.

where f(ξ) is the probability density function of normal random variable ξ. With

regard to Fredholm Integral, Arfken, G. (1985), there is a recurrent sequence of

functions {L0, L1, L3, · · · } so that limk→∞Lk(δ, s) = Lθ(δ, s) and

Li(δ, s) = 1 +

∫ µ+3σY

µ−3σY

Li−1(δ, v)f(v − θs− (1− θ)(µ+ δσY ))dv

= 1 + E[Li−1(δ, V )I(µ−3σY ,µ+3σY )(V )].

where V is a random variable with N(η, 1) distribution and η = θs+ (1 − θ)(µ+

δσY ). L0 is an arbitrary continuous function on (µ− 3σY , µ+ 3σY ); for example,

L0 = 1 can be a suitable choice.

Solving or simulating Fredholm integral to reach the value of Lθ(δ, s) is hard

and complicated. To get to this goal, we choose an abridged way by simulating
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AR(1) process until one of v values mentioned above falls outside of control limits.

According to definition of ARL criterion, The number of v’s up to the first un-

certain one will set as the ARL value. Assuming s = 0 ,we repeat the simulation

10,000 times per every θ; relevant values of Lθ(δ, 0) are the mean of ARL values

generated in every step of simulation that is presented in table below. Compatible

with i.i.d case, the quantities of Lθ(δ, 0) have been denoted by ARL(δ).

Table 2. Evaluating modified control limits in autocorrelated data.

θ ARL(0) ARL(0.5) ARL(1) ARL(1.5) ARL(2) ARL(2.5)

-0.8 378.64 139.03 59.66 15.14 6.09 1.13
-0.4 368.95 159.29 56.82 12.59 8.05 2.01
0 372.65 153.61 45.76 10.54 8.98 2.76
0.5 381.38 187.08 61.77 12.68 13.09 1.99
0.9 375.32 260.45 105.49 42.77 32.03 15.22

Despite of table 1, ARL values in table 2 show logical and desired values for

autocorrelated data; So, using longevous variation instead of pseudo variation, im-

proves traditional control limits to take advantage in AR(1) data.

Fig. 2. Curve of Lθ(δ, 0) for modified control limits.
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For θ = 0, the values of Lθ(δ, 0) is the same as ARL(δ) values depicted in table

1; We know that for θ = 0, AR(1) process generates i.i.d normally distributed ran-

dom variables, Box, G. E. P. and Jenkins, G. M. (1976). Comparing ARL values

of different θ shows that for positive values of θ, the modified control limits has

low sensitivity to explore the shift in the mean or AR(1) process. ARL values for

θ = 0.9 are too large comparative to others.

For θ = −0.8 and θ = 0 , Lθ=−0.8(δ = 0.5, 0) < Lθ=0(δ = 0.5, 0) indicates that

for δ close to 0.5, modified control limits has high sensitivity to detecting change

in the mean of process.

For other values of θ, except for θ = 0.9, modified control limits is powerful as

well as Traditional control limits in discovering behavior of uncertain process.

The functions Lθ(δ, 0) are curved in Fig. 2; The curve for θ = 0 is so similar to

curve considered in Fig. 1 and all curves have decreasing trend and tend to zero.

Except the similar origin latitude with other curves, Lθ=o.9(δ, 0) is very elevated

and more different from independent case curve. Other curves are almost the same

as i.i.d case, except for in the region nearby δ = 0.5; average run length for

θ = −0.8 is less than the others. Therefore, it can be concluded that in detecting

small changes of mean; the more negative θ, the more efficient the modified control

limits will be.

4. Conclusion

In the previous sections, the behavior of independent and autocorrelated data

in traditional and modified control limits have been examined. Using Traditional

control limits may cause miss-understandings of production process. Traditional

control limits has been adopted using longevous variation instead of pseudo vari-

ation.

In conclusion, if one is interested in checking Autocorrelated process for changes

in the mean using modified control limits, for negative and not too large positive

θ, the ARL criterion shows enough efficiency comparable to a traditional control

limits for independent observations.
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When we have an auxiliary variable that is correlated to the response variable the
regression estimator is an efficient. In a rare population having a lot of zero values,
regression estimator or ratio estimator is undefined for those samples containing only
non-rare subpopulation (zero values) in simple random sampling. In this paper, we
introduce modified regression estimators and their variance estimators for sampling
designs which are suitable to rare populations, such as general inverse sampling and
inverse sampling with unequal selection probabilities. Also we conduct a simulation
study on a real rare population. The simulation results show that the modified regres-
sion estimators in both sampling designs are more efficient than conventional estimator
in simple random sampling and the modified regression estimator in inverse sampling
with unequal selection probabilities is more efficient than others.

Keywords: General Inverse sampling; Murthy’s estimator; Unequal selection probabil-
ities ; Auxiliary variables.

1. Introduction

Usually rare populations contain a lot of non-rare units and a few rare ones. For

example, when we estimate number of rare animals (or plants) in a wide area, we

partition the area to a large number of quadrates, the variable of each sampling

unit (here each quadrat is a sampling unit) is the number of interested animals

(or plants) in such a unit. Obviously if we implement simple random sampling

design, it is likely the most of selected sample units to be from non-rare units and

the sample set has not enough information about rare units. In such cases, if all

sample units are selected from non-rare subpopulation, the conventional estimator

of rare subpopulation’s total will be equal to zero. And other estimators such as

ratio and regression will be undefined (Moradi et al., 2007). [1]

In survey sampling of a rare population one probability sampling scheme is desired

which intend to select more units from the rare subpopulation. Inverse sampling

design is one of such sampling designs that was first proposed by Haldane (1945)

in which one continues sampling until a pre-determined number of rare events of

interest is observed. [2]

One deficiency, however is that the final sample size is not fixed, which makes it
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difficult to plan budgets and survey logistics. To get round this problem Salehi

and Seber (2004) proposed a general inverse sampling design. In general inverse

sampling design, sample sizes n0 and n1 are determined based on a minimum and

a maximum budget (or time). First, an initial sample of size n0 is taken. If the

initial sample has the pre-determined number of rare events the sampling would

be stopped. Otherwise the sampling is sequentially continued until to achieve the

pre-determined number of events or reach the sample size n1. Salehi and Seber

(2004) also derived unbiased Murthy’s estimator for their sampling design. [3]

Greco and Naddeo (2007) introduced inverse sampling with unequal selection prob-

abilities and they proposed an unbiased population mean estimator for their sam-

pling design. [4]

If selection probabilities is approximately proportional to the variable of study

in inverse sampling with unequal selection probabilities, we get a predetermined

number of rare units with a smaller final sample size than when we use inverse

sampling design to get such number of rare units.

Additional to improving the sampling design using auxiliary variables, we can

utilize auxiliary variables to improve estimators. For example, when we have an

auxiliary variable that is correlated with the response variable, we can use ratio

estimator or regression estimator to improve the efficiency. Moradi et al. (2007)

proposed a ratio estimator using Murthy’s estimator for general inverse sampling

design.

In this paper, we introduce a modified regression estimators for general inverse

sampling design and inverse sampling with unequal selection probabilities for which

variance of modified regression estimators as well as variance estimators will be

developed . Using a simulation study on a real population Arsenic (AS) contam-

inant in a region of Kurdistan province, we show modified regression estimators

are more efficient than their counterparts.

2. Modified regression estimator

In simple random sampling the regression estimator is defined as following

ȳl = ȳ + b(X̄N − x̄).

where b = (
∑n

i=1 xiyi−nx̄ȳ)/(
∑n

i=1 x
2
i −nx̄2) is an estimator of B = (

∑N
i=1 xiyi−

NX̄Ȳ )/(
∑N

i=1 x
2
i −NX̄2). It is obvious that parameters

∑N
i=1 xiyi/N , X̄, Ȳ , and∑N

i=1 x
2
i /N are estimated by corresponding sample means

∑n
i=1 xiyi/n, x̄, ȳ, and∑n

i=1 x
2
i /n, respectively. The sample mean in simple random sampling has some

desire properties like unbiasedness which is not true for inverse sampling designs.

We therefore find other suitable estimators of parameters of B for introduced

inverse sampling designs.
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2.1. Regression estimator in general inverse sampling

In general inverse sampling we use Murthy’s estimators ˆ̄YM and ˆ̄XM to estimate

Ȳ and X̄ respectively. Salehi and Seber (2004) calculated ˆ̄YM for general inverse

sampling design as following, [3]

ˆ̄YM =





∑n0
i=1 yi

n0
, ns = n0 , |Sc| ≥ m;

p̂ȳc + (1− p̂)ȳc′ , n0 < ns ≤ n1 , |Sc| = m;∑n1
i=1 yi

n1
, ns = n1 , |Sc| < m.

(1)

Estimator ˆ̄XM can be calculated similarly. Also we need to estimate
∑N

i=1 xiyi
and

∑N
i=1 x

2
i . Let z1i = xiyi and z2i = x2i , using Murthy’s estimator we have

τ̂z1 =

n∑

i=1

P (S|i)
P (S) z1i =

n∑

i=1

P (S|i)
P (S) xiyi, τ̂z2 =

n∑

i=1

P (S|i)
P (S) z2i =

n∑

i=1

P (S|i)
P (S) x

2
i

Using (1) estimators τ̂z1 and τ̂z2 in general inverse sampling are given by

zj.M =





N
n0

∑n0

i=1 zji, ns = n0 , |Sc| ≥ m;

N(p̂z̄jc + (1 − p̂)z̄jc′), n0 < ns ≤ n1 , |Sc| = m;
N
n1

∑n1

i=1 zji, ns = n1 , |Sc| < m.

Then modified regression estimator in general inverse sampling design is given by

ȳGI.l =
ˆ̄YM + bM (X̄ − ˆ̄XM )

where

bM =
τ̂z1 −N ˆ̄XM

ˆ̄YM

τ̂z2 −N ˆ̄X2
M

An approximation method to calculate variance V (ȳMl) for enough large sam-

ple size n, is that we assume bM ' B (similar to Cochran pp 194. [5]), then we

have

ȳGI.l =
ˆ̄YM −B ˆ̄XM +BX̄ =

n∑

i=1

P (S|i)
NP (S)yi −B

n∑

i=1

P (S|i)
NP (S)xi +BX̄

=

n∑

i=1

P (S|i)
NP (S) (yi −Bxi) +BX̄ =

n∑

i=1

P (S|i)
NP (S)Vi +BX̄
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whereVi = yi − Bxi. Then V (ȳGI.l) = V ( ˆ̄VM ) and using variance of Murthy’s

estimator we have

V ar(ȳGI.l)
.
=

N∑

i=1

N∑

j<i

(1−
∑

S3i,j

P (S|i)P (S|j)
P (S) )(

Vi
pi

− Vj
pj

)2
pipj
N2

,

and variance esimator is given by

V̂ ar(ȳGI.l) =

n∑

i=1

n∑

j<i

(
P (S|i, j)
P (S) − P (S|i)P (S|j)

P (S)2 )(
V̂i
pi

− V̂j
pj

)2
pipj
N2

where V̂i = yi − bMxi.

Salehi and Seber (2004) calculated V̂ ar( ˆ̄YM ) in general inverse sampling, in

order to calculate V̂ ar(ȳGI.l) in general inverse sampling we should replace V̂

with y in their formula, then we have

V̂ ar(ȳGI.l)

=





( 1
n0

− 1
N ) 1

n0−1

∑n0
i=1 (V̂i −

¯̂
V )2, ns = n0 , |Sc| ≥ m;

p̂2(
N(N−n+1)(nm−n−m)−N(n−2)

(n−2)(m−1)
)
s2
cV̂
m + n0 < ns < n1 , |Sc| = m;

N2v̂ar[p̂](
¯̂
Vc − ¯̂

Vc′)
2 + (

N(N−n+1)(n−m−1)
(n−1)(n−2) )s2

c′V̂

( 1
n1

− 1
N ) 1

n1−1

∑n1
i=1 (V̂i −

¯̂
V )2, ns = n1 , |Sc| < m.

2.2. Regression estimator in inverse sampling with unequal

selection probabilities

Greco and Naddeo (2007) introduced inverse sampling with unequal selection prob-

abilities. They consider a population of N units divided into two groups of N1 and

N2 units, respectively. They let p1i the selection probability of the ith unit in

the first group and p2i the selection probability of the ith unit in the second

group, and they let P =
∑N1

i=1 p1i the selection probability of the first group and

1− P =
∑N2

i=1 p2i the selection probability of the second group.

Their sequential sampling with unequal selection probabilities continues until m

units of the first group are observed in the sample, so that the sample size ν is a

random variable. They proposed an unbiased estimator for total of population as
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following

T̃y =
P̂

m

m∑

i=1

y1i
p1i

+
1− P̂

ν −m

ν−m∑

i=1

y2i
p2i

(2)

where P̂ = (m− 1)/(ν − 1) is an unbiased estimator of P .

Greco and Naddeo calculated V (T̃y) as following

V (T̃y) = (W1 −W2)
2Vν(P̂ ) +

σ2
1w

m
Eν(P̂

2) +
σ2
2w

m− 1
Eν(P̂ (1 − P̂ )) (3)

where σ2
jw =

∑Nj

i=1(Wji −Wj)
2pji j = 1, 2, and Wji = yji/pji, W1 = T1/P , and

W2 = T2/(1− P ).

An unbiased estimator of variance V (T̃y) is

V̂ (T̃y) = (W̄1 − W̄2)
2 P̂ (1− P̂ )

ν − 2
+
S2
1w

m
P̂q +

S2
2w

m− 1
(P̂ − k − 1

m− 2
P̂q))

where S2
jw is an unbiased sample variance of Wjis in the jth group, and P̂q =

((m− 1)(m− 2)/(ν − 1)(ν − 2)) is an unbiased estimator of P 2. [4]

We now introduce a modified regression estimator for Greco and Naddeo’s sam-

pling design. To estimate B in inverse sampling with unequal selection probabilities

we use estimators like (2). We use estimators T̃x/N and T̃y/N for X̄N and ȲN ,

respectively, and we estimate
∑N

i=1 xiyi as following

T̃xy =
P̂

m

m∑

i=1

x1iy1i
p1i

+
1− P̂

ν −m

ν−m∑

i=1

x2iy2i
p2i

.

If
∑N

i=1 x
2
i is unknown, we can estimate it similarly as

T̃x2 =
P̂

m

m∑

i=1

x21i
p1i

+
1− P̂

ν −m

ν−m∑

i=1

x22i
p2i

.

Then the modified regression estimator for inverse sampling with unequal selection

probabilities is given by

ȳUI.l = µ̃y + bUI.l(X̄N − µ̃x)

where

bUI.l =
T̃xy −Nµ̃xµ̃y

T̃xy2 −Nµ̃2
x

.
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To calculate variance ȳUI.l we again assume B is known, then we have

V (ȳUI.l) = V (µ̃y +B(X̄N − µ̃x)) = V (µ̃y −Bµ̃x)

= V (
P̂

Nm

m∑

i=1

y1i −Bx1i
p1i

+
1− P̂

N(ν −m)

ν−m∑

i=1

y2i −Bx2i
p2i

)

=
V (T̃V )

N2

where V = y − Bx, and V (T̃V ) can be calculated from (3). If we assume P is

known, V (T̃V ) can be simplified as following

V (T̃V ) =
σ2
1w

m
P 2 +

σ2
2w

m− 1
P (1 − P ))

where σ2
jw =

∑Nj

i=1(Wji − Wj)
2pji j = 1, 2, and Wji = (yji − Bxji)/pji,

W1 = (T1y −BT1x)/P , and W2 = (T2y −BT2x)/(1− P ).

3. Simulation study

Arsenic is a naturally occurring toxic element present in soil due to both natural

and anthropogenic inputs. Arsenic-rich parent material and volcanic activity are

the main natural, and mining and smelting process are the main anthropogenic

source of AS. Kurdistan, a western province of Iran, is facing the problem of nat-

ural AS contamination. In the northeast of the province, there are some regions

around Bijar, Qorveh and Takab cities where contaminated with AS (Karimi et

al., (2009) [6]).

A small number of studies have been conducted on AS concentration in ground-

water and soils throughout this region (Mosaferi et al., (2003) [7]; Modabberi and

Moore (2004) [8]; and Karimi et al., 2009).

The presence of AS in irrigation water or in soil at an elevated level could hamper

normal growth of plants with the toxicity symptoms such as lower fruit and grain

yield. Also AS found in edible parts of these plants cause deleterious effects for

humans and other animals throughout eating of such fruits and vegetables. Deter-

mining AS concentration in plants is more complicated and more time-consuming

experiment than determining AS concentration in water and soil (Karimi et al.,

2009).

Karimi et al. (2009) determined the AS concentration of some samples of ground-

water, soil, and some plants in a contaminant region around Zarshuran mine of

Takab. [6] We first partition the region in to 300 equal quadrates, let each quadrat

is one sample unit. The contaminated region lies in 10 units. We then calculate
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the mean of AS concentration of Karimi et al.’s samples in each contaminant unit

for groundwater, soil, and plants separately. The results are shown in Table 1.

Table 1 Arsenic concentration in 10 contaminant units around Zarshuran mine

of Takab in groundwater, soil, and plants.

z x y

130 224.84 8.52
200 299.76 3.66
500 407.70 1.39
1000 587.60 12.91
1860 757.47 20.50
2500 1127.30 21.62
3060 1541.85 23.77
3500 1487.10 33.64
4000 1667.00 37.13
16400 6105.55 155.76

Arsenic concentration in water is shown by z and it is measured by µg/l. Arsenic

concentration in soil is shown by x and it is measured by mg/kg. Arsenic concentration

in plant is shown by y and it is measured by mg/kg.

Standards of World Health Organization (WHO)(1993) says that AS concen-

tration in safe (non-contaminated) water is below than 50 µg/l. [9] Based on such

a standard we assume that (zi, xi, yi) = (25, 0, 0) for the remaining 290 safe units.

In such a rare population we conduct a simulation study to determine the efficiency

of estimators ȳGI.l and ȳUI.l in general inverse sampling design and inverse sam-

pling design with unequal selection probabilities, respectively. For each estimator

corresponding to m = 2, 3, 4, 5, we calculate

MSE(ȳ?) =
1

19000

20000∑

i=1

(ȳ? − ¯̄y?)
2 + (¯̄y? − τy)

2

where ¯̄y? =
∑20000

i=1 ȳ?/20000 and ? stands for the modified regression estimator

in general inverse sampling, the conventional regression estimator with the same

effective sample size in simple random sampling, the modified regression estimator

in inverse sampling with unequal selection probabilities, and Greco and Naddeo’s

estimator that are respectively shown by GI.l, SRS.l, UI.l, and GN . Correspond-

ing to each effective sample size E(n) = ν, we calculate VSRS(ȳ) = (N − ν)S2/Nν

and efficiency of estimator ȳ? which is given by

e(ȳ, ȳ?) =
VSRS(ȳ)

MSE(ȳ?)
.
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Simulation results for general inverse sampling design and inverse sampling with

unequal selection probabilities are summarized in Table 2 and Table 3, respectively.

The summarized results in Table 2 show that the modified regression estimator

in general inverse sampling ȳGI.l is more efficient than conventional estimator in

simple random sampling with an equal effective sample size. And ȳGI.l is more ef-

ficient than regression estimator in simple random sampling ȳSRS.l with an equal

effective sample size. Also two last columns show that percent of samples that

all their units are non-rare in general inverse sampling is too smaller than simple

random sample one.

The simulation results in Table 3 shows that the modified regression estimator

and Greco and Naddeo’s estimator are more efficient than conventional estimator

in simple random sampling with a same effective sample size, and the modified

regression estimator is more efficient than Greco and Naddeo’s estimator. In Table

3 the values of efficiencies are large because the variables z, x, and y are strongly

strongly correlated, the correlation of each paired is more than 0.99.

An elementary comparison of Table 2 and Table 3 shows that when we have auxil-

iary variables that are correlated with the response variable using inverse sampling

with unequal selection probabilities is more efficient than using general inverse

sampling design because with a smaller sample size we gain very larger efficiency.
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Table 2

Simulation of efficiencies in the AS containment population in Kurdistan province.

m e(ȳGI.l) e(ȳSRS.l) E(n) n0 n1 pGI(0) pSRS(0)

2 25 6.6 58 40 100 1.7 11.3
3 24 8.7 74.8 40 100 1.5 5
4 21 10 88.1 40 100 1.8 2.8
4 31 13 110.6 80 150 0.09 1
5 20 11.6 95.7 40 100 1.4 2
5 28 17 128 90 150 0.1 0.4

The estimators ȳGI.l and ȳSRS.l are regression estimators in general inverse sampling

and simple random sampling, respectively. And pGI(0) and pSRS(0) are the percent of

samples that are selected just from non-rare subpopulation in general inverse sampling

and simple random sampling, respectively.
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Table 3

Simulation of efficiencies in the AS containment population in Kurdistan province.

m e(ȳUI.l) e(ȳGN ) rb(ȳUI.l) E(n)

2 721829 317339 -0.05 2.43
3 801387 315397 -0.03 3.64
4 808059 323608 -0.03 4.87
5 815476 322565 -0.02 6.1

The estimators ȳUI.l and ȳGN are regression estimator and Greco and Naddeo’s estimator

in inverse sampling with unequal selection probabilities. And rb(ȳUI.l) is relative biased

of the modified regression estimator.
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1. Introduction

Multivariate regression requires the design matrix for each of p dependent variables

to be the same in form. Zellner (1962) formulated Seemingly Unrelated Regression

(SUR) models as p correlated regression equations. SUR models allow each of the

p dependent variables to have a different design matrix with some of the predictor

variables being the same. Of particular relevance to path analysis, SUR models

allow for a variable to be both in the Y and X matrices. SUR models are a flexible

analytic strategy and are underutilized in educational research. As a prelude to a

SUR system, in the context of M simultaneous multiple regression equations, let

yi = Xiβi + εi (1)

be the ith equation of an M equation regression system with yi a T × 1 vector

of observations on the ith “dependent” variable, Xi a T × pi matrix with rank li,

of observations on pi “independent” non-stochastic variables, βi a pi × 1 vector

of regression coefficients and εi, aT × 1 vector of random error terms, each with

mean zero. The system of which (1) is an equation may be written as:




y1

y2
...

yM


 =




X1 0 . . . 0

0 X2 . . . 0
...

...
...

0 0 . . . XM







β1

β2
...

βM


+




ε1
ε2
...

εM


 . (2)
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The full model can be rewritten as

y = Xβ + ε (3)

where for n = MT , y is a (n × 1) vector of responses and X is a (n × p) block-

diagonal matrix, where p =
∑M

i=1 pi. The n× 1 disturbance vector in (2) and (3)

is assumed to have the following variance-covariance matrix:

Σ = Cov(ε)

=




σ11IT σ12IT . . . σ1MIT

σ21IT σ22IT . . . σ2MIT

...
...

...

σM1IT σM2IT . . . σMMIT




=




σ11 σ12 . . . σ1M
σ21 σ22 . . . σ2M
...

...
...

σM1 σM2 . . . σMM


⊗ IT

= Σc ⊗ IT (4)

where IT is a unit matrix of order T × T and σii = E(εitεit) for t = 1, 2, · · · , T
and i = 1, 2, · · · ,M . In temporal cross-section regressions, t represents time and

the model defined by (3) implies constant variances and covariances from period to

period as well as the absence of any auto or serial correlation of the disturbances

terms. Some interesting studies about SUR models include the couple of works

done by Zellner (1962, 1963), Revankar (1976), Baltagi (1980), Srivastava and

Giles (1978), Srivastvava and Maekawa (1995), Creel and Farell (1996), Moon and

Perron (2004), Alkhamisi and Shukur (2008), Alkhamisi (2009).

One particularly important hypothesis in SUR models relates to test for ag-

gregation bias, i.e.

H0 : β1 = β2 = · · · = βM or equivalently H0 : Hβ = h, (5)

where

H =




Ip1 −Ip2 0p3 · · ·0pM−2 0pM−1 0pM

0p1 Ip2 −Ip3 · · ·0pM−2 0pM−1 0pM

...
...

... · · ·
...

...
...

0p1 0p2 0p3 · · · IpM−2 −IpM−1 0pM

0p1 0p2 0p3 · · ·0pM−2 IpM−1 −IpM



, h = 0 =




0

0

0
...

0




For the case of known matrix Σc, it is well-known that under least squares (LS)

theory, when nothing is known about the parameter space β, the LS estimator
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say, unrestricted estimator (UE) of β is given by

β̇ = (X ′Σ−1X)−1X ′Σ−1y, Σ−1 = Σ−1
c ⊗ IT . (6)

Under occurrence of the linear restriction specified by (5), the restricted estimator

(RE) of β has the form

β̈ = β̇ − (X ′Σ−1X)−1H ′[H ′(X ′Σ−1X)−1H]−1Hβ̇. (7)

Now suppose that in general, Σ is unknown. Then the estimate of Σ is given

Σ̂ =
1

T − q
(y −Xβ̌)(y −Xβ̌)′, β̆ = (X ′X)−1X ′y. (8)

From Zellner (1962), substituting (8) in equations (6) and (7), respectively gives

the UE and RE of β as

β̃ = (X ′Σ̂
−1

X)−1X ′Σ̂
−1

y +O(T−1),

β̂ = β̃ − (X ′Σ̂
−1

X)−1H ′[H ′(X ′Σ̂
−1

X)−1H ]−1Hβ̃ +O(T−1). (9)

In the forthcoming section, we define a new estimator based on the RE of β given

by (9) under the presence of multicollinearity.

2. Singular SUR Model

For the consideration of a singular SUR system, under the assumptions of Section

1, based on the unified theory of LS proposed by Rao (1995), let

T = Σ+XUX ′, (10)

WhereU ≥ 0, and rank(T )= rank(Σ
... X). Now, we define the following lagrangian

criterion

F (β, λ) = (y −Xβ)′T−(y −Xβ) + 2λ′Hβ,

Where T− is the generalized inverse of T .

By making use of the equation (9), it is easy to show that differentiating F (β, λ)

by β and equating the derivatives to zero eventually yields the following RE of β

β∗
H = β∗ − (X ′T̂

−
X)−1H ′[H(X ′T̂

−
X)−1H ′]−1Hβ∗ +O(T−1), (11)

where

β∗ = (X ′T̂
−
X)−1X ′T̂

−
y +O(T−1), T̂ = Σ̂+XUX ′.

Now, we denote S = X ′T̂
−
X and W = S−1 −S−1H ′(HS−1H ′)−1HS−1, then

β∗
H can be rewritten as

β∗
H = WX ′T̂

−
y +O(T−1). (12)
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Multicollinearity is defined as the existence of nearly linear dependency among

column vectors of the design matrix X∗ in the linear model y∗ = X∗β + ε, where

y∗ is an n× 1 vector of observed responses, X∗ is the observed matrix of indepen-

dent variables of dimension n × p, assumed to have full rank p, β is an unknown

parameter, ε is an error vector.

We know that the LS estimator of β is given by β = T−1X∗′y, where

T = X∗′X. It is observed that the properties of the usual LS estimator of β

depends heavily on the characteristics of the information matrix T . If the matrix

T moves from well-conditioned ones to ill-conditioned (near dependency among

various columns of T = X∗′X∗) or is collinear, then the LS estimator is sensitive

to a number “errors”, namely, there is an “explosion” of the sampling variance

of the estimators. Moreover, some of the regression coefficients may be statisti-

cally insignificant with wrong sign and meaningful statistical inference becomes

impossible for practitioners.

An adequate remedy for the effect of collinearity is to abandon the use of

LS and use a biased estimation method known as ridge regression. To overcome

collinearity under ridge regression, Hoerl and Kennard (1970) suggested the use

of T (k) = X∗′X∗ + kIp, (0 ≤ k ≤ 1) rather than T , in the estimation of β,

thereby developing the idea of ridge estimation of β given by β∗
(k) = T

(−1)
(k) X∗′y.

The ridge regression approach has been studied by Hoerl and Kennard (1970),

McDonald and Galarneau (1975), Lawless (1978), Gibbons (1981), Sarkar (1992),

Saleh and Kibria (1993), Kibria and Saleh (2004) and Zhong and Yang (2007) to

mention a few.

Now consider the existence of multicollinearity. In this regard, we modify equa-

tion (12) and propose a conditional ridge- type estimation

β∗
H(k) = (kW + Ip)

−1β∗
H +O(T−1) (13)

Where k ≥ 0 is a constant (k is called conditional ridge parameter). If k chooses

different values, we can get different estimator. Especially, β∗
H(0) = β∗

H is the

conditional best linear unbiased estimator of β when k = 0. In the forthcoming

section, from Zhang and Yang (2007), we propose some properties of the estimator

defined by (13) ignoring the terms which are of order O(T−1), for the sake of

simplicity. More developments with the presence of O(T−1) and test of aggregating

leave for further research.

3. Properties

In this section we keep on expressing an important superiority property of the

proposed ridge estimator over its counterpart. Interested readers may refer to
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Zhang and Yang (2007) for the rest.

Lemma 3.1. (Wang, 1994) Suppose A is a real symmetric matrix, then A ≥ 0 ⇔
∀P ,P ′AP ≥ 0 ⇔ each eigenvalue of A is non-negative.

Lemma 3.2. W = S−1−S−1H ′(HS−1H ′)−1HS−1 ≥ 0 and rank(W ) = p− q.

Proof: From the definition of W , we have

WSW ′

= [S−1 − S−1H ′(HS−1H ′)−1HS−1]S[S−1 − S−1H ′(HS−1H ′)−1HS−1]′

= S−1SS−1 − S−1SS−1H ′(HS−1H ′)−1HS−1

− S−1H ′(HS−1H ′)−1HS−1SS−1

+ S−1H ′(HS−1H ′)−1HS−1SS−1H ′(HS−1H ′)−1HS−1

= S−1 − S−1H ′(HS−1H ′)−1HS−1 − S−1H ′(HS−1H ′)−1HS−1

+ S−1H ′(HS−1H ′)−1HS−1

= S−1 − S−1H ′(HS−1H ′)−1HS−1

= W (14)

As S = X ′T−X ≥ 0 and from Lemma 3.1, it is obvious that W ≥ 0.

Now, we start to prove rank (W ) = p − q. Since H is a q × p restricted matrix

with rank(H) = q, then there exists R, which is a p × p invertible matrix and

satisfies H = (Iq×q,0q×p−q)R.

We divide RS−1R′ into:

RS−1R′ =

[
R11 R21

R12 R22

]
(15)

Where R11 is a q × q matrix. So we have
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RWR′ = RS−1R′ −RS−1H ′(HS−1H)−1HS−1R′

=

[
R11 R21

R12 R22

]
−
[
R11 R21

R12 R22

] [
Iq×q

0

]([
Iq×q 0

] [R11 R21

R12 R22

] [
Iq×q

0

])−1

×
[
Iq×q

0

] [
R11 R21

R12 R22

]

=

[
R11 R21

R12 R22

]
−
[
R11

R21

]
R−1

11 (R11,R12)

=

[
R11 R21

R12 R22

]
−
[
R11 R21

R12 R21R
−1
11 R12

]

=

[
0 0

0 R22 −R21R
−1
11 R12

]

AsR22−R21R
−1
11 R12 is invertible, then rank(W ) = R(R22−R21R

−1
11 R12) = p−q.

Proposition 3.1. β∗
H(k) is a shrinkage and biased estimator of β.

‖β∗
H(k)‖2 = ‖(kW + I)−1β∗

H‖2

= ‖Q(kΛ+ I)−1Q′β∗
H‖2

= ‖kΛ+ I)−1Q′β∗
H‖2

< ‖Q′β∗
H‖2

= ‖β∗
H‖2

So β∗
H(k) is a shrinkage estimator.

As E(β∗
H(k)) = E((kW + I)−1β∗

H) = (kW + I)−1β 6= β, we can see β∗
H(k) is a

biased estimator.

Proposition 3.2. Under the meaning of Löwner partial ordering, the covariance

of the ridge-type estimation β∗
H(k) is consistently superior over the covariance of

the conditional estimator β∗
H , that is

Cov(β∗
H(k)) ≤ Cov(β∗

H)

Proof: Since

Cov(β∗
H) = Cov(WX ′T−y)

= σ2WX ′T−ΣT−XW ′,
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and

Cov(β∗
H(k)) = Cov((kW + I)−1β∗

H)

= (kW + I)−1Cov(β∗
H)(KW + I)−1

= σ2(kW + I)−1WX ′T−ΣT−XW ′(kW + I)−1

We can get,

Cov(β∗
H) − Cov(β∗

H(k)) = σ2WX ′T−ΣT−XW ′

−σ2(kW + I)−1WX ′T−ΣT−XW ′(kW + I)−1

= σ2(kW + I)−1[(kW + I)WX ′T−ΣT−XW ′(kW + I)

−WX ′T−ΣT−XW ′](kW + I)−1

= σ2(kW + I)−1[k2W 2X ′T−ΣT−XW 2

+kW 2X ′T−ΣT−XW ′ + kWX ′T−ΣT−XW 2](kW + I)−1

= σ2(kW + I)−1M (kW + I)−1

We note

M = k2W 2X ′T−ΣT−XW 2 + kW 2X ′T−ΣT−XW ′ + kWX ′T−ΣT−XW 2

For Σ ≥ 0, k ≥ 0 and from Lemma 3.1, we have

k2W 2X ′T−ΣT−XW 2 ≥ 0,

WX ′T−ΣT−XW ′ ≥ 0

For W ≥ 0, and using Lemma 3.2 we have

kW 2X ′T−ΣT−XW ′ ≥ 0,

kWX ′T−ΣT−XW 2 ≥ 0.

Thus we have M ≥ 0. So Cov(β∗
H(k)) ≤ Cov(β∗

H).
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In this paper we explain site data which are arising from clinical trials in periodon-
tics and dermatology. In periodontal and dermatological trials it is relevant to frame
a question in terms of sites than in terms of patients. Since host factors will influ-
ence all sites within a patient, it is obvious that sites within the same patient do not
respond independently, so conventional statistical methods are not applicable and we
should implement special statistical methods for their analysis. Split-cluster design is
an extension of site or clustered data, which clusters such as multiple sites or organs
in the same subject are assigned to different treatments. This design is popular in oral
health research but most statisticians are not even aware of the existence of it. One of
this design’s advantages is that it removes a lot of inter-individual variability from the
estimates of the treatment effect. In this article we explain and review the statistical
methods for analyzing site data and split-cluster design when our response is binary,
and also extend it to the case that we have baseline data in split-cluster design. The
methodology is applied to an in vivo clinical trial for comparing the efficiency of a new
treatment for gingival disease to a common treatment .

Keywords: Binary data, Dental clinical trials, GEE models , Interclass correlation, Site
data, Split-Cluster design.

1. Introduction

Split-cluster designs are widely used by researchers in the health sciences

when clusters such as multiple sites or organs on the same subject are assigned to

different treatments (Donner et al (2004)). If all sites of an individual receive the

same treatment, this is called the parallel-group design and it is the simplest and

the most popular design in clinical trial methodology.

A frequently well known example of split cluster design is the ”split-

mouth” design which is adopted by periodontal researchers, in which the mouth

is divided into two or more experimental units (segments) that are randomly as-

signed to different treatment groups (Donner and Zou (2007)). The investigators
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may then be interested in comparing the overall proportion of sites (teeth or tooth

surfaces) in each group that responds successfully to treatment. Other sciences in

which this design can be applicable are experimental trials in dermatology (Bigby

and Godenne ( 1986)) and animal studies (Weiss( 2002)).

This design has the advantage of insulating treatment comparisons from

inter-subject variability, and consequently have the potential to require many

fewer subjects than a parallel arm trial having the same power(Donner and Zou

(2007)and Emmanuel et al (2009)). Since the patient serves as his own control, it

can increase statistical efficiency and on average fewer patients are needed.

When our outcome variable is continuous, statistical methods for split-

cluster designs which are based on repeated measures analysis of variance, are

well-known. There is a brief review on the appropriate statistical methods such

as two way ANOVA and Paired t-test in the context of split-mouth designs by

Hujoel and Moulton (1988). However methods for the analysis of binary outcome

variables in split-cluster design are less developed.

In the next section of this paper we review characteristics of site or clus-

tered data and the appropriate statistical methods for their analysis when the

outcome variable is binary, in sections 3 we review different methods for analyzing

split-cluster designs with binary response, in section 4 and 5 we review different

methods for analyzing split cluster designs with binary response data that utilize

baseline measurements, and at last we implement our methodology on a real clin-

ical trial data for comparing the efficiency of a new treatment for gingival disease

to a common treatment .

2. Site or Clustered data

At the beginning we should discuss some characteristics of site data. In some fields

of research such as periodontal disease it is often more relevant to frame questions

in terms of sites than in terms of patients, so we should perform the statistical

analysis on a site basis. Sites measurements cannot be treated as independent

within patients. It is obvious that patients factors influence all sites within a cluster

so that sites within the same cluster will show association and are not independent,

so statistical methods which assume independently distributed observations cannot

be applied for analyzing site data. Here we determine a whole plot design in which

all sites in a group of patients receive treatment ”A” and all sites in the other

group of patients receive treatment ”B”, and our response is in binary form.

If the sites within a patient could be regarded as independent, then the

standard Pearson chi-square statistic (Fleiss (1981)), could be used to test the
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equality of proportions in two treatment groups, but Pearson chi-square test is

not a valid choice because of the clustering of sites within patients, and will lead

to biased p-values. The magnitude of the bias will increase with the number of

measurements per patient and with the size of the correlation among these mea-

surements. Donner and Banting (1988) proposed an adjustment to the standard

Pearson chi-square test that accounts for clustering effects in ”whole-cluster” de-

signs, in which all sites on a subject are assigned to either a treatment or a control

condition

We assume it is of interest to compare 2 treatments on 2 groups of patients

and we are interested about the prevalence of a specified characteristic over all sites

of patients. Suppose the number of patients in the ith group is denoted by ni, where

i = 1, 2 denotes the experimental and control treatments, and patient j in group

i contributes mij sites to the analysis, j = 1, 2, ..., ni, where the response for each

site can be classified as either a ”success” or a ”failure”.

We assume that
∑

i ni subjects have been selected at random, where subject

j,j = 1, 2, ..., ni, contributes a total of mj sites to the analysis. We also assume

that treatment i, i = 1, 2, is randomly assign to all sites of the jth subject, where

i = 1 denotes the experimental treatment and i = 2 denotes the control. So Yijl ,

l = 1, 2, ...,mij , j = 1, 2, ..., ni, i = 1, 2, denote the observed binary outcome for lth

site in jth subject who received treatment i, where Yijl = 1 denotes a ”success” and

Yijl = 0 denotes a ”failure”. (Yij =
∑

l Yijl) is the number of successes recorded

on the mij sites assigned to treatment i on patient j . Donner and Banting (1988)

assume that the Yij are independently distributed according to n independent

beta-binomial distributions. The probability density for one of these distributions

was defined by them as: P (Yij) = (
mij

Yij
)
Γ(αij+βij)Γ(Yij+αij)+Γ(mij−Yij+βij)

Γ(αij)Γ(βij)Γ(mij+αij+βij)
where

αij > 0, βij > 0 are unknown parameters, and Γ represents the gamma function.

This distribution is widely used to model dependent binary data. Donner and

Banting (1988) interpreted it in this way that each individual in group i, i =

1,2 characterized by his own success rate.The observed number of successes Yij
for individual j in this group is then assumed to follow a binomial distribution

conditional on mij and the value of this rate. The further assumption that the

individual success rates within a group vary according to a beta distribution yields

a beta-binomial distribution with expected probability of success given by Pi =
αij

(1+αij+βij)
.

Thus, the distribution ( may be regarded as resulting from a mixture of bi-

nomial (within-subject) and extra-binomial (between-subject)variation. The exis-

tence of extra-binomial variation implies that the intraclass correlation ρ is posi-

tive, where ρ is the correlation coefficient between any two responses on the same
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individual.

Here we will give some notations : We mentioned that Yij is the number of

successes recorded on the mij sites assigned to treatment i on patient j, the cor-

responding success rate is then given by P̂ij =
Yij

mij
. We also denote the overall

proportion of successes on treatment i by P̂i =
∑

j Yij∑
j mij

= Yi

Mi
and let P̂ =

∑
i Yi∑
i Mi

.

We assume that there is a common correlation ρ among outcomes (Yijl, Yijĺ) ob-

served in the same cluster.

Observed outcomes from different clusters are assumed to be statistically in-

dependent.

In clinical trials our aim is to test the null hypothesis H0 : P1 = P2 while

accounting for the clustering effects, Pi is the underlying site-specific success rate

for group i. For example, suppose we want to compare two treatments according

to their ability to cure a specified infection. Then Ho states that the percentage

of cured sites is the same for both treatments. Here we should understand that in

some trials it would be more important to know whether treatment ”A” was more

successful in eliminating infections in a higher percentage of sites than treatment

”B”, than to know whether ”A” totally eliminated infection in a higher percentage

of patients.

If there is no extra-binomial variation, then ρ = 0 and we can test Ho by the

standard Pearson chi-square statistic with (2-1) degrees of freedom.The Pearson

chi-square statistic can be written as: χ2
p = (P̂1−P̂2)

2

P̂ (1−P̂ )( 1
M1

+ 1
M2

)
where Mi =

∑
j mij .

If ρ > 0, χ2 is no longer approximated by a chi-square distribution, but we can

apply a modified form of it which has been introduced by Donner and Banting

(1988).

They measure dependencies among observations in the same cluster by the

intracluster correlation coefficient, and the ”analysis of variance” estimator of ρ is

ρ̂ = (MSC−MSW )
(MSC+(m0−1)MSW ) where m0 = (M −∑i m̄Ai)/(N − 2), N =

∑
i ni , M =

M1 +M2, MSC =
∑

i

∑
j mij((P̂ij − P̂i)/(N − 2)), MSW =

∑
i

∑
j mijP̂ij(1 −

P̂ij)/(M −N), and m̄Ai =
∑

j m
2
ij/Mi .They defined a clustering correction factor

as Ci =
∑

j mij [1 + (mij − 1)ρ̂]/Mi, i = 1, 2 .

Donner and Banting (1988) adjusted chi-square statistic is, χ2
A = (P̂1 −

P̂2)
2/VA, where VA = P̂ (1 − P̂ )(C1/M1 + C2/M2). Under H0, χ

2
A, approximately

have chi-square distribution with one degree of freedom. We can proof easily that

when ρ̂ = 0, χ2
A reduces to the standard Pearson chi-square statistic χ2

P , that we

have introduced before.
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3. Split-Cluster design

Split cluster design is an extension of clustered data or site data that we have

discussed briefly in the previous section.We will explain a case in which each of

k clusters is divided into exactly two segments, each segment can contain one or

more sites (e.g., teeth), and the two segments in each cluster are randomly assigned

to experimental or control treatment.

So we have k subjects that have been selected at random, and subject

j, j = 1, 2,...,k, have a total of m1j +m2j sites to the analysis. We also assume

that treatment i, i = 1, 2, is randomly assigned to one of two segments of the

jth subject, where i = 1 denotes the experimental treatment and i = 2 denotes

the control. We define Yijl as the response for the lth site of the segment which

receives treatment i, in the jth subject. In the previous part we mentioned that

there is a correlation among outcomes which are in the same cluster, here in

split cluster design there is a common correlation ρ among outcomes (Yijl , Yijĺ)

observed in the same segment, but we have another kind of correlation which is

among outcomes (Y1jl, Y2jĺ) observed in different segments within the same cluster

and we showed it by ρ12. We assume that outcomes from different clusters are

statistically independent from each other. In clinical trials we want to test the null

hypothesis H0 : P1 = P2 . For split cluster designs Donner et al (2004) on the

basis of an extensive simulation study recommended to use a procedure which is

based on a generalization of the standard Pearson chi-square statistic that takes

into account both the clustering of sites within segments and the pair-matching of

segments within subjects.

In their generalization form of χ2
A they account for the correlation among

matched pairs by adjusting the variance of P̂1− P̂2 in the denominator of statistic.

Donner et al (2004) has corrected the variance by VGA = P̂ (1 − P̂ )(C1/M1 +

C2/M2 − 2ρ̂12
∑

j m1jm2j/(M1M2)), where ρ̂12 may be obtained by computing

the standard Pearson correlation over all possible pairs (Y1jl, Y2jĺ) within a cluster,

where each pair contains a single observation from each segment.

ρ̂12 =

∑k
j=1(Y1j −m1jP̂ )(Y2j −m2jP̂ )√∑k

j=1m1j(Y1j − 2Y1jP̂ +m1jP̂ 2)
∑k

j=1m2j(Y2j − 2Y2jP̂ +m2jP̂ 2)
(1)

Then the generalized version of the adjusted chi-square statistic is given by

χ2
GA =

(P̂1 − P̂2)
2

VGA
(2)

where χ2
GA follows an approximate chi-square distribution with one degree of

freedom under H0.
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Another method that is often reported in split-cluster designs for testing H0 :

P1 = P2 is the standard Paired t-test, this test can be applied to the differences

dj = P̂1j − P̂2j . The test statistic is tP = d̄
S/

√
k
with k − 1 degrees of freedom,

which d̄ =
∑

j dj/k andS2 =
∑

(dj − d̄)2/(k − 1). We know that the normally

distributed with equal variances assumptions of the djs are violated, there is an

alternative way and we can use nonparametric tests such as the Wilcoxon signed

rank test but we would lose some power.

4. Statistical analysis of binary data in Split-Cluster design with

baseline measurements

In many split-cluster designs, a baseline measurement may be obtained on each

site within a segment. Since there is usually a high correlation between outcome

measurement and its baseline measurement in site data, we can improve the effi-

ciency of our analysis by accounting the baseline measurements in the analysis. We

know that if we do not adjust an influential covariate in the analysis the statistical

power will be reduced. However when our response variable is binary, methods

for the statistical analysis of this kind of design are not developed. Donner and

Zou (2007) presented several analytic approaches that can be implemented in such

cases, they showed that the efficiency of statistical inferences can be improved by

incorporating the baseline information.

In this part we introduce some methods that Donner and Zou (2007) was

originally worked on it and can be used in cases with such kind of data . All

notations are like the previous part, we introduce another notation similar to Yijl
that accounts for baseline measurements; baseline measurements can be defined

as Xijl, with the superscript (0) used to denote success rates observed at baseline.

For example, we define P
(0)
ij = Xij/mij and P

(0)
i =

∑
j Xij/

∑
j mij , where P̂

(0)
i

estimates the true proportion of successes for group i at baseline .

For testing the hypothesis that there is no differences between the two

groups and taking into account the measurements at baseline Donner and Zou

(2007) develop a test statistic based on change scores measured from baseline,

they define a parameter for testing the null hypothesis that is: ∆ = (P1 − P
(0)
1 )−

(P2 − P
(0)
2 ) so the null hypothesis could be stated in this way: H0 : ∆ = 0, and

the test statistic would be;

χ2
CH =

∆̂2

VGAC
(3)

which its distribution is chi-square with one degree of freedom. VGAC is the esti-

289



July 28, 2010 16:45 ISC10 - Proceeding proceeding

The 10th Iranian Statistical Conference University of Tabriz, August 2010

mated variance of ∆̂ = (P̂1 − P̂
(0)
1 )− ˆ(P2 − P̂

(0)
2 ),

VGAC =

ˆvar(P̂1 − P̂
(0)
1 )− 2ρ̂12c

√
ˆvar(P̂1 − P̂

(0)
1 ). ˆvar(P̂2 − P̂

(0)
2 ) + ˆvar(P̂2 − P̂

(0)
2 ) (4)

these variances can be estimated as

ˆvar(P̂i − P̂
(0)
1 ) = ˆvar(P̂i)− 2 ˆcov(P̂i, P̂

(0)
1 ) + ˆvar(P̂

(0)
i ) (5)

where ˆvar(P̂i) =
∑

j(Yij−mij P̂i)
2

(
∑

j mij)2
, and ˆcov(P̂i, P̂

(0)
1 ) =

∑
j(Yij−mij P̂i)(Xij−mij P̂

(0)
i )

(
∑

j mij)2

In this design the correlation between two change scores observed in different

segments within the same subject is denoted by ρ12c = corr(Y1jl − X1jl, Y2jl −
X2jl).The intrasubject correlation ρ12c between a pair of change scores observed

in different segments can be estimated in this way: first form all pairs of change

scores for treatment (d1jl = Y1jl − X1jl)and control (d2jl = Y2jl − X2jl) within

a subject and then compute the standard Pearson correlation over the set of all

such pairs.

5. Generalized Estimating Equations approach

Another approach that can be useful for modeling data with baseline measure-

ments in split cluster designs is the generalized estimating equations models. These

models are not susceptible to problems that results from regression to the mean

in the presence of baseline imbalances. GEE methods are initially introduced by

Liang and Zeger (1986). GEE models are a good choice when we want to adjust

our model for site-specific covariates and test their effects. GEE modeling relies

on variance estimators constructed using between-cluster information, as a result,

it requires a larger number of clusters as compared to χ2
CH . In GEE modeling the

binary follow-up measurement is used as the outcome variable and the baseline

measurement and treatment group can be set as covariates.In the preceding model

Tijl = 0, 1 denote the control and experimental treatments and Xijl is the baseline

measurement for the lth site in the segment which received treatment i for the jth

subject.

logit[Pr(Yijl = 1)] = β0 + β1Tijl + β2Xijl (6)

6. Application to a real data set

We implemented our statistical method in an in vivo study which was done by the

Dental Research Center of Shahid Beheshti University. In this clinical trial five dogs

with gingival disease which were met the inclusion criteria were participated in the

study. The treatment procedure consists of isolating two teeth in each of the right
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and left segments with cotton rolls and then have the treatment for the distal and

mesial areas of the two teeth with either chitosan (control) or chitosan + fibroblast

(experimental treatment). Determination of treatment condition (chitosan versus

chitosan + fibroblast) for each segment was random and independent for each

dog. The operator was unaware of the treatment that was applied. The measures

associated with the width of gingiva were recorded at sites (distal and mesial) on

each of the two selected teeth on the right and left segments, at baseline and after

intervention. The left and right segments of the dogs jaw were randomly assigned

to chitosan (control) or chitosan + fibroblast (treatment). Each treatment was

applied to 4 sites(distal and mesial areas of the two teeth in each segment)so in

this study m = 8 and m1j = m2j = 4, k = 5, if the measured width in in each site

was less than 5 we recode it to 0 and if it was greater than 5 we recoded it to 1,

codes were used for computing the statistics.

The sample estimates of P1 and P2, the proportion of patients with width ≥ 5 in

the control and experimental groups, respectively, are given by P1 = 0.3 and P2 =

0.15, with the intrasegment and intersegment correlation coefficients estimated as

ρ̂ = 0.23 and ρ̂12 = −0.004. SAS codes for computing the statistics were used.The

values of the statistics for testing H0 : P1 = P2 are given by χ2
GA = 0.75 which is

not significant.

The sample estimates of P
(0)
1 and P

(0)
2 , the proportion of patients with width ≥

5 in the control and experimental groups at baseline, respectively, are given by

P
(0)
1 = 0 and P

(0)
2 = 0.15, with the intersegment correlation coefficients estimated

as ρ̂12c = 0.The value of the statistic for testing ∆ = 0 is given by χ2
CH = 5.29

which is significant (p = 0.025), and it is more significant than that obtained when

baseline measurements were ignored. We were not be able to estimate parameters

in GEE model, because the generalized Hessian Matrix was not positive definite,

we know that GEE modeling requires a large number of clusters to ensure its

validity , in this example we have only five clusters and maybe that is the reason

that we were not be able to estimate GEE parameters.

7. Discussion

A Monte Carlo simulation study that was implemented by Donner and Banting

(1988) show that the adjusted chi-square test provides significance levels very close

to nominal value over a wide range of parameter values. In the case of a constant

mij = m, the clustering adjustment implied by this model is simply the division of

the standard Pearson chi-square statistic by an estimate of the factor 1+(m− l)ρ,
that in cluster sampling we known it as variance inflation factor .

A simulation study was conducted by Donner et all (2004)to compare the

size and power of the test statistics that was described for split-cluster studies. For
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the case of balanced cluster sizes, five sites in each cluster were assigned to either

the intervention or control treatment. Their results show that the two procedures

that we have mentioned for split cluster designs show empirical type I errors that

are reasonably close to 0.05 under all parameter combinations considered in both

the balanced and unbalanced cases. While imbalance in cluster size is seen to be

accompanied by some loss in power for the both two procedures, but the effect

on tP was more severe. The statistics χ2
GA show greater power than tP at all

parameter combinations.

When Baseline data are available, they can be used in order to increase the

efficiency of the statistical analysis.Donner and Zou (2007) stated that χ2
CH is a

good choice for studies which enrolls 30 subjects or less, particularly if event rates

are expected to be small. The simulation results by Donner and Zou (2007) show

that GEE models tend to show significance levels that are somewhat unstable at

n =20 and 30 when the baseline rates are equal to 0.1. However, GEE procedure

provides acceptable type I error rates for all parameter values at n =50, so it

requires a larger number of clusters to ensure its validity as compared to χ2
CH ,

particularly when event rates are small. In the practical example that we used in

this paper, we have only five clusters and maybe that is the reason that we were

not be able to estimate GEE parameters,and it seems that it is more appropriate

to interpret the value of χ2
CH and χ2

CH is the best choice.
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Independent Component Analysis (ICA) is a method for solving Blind Source Sepa-
ration (BSS) problem. Since BSS is a real-world problem, its solution should be as
realistic as possible. What always exists in real world is noise and therefore, it is very
interesting to include noise in this model, we call this model noisy-ICA (NICA). In this
report we try to use wavelets as natural denoising tools, in order to solve the NICA
model. For this purpose we use the algorithm proposed by Aminghafari et al. [1] with
a statistical approach.

Keywords: Independent Component Analysis; Noisy ICA; Wavelet Transform; Denois-
ing; Fast ICA Algorithm.

1. Introduction

ICA is a multivariate statistical technique which has many applications in different

fields which are extended from chemistry to music. However, most of the solutions

of ICA do not consider noise in the model while it is inevitable in real-world

problems, for a review of such solutions see e.g. Hyvärinen and Oja [6].

Wavelets are known as natural denoising tools, therefore, it is tempting to use

them for solving the NICA model. There are some authors who used wavelets

for this problem, e.g. Azzerboni et al. [2] and Tkacz [8]. Also we (Nassiri and

Aminghafari [7]) proposed a method using wavelets for NICA in ISC9.

In this paper we try to apply a multivariate denoising method using wavelets

and principal component analysis (PCA) introduced by Aminghafari et al. [1] in

the NICA case. For this purpose we use a statistical approach using design of

experiments (DOE) techniques for proposing an optimal algorithm, while it is not

possible to find an optimal solution analytically, using statistical methods may

give a useful answer to the question of optimal solution. The article is organized

as follows. Section 2 will introduce the ICA model and its extension to the noisy

case. In Section 3 we present the denoising algorithm and discuss how it can be

used for solving NICA model. Our statistical approach for finding best solution of

NICA using wavelet denoising will presented in Section 4. Section 5 is dedicated
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to present the results of our study and finally in Section 6 the report is concluded.

2. ICA and NICA Models

In this section the ICA and NICA will be presented. Also the different kinds of

noise and the performance of ICA-solving algorithms will be discussed.

2.1. ICA and NICA

Independent Component Analysis (ICA) is a recently developed solution for blind

source separation (BSS) problem.

A simple description of BSS problem is a cocktail party. Consider two people

are speaking simultaneously in a room. There are two microphones in different

locations which record two signals. Obviously each of these signals is a mixture of

the signals emitted by each person. In a linear approach, it’s common to express

this as linear equations as follows:

X1 = a11S1 + a12S2

X2 = a21S1 + a22S2

in matrix notation one can writes X = AS, where A is a square invertible mixing

matrixa. Now the problem is finding S, just with knowing X . This is why it is

called blind; since we have nothing more than an observed sample. If A is known,

the problem is a simple linear system of equations, but in real world A is unknown.

In order to solve this problem by ICA, we assume that Sis (i = 1, . . . , k) are

independent. This assumption is logical in many cases. ICA tries to find such an

A which Sis are as independent as possible.

The general technique which is used to solve the ICA problem is considering a

constraint which gets its extremum when the independence is true. Some famous

constraints are achieved by maximizing non-Gaussianity. The motivation of this

approach comes from central limit theorem (CLT). The most famous algorithm

which uses the maximizing of non-Gaussianity is fastICA (Hyvärinen and Oja [5]).

One can easily extend the ICA model to the noisy case as follows,

X = AS + ε (1)

where ε is an additive noise with the following properties,

• ε is independent of the ICs

• The covariance matrix of ε is diagonal

• ε follows a Gaussian distribution

aThis condition can be relaxed in many situations
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• The covariance matrix of ε is known

in the rest of this atricle we try to exclude some of these assumptions which are

not so realistic.

2.2. Source noise and sensor noise

Regarding the additive noise ε in Model (1), one may consider two kinds of noise.

If you add the noise to X , i.e. X = AS + ε as in (1), it is called the sensor noise,

but in some situations the source signals, S, may be noisy themselves, in this case

the model is as follows,

X = A(S + ε) = AS +Aε = AS + ε′ (2)

this model is known as source noise model. As one may see, the two models are

the same at last, but one of the most interesting facts about source noise model is

that the assumption said the covariance of ε is diagonal may no longer be true.

2.3. Estimating the mixing matrix in NICA model

The process of solving the ICA model has two main steps,

1. Estimating the mixing matrix A

2. Estimating the source signals S

now we concern on the first step. Gaussianity of the noise plays the main role in es-

timating A for NICA model. Because, as we denoted before, algorithms such as fas-

tICA uses maximizing non-Gaussianity for estimating A. In fact, if ai (i = 1, . . . d)

denotes the columns of A then in ordinary ICA, these methods try to find such

an ai which the non-Gaussianity of the vector aTi X becomes maximum, where T

denotes the transpose. For this purpose they use some indexes of non-Gaussianity

such as Kurtosis or negentropy. Therefore, in the case of NICA we need to find such

an ai which non-Gaussianity of aTi X + aTi ε (or a
T
i X + ε) becomes maximum. For-

tunately, as Hyvärinen [4] showed, estimating A with maximizing non-Gaussianity

using indexes such as kurtosis or negentropy does not be affected by the noise

under certain conditions. In fact we can separate noisy signals, therefore, the last

step is to extract original signals from noisy ones. In next section this matter will

be discussed.

3. Extracting source signals using wavelet denoising

As in previous section denoted, algorithms such as fastICA can estimate the mixing

matrix A regardless of noise. Now, if for the sake of simplicity we consider A as a

square invertible matrix, then,

X = AS +Aε⇒ S = A−1X −A−1ε = A−1(X + ε′)
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therefore, the noisy signals are separated, the only thing remains is denoising.

Wavelets are natural denoising tools, therefore, the straightforward solution is

to apply discrete wavelet transform (DWT) on each column of X+ noise. But,

this approach is useful when the covariance matrix of noise is diagonal, while as

one may find out, it may not be true in NICA model, therefore, here we use

an extension of denoising by wavelets proposed by Aminghafari et al. [1] which

considers the correlations of noise. We call this algorithm here MWD (multivariate

wavelet denoising), MWD has different versions, the one which is useful for our

problem is as follows, here we denote the noisy source signals by Sn.

1. Perform the wavelet transform at level J of each column of X

2. Define Σ̂ε the estimator of noise covariance matrix as Σ̂ε = MCD(D1) and

then compute V such that Σ̂ε = V ΛV T where Λ = diag(λi). Apply to each

detail after change of basis (namely DjV, 1 ≤ j ≤ J), the p univariate thresh-

olding strategies using the threshold ti =
√
2λi log(n) for the ith column of

DjV . Here p is the number of signals and n is the number of observations.

3. Reconstruct a denoised matrix Š, from simplified detail and approximation

matrices, by changing of basis using V T and inverting the wavelet transform

4. Perform a final Principal Component Analysis (PCA) on the matrix Š ob-

tained at step 4 and select p̌ PCs.

where MCD(D1) is applying a covariance estimating method introduced by

Rousseeuw (1984) on D1 which is the detail at level 1.

As it can be found by using this algorithm we exclude two assumptions on ε:

Σε is known and diagonal. However, there are some questions remains on how to

use MWD and fastICA together, next section tries to answer them.

4. Some considerations on how to use MWD and fastICA

together

A very common preprocessing step in using fastICa is making the signals white

using some ordinary methods such as PCA or singular value decomposition (SVD),

thus an estimation of the covariance matrix of X is needed. Therefore, in using

MWD and fastICA for NICA model we have these options,

• First using fastICA for separating noisy signals and then denoising them using

MWD, which may have two variations,

– Using ordinary estimator of covariance matrix for whitening

– Using E(X ′X)−MCD(D1) for whitening

• First using MWD for denoising X and then using fastICA for separating

denoised signals
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choosing each of the above options, we need to choose at least three following

items,

• Type of wavelet (DB, Sym, etc. )

• type of thresholding (hard or soft)

• How to perform thresholding (universal or level dependent)

Unfortunately, it is impossible or nearly-impossible to choose the best combination

of those options analytically for a general problem. Here, we propose a practical

way using statistical technique, design of experiments (DOE).

Here we want to find the best solution for NICA among those denoted above,

by choosing the best wavelet and the best thresholding strategy. In the first step

we need to choose the wavelet type, then we should choose between hard and soft

thresholding and at last we should decide to threshold level dependent or universal.

In fact, if we choose some levels for each factor, the effective factors in denoising

have some levels which are nested in each other. Let choose DB4, Sym4 and Haar

as the levels of wavelet type. Now for determining the effectiveness of each factor,

a suitable design is a nested design. For collecting the information we need to use

simulation, therefore, we need to determine dome distributions to simulate from.

For sure the selected distribution will affect our results, therefore, the type of

distribution is a nuisance factor and in order to exclude its effect from the results,

we can consider it as a block factor, therefore, the final design is a nested block

design. Let us to use Uniform(0, 1), EXP(1), i.e. exponential distribution with

parameter λ = 1, and t(8), i.e. t-Student distribution with 8 degrees of freedom,

as the levels of the nuisance factor. These three distributions can be regarded as

representations of three type of distributions: symmetric, skew and uniform.

Remark 4.1. Since for two factors the type of wavelet and the type of distribu-

tion, we select just three among many choices, therefore, as it is usual in design and

analysis of experiments we should consider them as factors with random effect, but

because we choose them as representative ones not by chance, we consider them

as fixed effect factors.

The last thing remains for constructing our model is the response variable. There

are two important features for evaluating the goodness of NICA solution: good

estimation of A and good estimation of source signals. Therefore, we also need

two response variables for evaluating each of them.

For evaluating the goodness of estimation of A we use an index called Amari

Distance (AmDi) introduced by Cichoki et al. (1996), here we use a normalized

version of it which varied between 1 and 100 used by Barbedor [3]. Consider
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P =WA where W is the estimated demixing matrix, AmDi is as follows,

AmDi =
100

2d(d− 1)





d∑

i=1




d∑

j=1

|Pij |
maxk |Pkj |

− 1


+

d∑

j=1

(
d∑

i=1

|Pij |
maxk |Pjk|

− 1

)

(3)

where d is the number of components.

For evaluating the goodness of estimating of the source signals, Mean Square

Error (MSE) is a natural choice, but for some restrictions in ICA model (for more

information see e.g. Hyvärinen and Oja [6]), we propose to use MSE as follows,

MSE =
1

dn

n∑

i=1
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j=1
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i
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d∑

j=1

Ŝj




i





2

(4)

The final model is as follows,

yijklm = µ+ αi + βj(i) + γk(ij) + δ(ijk)l + ε(ijk)lm (5)

where µ is the overall effect of the treatments, αi is the effect of chosen wavelet,

βj(i) is the effect of choosing between soft and hard thresholding, γk(ij) is the effect

of choosing between level dependent and universal thresholding, δ(ijk)l is the effect

of block variable and ε(ijk)lm is the error. Now, the only thing remains is to collect

the data for our experiment and then analyze the results.

Data are simulated with 5 replications for each distribution and obviously not

all of them are converged. We repeat the simulation for two different methods

and also once for sensor noise and once for source noise. After collecting the data,

the response variable for the case of MSE did not follow Gaussian distribution,

therefore, ordinary analysis of variance was not possible, so we use some suitable

non-parametric methods.

Based on the results, which are available if needed, the effective factors for

both MSE and AmDi are as follows,

• Type of wavelet: DB4

• Type of thresholding: hard

• Strategy of thresholding: level dependent

Interestingly, the results obtained by our approach is in agreement with what we

expect logically. Symmlet is mostly used in image processing, soft thresholding is

used when the original signal is smooth while in the case of ICA it is a random

sample of a non-Gaussian distribution and universal thresholding is a special case

of level dependent thresholding.

Remark 4.2. In most of the denoising procedures, the original signal supposed to

be smooth and the noise is random. The problem with ICA is that both the signal
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and the noise are random, but fortunately the assumption of non-Gaussianity of

the signal helps use for denoising by wavelets, since the threshold used before,

can exclude a Gaussian noise and since the original signal is non-Gaussian the

proposed method may have a good performance.

5. Results: the best solution for NICA

In this section we use simulation to find the best solution for NICA model. For this

purpose, three different methods based on the combination of MWD and fastICA

and also the method of whitening are considered.

1. MWD+fastICA

2. fastICA+MWD and using the ordinary estimation of variance of X for

whitening

3. fastICA+MWD and using Ê(X ′X)−MCD(D1) as the estimation of covari-

ance of X for whitening.b

For performing simulation, we use 2600 replicates and apply each of the above

methods on the data generated in each replication, then MSE, AmDi and the

result of convergence of fastICA computed. For the distribution which data sim-

ulated from we select one of the three denoted distribution by chance (each with

probability 1/3). The sample size in each replication was 1024 and also we have

separate surveys on sensor and source noise. For wavelet denoising we use J = 5

which is usual for a signal with length 1024.

The results for sensor noise is presented in Table 1.

Method AmDi MSE % convergence

MWD+ICA 41.09159 105549 93.96154

ICA+MWD† 21.0314 14789.38 98.26923

ICA+MWD‡ 20.93285 15484.21 98.23077

† using the ordinary estimation of variance of X for whitening
‡ using Ê(X ′X)−MCD(D1) for whitening

also the results for source noise is presented in Table 2.

According to the results superiority of ICA+MWD is obvious. Of course, the

percentage of convergence of MWD+ICA is greater than ICA+MWD in source

noise case. Another results which can be obtained is that there is no obvious

preference between two method of whitening. Therefore, for choosing between

busing this method is called quasiwhitening
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Method AmDi MSE % convergence

MWD+ICA 40.44435 26152.75 93

ICA+MWD† 25.96535 11964.02 81.96154

ICA+MWD‡ 25.67344 11844.02 81.34615

† using the ordinary estimation of variance of X for whitening
‡ using Ê(X ′X)−MCD(D1) for whitening

them we need an index to use case to case for real-world data. We propose the

signal to noise ratio (SNR) for this purpose. SNR is derived based on the fact that

in practice one expects the variance of noise be larger than the variance of signal,

SNR =
Var(X̌)

Var(X − X̌)
(6)

it is obvious that a technique with less SNR is preferred.

Remark 5.1. Considering a note on why ICA+MWD is preferred to MWD+ICA

may be interesting. One may know that the elements of X which are sums of some

random variables have Gaussian distribution (according to the famous CLT). Now,

when you add the Gaussian noise to them, the MWD cannot separate these two

Gaussian vectors, because both of them are random samples. Therefore, performing

the ICA first can solve this problem better.

6. Conclusions

In this article we used a statistical approach for determining the effective factors

for using wavelets in NICA model. Also by simulation we find the best combination

of fastICA and MWD algorithms. Based on the derived results we can propose the

final algorithm with the following steps.

• Step1. Estimating the covariance of noise using MCD(D1) and call it Σ̂ε

• Step2. Whitening data using E(X ′X)− Σ̂ε and call it X̃

• Step3. Performing fatsICA on X and denoising the derived matrix by MWD,

then computing the mean of SNR for each of its columns and call it SNR1

• Step4. Performing fatsICA on X̃ without the whitening step and denoising

the derived matrix by MWD, then computing the mean of SNR for each of

its columns and call it SNR2

• Step5. Comparing SNR1 and SNR2, then choose the method with less SNR.
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An Overview of Composite Likelihood Methods: with emphasis on

applications

A. Nematollahi

Department of Statistics, Shiraz University

The large number of parameters involved in the multivariate case makes the determi-
nation of maximum likelihood estimators much difficult and complicated, as it is not
possible to compute the maximum likelihood estimator (MLE) of the parameters in-
dependently of variance-covariance matrix. In the case that the likelihood function is
difficult to evaluate, certain methods based on modifications of the likelihood are used
by several authors. In this work, we concentrate on the maximum pairwise likelihood
estimator for the parameters in the three important cases: in symmetric normal model,
in penalized linear models and finally in the multivariate AR(1) time series models.
We observe that the loss of efficiency compared to maximum likelihood estimator is
negligible, as tedious computations exist in formulating the later estimator.

1. Introduction

The large number of parameters involved in the multivariate case makes the de-

termination of maximum likelihood estimators much difficult and complicated, as

it is not possible to compute the maximum likelihood estimator (MLE) of the pa-

rameters independently of variance-covariance matrix. It amounts to solve tedious

nonlinear equations involving variance-covariance matrix. In principle, maximum

likelihood estimators can be computed with the aid of certain nonlinear opti-

mization algorithms. In such procedures, it is important to begin the search with

primary reasonable estimates. In the case that the likelihood function is difficult

to evaluate, certain methods based on modifications of the likelihood are used by

several authors.

Besag (1974, 1977) suggests pseudolikelihood for inference in spatial data. Pseu-

dolikelihood is called composite likelihood by Lindsay (1988). Cox (1975) intro-

duces the partial likelihood, and applies for fitting proportional hazard models.

The pairwise likelihood, given by Cox and Reid (2004), takes the bivariate mar-

gins to produce the pseudolikelihood. For an excellent review on this topic with

emphasis on some applications in genetic, longitudinal data, survival analysis and

spatial statistics see Varin (2008).

In this paper, we concentrate on the maximum pairwise likelihood estimator
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for the parameters in the three important cases: in symmetric normal model, in

penalized linear models and finally in the multivariate AR(1) time series models.

We observe that the loss of efficiency compared to maximum likelihood estimator

is negligible, as tedious computations exist in formulating the later estimator.

2. Preliminaries

Let Y = (Y1, Y2, . . . , Ym)
′
be a m dimensional random vector with joint density

f (y, θ) , where θ ∈ Θ ⊆ Rm is unknown parameter. Under the usual regularity

conditions and from n independent observationsY1, ...,Yn, the MLE of θ, denoted

by θ̂, has an asymptotically multivariate normal distribution with mean θ and

variance-covariance the inverse of the expected Fisher information

J(θ) = E

[
−∂

2 log f (Y1, ...,Yn, θ)

∂θ∂θT

]
.

There are a number of situations where it is difficult to specify the full m-

dimensional distribution in simple form but it maybe possible to specify some

low-dimensional distributions. Here we consider the two-dimensional one, i.e., we

concentrate for all i, j = 1, ...,m the bivariate densities f (yi, yj , θ) for i 6= j.

The pairwise likelihood (PL) from a single m-dimensional random vector Y, is

constructed by (Cox and Ried (2004))

Lpl (y, θ) =

m−1∏

i=1

m∏

j=i+1

f (yi, yj, θ) .

If the true parameter value θ0 belongs to the interior of the compact parameter

space then the PLE of θ, denoted by θ̃, is the solution of the composite score

function,

S2 (y, θ) =

m−1∑

i=1

m∑

j=i+1

∂ log (f (yi, yj , θ))

∂θ
= 0.

Since the composite score is a linear combination of valid likelihood score func-

tions, then its unbiasedness follows under usual regularity conditions.

The information in the composite score equation provided by n observations is

given by

G (θ) = J2 (θ)K
−1
2 (θ)J2 (θ)

where

J2 (θ) = E

(
−∂S (θ,y)

∂θ

)
,
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and K2 (θ) , is the variance of the composite score matrix given by

K2 (θ) = E[S (θ,y)S (θ,y)
T
].

Quantity G (θ) is known as Godambe information or sandwich information.

Under some suitable regularity conditions, it can be shown that θ̃ is consistent and

asymptotically normal distributed with asymptotic mean θ, and variance matrix

G−1 (θ) = J−1
2 (θ)K2 (θ)J

−1
2 (θ) ,

see Cox and Ried (2004) and Varin and Vidoni (2006). Note that, using pairwise

likelihood, the information identity does not hold (since the model is misspecified),

and hence the asymptotic variance matrix appears in the current form (Godambe

or sandwich).

The asymptotic relative efficiency of θ̂ with respect to θ̃ is therefore

ARE(θ̂|θ̃) = { det(J(θ))

det(G (θ))
}1/m,

and

ARE(θ̂r|θ̃r) =
(G (θ))rr
(J(θ))rr

, r = 1, ...,m,

where (C)rr is the (r, r)th element of the inverse matrix C−1, see Davison, 2003.

3. Application 1: Symmetric normal model

Cox and Ried (2004) considered the following simple symmetric model; suppose

Yq×1 ∼ Nq


0,




1 ρ · · · ρ
ρ 1 · · · ρ
...
...

...
...

ρ ρ · · · 1





 ,

so that every pair Ys and Yt has marginally a bivariate normal density with corre-

lation ρ. The asymptotic variance of the usual MLE of ρ,, based on n such vectors,

is

2

nq(q − 1)

{1 + (q − 1)ρ}2(1 − ρ)2

1 + (q − 1)ρ2
,

and the asymptotic variance based on the pairwise likelihood is
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2

nq(q − 1)

1− ρ2c(q, ρ)

(1 + ρ2)2
,

where

c(q, ρ) = (1− ρ)2(3ρ2 + 1) + qρ(−3ρ3 + 8ρ2 − 3ρ+ 2) + q2ρ2(1 − ρ)2.

Asymptotic relative efficiency of pairwise likelihood relative to full maximum like-

lihood, for q = 3, 5, 8, 10 (descending). This ratio is 1 for q = 2, as expected, and is

also 1 if ρ = 0 or 1, for any value of q. Figure 1 illustrates the loss of information

with increasing q.

Fig. 1. Ratio of asymptotic variance of ρ̂ to ρ̂2, as a function of ρ for fixed q. At q = 2 the ratio
is identically 1. The lines shown are for q = 3, 5, 8, 10 (descending);

4. Application 2: Penalized composite likelihood

The following penalized model has been studied in an unpublished work by Nema-

tollahi and Davison (2009). We have a response (observed) vector y of dimension

n such that

y|u =




y1
y2
...

yn


 ∼ Nn

(
Xβ + Zu, σ2In

)
,
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where

X = [xij ]i=1,...,n;j=1,...,p : is a n× p (known) matrix of covariates,

β = (β1, ..., βp)
T
: is an unknown corresponding p× 1 parameter vector,

σ2 : is an unknown nuisance parameter,

Z = [zij ]i=1,...,n;j=1,...,q : is an n× q (known) matrix containing the elements of

a basis, such as a collection of splines,

u =(u1, ..., uq)
T : is an q × 1 random coefficient and is treated as realization of

a Nq (0,Ωu) .

(Indeed, Zu is a penalised component with corresponding coefficients u).

Let xT
i =(xi1, ..., xip) and zTi =(zi1, ..., ziq), i = 1, ..., n.

We would like to estimate parameters β, σ2and Ωu. First note that the marginal

likelihood (the marginal distribution of y) is given by

f(y;Xβ, σ2,Ωu) =

∫
f(y|u;Xβ, σ2)f(u;Ωu)du

=

∫
(2π)−n/2

∣∣σ2In
∣∣−1/2

× exp

[
−1

2
(y −Xβ − Zu)

T
(σ2In)

−1(y −Xβ − Zu)

]

×(2π)−q/2 |Ωu|−1/2

[
−1

2
uTΩ−1

u u

]
du

= ...

= (2π)−n/2
∣∣∣σ2In + ZΩuZ

T
∣∣∣
−1/2

× exp

[
−1

2
(y −Xβ)T (σ2In + ZΩuZ

T )−1(y −Xβ)

]

= (2π)−n/2 |Ω|−1/2
exp

[
−1

2
(y −Xβ)Ω−1(y −Xβ)

]

where Ω = σ2In + ZΩuZ
T , and so the marginal distribution of y (with X and Z

are known) is

y ∼ Nn(Xβ,Ω).

Note that Ω depends on parameters ψ = (σ2, Ωu) but not on β.

4.1. The likelihood and pairwise likelihood functions: Penalized

composite likelihood

For estimating the parameters, we consider two possibilities:
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Case I: The parameters, θ = (β, σ2,Ωu) are estimated by maximising the log

marginal likelihood

l(β,Ω) =l(β, ψ) =l(β,σ2,Ωu) ∝ −1

2
log |Ω| −1

2
(y −Xβ)TΩ−1(y −Xβ).

We may find the maximum likelihood estimator of θ which has under the

usual regularity conditions an asymptotically normal distribution with mean θ

and variance the inverse of the expected Fisher information

J(θ) = E

[
− ∂2l(θ)

∂θ∂θT

]
.

Case II. We can also compute the corresponding pairwise marginal densities,

which in this case just bivariate normal densities. Set yij :=
(
yi

yj

)
, we have

yij ∼ N2

(
xijβ,Ωij

)
, i < j ∈ {1, ..., n} ,

where xij =
(xT

i

xT
j

)
2×p

and

Ωij = σ2I2 + zijΩu,ijz
T
ij .

where zij =
(zTi
zTj

)
2×q

, i < j = 1, ..., n. Note that Ωij depends on parameters ψij =

(σ2, Ωu,ij) but not on β.Therefore the corresponding pairwise marginal density

for i < j ∈ {1, ..., n} is given by

f(yi, yi;β,σ
2,Ωu,ij) = (2π)−1 |Ωij |−1/2

exp−1

2

{
(yij − xijβ)

T
Ω−1

ij (yij − xijβ)
}
.

The log pairwise marginal likelihood is

l2(β,Ωij)=l2(β, ψij) =l2(β,σ
2,Ωu,ij) =

1

n− 1

∑

i<j

log f(yi, yi;β,σ
2,Ωu,ij)

=
1

n− 1

∑

i<j

[− log(2π)− 1

2
log |Ωij | −

1

2

{
(yij − xijβ)

T
Ω−1

ij (yij − xijβ)
}
].

The divisor 1/(n − 1) is used so that the correct log likelihood is recovered

when the observations are independent. Here Ωij depends on parameters ψ = (σ2,

Ωu,ij), so the ML equation Ωij are obtained from equating to 0 the differentiation

of l2 with respect to ψ1 = σ2 and ψ2 = Ωu,ij .

We know the maximum pairwise likelihood estimator θ̃ is consistent, and sat-

isfied
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θ̃ ∼ N


θ,

sandwich variance︷ ︸︸ ︷
J2(θ)

−1K2(θ)J2(θ)
−1


 ,

as n → ∞, where J2(θ) = Eθ(−∂U2(θ)/∂θ) =Eθ(−∂2l2(θ)/∂θ∂θ
T ) is expected

(pairwise) Fisher information matrix and K2(θ) = Eθ(U2(θ)U2(θ)
T ) is the vari-

ance of the score function.

4.2. Main results in a simple case

In the simplest case Ωu =σ2
uIq,the information matrix for full models is

J(θ) =



XT (σ2In + σ2

uZZ
T )−1X

0

0

0
1
2 tr(σ

2In + σ2
uZZ

T )−2

1
2 tr[(σ

2In + σ2
uZZ

T )−2ZZT ]

0
1
2 tr[(σ

2In + σ2
uZZ

T )−2ZZT ]
1
2 tr[(σ

2In + σ2
uZZ

T )−1ZZT ]2




and for pairwise likelihood, we have

J2(θ) =




1
n−1

∑
i<j

xT
ij(σ

2I2 + σ2
uzijz

T
ij)

−1xij

0

0

0
1
2

1
n−1

∑
i<j

tr(σ2I2 + σ2
uzijz

T
ij)

−2

1
2

1
n−1

∑
i<j

tr[(σ2I2 + σ2
uzijz

T
ij)

−2zijz
T
ij ]

0
1
2

1
n−1

∑
i<j

tr[(σ2I2 + σ2
uzijz

T
ij)

−2zijz
T
ij ]

1
2

1
n−1

∑
i<j

tr[(σ2I2 + σ2
uzijz

T
ij)

−1zijz
T
ij ]

2




The variance of the score functionis
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K2(θ) =




1
(n−1)2

∑
i<j

∑
k<l

xT
ijΩ

−1
ij ΦijklΩ

−1
kl xkl

0

0

0

2
∑

i,j,k,l

tr[ΨijΦijklΨklΦ
T
ijkl]

2
∑

i,j,k,l

tr[ΨijΦijklΛklΦ
T
ijkl]

0

2
∑

i,j,k,l

tr[ΨijΦijklΛklΦ
T
ijkl]

2
∑

i,j,k,l

tr[ΛijΦijklΛklΦ
T
ijkl]


 ,

where

Φijkl =

(
σ2δik + σ2

uz
T
i zk σ

2δil + σ2
uz

T
i zl

σ2δjk + σ2
uz

T
j zk σ

2δjl + σ2
uz

T
j zl

)
,

Ψij =

(
Ψ11

ij Ψ12
ij

Ψ12
ij Ψ22

ij

)
=

{
0 i = j

1
4(n−1)Ω

−2
ij i 6= j

,

Λij =

(
Λ11
ij Λ12

ij

Λ12
ij Λ22

ij

)
=

{
0 i = j

1
4(n−1)Ω

−1
ij zijz

T
ijΩ

−1
ij i 6= j

,

and

Ωij = σ2I2 + σ2
uzijz

T
ij = σ2

(
1 + λz2i. λzTi zj
λzTi zj 1 + λz2j.

)

=

(
σ2 + σ2

uz
T
i zi σ2

uz
T
i zj

σ2
uz

T
i zj σ2 + σ2

uz
T
j zj

)

= [σ2δij + σ2
uz

T
i zj ]i,j=1,2

= σ2[δij + λzTi zj ]i,j=1,2.
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5. Application 3: Multivariate AR(1) models

5.1. The multivariate AR(1) models

Consider a m-variate time series
{
Xt = (X

t1
, X

t2
, . . . , X

tm
)T , t ∈ Z

}
, with

E
(
X2

ti

)
<∞, i = 1, 2, . . . ,m for all t, where Z stands for all integers. Let

γij (t+ h, t) = E [(Xt+h,i − µt+h,i) (Xt,j − µt,j)] (1)

be the autocovariances, as the measure of dependency, not only between observa-

tions in the same series, but also between observation in the different series. Thus

the second-order properties of the multivariate time series {Xt} are specified by

the mean vectors,

µt = E (Xt) = E (X
t1
, X

t2
, . . . , X

tm
)
T
= (µ

t1
, µ

t2
, . . . , µ

tm
)
T

(2)

and autocovariance matrices,

Γ (t+ h, t) = E
[(
X

t+h
− µ

t+h

)
(Xt − µt)

T
]
= [γij (t+ h, t)]

m
i,j=1 (3)

The m-variate time series {Xt} with mean and autocovariances (10) and (11)

is said to be stationary if µt and Γ (t+ h, t) , h = 0,±1,±2, . . . , are independent

of t. For a stationary series we shall use the notation,

µ = E (Xt) =
(
µ

1
, µ

2
, . . . , µ

m

)T
(4)

and

Γ (h) = E
[(
X

t+h
− µ

)
(X

t
− µ)

T
]
= [γij (h)]

m
i,j=1 (5)

The autocorrelation matrix R(.)is therefore

R(h) =

[
γij (h)

(γii (0) γjj (0))
1/2

]m

i,j=1

= [ρij (h)]
m
i,j=1 (6)

It is clear that Γ (h) = Γ (−h)T .
Nematollahi and Kazemi (2009) consider the multivariate AR (1) models which

provide a very useful class of models for describing the dynamics of a time series.

A multivariate first order autoregressive models satisfies the following difference

equation

X
t
= ΦXt−1 + Zt, (7)

where Φ is m×m matrix and Zt is a sequence of independent multivariate normal

with zero mean vector and covariance matrix Σ. Also we suppose that the process

311



July 28, 2010 16:45 ISC10 - Proceeding proceeding

The 10th Iranian Statistical Conference University of Tabriz, August 2010

is causal in the sense that all eigenvalues of Φ are less than 1 in absolute value, or

equivalently if all values of z ∈ C satisfying

det (Im − zΦ) = 0, (8)

lie outside of unit circle.

5.2. The pairwise likelihood inferences

For a given set of m-dimensional observations {X1, ...,Xn} where Xt=

(X
t1
, X

t2
, . . . , X

tm
)
T
, t = 1, ..., n, we will gather all of them in a mn × 1 vec-

tor X given by

X =
(
XT

1 ,X
T
2 , . . . ,X

T
n

)T

= (X11, X12, . . . , X1m,X21, X22, . . . , X2m, . . . , Xn1, Xn2, . . . , Xnm)T .

The pairwise likelihood for X can be written as

Lpl (x, θ) =

[
n∏

a=1

m−1∏

b=1

m∏

c=b+1

f
(Xab,Xac)

(xab, xac, θ)

]

×



n−1∏

i=1

n∏

j=i+1

m∏

b=1

m∏

c=1

f
(Xib,Xjc)

(xib, xjc, θ)


 (9)

Note that in order to use all of the information in the time series, we have to

write X and Lpl (x, θ) as above, since in the multivariate time series the vector of

observations at different times are dependent and it is also dependent with other

observations. In (9), the first term is the likelihood function of the observations

within the same groups and the second term is the counterpart between different

groups.

For the stationary causal multivariate AR (1) process, the exact likelihood is

L (X,Φ,Σ) = (2π)−nm/2 (det (Γ (0)))−1/2 (det (Σ))−(n−1)/2

× exp


−1

2


XT

1 Γ (0)−1 X1 +
n∑

j=1

ZT
t Σ

−1Zt






= f1 (X1)L∗ (X2,X3, . . . ,Xn,Φ,Σ) , (10)

where

L∗ (X2,X3, . . . ,Xn,Φ,Σ) represent the conditional p.d.f. of (X2,X3, . . . ,Xn)

given X1 , and is the conditional likelihood.

Also note that, with φ = vec (Φ) then φ̂ (the MLE of φ) is approximately

normal distributed with mean φ and variance covariance matrix 1/n(Γ (0)
−1⊗Σ),

see Reinsel(1997) for more details.
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By the above discussion, for a nm-dimensional Gaussian vector X , we can say
[
Xab

Xac

]
∼ N

((
0

0

)
,

[
γ

bb
(0) γ

bc
(0)

γ
bc
(0) γ

cc
(0)

])

[
Xib

Xjc

]
∼ N

((
0

0

)
,

[
γ

bb
(i− j) γ

bc
(i− j)

γ
bc
(i− j) γ

cc
(i − j)

])
. (11)

Then we can use (11) for computing the pairwise likelihood function Lpl (x, θ).

For notation simplicity take

Mbc(h) =

[
γbb(h) γbc(h)

γbc(h) γcc(h)

]

so [
Xib

Xjc

]
∼ N

[(
0

0

)
, Mbc(i − j)

]
.

Then we can write Lpl(θ, X) in the following form

l2(θ) := log(Lpl(X, θ))

∝
n∑

a=1

m−1∑

b=1

m∑

c=b+1

[(−1/2) log |Mbc(0)|

−(1/2)
{
XT

bc(a)M
−1
bc (0)Xbc(a)

}
]

+

n−1∑

i=1

n∑

j=i+1

m∑

b=1

m∑

c=1

[(−1/2) log |Mbc(i − j)|

−(1/2)
{
XT

bc(i, j)M
−1
bc (i − j)Xbc(i, j)

}
], (12)

where θ = (Φ,Σ) is the unknown parameter of model, Xbc(a) =

(
Xab

Xac

)
and

Xbc(i, j) =

(
Xib

Xjc

)
.

Now let Φ = [φij ]
m
i,j=1 and Σ = [σij ]

m
i,j=1 and take w1 = φ11, w2 =

φ21, ..., wm = φm1, ..., wmm+(m(m+1)/2) = σmm. Then, the composite (pair-

wise) score function is

S2(θ) = S2(w1, w2 ..., wm, ..., wmm+(m(m+1)/2))

=

[
∂l2(θ)

∂w1
,
∂l2(θ)

∂w2
, ...,

∂l2(θ)

∂wm
, ...,

∂l2(θ)

∂wmm+(m(m+1)/2)

]

1×(mm+(m(m+1)/2))

(13)

and
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J2(θ) =

[
E

([
∂2l2(θ)

∂wk∂wl

])]mm+(m(m+1)/2)

k,l=1

, (14)

and

K2(θ) =

[
E

([
∂l2(θ)

∂wk

] [
∂l2(θ)

∂wl

])]mm+(m(m+1)/2)

k,l=1

. (15)

First note that

∂l2(θ)

∂wk
=

n∑

a=1

∑

1≤b<c≤m

[(−1/2)

{
∂ log |Mbc(0)|

∂wk

}

−(1/2)

{
XT

bc(a)

{
∂M−1

bc (0)

∂wk

}
Xbc(a)

}
]

+

n−1∑

1≤i<j≤n

m∑

b,c=1

[(−1/2)

{
∂ log |Mbc(i− j)|

∂wk

}

−(1/2)

{
XT

bc(i, j)

{
∂M−1

bc (i− j)

∂wk

}
Xbc(i, j)

}
] , (16)

and then we have,

∂2l2(θ)

∂wk∂wl
=

n∑

a=1

∑

1≤b<c≤m

[(−1/2)

{
∂2 log |Mbc(0)|

∂wk∂wl

}

−(1/2)

{
XT

bc(a)

{
∂2M−1

bc (0)

∂wk∂wl

}
Xbc(a)

}
]

+

n−1∑

1≤i<j≤n

m∑

b,c=1

[(−1/2)

{
∂2 log |Mbc(i − j)|

∂wk∂wl

}

−(1/2)

{
XT

bc(i, j)

{
∂2M−1

bc (i − j)

∂wk∂wl

}
Xbc(i, j)

}
] . (17)
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Now we can state the following theorems that play the main roles in computing

the asymptotic variance-covariance matrix of the PLE. The proof of these theorems

are left to Nematollahi and Kazemi (2009), because of the tedious computations.

Theorem 5.1. A typical (k, l)th element of the matrix J2(θ) has the form

E

(
∂2l2(θ)

∂wk∂wl

)
=

n∑

a=1

∑

1≤b<c≤m

[(1/2)

{
∂2 log |Mbc(0)|

∂wk∂wl

}

+(1/2)tr

({
∂2M−1

bc (0)

∂wk∂wl

}
Mbc(0)

)
]

+

n−1∑

1≤i<j≤n

m∑

b,c=1

[(1/2)

{
∂2 log |Mbc(i− j)|

∂wk∂wl

}

+(1/2)tr

({
∂2M−1

bc (i − j)

∂wk∂wl

}
Mbc(i − j)

)
] .

Theorem 5.2. A typical (k, l)th element of the variance of the composite

score matrix K2(θ), has the form

E [(∂l2(Θ)/∂wk) (∂l2(Θ)/∂wl)] =
n∑

a=1

∑
1≤b<c≤m

n∑
a′=1

∑
1≤b′<c′≤m

[(1/2)tr
[
Nbc,k(0)Mbb′cc′(a− a′)Nb′c′,l(0)M

T
bb′cc′(a− a′)

]

+
∑

1≤i<j≤n

m∑
b,c=1

n∑
a′=1

∑
1≤b′<c′≤m

[(1/2)tr
[
Nbc,k(0)Mbb′cc′(a− i′, a− j′)Nb′c′,l(i

′ − j′)MT
bb′cc′(a− i′, a− j′)

]
∑

1≤i<j≤n

m∑
b,c=1

n∑
a′=1

∑
1≤b′<c′≤m

(1/2)tr
[
Nbc,k(i− j)Mbb′cc′(i − a′, j − a′)Nb′c′,l(0)M

T
bb′cc′(i− a′, j − a′)

]

+
∑

1≤i<j≤n

m∑
b,c=1

∑
1≤i′<j′≤n

m∑
b′,c′=1

(1/2)tr[Nbc,k(i − j)Mbb′cc′(i− i′, i− j′, j − i′, j − j′)
Nb′c′,l(i

′ − j′)MT
bb′cc′(i − i′, i− j′, j − i′, j − j′)],

where Nbc,k(h) = ∂M−1
bc (h)/∂wk , Mbb′cc′(h) =

[
γbb′(h) γbc′(h)

γcb′(h) γcc′(h)

]
,

Mbb′cc′(h, h
′) =

[
γbb′(h) γbc′(h

′)
γcb′(h) γcc′(h

′)

]

and Mbb′cc′(h1, h2, h3, h4) =

[
γbb′(h1) γbc′(h2)

γcb′(h3) γcc′(h4)

]
.

Finally by using Theorems 5.1, 5.2 and, the asymptotic variance-covarianve

matrix can be derived and then we can compute the asymptotic relative efficiency

of θ̂ with respect to θ̃. For more details, refer to Nematollahi and Kazemi (2009).
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Inference on Geometric Extreme Exponential Distribution under

Progressive Type-II Censoring

R. Pakyari

Department of Mathematics, Arak University

In this talk, we provide explicit estimator through an approximation of the likelihood
equation for the scaled geometric extreme exponential (GE-exponential) parameter
based on progressively Type-II censored samples. The bias and mean squared error of
the approximate estimator and the MLE were calculated for a wide range of sample
sizes and different progressive censoring schemes through a Monte Carlo simulation
study. It is observed that the approximate estimator is comparable to the MLE in
terms of both absolute bias and mean squared error.

Keywords: Geometric extreme exponential distribution; Progressive Type-II censoring;
Monte Carlo simulation; Fisher information.

1. Introduction

The progressive censoring is one of the important sampling techniques that was

first introduced by Herd (1956) and its importance in life testing reliability exper-

iments was discussed by Cohen (1963).

The progressive Type-II censoring is as follows: Consider a life test experiment

in which n units are placed in the test. At the time of the first failure, R1 units

are randomly removed from the remaining n−R1 units. At the time of the second

failure, R2 units are randomly removed from the remaining n − R1 − R2 units,

and so on. Finally, after the mth failure, Rm remaining units are removed. Thus,

we observe m failures and R1 + R2 + . . . + Rm items are progressively censored

from the n units, so that n = m + (R1 + R2 + . . . +Rm). The R = (R1, . . . , Rm)

is called the censoring scheme and is fixed prior to the study. If R = (0, . . . , 0), no

withdrawals are made which correspond to the complete sample and the ordinary

order statistics will be obtained. IfR = (0, . . . , 0, n−m), we obtain the conventional

Type-II right censoring. We will denote the progressive Type-II censored data by

X1:m:n < X2:m:n < . . . < Xm:m:n. For an excellent discussion on progressive Type-

II censoring technique see the monograph of Balakrishnan and Aggarwala (2000)

and Balakrishnan (2007).

There are numerous articles in literature dealing with inferential procedures
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based on the progressively Type-II censoring data for a wide variety of lifetime

distributions. See for example Mann (1969; 1971), Balakrishnan et al. (2004),

Balakrishnan and Kannan (2000), Balakrishnan et al. (2003), Balakrishnan and

Asgharzadeh (2005) and Lin et al. (2006) among others who study the inferential

procedures for the Weibull, extreme value, logistic, normal, half-logistic and log-

gamma models, respectively.

GE-exponential distribution was introduced by Marshal and Olkin (1997) and

further studied extensively by Adamidis et al. (2005). The discrimination between

the GE-exponential model and the Weibull, gamma and lognormal families as

alternatives was studied by Marshal et al. (2001). Recently, Pakyari (2009) studied

the discrimination procedures between the GE-exponential and the generalized

exponential and Weibull models. He provided the probability of correct selection

based on the likelihood ratio and the minimum Kolmogorov distance criteria.

2. Maximum likelihood estimator of the scale parameter

Let the failure times follow a geometric extreme exponential distribution with

known shape parameter γ and unknown scale parameter λ and with the probability

density function

f(x;λ) =
γλ e−λx

(1− γ̄ e−λx)2
, (x > 0) (1)

where γ̄ = 1− γ.

Let X1:m:n, . . . , Xm:m:n be a progressively Type-II censored sample from

f(x;λ). The likelihood function based on the censored sample is given by

L(λ) = C
∏m

i=1
γ λ e−λxi

(1−γ̄e−λxi )2
{1− 1−e−λxi

1−γ̄e−λxi
}Ri

C(γ λ)m
∏m

i=1
γRi e−λ(Ri+1)xi

(1−γ̄ e−λxi )Ri+2 , (2)

where

C = n(n− 1−R1)(n− 2−R1 −R2) . . . (n−m+ 1−R1 − . . .−Rm−1) .

The log-likelihood function may be written as

L∗(λ) = logL(λ) = K+m logλ−λ
m∑

i=1

(Ri+1)xi−
m∑

i=1

(Ri+2) log(1−γ̄ e−λxi) , (3)

where K is a constat. Let define zi = λxi, now the log-likelihood function may

then be rewritten as

L∗(λ) = K +m logλ−
m∑

i=1

(Ri + 1)zi −
m∑

i=1

(Ri + 2) log(1− γ̄ e−zi) . (4)
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The likelihood equation may be simplified as

m−
m∑

i=1

(Ri + 1)zi −
m∑

i=1

(Ri + 2)(
γ̄zie

−zi

1− γ̄e−zi
) = 0 . (5)

The MLE of the scale parameter λ is the solution of the nonlinear equation (5)

which can not be expressed explicitly. In the following section, we present an

approximation for the likelihood equation which yields an explicit expression for

the MLE of λ.

3. Approximate MLE

Let us approximate the likelihood equation (5) by approximating the function

h(z) = e−z

1−γ̄e−z in a Taylor series expansion around E(Zi:m:n) = νi:m:n. Let Ui:m:n

is the ith order statistic of a progressively Type-II censored sample from the U(0, 1)

distribution. We then have

Zi:m:n = F−1(Ui:m:n) = log(
γ̄ Ui:m:n − 1

Ui:m:n − 1
) ,

where αi:m:n = E(Ui:m:n) and

αi:m:n = 1−
m∏

j=m−i+1

j +Rm−j+1 + . . .+Rm

j + 1 +Rm−j+1 + . . .+Rm
, ; i = 1, . . . ,m.

Expanding h(zi) around νi:m:n by Taylor series expansion and keeping the first

two terms, we deduce

h(zi) ≈ h(νi:m:n) + h′(zi)|z=νi:m:n(zi − νi:m:n)

= αi + βizi , (6)

Therefore the likelihood equation may be approximated by

dL∗

dλ
≈ m−

m∑

i=1

(Ri + 1)zi − γ̄

m∑

i=1

(Ri + 2)zi(αi + βizi) = 0 , (7)

Equation (7) may be rewritten as
{
γ̄

m∑

i=1

(Ri + 2)βix
2
i

}
λ2 +

{
γ̄

m∑

i=1

(Ri + 2)αixi +

m∑

i=1

(Ri + 1)xi

}
λ−m = 0 (8)

or

Aλ2 +Bλ−m = 0 , (9)

Equation (9) is a quadratic equation in terms of λ with the following two solutions:

−B ±
√
B2 + 4Am

2A
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However, one of the solutions is inadmissible since A > 0. Hence the approximate

MLE of the scale parameter λ is given explicitly by

λ̃ =
−B +

√
B2 + 4Am

2A
. (10)

4. Fisher Information

In this section, we derive the asymptotic variance of the maximum likelihood esti-

mator of the scale parameter λ for the full and approximate likelihood equations.

We shall denote these quantities by Î−1 and Ĩ−1, respectively.

The observed Fisher information may be obtain from the full likelihood equa-

tion as

d2L∗

dλ2
= −m

λ2
+

1

λ2

m∑

i=1

(Ri + 2)
γ̄z2i e

−zi

(1− γ̄e−zi)2
. (11)

Also from the approximate likelihood equation (7) we deduce the observed Fisher

information as

d2L∗

dλ2
≈ − 1

λ

m∑

i=1

(Ri + 1)zi −
γ̄

λ

m∑

i=1

(Ri + 2)zi(αi + 2βizi) . (12)

The asymptotic variance of the MLE of the scale parameter λ is then given by

inverting the observed Fisher information from the full or approximate likelihood

equations evaluated at λ = λ̂ or λ = λ̃, respectively.

We shall use these asymptotic variances on Section 6 to derive confidence in-

terval for the scale parameter λ.

5. Simulation study

In this section, we assess the performance of the proposed approximate estimator

and the MLE by a large amount of Monte Carlo simulation experiments. All the

simulations were carried out in R using the pseudo-random generator in that soft-

ware package. We generated the progressively Type-II censored samples from the

GE-exponential distribution using the algorithm presented by Balakrishnan and

Sadhu (1995).

Five values of the sample sizes say, n = 15, 20, 30, 40, 50, different choices of

the effective sample size m, and different progressive schemes were considered.

For brevity in notation we follow the Balakrishnan (2004) notation to denote

the censoring scheme. For example (2 ∗ 7, 4 ∗ 0) denotes the censoring scheme

(7, 7, 0, 0, 0, 0).
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We computed the approximate MLE from equation (10). The MLE was then

calculated from the nonlinear equation (5) by an iterative procedure such as

Newton-Raphson method with the approximate estimator as the starting value.

We repeated this procedure 10000 times.

Tables 1 and 2 give the average of absolute bias, mean squared error, variance,

and variance calculated from observed Fisher information for the approximate

estimator and the MLE, respectively. We observe that the approximate MLE is

comparable to the MLE in terms of both absolute bias and mean squared error

for almost all the sample sizes and the censoring schemes. Also, as one would

expect, both the bias and the mean squared error decrease as the effective sample

proportion i.e. m/n increases. Moreover, the observed Fisher information tends to

be close to the variance of the estimator for both the approximate estimator and

the MLE when the effective sample proportion increases.

The tables also show that for all sample sizes n and effective sample sizes m,

the censoring scheme R = (n −m, 0, . . . , 0) tends to the smallest bias and mean

squared error, whilst, the censoring scheme R = (0, 0, . . . , n − m) tends to the

largest results.
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n m Scheme AB(λ̃) MSE(λ̃) var(λ̃) Ĩ−1

15 5 (4*0, 10) 0.1936 0.3022 0.2647 0.1210

15 5 (10, 4*0) 0.1103 0.1925 0.1804 0.0973

15 5 (5*2) 0.1726 0.2621 0.2324 0.1111

15 5 (2*0, 2, 2*4) 0.1881 0.2910 0.2556 0.1180

20 8 (7*0, 12) 0.1082 0.1203 0.1086 0.0687

20 8 (12, 7*0) 0.0592 0.0890 0.0855 0.0592

20 8 (3*4, 5*0) 0.0629 0.0938 0.0899 0.0608

20 8 (5, 4, 3, 5*0) 0.0626 0.0932 0.0893 0.0606

30 10 (9*0, 20) 0.0895 0.0914 0.0834 0.0576

30 10 (20, 9*0) 0.0449 0.0659 0.0638 0.0474

30 10 (9, 7, 4, 7*0) 0.0471 0.0687 0.0664 0.0486

30 10 (10*2) 0.0768 0.0805 0.0746 0.0527

50 15 (14*0, 35) 0.0596 0.0515 0.0479 0.0391

50 15 (35, 14*0) 0.0281 0.0384 0.0372 0.0317

50 15 (10, 9, 8, 7, 1, 10*0) 0.0296 0.0400 0.0392 0.0392

50 15 (11*3, 2, 3*0) 0.0349 0.0436 0.0424 0.0345
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n m Scheme AB(λ̂) MSE(λ̂) var(λ̂) Î−1

15 5 (4*0, 10) 0.1930 0.3017 0.2664 0.1807

15 5 (10, 4*0) 0.1348 0.2061 0.1879 0.1464

15 5 (0, 2*5, 2*0) 0.1546 0.2405 0.2167 0.1627

15 5 (5*2) 0.1739 0.2630 0.2328 0.1604

15 5 (2*0, 2, 2*4) 0.1876 0.2906 0.2554 0.1744

20 8 (7*0, 12) 0.1079 0.1201 0.1085 0.0852

20 8 (12, 7*0) 0.0783 0.0949 0.0887 0.0769

20 8 (3*4, 5*0) 0.0829 0.1002 0.0933 0.0802

20 8 (5, 4, 3, 5*0) 0.0824 0.0995 0.0927 0.0797

30 10 (9*0, 20) 0.0892 0.0913 0.0834 0.0690

30 10 (20, 9*0) 0.0615 0.0696 0.0658 0.0588

30 10 (9, 7, 4, 7*0) 0.0644 0.0727 0.0685 0.0609

30 10 (10*2) 0.0793 0.0812 0.0749 0.0628

50 15 (14*0, 35) 0.0594 0.0514 0.0479 0.0441

50 15 (35, 14*0) 0.0399 0.0396 0.0380 0.0366

50 15 (10, 9, 8, 7, 1, 10*0) 0.0423 0.0418 0.0399 0.0384

50 15 (11*3, 2, 3*0) 0.0498 0.0457 0.0433 0.0408
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Improving On The Minimum Risk Equivariant Estimator In The

Spherically Symmetric Distributions

A.T. Payandeh

Department of Mathematical Sciences, Shahid Beheshti University

We propose improvements under quadratic loss function to the minimum risk equivari-
ant (mre) estimator for the estimating the mean of a p-variate spherically symmetric
distribution, when unknown mean lies in a ball of radius m centered at the origin and
the covariance matrix σ2

0Ip is given. Our construction of explicit improvements relies
on Kubokawa’s Integral Expression of Risk Difference (IERD) method. For large class
of scale-mixture of normal distributions, a dominator for the mre will be addressed.

Keywords: Spherical symmetric distribution,; Integral Expression of Risk Difference
method; Dominator estimator; Quadratic loss function.

1. Introduction

Consider problem of estimating, under quadratic loss, the location parameter θ
of a spherically symmetric distribution, basis on an observation X. For nonre-
stricted parameter space, Stein in (1955) investigated the question of admissibility
of the minimum risk equivariant estimator (mre), δ0(x) = x, when sampling from
a multinormal distribution with respect to quadratic loss. Furthermore, in 1961
James and Stein proved (i) inadmissibility of the mre is not exclusive to case of
quadratic loss but is true for any loss functions L(δ, θ) = s(||δ − θ||), where s
is a continuous, differentiable and concave function and (ii) the results do not
restricted to normal distribution but are true for other family of distributions,
with some certain conditions. One might infer as well from this work that inad-
missibility of the mre, when the mean vector has 3 or more dimensions, could be
generalized to a large class of distributions. Brown (1966) considered the general
location parameter estimation problem and proved that under mild assumptions
on the loss function, the mre is admissible in one and two dimensions and inad-
missible in three or more dimensions. The results of Stein and Brown suggest a
new problem. Namely, finding explicit estimators which are performance better,
in sense of risk function, than the mre.

Baranchik (1964) found a class of minimax estimators for multivariate nor-
mal mean, which includes the James-Stein class of estimators. After Baranchik’s
discovery, until 1974, explicit estimators which perform better than the mre
were only available for mean vector of multivariate normal distribution. Then,
Strawderman (1974) and Berger (1975) found minimax estimator which per-
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form better than the mre, when X sample from a certain class of spherically
symmetric distributions. Cohen Brandwein & Strawderman (1978) showed that
δa,g(x) = (1 − ag(||x||2/||x||2)x, under some conditions on g and a, performs bet-
ter than the mre. More recently, their results improved by Xu & Izmirlian (2006).

The above findings don’t be valid anymore, whenever the parameter space has
been constrained, in some sense. In such situation, the mre not only inadmissible
but also with positive probability take its value outside of parameter spaces. Casella
& Strawderman (1981) established that the boundary uniform Bayes estimator,
given by δBU (x) = m tan(mx) is minimax, whenever the underlying distribution is
univariate normal and the location parameter, θ is bounded by an interval [−m,m],
and m ≤ 1.0567. Casella & Strawderman’s result generalized to wider truncated
parameter spaces using N-point prior by Gatsonis, MacGibbon, and Strawderman
in (1987). Berry (1990) and Marchand & Perron (2002) extended Casella & Straw-
derman discovery to multivariate normal distribution and by DasGupta (1985) to
a wide class of multivariate distributions. Hartigan (2004) discovered that, for
multinormal distribution, the fully uniform Bayes procedure for a wide class of
constrained parameter spaces, such as Ball, Cone and etc, is better than the mre.

That seem finding dominating estimator for maximum likelihood estimator
(mle), in general, is very difficult. Several authors considered problem of finding
dominator for the mle whenever the parameter space has been constrained. A good
review can be found in Marchand & Strawderman (2004) and van Eeden (2006),
among others. As far as we know, no any Bayes estimator available whose improves
the mle for any class of constrained parameter space. For this reason that make
sense to find an improvement estimator for the mre rather than the mle.

Kubokawa in a series of papers established a technique named Integral Expres-
sion of Risk Difference (IERD) method to find dominator for a given estimator.
The IERD’s method has been explained in Marchand & Strawderman (2004).
Marchand & Strawderman (2005) employed IERD’s method to construct a class
of dominating estimator for the mre for a class univariate location family distri-
butions, under a quite general class of loss functions. Kubokawa (2005) benefited
from Marchand & Strawderman (2005)’s results and found a class of dominating
Bayes estimator for the mre, under the squared-error loss. The discovery of Marc-
hand & Strawderman (2005) inspired us to develop their results to the multivariate
spherically symmetric distributions, under the quadratic loss function.

This paper, using the IERD’s method, develops Hartigan (2004)’s discovery to
a wide class of spherically symmetric distributions. This paper developed as the
following. Section 2 derives a general sufficient condition to an estimator with form
δg(x) = g(||x||)x dominates the mre. Sections (3) for multinormal distribution con-
structs a dominator procedure for the liner minimax estimator and consequently
for the mre. Finally, Section (4), for a wide class of scale-mixture normal distribu-
tions presents an improvements for the mre.
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2. Main results

Throughout, we work with loss function of the form L(θ, d) = ||d − θ||2 and a
spherically symmetric family of distribution with density function

fθ(x) ∝ k(
||x− θ||2

σ2
0

), (1)

where unknown vector mean θ is constrained in ball with radius m, say Θm, σ
2
0 is

given scale parameter, and k is a symmetric function about zero. From here now,
we use notions R = ||X ||, r = ||x||, and λ = ||θ||, where ||y|| stands for norm of y.

It is useful to recall that: A family of densities function {pθ(·) : θ ∈ Θ} is
said to have monotone likelihood ratio (mlr) in T (·), such that for all θ1 > θ2,
the densities pθi(·), for i = 1, 2, are distinct, and the ratio pθ1(x)/pθ2(x) is a
nondecreasing function of T (x).

Now, we present the main theorem of this paper.

Theorem 2.1. Suppose random variable X sampled from a spherically symmet-
ric family of distributions 1. Then, under the quadratic loss δg(X) = g(||X ||)X
dominates the mre, δ0(X) = X, whenever (i) g absolutely continuous and non-
increasing; (ii) g(r) ≥ supθ∈ΘmH(r, θ); (iii) g(0) ∈ [m2/(m2 + p), 1], where
H(r, θ) = Eθ(θ

TX | ||X || ≥ r)/Eθ(X
TX | ||X || ≥ r).

Proof. The desire proof arrives by showing that: Under (i) and (ii) δg(x) domi-
nates g(0)x and under (iii) g(0)x dominates δ0(x). Now, using the IERD’s method,
risk difference between two estimators δg(x) and g(0)x can be written as

1

2
∆(θ) =

1

2
[R(θ, g(||X ||)X)−R(θ, g(0)X)]

=
1

2

[
Eθ||g(||X ||)X − θ||2 − ||g(0)X − θ||2

]

=
1

2
Eθ

(∫ ||X||

0

∂

∂t
||g(t)X − θ||2dt

)

=

∫ ∞

0

∫ r

0

g′(t)[g(t)x − θ]Txfp(r, λ)dtdr

=

∫ ∞

0

g′(t)

∫ ∞

t

[g(t)xTx− θTX ]fp(r, λ)drdt,

where fp(r, λ) is density of R = ||X ||. Now, from (i) and (ii) observe the second
integrand is positive. This observation establishes that δg(x) dominates g(0)x.
To complete the desire proof, one has to show g(0)x dominates δ0(x). Difference
between risk of g(0)x and δ0(x) can be explored as

∆(θ) = R(θ, g(0)X)−R(θ,X)

= Eθ(||g(0)X − θ||2 − ||X − θ||2)
= Eθ(g

2(0)XTX + ||θ||2 − 2g(0)θTX − p)

= (g(0)− 1)2λ2 + (g2(0)− 1)p

≤ (g(0)− 1)2m2 + (g2(0)− 1)p ≤ 0.
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The last expression follows from (iii) completes the desire proof. �
The above theorem provides a sufficient condition to generate dominators for

δ0. The following provides a weaker condition to generate dominators for δ0.

Corollary 2.1. Suppose random variable X sampled from a spherically symmetric
family of distributions 1. Then, condition(ii) in Theorem (2.1) can be replaced
by a weaker condition g(r) ≥ supθ∈ΘmH

∗(r, θ), where H∗(r, λ) = λEθ(R|R ≥
r)/Eθ(R

2|R ≥ r).

Proof. Application of the Cauchy-Schwartz inequality, i.e., ||θTX || ≤ ||θ||||X ||,
leads to the desire proof. �

The next lemma provides the linear minimax estimator, say δLME , for a class
of spherically symmetric distributions.

Lemma 2.1. Suppose X distributed according to a spherical symmetric distri-
bution 1 with an unknown location parameter θ, where restricted in a ball with
radius m. Then, the linear minimax estimator δLME (i) is given by δLME(x) =
m2x/(m2 + pσ2

0); (ii) dominates δ0.

Proof. Consider a class of linear estimators for θ with form DL = {δa : δa(x) =
ax; a ∈ R+}. By maximizing risk δa(x), in DL, with respect to λ then minimizing
risk with respect to a, the linear minimax estimator, given above, arrives. To
establish (ii), set aopt = m2/(m2 + pσ2

0). Now observe that, difference between
risks δLME and δ0 can be stated as

∆(θ) = R(θ, δLME(X))−R(θ,X)

= (a2opt − 1)p+ (aopt − 1)2λ2

≤ (a2opt − 1)p+ (aopt − 1)2m2

= (aopt − 1)
p2 +mp

m2 + p
≤ 0,

where the last inequality follows from the fact 0 ≤ aopt ≤ 1. �
Two estimators δH(x) = H(||x||,m)x and δH∗(x) = H∗(||x||,m)x can be em-

ployed to obtain a dominator for δ0 and δLME , respectively. The following explores
some properties of δH and δH∗ .

Lemma 2.2. Consider bivariate functions H(·, ·) and H∗(·, ·), given by Theorem
2.1 and Corollary 2.1, respectively. Then, (i) Two estimators δH(x) = H(r,m)x
and δH∗(x) = H∗(r,m)x are range-preserving, whenever H(·, λ) and H∗(·, λ) are
increasing functions in λ; (ii) δH and dominates δLME and δ0, whenever H(r, λ)
and H∗(r, λ) are increasing in λ and decreasing in r; (iii) δH∗ dominates δ0,
whenever H(r, λ) and H∗(r, λ) are increasing in λ and decreasing in r.

Proof. Since H(·, λ) and H∗(·, λ) are increasing functions in λ. Then, H(·,m) =
supθ∈ΘmH(·, θ) and H∗(·,m) = supθ∈ΘmH

∗(·, θ). For part (i), from the fact that
||H∗(r,m)|| ≤ m observes

H∗(r,m) = m

∫∞
r
yfp(y,m)dy∫∞

r
y2fp(y,m)dy

≤ m

r
.
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Range-preserving of δH follows from the above observation and the fact that
H(r,m) < H∗(r,m). For part (ii), from Theorem 2.1 (parts i and ii) observe that
δH(x) = H(r,m)x dominates H(0,m)x = δLME(x) and from Lemma 2.1 (part
ii) it dominates δ0. An estimator δH∗(x) = H∗(r,m) satisfies conditions given by
Theorem 2.1. Therefore, δH∗ dominates δ0. This observation complete the desire
proof. �

The proceeding sections consider some spacial class of spherical symmetric
distributions and employ results of this section to obtain dominator for δ0 and
δLME .

3. Multinormal distribution

Suppose random variable X is distribution with a p-variate normal distribution
with unknown location parameter θ and given covariance matrix σ2

0Ip. The modi-
fied Bessel function Iv(x) and ρv(x) = Iv+1(x)/Iv(x) play a key roles in the rest of
paper. The following due to Watson (1983) and Amos (1974) explores some useful
properties for Ip and ρp.

Lemma 3.1. For p ≥ 1,

i) Ip−1(x) =
2p
x Ip(x) + Ip+1(x);

ii) ρp/2−1(x) is increasing, concave, and lim
x→∞

ρp/2−1(x) = 1;

iii) ρp/2−1(x)/x is decreasing in x with lim
x→0

ρp/2−1(x)/x = 1/p;

iv) ρp/2(x) = ρ−1
p/2−1 − p/x.

The next lemma, due to Marchand & Perron (2001), collects some well known
properties of multinormal distribution.

Lemma 3.2. Suppose X is distributed according to a Np(θ, σ
2
0Ip). Then,

i) fp(r, λ) = r( rλ)
p/2−1Ip/2−1(rλ)exp{− r2+λ2

2 },
ii) r2fp(r, λ) = λ2fp+4(r, λ) + pfp+2(r, λ),
iii) ρ(λ, y) = λρp/2−1(rλ),
iv) rfp(r, λ) = λfp+2(r, λ),

v) 2 ∂
∂λFp(r, λ) = Fp+2(r, λ) − Fp(r, λ),

where fp(r, λ) is density function of R = ||X ||, ρ(λ, y) = Eθ(
θTX
Y | Y = y), and F

is the cumulative distribution function, CDF, of random variable R.

The following theorem provides a dominator for the linear minimax estimator
δLME , and consequently for δ0.

Theorem 3.1. Suppose X has been distributed according to a Np(θ, σ
2
0Ip), where

an unknown mean vector θ is restricted in a ball with radius m. Then, δH(x) =
H(r,m)x dominates the linear minimax estimator δLME(x) = m2x/(m2 + pσ2

0),
where H(r, λ) = Eθ(θ

TX | ||X || ≥ r)/Eθ(X
TX | ||X || ≥ r).
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Proof. It suffices to show that H(r, λ) is increasing in λ and nonincreasing in r.
The rest of proof follows from Lemma 2.2. H(r, λ) may be understood as

H(r, λ) =
Eθ(||X ||E||X||

θ ( θ
TX

||X|| | ||X || ≥ r))

Eθ(||X ||2| ||X || ≥ r)

=

∫∞
r yλρp/2−1(λy)fp(y, λ)dy∫∞

r y2fp(y, λ)dy
=

∫∞
r λ2fp+2(y, λ)dy∫∞
r y2fp(y, λ)dy

.

Using Lemma (3.2), one can observe

1

H(r, λ)
=

p

λ2
+

∫∞
r
fp+4(y, λ)dy∫∞

r
fp+2(y, λ)dy

=
p

λ2
+

1− Fp+4(r, λ)

1− Fp+2(r, λ)

Derivative of the second term, with respect to λ, is proportional to

− [Fp+6(y, λ)− Fp+4(y, λ)] [1− Fp+2(y, λ)]

+ [Fp+4(y, λ)− Fp+2(y, λ)] [1− Fp+4(y, λ)]

= F p+6(y, λ)F p+2(y, λ)− F
2

p+4(y, λ) ≤ 0,

which the last inequality follows from properties of noncentral chi-square. This
observation established that H(·, λ) increasing in λ. To show H(r, ·) decreasing in
r, the following presentation of H(r, λ) is useful to consider.

H(r, λ) = Er,λ(
EY (

θTX
||X|| | ||X || = Y )

Y
) = Er,λ(

ρp/2−1(λY )

Y
),

where Y has density proportional to fp(y, λ)1[r,∞)(y). Obviously, density function
of Y has the MLR in y, whenever r viewed as a parameter. On the hand, the inner
expression is decreasing function in r. Now application of the kline-Rubin theorem,
Lehmann & Romano(2005), establishes that H(r, λ) is a decreasing function in r.
�

4. Scale-mixture Normals

Suppose X |Z = z has normal distribution and mixing random variable Z has
density function g, which defined with positive measure µ on (0,∞). One can
readily observe that the random vector X has density function

fθ(x) =

∫ ∞

0

(2πz)−p/2exp{−||x− θ||2
2z

}g(z)µ(dz). (2)

Due to Marchand (1993) the following shows some useful properties of scale-
mixture normals.

Lemma 4.1. Suppose X |Z = z has a Np(θ, zIp), where the unknown vector mean
θ is redistricted in ball with radius m. Moreover, random variable Z has been
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distributed according to density function g, with positive measure µ on (0,∞).
Then, density function of random variable R = ||X || is

fp(r, λ) =

∫ ∞

0

r

z
(
r

λ
)p/2−1

Ip/2−1(
λr

z
)exp{−r

2 + λ2

2z
}g(z)µ(dz). (3)

The next theorem constructs a dominating estimator for δ0.

Theorem 4.1. Suppose X |Z = z has been distributed according to a Np(θ, zIp)),
where θ is restricted in a ball with radius m. Moreover, suppose random variable
Z defined with positive measure µ on (0,∞). Then, either one the following two
conditions are sufficient to δH∗(x) = H∗(r,m)x dominate δ0.

i) Z is distributed uniformly, discretely or continuously, on any subinterval of
(0,∞);

ii) random variable Z has a log-concave density function.

Proof. It suffices to show that H∗(r, λ) nonincreasing in r and, under either (i) or
(ii), increasing in λ. The rest of proof follows from Lemma 2.2. H∗(r, ·) decreasing,
because

∂

∂r
H∗(r, λ) =

λrfp(r, λ)

(
∫∞
r
y2fp(r, λ)dy)2

∫ ∞

r

y(r − y)fp(y, λ)dy ≤ 0,

where fp is density of R, given by Equation 3 and the last inequality follows from
fact that y ≥ r.

From definition of H∗, one can observe that

H∗(r, λ) =
λEθ(R|R ≥ r)

Eθ(R2|R ≥ r)

=
λ
∫∞
r

∫∞
0 y

p
2
g(z)
z I p

2−1(
yλ
z )e−

y2+λ2

z µ(dz)dy
∫∞
r

∫∞
0 y

p
2+1 g(z)

z I p
2−1(

yλ
z )e−

y2+λ2

z µ(dz)dy

=

∫∞
r/λ

∫∞
0
x

p
2
g(λ2t)

t I p
2−1(

x
t )e

− 1+x2

t µ(dt)dx
∫∞
r/λ

∫∞
0
x

p
2+1 g(λ2t)

t I p
2−1(

x
t )e

− 1+x2

t µ(dt)dx
,

where the last equation obtained after transforming y = λx and z = λ2t.Derivative
of H∗, with respect to λ, is ∂

∂λH
∗(r, λ) = 1

B2 {A1 − A2 + A3 − A4}, where B is
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denominator of H∗ and

A1 = 2λ

∫ ∞

r/λ

∫ ∞

0

xM(x, t)µ(dt)dx

∫ ∞

r/λ

∫ ∞

0

x
p
2 g′(λ2t)I p

2−1(
x

t
)e−

1+x2

t µ(dt)dx;

A2 = 2λ

∫ ∞

r/λ

∫ ∞

0

M(x, t)µ(dt)dx

∫ ∞

r/λ

∫ ∞

0

x
p
2+1g′(λ2t)I p

2−1(
x

t
)e−

1+x2

t µ(dt)dx;

A3 =
r

λ2

∫ ∞

r/λ

∫ ∞

0

xM(x, t)µ(dt)dx

∫ ∞

0

g(λ2t)

t
(
r

λ
)

p
2 I p

2−1(
r

λt
)e

−λ2+r2

λ2+t µ(dt);

A4 =
r

λ2

∫ ∞

r/λ

∫ ∞

0

M(x, t)µ(dt)dx

∫ ∞

0

g(λ2t)

t
(
r

λ
)

p
2+1

I p
2−1(

r

λt
)e

−λ2+r2

λ2+t µ(dt);

and M(x, t) = g(λ2t)
t x

p
2 I p

2−1(
x
t )e

− 1+x2

t . Obviously, A3 − A4 ≥ 0, because x ≥ r
λ .

Under condition (i) terms A1 and A2 will be vanished. Under condition (ii), an
expression A1 −A2 can be rewritten as

A1 −A2 = 2λ

∫ ∞

r/λ

∫ ∞

0

M(x, t)dtdx

∫ ∞

r/λ

∫ ∞

0

h′(λ2t)xtM(x, t)dtdx

− 2λ

∫ ∞

r/λ

∫ ∞

0

xM(x, t)dtdx

∫ ∞

r/λ

h′(λ2t)tM(x, t)dtdx.

Now, the FKG’s inequality (see Fortuin, Kasteleyn, & Ginibre, 1971) states
that an expression A1 − A2 is nonnegative, whenever M(x1, t2)M(x2, t1) −
M(x1, t1)M(x2, t2) ≤ 0, for 0 ≤ x1 ≤ x2 and 0 ≤ t1 ≤ t2. Substituting M
leads to

M(x1, t2)M(x2, t1)−M(x1, t1)M(x2, t2)

= I p
2−1(

x1
t2

)I p
2−1(

x2
t1

)− I p
2−1(

x1
t1

)I p
2−1(

x2
t2

)

× exp{−x
2
1 − x22
t1

− x22 − x21
t2

} ≤ 0,

The above inequality arrives from a double implementation of the Ross’s in-
equality (see Joshi & Bissu, 1991). To observe this, use the Ross’s inequality
Ip/2−1(x1/t2)

Ip/2−1(x1/t1)
≤ (t1/t2)

p/2−1 and
Ip/2−1(x2/t2)

Ip/2−1(x2/t1)
≥ (t1/t2)

p/2−1exp{x2/t2 − x2/t1},
hence

Ip/2−1(x1/t2)

Ip/2−1(x1/t1)
≤ Ip/2−1(x2/t2)

Ip/2−1(x2/t1)
exp{−(x21 − x22)(1/t1 − 1/t2)}. Because 0 ≤

−(x21 − x22)(1/t1 − 1/t2) + x2(1/t1 − 1/t2). �

Acknowledgement

This paper has been started jointly with professor Éric Marchand. Author world
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Estimation of P [Y < X] for Generalized Exponential Distribution in

the Presence of Outliers when Scale Parameter is Known

H. Pazira and P. Nasiri

Department of Statistics, Payame Noor University of Tehran

This paper deals with the estimation of P (Y < X) where Y has generalized exponential
distribution with parameters α and λ and X has generalized exponential distribution
with presence of k outliers with parameters β1, β2 and λ such that X and Y are in-
dependent. When scale parameter (λ) is known the maximum likelihood estimator of
R = P (Y < X) is derived. Analysis of the simulated and real life data sets have also
been presented for illustrative purposes. some of the previous results in the literatures
such as Kundu and Gupta (2005) and Nasiri and Jabbari Nooghabi (2009) can be
achieved as special case of our results.

Keywords: Stress-Strength model, Maximum likelihood estimator, Outliers.

1. Introduction

Recently the two-parameter generalized exponential (GE) distribution has been
proposed by the authors. It has been studied extensively by Gupta and Kundu
(1999, 2001a, 2001b, 2002, 2003a, 2003b, 2004, 2006), Raqab (2002), Raqab and
Ahsanullah (2001) and Zheng (2002). Note that the generalized exponential dis-
tribution is a submodel of the exponentiated weibull distribution introduced by
Mudholkar and Srivastava (1993) and later studied by Mudholkar, Srivastara and
Freimer (1995) and Mudholkar and Huston (1996).

The two-parameter GE distribution has the following density function

f(x, α, λ) = αλe−λx(1 − e−λx)α−1, x > 0, (1)

and the distribution function

F (x, α, λ) = (1− e−λx)α, x > 0. (2)

Here α > 0 and λ > 0 are the shape and scale parameters respectively. For
different values of the shape parameter, the density function can take different
shape. For detailed description of the distribution, one is referred to the original
paper of Gupta and Kundu (1999). From now on GE distribution with the shape
parameter α and scale parameter λ will be denoted by GE(α, λ).
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Let the random variables X1, X2, ..., Xn−k are independent, each having the
probability density function f1(x),

f1(x, β2) = β2e
−x(1 − e−x)β2−1, x > 0, (3)

and k random variables (as outliers) are also independent, have the probability
density function f2(x),

f2(x, β1) = β1e
−x(1 − e−x)β1−1, x > 0. (4)

The joint density of X1, X2, ..., Xn is given as

f(x1, x2, ..., xn)

= C

n∏

i=1

f1(xi) .
∑

A

k∏

r=1

f2(xAr )

f1(xAr )

= C β2
ne−

∑n
i=1 xi

n∏

i=1

(1− e−xi)β2−1
∑

A

β1
ke−

∑k
r=1 xAr

∏k
r=1(1 − e−xAr )β1−1

β2
ke−

∑k
r=1 xAr

∏k
r=1(1 − e−xAr )β2−1

= C β1
kβ2

n−ke−
∑n

i=1 xi

n∏

i=1

(1− e−xi)β2−1
∑

A

k∏

r=1

(1− e−xAr )β1−β2 , x > 0, (5)

where C = k!(n−k)
n! and

∑
A =

∑n−k+1
A1=1

∑n−k+2
A2=A1+1 · · ·

∑n
Ak=Ak−1+1. For more

details see Dixit (1989), Dixit et al. (1996) and Dixit and Nasiri (2001).

From equation (5), the marginal distribution of X is,

h(x, β1, β2) =
k

n
β1e

−x(1− e−x)β1−1 +
n− k

n
β2e

−x(1− e−x)β2−1, x > 0. (6)

The main aim of this paper is to focus on the inference ofR = P (Y < X), where
Y ∼ GE(α, λ) and X has mixture GE or marginal distribution of X1, X2, ..., Xn

with presence of k outliers. For Simplify we consider λ = 1. The estimation of
R is very common in the statistical literature. For example, if X is the strength
of a component which is subject to a stress Y, when R is a measure of system
performance and arises in the context of mechanical reliability of a system. We
obtain the maximum likelihood estimator (MLE) of R. It may be mentioned here
that related problems have been widely used in the statistical literature. The MLE
of P (Y < X), when X and Y have bivariate exponential distribution, has been
considered by Awad et al . (1981).Church and Harris (1970), Downtown (1973),
Govidarajulu (1967), Woodward and Kelley (1977) and Owen, Craswell and Han-
son (1977) considered the estimation of P (Y < X), when X and Y are normally
distributed. Similar problem for the multivariate normal distribution has been con-
sidered by Gupta and Gupta (1990) . Kelley, Kelley and Schucany (1976), Sathe
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and Shah (1981) considered the estimation of P (Y < X) when X and Y are inde-
pendent exponential random variables. Constantine and Karson (1986) considered
the estimation of P (Y < X), when X and Y are independent gamma random
variables. Sathe and Dixit (2001) have been estimate of P (Y < X) in the neg-
ative binomial distribution. Surles and Padgett (2001) considered the estimation
of P (Y < X), where X and Y are Burr Type X random variables. Baklizi and
Dayyeh (2003) have done shrinkage estimation of P (Y < X) in exponential case.
Kundu and Gupta (2005) considered the estimation of P (Y < X), where X and
Y have generalized exponential distribution. Nasiri and Jabbari Nooghabi (2009)
considered the estimation of P (Y < X), where X and Y independent general-
ized exponential random variable in the presence of one outlier, when the scale
parameter (λ) is known.

The rest of the paper is organized as follows; In section 2, we derive the MLE
of R. Analysis of a real life data set has been presented in section 3 and finally we
draw conclusion in section 4.

2. Maximum Likelihood estimator of R

Let Y1, Y2, ..., Ym be a random sample for Y with pdf

g(y, α) = αe−y(1− e−y)α−1, y > 0, (7)

and X1, X2, ..., Xn be random sample for X with pdf

f(x, β1, β2) =
k

n
β1e

−x(1− e−x)β1−1 +
n− k

n
β2e

−x(1− e−x)β2−1, x > 0. (8)

Then

R = P (Y < X)

=

∫ ∞

0

∫ x

0

g(y, α)f(x, β1, β2, )dydx

=

∫ ∞

0

[

∫ x

0

αe−y(1 − e−y)α−1dy][
k

n
β1e

−x(1− e−x)β1−1

+
n− k

n
β2e

−x(1− e−x)β2−1]dx

=

∫ ∞

0

∫ x

0

[
k

n
β1e

−x(1− e−x)β1−1][αe−y(1− e−y)α−1]dydx

+

∫ ∞

0

∫ x

0

[
n− k

n
β2e

−x(1− e−x)β2−1][αe−y(1− e−y)α−1]dydx

=

∫ ∞

0

k

n
β1e

−x(1− e−x)α+β1−1dx+

∫ ∞

0

n− k

n
β2e

−x(1− e−x)α+β2−1dx

=
k

n

β1
α+ β1

+
n− k

n

β2
α+ β2

. (9)
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Therefore, the MLE of R becomes

R̂ =
k

n

β̂1

α̂+ β̂1
+
n− k

n

β̂2

α̂+ β̂2

For k = 0 (or in case of no outlier presence) the above equation obtained by by
Kundu and Gupta (2005), and for k = 1 proposed by Nasiri and Jabbari Nooghabi
(2009).

Now to compute the MLE of R, first we consider the joint distribution of
X1, X2, ..., Xnwith presence of k outliers in (5), so

L(α, β1, β2)

= g(y1, y2, ..., ym).f(x1, x2, ..., xn)

= αme−
∑m

i=1 yi

m∏

i=1

(1 − e−yi)α−1

× k!(n− k)

n!
β1

kβn−k
2 e−

∑n
i=1 xi

n∏

i=1

(1 − e−xi)β2−1
∑

A

k∏

r=1

(1− e−xAr )β1−β2 .

The Log-likelihood function of the observed sample is

lnL(α, β1, β2) = m ln(α)−
m∑

i=1

yi + (α− 1)
m∑

i=1

ln(1 − e−yi)

+ C′ + k lnβ1 + (n− k) lnβ2 −
n∑

i=1

xi + (β2 − 1)

n∑

i=1

ln(1 − e−xi)

+ ln


∑

A

k∏

r=1

(1− e−xAr )β1−β2


 . (10)

where C′ = ln k!(n−k)
n! and

∑
A =

∑n−k+1
A1=1

∑n−k+2
A2=A1+1 · · ·

∑n
Ak=Ak−1+1.

The MLE’s of α, β1 and β2 say α̂, β̂1 and β̂2, respectively, which is obtained as
the solutions of

∂ lnL

∂α
=
m

α
+

m∑

i=1

ln(1 − e−yi) = 0

or

m

α
= −

m∑

i=1

ln(1− e−yi)

Hence

α̂ =
−m∑m

i=1 ln(1− e−yi)
, (11)
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∂ lnL

∂β1
=

k

β1
+

∂
∂β1

∑
A

∏k
r=1(1− e−xAr )β1−β2

∑
A

∏k
r=1(1− e−xAr )β1−β2

=
k

β1
+

∑
A

(∏k
r=1(1 − e−xAr )β1−β2

∑k
r=1 ln(1 − e−xAr )

)

∑
A

∏k
r=1(1− e−xAr )β1−β2

= 0, (12)

and

∂ lnL

∂β2
=
n− k

β2
+

n∑

i=1

ln(1 − e−xi) +

∂
∂β2

∑
A

∏k
r=1(1− e−xAr )β1−β2

∑
A

∏k
r=1(1− e−xAr )β1−β2

=
n− k

β2
+

n∑

i=1

ln(1 − e−xi)

−
∑

A

(∏k
r=1(1− e−xAr )β1−β2

∑k
r=1 ln(1− e−xAr )

)

∑
A

∏k
r=1(1− e−xAr )β1−β2

= 0. (13)

There is no closed-form solution to this system of equations, so we will solve

for β̂1 and β̂2 iteratively, using the Newton-Raphson method, a tangent method
for root finding. In our case we will estimate θ = (β1, β2)

′ iteratively:

θ̂i+1 = θ̂i −G−1g , (14)

where g is the vector of normal equations for which we want

g = [ g1 g2 ] (15)

with

g1 =
k

β1
+

∑
A

(∏k
r=1(1− e−xAr )β1−β2

∑k
r=1 ln(1− e−xAr )

)

∑
A

∏k
r=1(1− e−xAr )β1−β2

, (16)

g2 =
n− k

β2
+

n∑

i=1

ln(1−e−xi)−
∑

A

(∏k
r=1(1 − e−xAr )β1−β2

∑k
r=1 ln(1 − e−xAr )

)

∑
A

∏k
r=1(1 − e−xAr )β1−β2

,

(17)
and G is the matrix of second derivatives
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G =




d g1
dβ1

d g1
dβ2

d g2
dβ1

d g2
dβ2


 (18)

where

d g1
dβ1

=
−k
β1

2 +

∑
A

(∏k
r=1(1− e−xAr )β1−β2 ·

(∑k
r=1 ln(1 − e−xAr )

)2)

∑
A

∏k
r=1(1− e−xAr )β1−β2

+



∑

A

(∏k
r=1(1− e−xAr )β1−β2

∑k
r=1 ln(1− e−xAr )

)

∑
A

∏k
r=1(1− e−xAr )β1−β2




2

(19)

d g1
dβ2

=
d g2
dβ1

= −

∑
A

(∏k
r=1(1− e−xAr )β1−β2 ·

(∑k
r=1 ln(1− e−xAr )

)2)

∑
A

∏k
r=1(1− e−xAr )β1−β2

+



∑

A

(∏k
r=1(1− e−xAr )β1−β2

∑k
r=1 ln(1− e−xAr )

)

∑
A

∏k
r=1(1− e−xAr )β1−β2




2

(20)

d g2
dβ2

=
k − n

β2
2 +

∑
A

(∏k
r=1(1− e−xAr )β1−β2 ·

(∑k
r=1 ln(1 − e−xAr )

)2)

∑
A

∏k
r=1(1− e−xAr )β1−β2

−



∑

A

(∏k
r=1(1− e−xAr )β1−β2

∑k
r=1 ln(1− e−xAr )

)

∑
A

∏k
r=1(1− e−xAr )β1−β2




2

(21)

The Newton-Raphson algorithm converges, as our estimates of β1 and β2
change by less than a tolerated amount with each successive iteration, to β̂1 and

β̂2.

For β1 = β2 = β in case of no outlier presence (k = 0), α̂ and β̂ can be obtain
as

α̂ =
−m∑m

i=1 ln(1− e−yi)
and β̂ =

−n∑n
i=1 ln(1− e−xi)

. (22)

For β1 = β2 (or k = 0), these equations (in (22)) were proposed by Kundu and
Gupta (2005). For k = 1, the equations of (12) and (13) proposed by Nasiri and
Jabbari Nooghabi (2009).
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3. Numerical experiments and discussions

In order to have some idea about Bias and Mean Square Error (MSE) of MLE,
we perform sampling experiments using a MATLAB. To have inference about R,
we consider the following small sample size;

(m,n) =
(15, 15), (20, 20), (25, 25), (15, 20), (20, 15), (15, 25), (25, 15), (20, 25), (25, 20).

Here, we take α = 1.50, β1 = 2.75 and β2 = 2.5, for k = 1, 2. As we know,
the generated sample size n from f(x, β1, β2), (n− k) sample generated from the
equation (3) and k sample generated from the equation (4). All the results are base
on 1000 replications. Here we present a complete analysis of a simulated data. The
data has been generated using m = n = 20, α = 1.5, β1 = 2.75, β2 = 2.5 and
k = 3, thus R = 0.6283.

The data has been presented below. The Y values are,

0.4923 1.3188 1.6566 1.8956 0.7317 0.8856 0.2156

0.1871 1.1989 0.9144 0.8894 2.1774 0.3848 1.8992

1.3030 0.9214 0.3402 1.0771 1.8312 0.1487

and the corresponding X values are ,

0.7019 1.9499 0.2770 1.7058 2.4813 2.5566 0.8180

1.5875 0.6742 0.8825 1.9649 1.3268 0.6253 3.5434

0.9046 0.5068 2.4653 1.6606 2.3153 3.0868

Now, we obtain the MLE of α̂ = 1.4611, β̂1 = 2.6378 and β̂2 = 2.5261. There-
fore, R̂ = 0.7301.
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4. Conclusions

In this paper, we have addressed the problem of estimating P (Y < X) for
the Generalized Exponential distribution with presence of k outliers when scale
parameter is know. The results are given in Tables 1 and 2. It is observed that the
maximum likelihood estimator R work quit well. We report the average estimates
and the MSEs based on 1000 replications. In this case as expected when m = n
and m, n increase then the average biases and the MSEs decrease . For fixed m
as n increases the MSEs decrease and also for fixed n as m increases the MESs
decreases.

Table 1

k = 1 , α = 1.5 , β1 = 2.75 , β2 = 2.5

(n,m) Bias α̂ MSE α̂ Bias β̂1 MSE β̂1 Bias β̂2 MSE β̂2 Bias R̂ MSE R̂

(15,15) 0.1421 0.2527 -0.2421 383.24 0.2526 0.9559 -0.3097 0.1838

(20,20) 0.0808 0.1555 -1.2602 14.254 0.1824 0.6091 -0.3124 0.1883

(25,25) 0.0660 0.1135 0.8531 1509.6 0.1417 0.4601 -0.3013 0.1812

(15,20) 0.0751 0.1467 4.3815 19357 0.2523 0.9969 -0.2966 0.1768

(20,15) 0.1182 0.2183 -1.2712 20.414 0.1503 0.5981 -0.3026 0.1805

(15,25) 0.0633 0.1069 -0.8652 33.742 0.2195 0.8879 -0.2908 0.1720

(15,25) 0.1064 0.2132 -0.2088 628.51 0.1138 0.4227 -0.2973 0.1792

(20,25) 0.6214 0.1177 1.9963 86705 0.1859 0.6329 -0.3086 0.1855

(25,20) 0.0818 0.1455 2.0314 5162.2 0.2115 0.4016 -0.3049 0.1848

Table 2

k = 2 , α = 1.5 , β1 = 2.75 , β2 = 2.5

(n,m) Bias α̂ MSE α̂ Bias β̂1 MSE β̂1 Bias β̂2 MSE β̂2 Bias R̂ MSE R̂

(15,15) -0.0126 0.0064 -0.0984 0.0669 -0.1962 0.0681 -0.0070 0.0073

(20,20) -0.0103 0.0044 -0.0481 0.0745 0.0048 0.0413 -0.0020 0.0056

(25,25) -0.0069 0.0033 0.1930 0.0579 0.0121 0.0174 -0.0025 0.0041

(15,20) -0.0154 0.0052 0.2274 0.0635 0.0648 0.0098 -0.0058 0.0061

(20,15) -0.0172 0.0064 0.2878 0.0933 0.2524 0.0812 -0.0065 0.0063

(15,25) -0.0099 0.0043 0.2812 0.0832 0.1053 0.0288 0.0020 0.0055

(15,25) -0.0176 0.0054 0.0463 0.0729 0.0397 0.0416 -0.0085 0.0056

(20,25) -0.0096 0.0040 -0.0990 0.0238 0.0861 0.0994 -0.0026 0.0050

(25,20) -0.0088 0.0043 -0.0163 0.0469 -0.0926 0.0580 -0.0018 0.0050
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Structure Of Generalized Bivariate Lomax Distribution Based On

Dependence And Information Measures

V. Ranjbar, M. Amini, A. Bozorgnia and G.R. Mohtashami Borzadaran

In this paper, the dependence structure of the generalized bivariate Lomax family stud-
ied. First, some concepts of dependence and some association measures like tail depen-
dence and extremal dependence obtained. In addition, some local dependence functions
derived and compared via a numerical study. finally, entropy, mutual information and
quadratic mutual information measures for this family studied and discussed about
them.

Keywords: Copula function, Dependence measures, Generalized bivariate Lomax distri-
bution, Entropy, Mutual information, Quadratic mutual information, Local dependence
function, Heavy tailed distributions.

1. Introduction and Preliminaries

In recent years, a number of studies in economics, finance, networking and
some other sciences like these, have focused on dependence measuring, modeling,
information measuring and heavy tailed distributions. In addition, the bivariate
measures of dependence and the copula based approaches to dependence modeling
are two interrelated parts of the study of dependence structure of bivariate distri-
butions in mathematical statistics and probability theory. Many authors studied
dependence structures of some bivariate distributions such as: Shaked (1977) has
presented some concepts of dependence for bivariate distributions, Schweizer and
Wolff (1981) obtained nonparametric measures of dependence for random vari-
ables. Apparently, some authors wrote useful papers in the field of dependence via
computing well known dependence measures for some bivariate distributions, for
example, Bairamove and Kotz (2002) studied the dependence structure of Farlie-
Gumbel-Morgenstern distributions and their extensions, Nadarajah et al. (2003)
determined the local dependence function for extreme value distributions in view
of Kotz and Nadarajah’s (2003) Local dependence function. A new measure of
linear local dependence has been obtained by Bairamov et. al. (2003), Sankaran
and Gupta (2004) studied the properties of the local dependence function, intro-
duced by Holland and Wang (1987). Moreover, they presented characterizations
for bivariate Lomax distribution, bivariate Dirichlet distribution, and bivariate
normal distribution using local function and regression functions and Asadian et
al.(2008) investigated aspects of dependence in Lomax family. Cuadras and Auge
(1981) introduced the family of bivariate distributions and investigated depen-
dence structure of it, Cuadras (2006) derived dependence measures, Kendall’s tau
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and Spearman’s rho in Cuadras-Auge family and expanded this bivariate distri-
bution in terms of Fréchet-Hoeffding lower and upper bounds, Ruiz-Rivas and
Cuadras (1988) studied some geometrical, probabilistic and statistical properties
of the Cuadras-Ague family and Bolbolian et al.(2008) studied dependence struc-
ture of Cuadras-Auge family via some measure of association and tail dependence
coefficients. Genest (1987) considered the dependence structure of Frank’s family
of bivariate distribution, also suggested three nonparametric estimator of the as-
sociation parameter and compared their small-sample behavior of the Maximum
likelihood estimator for this family.
The other way to determine the measure of dependence between two random vari-
ables is using the information theory. Some measures such as entropy, mutual
information and quadratic mutual information play important role in dependence
measuring of bivariate distributions and some papers have written in this case. For
example, Joe (1989) has presented the relative entropy measures of multivariate
dependence. Bell (1962) has used mutual information as a measure of dependence.
Xu and Principe (1998) discussed a novel algorithm to train nonlinear mappers
with information theoretic criteria (entropy and mutual information) directly from
a training set.
Also, the heavy tailed random variables their asymptotic behaviors and applica-
tions have been extensively investigated in half past century by many authors.
The heavy tailed random variables have very considerable role in some sciences
like finance, insurance and economics and study of the structures of the distribu-
tions of these random variables is one of the intrusting topics for statisticians. In
particular, the study of the dependence structure of tail of distribution of random
variables is considerable. Frahm et al. (2005) derived some properties of estimat-
ing the tail dependence coefficient. Caillault and Guegan (2005) have introduced
non-parametric estimators for upper and lower tail dependence and confidence
intervals are obtained with a bootstrap method, Dobric and Schmid (2005) esti-
mated the lower tail dependence in bivariate copulas by nonparametric approach.
Many other authors presented some paper in this case such as Juri and Wüthrich
(2003), Charpentier and Segers (2006).
In view of these themes, we want to study the dependence structure of a family of
bivariate distributions which contains the distributions with heavy tailed marginal
distributions via some dependence structure and information measures.
Let (X,Y ) be a random vector with the following survival distribution function,

F (x, y) = (1 + a1x
a2 + b1y

b2)−p, x, y ≥ 0, (1)

where a1, a2, b1, b2 and p are positive real numbers. This family of bivariate dis-
tributions is extended version of bivariate Lomax distribution, that is called ”gen-
eralized bivariate Lomax (GBL)”. This class contain two main categories of the
bivariate distributions such as:

• Bivariate Lomax distributions for a2 = b2 = 1, which is widely used in
reliability theory(see for details, Nayak, 1987, Nadarajah, 2005 and Barlow
and Proschan 1981).

• Bivariate Burr distributions for a1 = b1 = 1, that belongs to the class of
heavy tailed distribution. It has many applications in finance, insurance and
networking (see, Resnik, 2006).
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The purpose of this paper is to examine the dependence structure of GBL family.
We investigate dependence structure of this family via computing measures of in-
formation and dependency. In some cases, we have used copula function, instead of
distribution function, since computations are simple and the copula is independent
from marginal distributions. .
The rest of this paper consists of seven sections. After listing some concepts of
dependence and surveying them for GBL family in section 2, we derive some asso-
ciation measures, tail dependence coefficients, extremal dependence coefficients in
Section 3, and also we compare these coefficients with a numerical approach in this
section. We discuss the behavior of the local dependence via Bairamov and Kotz
local dependence function and Clayton-Oakes association measure in GBL family
and draw graphs of these local dependence measures in section 4. In section 5, we
compute three information measures and evaluate them for this family. Finally,
after writing a short conclusion in section 6, we present the proofs of the theorems
and lemmas in section 7.

2. Some Concepts of Dependence

Let (X,Y ) be a random vector with joint density function f(x, y), distribution
function F (x, y) and marginals F1(x) and F2(x). Then the following quantities are
defined:

1. (Karlin, 1968) The real function h(x, y) is totally positive of order two (TP2)
if h(x, y) ≥ 0,

h(x, y)h(x′, y′) ≥ h(x, y′)h(x′, y), ∀ x < x′, y < y′.

2. The random vector (X,Y ) is said to be positive likelihood ratio dependence
(PLRD(X,Y )) if f(x, y) is TP2.

3. The random vector (X,Y ) or its distribution function is said to be right
corner set increasing (RCSI(X,Y )) if P (X > x, Y > y|X > x′, Y > y′) is
increasing in x′ and y′ for all x and y.

4. The random variableX is said to be stochastically increasing in Y (SI(X |Y ))
if P (X > x|Y = y) is increasing in y for all x.

5. The random variable X is said to be right tail increasing in Y (RTI(X |Y ))
if P (X > x|Y > y) is non-decreasing in y for all x.

6. The random variable X is said to be left tail decreasing in Y (LTD(X |Y ))
if P (X ≤ x|Y ≤ y) is non-increasing in y for all x.

7. The random variables X and Y are said to be positively quadrant dependent
(PQD(X,Y )) if,

P (X > x, Y > y) ≥ P (X > x)P (Y > y), ∀x, y.
8. The bivariate failure (or hazard ) rate of a random vector (X,Y ) is defined

as follows,

r(x, y) =
f(x, y)

F̄ (x, y)
. (2)
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9. The copula function C(u, v) is a bivariate distribution function with uniform
marginals on [0, 1], such that

F (x, y) = CF (F1(x), F2(y))

By Sklar’s Theorem (Sklar, 1959), this copula exists and is unique if F1 and
F2 are continuous. Thus we can construct bivariate distributions F (x, y) =
CF (F1(x), F2(y)) with given univariate marginals F1 and F2 by using copula
CF ,(Nelsen, 2006).

We have the following properties for copula functions:

• (Nelsen, 2006) Let F (x, y) be a joint distribution function with marginals
F1(x) and F2(y), then
(i) The copula CF is given by

CF (u, v) = F (F−1
1 (u), F−1

2 (v)), ∀u, v ∈ [0, 1],

where, F−1
1 and F−1

2 are quasi-inverses of F1 and F2 respectively.
(ii) The partial derivatives ∂CF (u, v)/∂u and ∂CF (u, v)/∂v exist and
c(u, v) = ∂2CF (u, v)/∂u∂v is density function of CF (u, v).

• The random vector (X,Y ) is PLRD if and only if

c(u′, v)

c(u, v)
is incraesing in v for all u < u′. (3)

Remark 2.1. (i)- Let (X,Y ) be a random vector with GBL distribution function,
then, using relation (1), it is easy to see that,

C(u, v) =
[
(1− u)−

1
p + (1 − v)−

1
p − 1

]−p

+ u+ v − 1, p > 0. (4)

(ii)- We observe that the copula function of GBL family is independent of param-
eters ai, bi, i = 1, 2, furthermore, it is equal to copula of bivariate Lomax family
that has been studied by Asadian et al.(2008).

Proposition 2.1. Let (X,Y ) be a random vector with GBL distribution function,
then (X,Y ) is PLRD and consequently is PQD.

Proof. Using relation (4), we get,

c(u, v) =
∂2C(u, v)

∂v∂u

=
p+ 1

p
(1− v)−

1
p−1(1− u)−

1
p−1

[
(1− u)−

1
p + (1− v)−

1
p − 1

]−p−2

,

So, we have

c(u′, v)

c(u, v)
=
( 1− u

1− u′

) p+1
p

[
1− (1 − u′)

−1
p − (1− u)

−1
p

(1− u′)
−1
p + (1− v)

−1
p − 1

]p+2

,

∀u < u′, 0 < v < 1,
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which is increasing function in v and this completes the proof.

Proposition 2.2. Let (X,Y ) be a random vector with GBL function, then

(i). X is stochastically increasing in Y ,(SI(X |Y )) and Y is stochastically increas-
ing in X (SI(Y |X)).

(ii). X is right tail increasing in Y ,(RTI(X |Y )) and Y is right tail increasing in
X (RTI(Y |X)).

(iii). X is left tail decreasing in Y ,(LTD(X |Y )) and Y is left tail decreasing in
X (LTD(Y |X)).

Proof. Using relation (1) we have

P (Y > y|X = x) =
(
1 +

b1y
b2

1 + a1xa2

)−p−1

,

P (Y > y|X > x) =
(
1 +

b1y
b2

1 + a1xa2

)−p

,

P (Y ≤ y|X ≤ x) = 1 +
(1 + a1x

a2 + b1y
b2)−p − (1 + b1y

b2)−p

1− (1 + a1xa2)−p
.

It is easy to see that the first two relation are increasing function of x and the last

one is decreasing, which completes the proof.

Remark 2.2. The random vector (X,Y ) is RCSI if F̄ (x, y) is TP2. (Nelsen 2006,
Theorem 5.2.15)

Corollary 2.1. Let (X,Y ) be a random vector with GBL distribution function. It
is easy to see that F̄ (x, y) is TP2 and then (X,Y ) is RCSI.

3. Some measures of association

In this section, we compute measures of association, tail dependence coefficients
and extremal dependence coefficients for GBL family.

3.1. Kendall’s τ and Spearman’s ρs

The Spearman’s ρs is connected with PQD concept and formulated by copula
function C as follows:

ρs = 12

∫ 1

0

∫ 1

0

[C(u, v)− uv]dudv = 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3.

The Kendall’s τ is connected with PLRD concepts and formulated by copula func-
tion C as:

τ = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1 = 1− 4

∫ 1

0

∫ 1

0

[
∂C

∂u
.
∂C

∂v

]
dudv.
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These measures are obtained for bivariate Lomax family by Asadian et al.(2008),
and since the copula of GBL family is equal to copula of bivariate Lomax family,
so the following proposition is valid for GBL family.

Proposition 3.1. Let (X,Y ) be a random vector with GBL distribution function,
then,

(i). τ = 1
2p+1 ,

(ii). ρs =
∑∞

k=0
12p2(k+1)

2p+k B(3p, k + 1)− 3,

where, B(α, β) = Γ(α)Γ(β)
Γ(α+β) is the Beta function and Γ(α) =

∫∞
0
xα−1e−xdx.

Remark 3.1. Let (X,Y ) be a random vector with GBL distribution function,
then, Proposition 2.3, Theorem 5.1 in Fredricks and Nelsen, (2007) and Hutchinson
and Lai (1990)[Exercise, 5.38 in Nelsen, 2006] imply that

0 ≤ τ ≤ ρs ≤
3

2
τ.

3.2. The Blomqvist medial coefficient

This coefficient, also known as quadrant test of Blomqvist, evaluates the de-
pendence at the center of a distribution (Blomqvist, 1950). If X and Y are inde-
pendent, then in particular C(12 ,

1
2 ) = 1

4 . The coefficient of Blomqvist is defined
as:

β = 4C(
1

2
,
1

2
)− 1.

Corollary 3.1. Let (X,Y ) be a random vector with GBL distribution function,
then, β = 4(2(p+1)/p − 1)−p − 1. It is obvious that 0 ≤ β ≤ 1 for all p > 0.

3.3. Schweizer-Wolff’s index of dependence

An index closely related to Spearmans ρs is the index σXY introduced by
Schweizer and Wolff (1981). Instead of considering the difference C(u, v) − uv,
they use its absolute value to define:

σXY = 12

∫ 1

0

∫ 1

0

|C(u, v)− uv|dudv,

which is a measure of the volume between the surfaces C(u, v) and uv. We have
the following implications

σXY = 0 ⇒ (X,Y ) independent,

σXY = 1 ⇒ X is a monotone function of Y.

Corollary 3.2. Since in GBL family, C(u, v) ≥ uv, we obtain,

σXY = ρs.
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3.4. Gini’s gamma coefficient

The Gini’s γ coefficient is defined as

γC = 2

∫ 1

0

∫ 1

0

(|u+ v − 1| − |u− v|)dC(u, v).

Another form of Gini’s γ is given by

γC = 4

{∫ 1

0

C(u, 1− u)du−
∫ 1

0

[u− C(u, u)]du

}
.

(For more details see, Nelsen, 2006).

Corollary 3.3. Let (X,Y ) be a random vector with GBL distribution function,
then, for all p > 0,

γC = 4

[∫ 1

0

(
[(1− u)

−1
p + u

−1
p − 1]−p + [2(1− u)

−1
p − 1]−p

)
du

]
− 2.

Remark 3.2. Since there is not closed form for the Gini’s gamma coefficient in
GBL family, we study and analysis of it with numerical approach. Table 1 presents
Gini’s gamma coefficient and Spearman’s ρ (or σXY ) for GBL family for some
values of p. It is easy to see that ρ = σXY ≥ γC for all values of p.

Table 1: γC and ρs for some values of p in GBL family.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

γC .877 .776 .692 .622 .565 .516 .475 .439 .409 .382

ρs = σXY .952 .885 .811 .743 .683 .631 .585 .545 .510 .479

p 2 3 4 5 6 7 8 9 10 20

γC .230 .164 .128 .104 .088 .076 .067 .060 .055 .027

ρs = σXY .295 .212 .166 .136 .115 .099 .088 .079 .071 .037

p 30 40 50 60 70 80 90 100 ... 1000

γC .018 .014 .011 .009 .008 .007 .006 .005 ... .0006

ρs = σXY .025 .018 .015 .012 .011 .009 .008 .007 ... .0007

3.5. Tail dependence coefficients

Let (X,Y ) be a random vector with joint distribution function F and marginals
F1 and F2, respectively. The quantity λu = lim

t→1−
P (F1(X) > t|F2(Y ) > t) is called

the upper tail dependence coefficient (UTDC) provided the limit exists. We say
that (X,Y ) has upper tail dependence if λu > 0 and upper tail independent
if λu = 0. Similarly, we define the lower tail dependence coefficient (LTDC) by
λl = lim

t→0+
P (F1(X) ≤ t|F2(Y ) ≤ t) . The upper tail dependence coefficient (or
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lower tail dependence coefficient) can also be defined via the notion of copula. If
C(u,v) is the copula of (X,Y ), then

λu = lim
t→1−

1− 2u+ C(u, u)

1− u
and λl = lim

t→0+

C(u, u)

u
.

For more details, see Coles et. al. (2000).

Corollary 3.4. Let (X,Y ) be a random vector with GBL distribution function.
Then λu = 2−p and λl = 0

3.6. Extremal dependence coefficients

Extremal dependence coefficients were introduced by Frahm (2006) for studying
the asymptotic dependence structure of the minimum and the maximum of a
random vector. Let (X1, X2, ..., Xn) be a random vector with joint distribution
function F (x1, x2, ..., xn) and marginal distribution functions F1, ..., Fn. Moreover,
let Fmin = min{F1(X1), ..., Fn(Xn)} and Fmax = max{F1(X1), ..., Fn(Xn)}.
The lower extremal dependence coefficient (LEDC) of (X1, X2, ..., Xn) is defined
as

El = lim
t→0+

P (Fmax ≤ t|Fmin ≤ t),

where the upper extremal dependence coefficient (UEDC) of (X1, X2, ..., Xn) is
defined as

Eu = lim
t→1−

P (Fmin > t|Fmax > t),

provided the corresponding limits exist.

Remark 3.3. By Proposition 1 in Frahm (2006), we can derive El and Eu via
the quantities λl and λu as follows

El =
λl

2− λl
and Eu =

λu
2− λu

.

Therefore if F (x, y) belongs to GBL family, then the Corollary 3.4 implies that

El = 0, and Eu =
1

2p+1 + 1
> 0.

This means that (X,Y ) has UED but not LED.

Remark 3.4. Since we have closed forms expression for τ , β, λu and Eu for
the GBL family, it is possible to compare analytically these measures. Figure 1
contains graphs of these functions with compare them for some value of p.

i. If 0 < p < 1, then Eu < τ < β < λu.
ii. If 1 ≤ p < 2.6598, then Eu < β ≤ τ < λu.
iii. If 2.6598 < p < 2.7211, then Eu < β < λu < τ.
iv. If p > 2.7211, then Eu < λu < β < τ.
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Figure 1: Comparing the dependence coefficients for some values of p, where λu shows
by ” ∗ ”, Eu by ”× ”, β by ” ◦ ” and τ by line.

4. Local Dependence

In this section, we compute the Clayton-Oakes association measure (denoted
by Θ(x, y)) and local dependence function due to Kotz and Nadarajah (2003)
(denoted by H(x, y)) in GBL family. Furthermore, we investigate the behavior of
these measures drawing their graphs.

4.1. Clayton-Oakes Association Measure

Clayton (1978) and Oakes (1989) defined the following association measure.

θ(x, y) =
F̄ (x, y)D12F̄ (x, y)

D1F̄ (x, y)D2F̄ (x, y)
,

where,

D12F̄ (x, y) =
∂2F̄ (x, y)

∂x∂y
; D1F̄ (x, y) =

∂F̄ (x, y)

∂x
; D2F̄ (x, y) =

∂F̄ (x, y)

∂y
.

If θ(x, y) > 1 , we say X and Y are positive dependent and negative dependent
if the opposite relation occurs. Consequently if θ(x, y) = 1 , X and Y being in-
dependent. Gupta (2003) proved that θ(x, y) = r(x|Y = y)/r(x|Y > y), where
r(x|Y = y) = f(x|y)/F̄ (x|y) and r(x|Y > y) is the hazard rate of the condi-
tional distribution of X given Y > y. Using this result we obtain the following
Proposition.
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Proposition 4.1. Let (X,Y ) be a random vector with GBL function, then

θ(x, y) =
p+ 1

p
.

Proof. By Gupta (2003) for every real value of x and y, we have

r(x|Y = y) = −D12F̄ (x, y)

D2F̄ (x, y)

= a1a2(p+ 1)xa2−1(1 + a1xa2 + b1y
b2)−1, (5)

and

r(x|Y > y) = −D1F̄ (x, y)

F̄ (x, y)

= a1a2px
a2−1(1 + a1xa2 + b1y

b2)−1. (6)

So we have

θ(x, y) =
r(x|Y = y)

r(x|Y > y)
=
p+ 1

p
.

This completes the proof.

4.2. Local dependence function of Kotz and Nadarajah

Kotz and Nadarajah (2003) have introduced a local dependence function (de-
noted by H(x, y)), which provides a local point of view on dependence at a point
(x, y) and defined

H(x, y) =
E{(X − E(X |Y = y))(Y − E(Y |X = x))}√
E(X − E(X |Y = y))2

√
E(Y − E(Y |X = x))2

,

which is obtained from the expression of the Pearson correlation coefficient by
replacing mathematical expectations E(X) and E(Y ) by conditional expectations
E(X |Y = y) and E(Y |X = x), respectively. So, we have,

H(x, y) =
ρ+ φX(y)φY (x)√

1 + φ2X(y)
√
1 + φ2Y (x)

, (7)

where,

ρ =
cov(X,Y )√
var(X)var(Y )

; φX(y) =
E(X)− E(X |Y )√

var(X)
; φY (x) =

E(Y )− E(Y |X)√
var(Y )

.

Proposition 4.2. Let (X,Y ) be a random vector with GBL distribution function,
then

φX(y) =
B(p− 1

a2
, 1 + 1

a2
)
[
p− (p− 1

a2
)(1 + b1y

b2)
1
a2

]

√
p
[
B(p− 2

a2
, 1 + 2

a2
)− pB2(p− 1

a2
, 1 + 1

a2
)
] 1

2

,
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φY (x) =
B(p− 1

b2
, 1 + 1

b2
)
[
p− (p− 1

b2
)(1 + a1x

a2)
1
b2

]

√
p
[
B(p− 2

b2
, 1 + 2

b2
)− pB2(p− 1

b2
, 1 + 1

b2
)
] 1

2

,

and

ρ =
[

(p + 1)B(p − 1
a2

− 1
b2

, 1 + 1
a2

, 1 + 1
b2

)− pB(p− 1
a2

, 1 + 1
a2

)B(p − 1
b2

, 1 + 1
b2

)
]

[(

B(p − 2
a2

, 1 + 2
a2

) − pB2(p− 1
a2

, 1 + 1
a2

)
)(

B(p − 2
b2

, 1 + 2
b2

)− pB2(p − 1
b2

, 1 + 1
b2

)
)] 1

2

.

By substituting theses relations in (7) the Kotz and Nadarajah dependence coeffi-
cient can be obtained, on noting that B(a, b, c) = Γ(a)Γ(b)Γ(c)/Γ(a+ b+ c).

Corollary 4.1. In particular if a1 = a2 = b1 = b2 = 1, the Katz and Nadarajah
coefficient for GBL family is as follows:

H(x, y) =
p3 + (p− 2)2[x(1− p) + 1][y(1− p) + 1]√

[p4 + (p− 2)2(x(1 − p) + 1)2][p4 + (p− 2)2(y(1− p) + 1)2]
.

As we see, this coefficient is a decreasing function of p and is tends to infinity
when p tends to infinity. Figure 2 shows the behavior of H(x, y) for values of
p = 1, 2, 4, 6, 10, 25, under the conditions of Corollary 4.4.

Remark 4.1. We compute the saddle point (x∗, y∗) such that H(x∗, y∗) = ρ when
a1 = a2 = b1 = b2 = 1 in GBL family. By solving the equation φX(y∗) = φY (x

∗) =
0 analytically, we obtain

(x∗, y∗) =

(
1

p− 1
,

1

p− 1

)

As we see, the Kotz and Nadarajah’s local dependence are equal to Pearson’s
correlation coefficient ρ when X and Y are equal to their expectation. It is easy
to see that in this case H(x∗, y∗) = ρ = 1

p .

In order to compar Pearson’s ρ, Clayton-Oakes association measure and local
dependence function of Kotz and Nadarajah, for some value of p and (x∗, y∗),
Table 2 presents ρ, and Θ(x∗, y∗).

Table 2: Computes of (x∗, y∗) for the GBL family.
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Figure 2: The diagram of H(X,Y ) for different values of p. Top left: p = 1, Top

right: p = 2, Middle left: p = 4, Middle right: p = 6, Bottom left: p = 10 and

Bottom right p = 25.
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p ρ x∗ y∗ Θ(x∗, y∗)
1 1.000 ∞ ∞ 2.000

2 0.500 1.000 1.000 1.500

3 0.333 0.500 0.500 1.333

4 0.250 0.333 0.333 1.250

5 0.200 0.250 0.250 1.200

6 0.167 0.200 0.200 1.167

7 0.143 0.167 0.167 1.143

8 0.125 0.143 0.143 1.125

9 0.111 0.125 0.125 1.111

10 0.100 0.111 0.111 1.100

5. Some Information measures

In this section, we derive three information measures for GBL family. Also, we
study behavior of these measures via a numerical study:

5.1. Entropy

If (X,Y ) is a random vector with the joint density function f(x, y), the joint
entropy for two random variables X and Y is

He(X,Y ) = −E[log(f(X,Y ))].

This measure is maximum, when X and Y are independent and if X and Y are
dependent random variables, then He is a real number.(see, Joe, 1987, 1989 and
1997)

Proposition 5.1. Let (X,Y ) be a random vector with GBL distribution function,
then

He(X,Y ) =
a2 − 1

b1b2a2
[ln a1 + c1(p)] +

b2 − 1

a1a2b2
[ln b1 + c1(p)]− c2(p)− ln(A),

where, A = a1a2b1b2p(p+ 1) and ci(p); i = 1, 2 are functions of p, see appendices.

Corollary 5.1. If a1 = a2 = b1 = b2 = 1 then, the entropy of GBL distribution
function is as follows:

He(X,Y ) = log(p(p+ 1)) +

∞∑

i=0

p+ 2

Γ(p)Γ(i + 1)
[Γ(p+ i)(Ψ(1 + i)−Ψ(p+ i))

+Γ(p+ i+ 1)(Ψ(1 + i)−Ψ(p+ i+ 1))], (8)

where, Ψ(x) = ∂ ln(Γ(x))/∂x.

Table 3 and Figure 3 show behavior of He(X,Y ) with respect to increasing of p,
we observe that He is positive for p < 3.55, zero for p ∼= 3.55 and negative for
p < 3.55.
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Table 3: Values of He(X,Y ) for some values of p

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
He(X, Y ) 25.12 14.26 10.38 8.29 6.95 6.00 5.27 4.69 4.21

p 1 2 3 3.55 4 5 6 7 8
He(X, Y ) 3.81 1.54 0.43 0 −0.30 −0.83 −1.26 −1.61 −1.92

p 9 10 11 15 20 25 30 35 40
He(X, Y ) −2.18 −3.28 −3.89 −4.36 −4.74 −5.05 −5.33 −5.57 −2.41

Figure 3: He(X,Y ) for some values of p

5.2. Mutual Information

Mutual information measures are the amount of information that can be ob-
tained about one random variable by observing another. It is important in com-
munication where it can be used to maximize the amount of information shared
between sent and received signals. The mutual information of X relative to Y with
joint density function f(x, y) and marginal density functions f1(x) and f2(y), re-
spectively; given by:

I(X,Y ) = E

[
log

(
f(X,Y )

f1(X)f2(Y )

)]
= He(X) +He(Y )−He(X,Y ). (9)

Proposition 5.2. Let (X,Y ) be a random vector with GBL distribution function,
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then

I(X,Y ) =
a2 − 1

a2

[
ln a1

(
1− 1

b1b2

)
+ ψ(p) + γ − c1(p)

b1b2

]

+
b2 − 1

b2

[
ln b1

(
1− 1

a1a2

)
+ ψ(p) + γ − c1(p)

a1a2

]

+c3(p)− log(a1a2)− log(b1b2),

where c1(p) and c3(p) are functions of p, see appendices.

Corollary 5.2. If a1 = a2 = b1 = b2 = 1 then,

He(X) = He(Y ) =
p+ 1

p
− log(p).

Using (8), and (9), we get

I(X,Y ) =

2p− 2

p
− log(p3(p+ 1)) +

∞∑

i=0

p+ 2

Γ(p)Γ(i+ 1)
[Γ(p+ i)(Ψ(1 + i)−Ψ(p+ i))

+ Γ(p+ i+ 1)(Ψ(1 + i)−Ψ(p+ i+ 1))]. (10)

If the component of (X,Y ) are independent, then I(X,Y ) is zero and conversely
when the dependence is maximal, I(X,Y ) tends to infinity. Normalizing this index
is defined by Joe (1989) as:

δ(X,Y ) =
√
1− exp(−2I(X,Y )).

The measure of δ is confined to the interval [0, 1]. If X and Y are independent
then, δ = 0 and when the dependence is maximal δ achieves to one.
Our numerical results in Table 4 show that when p is decreasing the measures I
and δ are increasing and when p is increasing I and δ decreasing. Note that, we
observed in sections 3 and 4 that the measures τ , ρ and θ, increase with decreasing
of p, mean we have more information and dependence in this case.

Table 4: Values of I(X,Y ) and δ(X,Y ) for some values of p
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

I(X,Y ) 1.49 .96 .70 .54 .43 .36 .30 .26 .22

δ(X,Y ) .97 .92 .87 .81 .76 .71 .67 .63 .60

p 1 2 3 4 5 6 7 8 9

I(X,Y ) .19 .072 .038 .023 .016 .011 .009 .007 .005

δ(X,Y ) .56 .37 .27 .21 .18 .15 .13 .12 .10

p 10 15 20 25 30 35 40 ...

I(X,Y ) .004 .002 .001 .0007 .0005 .0004 .0003 ...

δ(X,Y ) .09 .063 .048 .039 .032 .028 .025 ...
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5.3. Quadratic Mutual Information

Let X and Y be two random variables with marginal density functions f1(x)
and f2(y) and joint density function f(x, y), the mutual information between two
random variables can be estimated by Kullack-Leibler divergence between the joint
density function and the factored marginals. By using quadratic forms of density
functions, Xu and Principe (1998), proposed the following distance based on the
Cauchy-Schwartz inequality:

C(X,Y ) = log

(∫∞
0

∫∞
0
f2(x, y)dxdy

) (∫∞
0

∫∞
0
f2(x)f2(y)dxdy

)
(∫∞

0

∫∞
0
f(x, y)f(x)f(y)dxdy

)2 .

It is obvious that C(X,Y ) ≥ 0 and C(X,Y ) = 0 if and only if X and Y are
independent. So C(X,Y ) is an appropriate measure for the independence of two
random variables (minimization of mutual information). Although, it is difficult
to prove a strict justification that C(X,Y ) is appropriate to measure dependence.
We compute this measure for GBL family and then study the behavior of it via a
numerical study and drawing it’s graph.

Proposition 5.3. Let (X,Y ) be a random vector with GBL distribution function,
then,

C(X,Y ) = log(C1) + log(C2)− 2 log(C3),

where,

C1 = Dp2(p+ 1)2B(2p+
1

a2
+

1

b2
, 2− 1

a2
, 2− 1

b2
),

C2 = Dp4B(2p+
1

a2
, 2− 1

a2
)B(2p+

1

b2
, 2− 1

b2
),

C3 = Dp3(p+ 1)

[
B(2− 1

a2
, p+ 1

a2
)Γ(1 − p− 1

a2
)

Γ(p+ 1)Γ(2− 1
a2
)

∞∑

i=1

C4(i)

+
B(2p+ 1 + 1

a2
,−p− 1

a2
)Γ(1 + p+ 1

a2
)

Γ(p+ 2)Γ(2p+ 1
a2

+ 1)

∞∑

i=1

C5(i)

]
,

and

C4(i) =
B(2p+ 2

b2
+ i− 1, 2− 1

b2
)Γ(p+ 1 + i)Γ(2− 1

a2
+ i)

i!Γ(1− p− 1
a2

+ i)
,

C5(i) =
B(p+ i+ 1

b2
− 1, 2− 1

b2
)Γ(p+ 2 + i)Γ(2p+ 1 + 1

a2
+ i)

i!Γ(1 + p+ 1
a2

+ i)
,

D = a2b2a
1
a2
1 b

1
b2
1 .
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Corollary 5.3. If a1 = a2 = b1 = b2 = 1 , then,

C(X,Y ) = log

(
p2(p+ 1)2

(2p+ 3)(2p+ 2)

)
+ 2 log

(
p2

2p+ 1

)

− 2 log

[
p3Γ(−p)
Γ(p+ 1)

∞∑

i=0

Γ(p+ 1 + i)

(2p+ i)Γ(i− p)
+ p3Γ(−p− 2)

∞∑

i=0

Γ(2p+ 2 + i)

(p+ i+ 1)i!

]
.

Under the assumptions of Corollary 5.3, we computed C(X,Y ) for some values
of p in Table 5, also Figure 4 shows the behavior of C(X,Y ) with respect to p.
Table 2.4 and Figure 4 show that, increasing p the quadratic mutual information
decrease, this agree with behavior of I and δ.

Table 5: Values of C(X,Y ) for some values of p

p 1 2 3 4 5 6 7 8 9 10

C(X, Y ) .0542 .0227 .0122 .0078 .0044 .0033 .0026 .0020 .0016 .0014

Figure 4: C(X,Y ) for some values of p

Remark 5.1. Since the proofs of some propositions are so long, we omit them.

6. Conclusion

In this paper, the dependence structure of GBL family has been studied via
dependence coefficients and information coefficients. We show that X and Y in
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GBL family have positive dependence and this dependency will be weaker as p
goes to be larger. In information measure, term is similar, in fact when p tends
to infinity, the measure of information between two random variables tends to be
negligible.
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On The Nonparametric Inference In The Exponentiated Models

Based On Complete Samples And Extreme Order Statistics

M. Razmkhah and B. Khatib

Department of Statistics, Ferdowsi University of Mashhad

Consider k independent random samples with different sample sizes such that the ith
sample comes from the cumulative distribution function (cdf) Fi = Gαi , where αi is
a known positive constant and G is an absolutely continuous cdf. This paper shows
how one can construct the nonparametric confidence intervals for the quantiles of G.
Toward this end, we consider two cases. First we assume that the complete samples are
available and then suppose that only the maxima and minima have been observed. In
each case exact expressions for the confidence coefficients are derived. Two mentioned
procedures are compared via numerical computations and simulation study.

Keywords: Multisampling plan, Order statistics, Proportional reversed hazard model.

1. Introduction and some preliminaries

There are many experiments which have been done in different series such that
they are not identical in distribution, but there exists a hierarchical relationship
between them. Some of them are corresponding to the increasing sample sizes, such
as Olympic games. In some other experiments, the distribution of the interested
population shifts by a shock, for example retooling in a factory or management
changing in a society. So it is worthwhile to use a multisampling plan to do in-
ference about various characteristics of the baseline distribution such as mean,
standard deviation, quantiles and so on. We present our plan as follow:

P: Consider the data set {Xi,j, 1 ≤ i ≤ k, 1 ≤ j ≤ ni}, where Xi,j’s are indepen-
dent. Moreover for a fixed i, Xi,j’s, (1 ≤ j ≤ ni) are identically distributed random
variables with cdf

Fi(x) = [G(x)]αi , (1)

where G(·), the first (baseline) cdf, is absolutely continuous and αi is a known
positive constant and represent the alteration rate of the ith cdf with respect to the
baseline cdf, such that α1 = 1 and so F1 = G.

The identity (1) is well-known in the literature as the exponentiated model.
This model contains a lot of lifetime distributions such as the power function, ex-
ponentiated Weibull, exponentiated Pareto, exponentiated three parameter Burr
type XII and other distributions such as the exponentiated normal and exponen-
tiated log-logistic distributions. The exponentiated model has been studied by
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several authors, see for example Abdel-Hamid and AL-Hussaini (2009) and Singh
et al. (2005). The identity (1) is also well-known as the proportional reversed
hazard model, see for example Lawless (2003).

For any univariate distribution function G, the population quantile ξp of order
p, (0 < p < 1) is defined

ξp = inf{x : G(x) ≥ p}.
The quantiles are used to construct the concentrations and deviations criteria. The
order statistics play an important role in the inferences related to the quantiles;
interested reader may refer to the books of Serfling (1980), Arnold et al. (1992),
David and Nagaraja (2003). In recent years, several articles had been published on
non-parametric confidence intervals for quantiles based on usual order statistics.
See for example, Krewski (1976), Sathe and Lingras (1981), Hutson (1999) and
Zielinski (2005).

Extreme order statistics play an important role in many experiments, particu-
larly in those that are done in different series. For example, the lowest and highest
temperature during a week or a month. In this paper, we consider two distinct
data set under assumptions P and compare them:
(i) we assume that the complete samples are available.
(ii) we suppose that the available data are related to the sample maxima and
minima.

The second scheme has been introduced by Razmkhah et al. (2008) in which
the authors studied the problem of distribution-free confidence intervals based
on extreme order statistics in a proportional hazard model, see also Ahmadi and
Razmkhah (2007).

The main goal of this paper is to construct confidence intervals for the quan-
tiles of the baseline cdf based on two mentioned data sets. In Sections 2, we use
the complete samples to construct nonparametric confidence intervals. Section 3,
focuses on extreme order statistics. To compare the results of Sections 2 and 3,
the numerical computations and simulation study are given in Section 4.

2. Confidence intervals based on complete samples

Suppose that the assumptions P in Section 1 hold and the data set {Xi,j, 1 ≤
i ≤ k, 1 ≤ j ≤ ni} is available. To construct confidence intervals for ξp, the
pth quantile of the baseline population G, we arrange Xi,j ’s in ascending order

denoting by Y1:N , · · · , YN :N , where N =
∑k

i=1 ni. To obtain the main result of
this section we need the distributional properties of order statistics in the case of
nonidentical component distributions, so we recall the following lemma.

Lemma 2.1. (David and Nagaraja, 2003) Let Xi, i = 1, . . . , k be independent and
non-identical random variables such that Xi has cdf Fi and denote the ith order
statistic of Xj’s (1 ≤ j ≤ k) by Xi:k. Then

P (Xi:k ≤ x) =

k∑

r=i

∑

Γr,k

r∏

s=1

FXts
(x)

k∏

s=r+1

F̄Xts
(x),
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where the summation index Γr,k extends over all permutations (t1, . . . , tk) of
{1, . . . , k} for which t1 < . . . < tr and tr+1 < · · · < tk.

Extending Lemma 2.1, we get the following lemma.

Lemma 2.2. Let Xi,j (1 ≤ i ≤ k, 1 ≤ j ≤ ni) be independent random variables
such that Xi,j’s, 1 ≤ j ≤ ni, have cdf Fi, 1 ≤ i ≤ k and denote the ith order

statistic of Xi,j’s by Yi:N for which N =
∑k

i=1 ni. Then

P (Yi:N ≤ x) =

N∑

r=i

ψ(r, x),

where

ψ(r, x) =
∑

∆r,k

k∏

s=1

(
ns

js

)
[Fs(x)]

js [F̄s(x)]
ns−js , (2)

for which the summation index ∆r,k extends over all integers (j1, . . . , jk) that are

the nonnegative solutions of equation
∑k

s=1 js = r.

Using Lemma 2.2, we get the following results:

(i) Yi:N is a lower confidence limit for ξp, whose confidence coefficient is free
of the baseline population and is given by

ξk(i; p) = P (Yi:N ≤ ξp) =

N∑

r=i

∑

∆r,k

k∏

s=1

(
ns

js

)
pαsjs(1− pαs)ns−js . (3)

(ii) Yi:N can be considered as an upper confidence limit for ξp, with confidence
coefficient 1− ξk(i; p).
(iii) [Yi:N , Yj:N ], i < j, is a two-sided confidence interval for ξp, with confi-
dence coefficient

δk(i, j; p) = P (Yi:N < ξp < Yj:N ) = ξk(i; p)− ξk(j; p), (4)

where ξk(i; p) is defined in (3).

If p, αr, nr (r = 1, . . . , k) and the desired confidence level γ0 are specified, we can
choose i and j so that δk(i, j; p) achieve to γ0. Notice that the choice of i and j is
not unique, the one that minimizes the expected width of the confidence interval
appears reasonable. By Lemma 2.2, we have

E(Yj:N − Yi:N ) =

j−1∑

r=i

∫ ∞

0

[ψ(r, x) + ψ(r,−x)]dx,

where ψ(r, x) is defined in (2). Because of the fact that the above expression is
a step function of j − i, one can choose i and j as close together as possible to
achieve a pre-specified confidence level. For given p, αr’s and nr’s, the value of
δk(i, j; p) can be computed by numerical methods.

Remark 2.1. For the special case αi = 1, i ≥ 1, the following results deduce:
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(i) [Yi:N , Yj:N ] is a confidence interval for ξp with confidence coefficient γ0
if and only if [YN−j+1:N , YN−i+1:N ] is a confidence interval for ξ1−p with
confidence coefficient γ0, i. e.,

P (Yi:N ≤ ξp ≤ Yj:N ) = γ0 ⇔ P (YN−j+1:N ≤ ξ1−p ≤ YN−i+1:N ) = γ0.

(ii) Yi:N is a lower confidence limit for ξp with confidence coefficient γ0 if
and only if YN−i+1:N is an upper confidence limit for ξ1−p with prediction
coefficient γ0, i. e.,

P (Yi:N ≤ ξp) = γ0 ⇔ P (YN−i+1:N ≥ ξ1−p) = γ0.

3. Confidence intervals based on extreme order statistics

Let Mi, i = 1, 2, . . . , k be the maximum of a random sample of size ni; that is,

Mi = max{Xi,1, Xi,2, . . . , Xi,ni}

and M
′
i be the corresponding minimum. Then (M

′
i ,Mi), 1 ≤ i ≤ k, are indepen-

dent random variables with cdfs

FMi(x) = [G(x)]αini , i = 1, 2, . . . , k. (5)

and

FM
′
i
(x) = 1− {1− [G(x)]αi}ni , i = 1, 2, . . . , k. (6)

Suppose that the available data are only maxima and minima corresponding
to the k samples, thus we can construct confidence intervals for ξp based on the
data set V = {M ′

1,M1, · · · ,M ′
k,Mk}. Denote the ith order statistic of the set V

by Vi:2k, then [Vi:2k, Vj:2k] can be considered as a confidence interval for ξp. To
determine the associated confidence coefficient, we first recall the following result
from Ahmadi and Razmkhah (2007).

Theorem 3.1. (Ahmadi and Razmkhah, 2007) Under the assumptions P, let M
′
r

and Mr be corresponding minimum and maximum of the rth random sample from
distribution Fr (r = 1, . . . , k), respectively, and Vi:2k be the ith order statistic of
the set V. Then

P (Vi:2k ≤ x) =

2k∑

r=i

min(r,k)∑

m=[ r+1
2 ]

∑

Ar−m,m,k

{ r−m∏

s=1

[Fts(x)]
nts

j∏

s=r−m+1

{
1− [Fts(x)]

nts

−[1− Fts(x)]
nts
} k∏

s=m+1

[1− Fts(x)]
nts

}
, (7)

where [u] stands for the integer part of u and Ai1,i2,k extends over all permutations
of (t1, . . . , tk) from {1, . . . , k} such that t1 < · · · < ti1 , ti1+1 < · · · < ti2 and
ti2+1 < · · · < tk.

Applying Theorem 3.1, we get the following results:
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(i) Vi:2k is a lower confidence limit for ξp, whose confidence coefficient is free
of the baseline population and is given by

ϑk(i; p) = P (Vi:2k ≤ ξp)

=

2k∑

r=i

min(r,k)∑

m=[ r+1
2 ]

∑

Ar−m,m,k

{
p
∑r−m

s=1 αtsnts

m∏

s=r−m+1

[1− pαtsnts − (1− pαts )nts ]

k∏

s=m+1

(1− pαts )nts

}
. (8)

(ii) Vi:2k can be considered as an upper confidence limit for ξp, with confidence
coefficient 1− ϑk(i; p).
(iii) [Vi:2k, Vj:2k], i < j, is a two-sided confidence interval for ξp, with confi-
dence coefficient

γk(i, j; p) = P (Vi:2k < ξp < Vj:2k) = ϑk(i; p)− ϑk(j; p), (9)

where ϑk(i; p) is defined in (8).

Remark 3.1. For the special case αi = 1, i ≥ 1, the following results deduce:

(i) [Vi:2k, Vj:2k] is a confidence interval for ξp with confidence coefficient γ0
if and only if [V2k−j+1:2k , V2k−i+1:2k ] is a confidence interval for ξ1−p with
confidence coefficient γ0, i. e.,

P (Vi:2k ≤ ξp ≤ Vj:2k) = γ0 ⇔ P (V2k−j+1:2k ≤ ξ1−p ≤ V2k−i+1:2k) = γ0.

(ii) Vi:2k is a lower confidence limit for ξp with confidence coefficient γ0 if
and only if V2k−i+1:2k is an upper confidence limit for ξ1−p with confidence
coefficient γ0, i. e.,

P (Vi:2k ≤ ξp) = γ0 ⇔ P (V2k−i+1:2k ≥ ξ1−p) = γ0.

4. Numerical computations and simulation study

To illustrate the results of this paper, we assume that k = 3, (α1, α2, α3) =
(1, 0.8, 1.3) and (n1, n2, n3) = (4, 5, 3). The values of δk(i, j; p) and γk(i, j; p) are
computed using Eqs. (4) and (9), respectively. The results are tabulated in Tables
1 and 2, respectively, for selected i, j and p.

As an application the averaged width of the confidence intervals and their
variances in exponentiated exponential distribution have been interested and their
values are calculated by simulation. Toward this end, the following algorithm has
been used:

(i) A random sample of size ni (i = 1, 2, 3) from F̄i(x) =
(
1 − e−x

)αi
(see

Eq. (1)) is generated.
(ii) Complete samples are arranged in ascending order and the quantities
Li,j = Yj:12 − Yi:12 are obtained for selected i and j.
(iii) Minimum and maximum of each sample are extracted.
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(iv) The minima and maxima are jointly sorted and the quantities L∗
i,j =

Vj:6 − Vi:6 are computed for selected i and j.
(v) The steps (i)–(iv) are repeated 105 times and averaged the values of Li,j

and L∗
i,j , denoting by L̄i,j and L̄∗

i,j , respectively.

(vii) The variances of Li,j and L∗
i,j are calculated by averaging (Li,j − L̄i,j)

2

and (L∗
i,j − L̄∗

i,j)
2, respectively.

The results are presented in Tables 1 and 2 and help us to choose the appropriate
confidence intervals for ξp.

Note: In Tables 1 and 2, the confidence intervals with the shortest width and
confidence coefficient more than 0.95 are indicated by *.
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Table 1. Values of δ3(i, j; p) for selected i, j and p.
i j p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 L̄i,j V ar(Li,j )

1 12 0.945 0.989 0.998 0.999 0.998 0.986 0.930 3.025 1.552
11 0.945 0.989 0.998 0.997 0.979 0.912 0.720 2.023 0.559
10 0.945 0.989 0.995 0.979 0.912 0.740 0.434 1.519 0.308
9 0.945 0.987 0.981 0.921 0.765 0.496 0.199 1.184 0.196
8 0.944 0.978∗ 0.935 0.793 0.547 0.265 0.069 0.934 0.133
7 0.940 0.945 0.826 0.593 0.319 0.111 0.018 0.733 0.094

2 12 0.762 0.929 0.984 0.997 0.998 0.986 0.930 2.938 1.546
11 0.762 0.929 0.984 0.994 0.979 0.912 0.720 1.936 0.552
10 0.762 0.929 0.981 0.977 0.912 0.740 0.434 1.432 0.301
9 0.762 0.927 0.967∗ 0.919 0.764 0.496 0.199 1.097 0.189
8 0.762 0.918 0.921 0.791 0.546 0.265 0.069 0.847 0.126

3 12 0.487 0.777 0.928 0.984 0.995 0.986 0.930 2.839 1.535
11 0.487 0.777 0.928 0.980 0.977 0.912 0.720 1.837 0.542
10 0.487 0.777 0.925 0.963∗ 0.910 0.739 0.434 1.333 0.291
9 0.487 0.775 0.911 0.905 0.762 0.496 0.199 0.998 0.179

4 12 0.238 0.543 0.797 0.936 0.985 0.984 0.930 2.728 1.524
11 0.238 0.543 0.797 0.932 0.966∗ 0.911 0.720 1.726 0.530
10 0.238 0.543 0.794 0.915 0.899 0.738 0.434 1.223 0.279

5 12 0.088 0.305 0.590 0.823 0.946 0.977 0.929 2.603 1.509
11 0.088 0.305 0.590 0.819 0.928 0.904 0.719 1.601 0.515

6 12 0.024 0.134 0.359 0.634 0.851 0.951∗ 0.926 2.459 1.488
11 0.024 0.134 0.359 0.631 0.833 0.877 0.716 1.458 0.495

7 12 0.005 0.045 0.173 0.407 0.679 0.875 0.912 2.292 1.460

Table 2. Values of γ3(i, j; p) for selected i, j and p.
i j p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 L̄∗

i,j V ar(L∗
i,j)

1 6 0.945 0.989 0.998 0.999 0.998 0.986 0.930 3.025 1.552
5 0.945 0.989 0.997∗ 0.989 0.955 0.855 0.633 1.874 0.553
4 0.944 0.976∗ 0.945 0.853 0.687 0.456 0.211 1.156 0.285
3 0.788 0.630 0.421 0.236 0.106 0.034 0.006 0.441 0.093

2 6 0.619 0.838 0.944 0.984 0.995 0.985 0.930 2.883 1.547
5 0.619 0.838 0.942 0.974∗ 0.952∗ 0.855 0.633 1.732 0.548
4 0.619 0.825 0.890 0.837 0.683 0.455 0.211 1.014 0.279

3 6 0.157 0.360 0.578 0.763 0.891 0.951∗ 0.924 2.584 1.544
5 0.157 0.360 0.576 0.753 0.849 0.821 0.627 1.433 0.548

4 6 0.002 0.013 0.053 0.147 0.311 0.530 0.719 1.869 1.429

From Tables 1 and 2, we observe that:

(i) Confidence intervals based on minima and maxima in two schemes (com-
plete samples and extreme order statistics) provide same results.
(ii) For given p and a fixed confidence level γ0, one can find a confidence
interval with shorter width for ξp based on complete samples. For example,
a confidence interval with confidence coefficient ≥ 95% for ξ0.5, the median
of the baseline cdf G, by considering the shortest width criterion, based on
extreme order statistics is (V2:6, V5:6) with the average width 1.732 and based
on complete samples it is (Y3:12, Y10:12) with the average width 1.333.
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Semi-parametric Bayesian Models for Transition Longitudinal Data

R. Rikhtehgaran and I. Kazemi

Department of Statistics, University of Isfahan

A common assumption in fitting transition longitudinal data models is normality of
stochastic residuals and individual effects. This can be extremely restrictive, making
vague most potential features of true distributions. The objective of this paper is to
propose a modelling strategy, from a semi-parametric Bayesian perspective, to specify
a flexible prior on the space of all possible distribution functions. This is done here by
incorporating a Dirichlet process mixture of normal priors as a probability model for
the random effects. We also address the role of initial conditions in transition processes,
emphasizing on joint modelling of start-up and follow-up responses. We adopt Gibbs
sampling techniques to approximate posterior estimates. These important topics are
illustrated by testing several hypothetical models in empirical contexts drawn from
economic growth studies. We use standard information criteria to select the best fitting
model.

Keywords: Dirichlet processes, Dirichlet process mixture, Gibbs sampling, initial con-
ditions, random effects.

1. Introduction

Recently transition longitudinal data models have become increasingly popular in
a wide variety of applied researches. These models are used for the analysis of
observations that have a serial processes structure which allows for unobserved
heterogeneity and lagged responses to examine state dependence (Crouchley and
Davies, 2001). It is commonly assumed that heterogeneity effects are uncorrelated
with the start-up response (Diggle et al., 2002). Relaxing this restriction in fitting
models yields unrealistic results. This is so called the initial conditions problem. A
simple solution to this is provided by Wooldridge (2005) who proposes modelling
the distribution of the heterogeneity effects conditioned on the first observations.
Although this solution is useful to quantify transitions, it will not work in many
cases. A special case is when the stochastic process has not been running suffi-
ciently long prior to the sampling period in order to use the stationary distribu-
tion as the probability of the first observation, Yi0. To account for this problem,
we propose an attractive approach by specifying a reduced form equation for the
Yi0 and model it jointly with the follow-up observations. The proposed approach
effectively combines both likelihoods and handles the initial conditions.
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Most researches make simply normality assumption for both stochastic resid-
ual terms and individual random effects. This can be extremely restrictive, making
vague important features of true distributions. We relax this assumption by adopt-
ing a semi-parametric Bayesian method (Escobar, 1994; Muller and Quintana,
2004) by incorporating a Dirichlet process mixture (DPM) of several adaptable
priors as probabilities for random effects. The DPM model consists of mixing a
Dirichlet process (DP) (Ferguson, 1973), which specifies a prior distribution on
the space of all possible distribution functions, with an introduction of a kernel.
Such a model assumes that the prior distribution, G, itself is uncertain, but has
been drawn from the Dirichlet process. The parameters of DP are a base prior,
G0, which approximates the true non-parametric shape of G, and a precision pa-
rameter, M, reflecting the prior belief about how similar G is to G0.

Despite many attractive features of the DPM model, the practical applications,
due to computational difficulties, are limited or even impossible in the frequen-
tist approach. In recent studies, it is shown that how Markov chain Monte Carlo
(McMC) methods, such as Gibbs sampling, could be used to overcome these diffi-
culties (Escobar and West, 1998; MacEachern and Muller, 2000). In this paper, we
employ the Gibbs sampling algorithm in order to derive all full conditional poste-
rior distributions. We fit DPM models with normal as their base prior for individ-
ual random effects of transition longitudinal data by considering initial conditions
problem. These concepts are illustrated to an example in economic studies, where
the initial conditions and the distribution of random effects are of direct interest.
We conclude that inferences regarding the model parameters can crucially depend
on the assumptions made and recommend using a DP prior distribution, which is
more flexible than the normal. We also report AIC’s and BIC’s to compare the
fitted models.

The remainder of this paper is as follows. In section 2, we briefly review the
semi-parametric Bayesian approach and introduce the DPM model. Section 3 con-
siders the specification of transition longitudinal data models with illustration on
initial conditions. We first assume DPM as the distribution of random effects, and
then present an example, including of unconditional and conditional models which
are conditioned on initial values, for the analysis of a real data set. We also assume
several distributions for both residual and random effects.

2. The Semiparametric Bayesian Approach

Let G0 be a probability measure on a (measurable) space (τ ;A) and M be a
positive real number. A probability distribution G (·) is distributed according to
a DP of base distribution G0 (·) and scale factor M , denoted by DP (MG0 (·)), if
for any partition A1, · · · , Ak of τ and any k, satisfies

(G (A1) , · · · , F (Ak)) ∼ D (MG0 (A1) , · · · ,MG0 (Ak))

where D is a standard Dirichlet distribution. The total mass parameterM controls
the deviation of G from G0 in a stochastic manner.
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In DP models, an important property is that the realizations of a DP are dis-
crete, with probability one. This may lead us using of the stick-breaking pro-

cedure (Sethuraman, 1994), defined as G (·) =
∞∑
j=1

πjδωj (·) , where ωj ∼ G0 (·),

πj = βj
j−1∏
i=1

(1− βi) and βj ∼ Beta (1,M). For continuous cases, the prior model

is adopted for the unknown distribution F as F (.) =
∞∑
j=1

πjf (.|ωj).

Let Y1, · · · , Yn be a statistically exchangeable sequence distributed according
to the probability density function f (y | ξ) where ξ ∈ Ξ and let ξ | G ∼ G,
where G ∼ DP (MG0). Then the density estimation problem, expressed by this
hierarchical model, is known as DPM. Escobar (1994) shows that DPM may be
simplified by the use of Polya urn representation. To do this, let ξ1, · · · , ξN be N
random samples from G, where G ∼ DP (MG0). It follows that, conditioned on
the other ξ’s, ξi (i = 1, · · · , N) has the following mixture distribution

ξi | y, ξ(−i) ∝
∑

qjδξj +Mq0g0(ξi)f(yi|ξi) (1)

where ξ(−i) =
(
ξ
′
1, ..., ξ

′
i−1, ξ

′
i+1, ....ξ

′

N

)′

, δξj is a degenerate distribution with point

mass at ξj , qj = f (yi | ξj), j = 1, ..., i− 1, i+ 1, ...N , and

q0 =

∫
f (yi | ξ) g0(ξ)dξ. (2)

We note that several ξi’s might have the same value such that the number of
distinct values of ξi, denoted by K, is less than N . The scaling coefficient M
tunes the number of clusters K. For large N , it is shown that E [K | M,N ] '
Mlog

(
1 + N

M

)
, for more information you can see Antoniak (1974) and Dorazio

(2009). As M tends to zero, most of the samples ξi share the same value, whereas
when M tends to infinity, the ξi are almost i.i.d. samples from G0. Thus M plays
a critical role in smoothing the distribution.

3. The Specification of Transition Longitudinal Data Models

We now apply the DPM in fitting an longitudinal model with focus on the role
of initial conditions. We suggest here to consider a reduced form equation for the
initial response and impose a random effect correlated with the follow-up model
equation. The estimation method would then effectively combine all information
contained in the transition process. That is, for i = 1, · · · , N and t = 1, · · · , T ,
we consider

Yi0 = x′
i0β0 + ϕαi + εi0

Yit = γYi,t−1 + x′
itβ + αi + εit
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These model equations can be shown in the vector form

Yi = X̃iθ + zαi + εi, i = 1, · · · , N, (3)

where Yi = (Yi0 Yi1 · · ·YiT )′, θ = (β′
0 γ β

′)′ , z = (ϕ e′T )
′
where parameters β and

β0 are vectors with p+ 1 dimensions including intercept parameters, eT is a unit
vector of order T , and X̃i is defined according to θ.

In fitting longitudinal models, the usual assumptions are both the individual
effects and the residual terms are normally distributed. This can be an unrealistic
assumption in many situations. We now relax this assumption for the individ-
ual effects by applying DPM, where the base distribution is assumed normally
distributed. Consider the following hierarchical model

Yi | αi
ind∼ NT+1

(
X̃iθ + zαi, σ

2
εIT+1

)

αi | G iid∼ G

G | M∼DP (MG0) , G0∼ N
(
0, σ2

α

)
(4)

The priors are assumed as follows; the inverse gamma distribution with the hyper-
parameters (τ1, τ2) for σ

2
ε and (δ1, δ2) for σ

2
α. The multivariate normal distribution

with the mean vector θ0 and the covariance matrix Λ for θ, and the normal dis-
tribution with mean ϕ0 and variance σ2

ϕ for ϕ.
Data analysis are conducted using the Gibbs sampling technique which is a

particular McMC algorithm. The Gibbs sampler proceeds by iterative simulation
from the full conditional posterior distributions of each unknown stochastic param-
eter given the current values of all other model parameters and the observations.
In below, we apply the Gibbs sampling algorithm, in order to find full conditional
posteriors.

To find the conditional posterior αi|θ, σ2
α, α(−i),Y (i = 1, · · · , N), let α(−i) be

a vector of α’s, after removing αi. It can readily be shown that

g0 (αi) f (yi | αi) = φ
(
αi | µ∗

i , σ
2
∗
)
φT+1

(
yi | X̃iθ, σ

2
εΩ

−1
)

(5)

where, for σ2
c = σ2

ε +
(
T + ϕ2

)
σ2
α and ψ = σ2

α/σ
2
c , we have

µ∗
i = ψz′

(
yi − X̃iθ

)
, σ2

∗ = σ2
εψ, Ω = I− ψzz′. (6)

Integrating out the αi’s, the probability q0 , given in (2) is simplified as
∫
g0 (αi) f (yi | αi) dαi = φT+1

(
yi | X̃iθ, σ

2
εΩ

−1
)

(7)

Using the mixture distribution (1), the simulation of αi’s is based on the
following scheme. With the probability proportional to qj = f (Yi | αj) =

φT+1

(
X̃iθ + zαj , σ

2
εIT+1

)
, we draw αi according to δαj , and with the probability
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proportional to Mq0, we draw αi according to N
(
µ∗
i , σ

2
∗
)
. After some algebra is

done, we can show that

σ2
ε |θ, σ2

α, ϕ, α,y ∼IG (s1, s2) , (8)

where s1 = τ1 + N(T + 1)/2, s2 = τ2 + 1
2

∑N
i=1 (ri − zαi)

′
(ri − zαi), and ri =

yi − X̃iθ are fitted residuals. For the regression coefficients, we find that

θ|σ2
ε , σ

2
α, ϕ, α,Y ∼N2p+3 (a1b1, a1) (9)

where a1 =
(
Λ−1 +NW

X̃X̃i

)−1
, b1 = θ

′
0Λ

−1 + 1
σ2
ε

∑N
i=1 (Yi − zαi)

′
X̃i, and

W
X̃X̃

= 1
Nσ2

ε

∑N
i=1 X̃

′
iX̃i is the within-variation matrix. We also obtain

ϕ|σ2
ε , σ

2
α, θ, α,Y ∼N (a2b2, a2) (10)

where a2 =
(

1
σ2
ϕ
+ 1

σ2
ε
SSA

)−1

, b2 = 1
σ2
ϕ
ϕ0 +

1
σ2
ε

∑N
i=1 ri0αi, and SSA is the sum

of squared of random effects.
By the use of West, Muller, and Escobar (1994) approach, the subjects will be
grouped into clusters so that similar αi’s discriminate in the same group. Conse-
quently, there will be K unique individual effects, denoted by ηl, l = 1, ...,K. Thus,
the full posterior of σ2

α conditioned on αi’s, implies that the αi’s are known for us.
This also imply K and the ηl’s are all known. Consequently, the K independent
variables ηl’s are distributed as N

(
0, σ2

α

)
. Now, it can be readily shown that

σ2
α|θ, σ2

ε , ϕ, α,Y ∼IG (s3, s4) (11)

where s3 = δ1 +K/2, s4 = δ2 +
1
2SSB , and SSB is the sum of squared of ηl’s.

The Gibbs sampler proceeds by simulating a sequence of the above conditional
random variables. Following a sufficient burn-in period, the Gibbs sequence con-
verges to a stationary distribution which is the target distribution that we are
trying to simulate. The samples then can be used in the computation of any fea-
ture of either marginal posterior distribution.

3.1. An Empirical Study

The data are regular observations in five years t = 1965, 1970, 1975, 1980, and
1985 for 94 countries which are taken from Islam (1995). In this study, the growth
convergence equation is derived from assumptions about a production function
and inclusion in the specification of the savings rate, s, and the population growth
rate, p. Suppose yit to be the logarithm of per capita GDP for country i at time
t . We consider the following model

yi,t = λ+ γyi,t−1 + βxit + αi + εit

yi0 = λ0 + β0xi0 + ϕαi + εi0

where x′
it = (1, xi,t), β

′
=(λ, β), x′

i0 = (1, xi,0), β
′
0=(λ0, β0) and xi,t = log(si,t)−

log(pi,t). Also, αi is a country-specific effect and εit is the residual term. We fit
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the conditional transition model, which ignores the initial conditions, and the
full unconditional model by making various assumptions on the distributions of
residuals and country effects. We then use AIC and BIC to select the best fitted
model. The specification of models are represented as:

Model 1: Residuals and random effects are both normally distributed with zero
means and variances σ2

ε and σ2
α, respectively.

Model 2: Residuals and random effects both have t distributions, each with zero
location, scale parameters σ2

ε and σ2
α, degrees of freedom νε and να, respectively.

Model 3: The distribution of residuals is assumed t, while random effects are
normally distributed.
Model 4: DPMmodels are considered for random effets, based on the specification
of Section 3.
Model 5. The residual terms have t distributions, while the random effects obey
DPM with the base normal distribution.

In fitting models, the hyper-parameters for inverse-gamma priors are assumed
both equal to 0.01; for ϕ the location parameter and the precision parameter set
to zero and 0.001, respectively; for regression coefficients, we assume each normally
distributed with zero means and 0.001 precisions. For the representation of DP,
the stick-breaking is considered. Three values of the parameter M are chosen to
reflect departures from normality assumption. In our investigation, we setM = 2.5,
20 and 1000, to show small, moderate, and large departures, respectively. The
corresponding values for parameter K are, respectively, K = 4, 15 and 39.

The Bayes estimates of model parameters are obtained by using WinBugs
software. After 5000 burn-in, the Gibbs sampler run for 10000 iterations to ensure
that the convergence is achieved. The results are shown in Tables 1 and 2.

It is seen that AIC’s and BIC’s are lower in the unconditional models, empha-
sizing the better fitted models when acknowledging the role of initial conditions.
The estimates of γ are statistically significant and positively much less than one,
resulting in strong evidence for state dependence and suggesting that the countries
with low initial GDP per capita values are growing faster than those with high
values. Among Model 1 through Model 5, we may conclude that the Student’s t
is suitable for the residuals. Finally, values of AIC and BIC show that Model 5 is
the best fitted model.
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Table 1. Parameter estimations of unconditional models.

Model1 Model2 Model3 Model4 Model4 Model4 Model5
K=4 K=15 K=39 K=15

λ0 7.056 7.069 7.056 6.918 7.00 7.090 7.088
(0.085) (0.080) (0.075) (0.353) (0.275) (0.263) (0.387)

β0 0.701 0.705 0.719 0.616 0.624 0.567 0.618
(0.074) (0.078) (0.066) (0.027) (0.034) (0.042) (0.027)

ϕ 8.446 6.617 6.811 9.380 7.680 9.006 7.171
(1.185) (0.856) (0.950) (1.879) (0.965) (1.463) (0.776)

λ 1.055 1.262 1.241 0.966 1.137 1.021 1.229
(0.109) (0.128) (0.130) (0.128) (0.112) (0.113) (0.088)

β 0.191 0.217 0.216 0.176 0.191 0.175 0.203
(0.013) (0.015) (0.016) (0.015) (0.013) (0.014) (0.012)

γ 0.859 0.829 0.831 0.869 0.846 0.864 0.835
(0.015) (0.018) (0.018) (0.018) (0.014) (0.016) (0.012)

νe - 4.300 4.610 - - - 7.055
(1.266) (1.571) (2.793)

να - 44.920 - - - -
(48.520)

σ2
e 0.018 0.010 0.010 0.022 0.018 0.022 0.013

(0.001) (0.001) (0.002) (0.073) (0.001) (0.002) (0.001)
σ2
α 0.007 0.010 0.010 0.028 0.016 0.014 0.020

(0.002) (0.003) (0.003) (0.073) (0.009) (0.007) (0.012)

AIC -659 -829 -825 -542 -626 -551 -775
BIC -627 -789 -789 -510 -621 -519 -743

Table 2. Parameter estimations of conditional models.

Model1 Model2 Model3 Model4 Model4 Model4 Model5
K=4 K=15 K=39 K=15

λ 0.588 0.617 0.607 0.510 0.544 0.374 0.697
(0.087) (0.095) (0.105) (0.098) (0.090) (0.148) (0.078)

β 0.145 0.150 0.149 0.135 0.141 0.128 0.158
(0.014) (0.015) (0.016) (0.012) (0.013) (0.011) (0.013)

γ 0.924 0.921 0.922 0.938 0.930 0.946 0.907
(0.012) (0.012) (0.015) (0.010) (0.012) (0.009) (0.011)

νe - 5.549 5.580 - - - 3.956
(1.855) (1.969) (1.042)

να - 29.790 - - - -
(39.670)

σ2
e 0.017 0.010 0.010 0.018 0.017 0.019 0.009

(0.001) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)
σ2
α 0.004 0.004 0.004 0.030 0.011 0.089 0.015

(0.001) (0.001) (0.001) (0.067) (0.008) (0.207) (0.009)

AIC -377 -526 -527 -309 -366 -329 -566
BIC -341 -460 -487 -273 -330 -293 -524

Note: a The numbers in paranteses are Bayesain standard deviations.
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On Restricted Semiparametric Models
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In this approach we consider a semiparametric regression model, for multicollinear sys-
tems. Under a complicated situation, first of all we assume that the parameter space
is restricted, and propose necessary and sufficient conditions for the superiority of the
new estimator over the restricted least-squares estimator. Furthermore, a nonparamet-
ric estimation after estimation of linear part is added for detecting the efficiency of the
difference-based approach.

Keywords: Differencing estimator, Least squares, Linear restrictions, Multicollinearity,
Partial linear model, Ridge estimator.

1. Introduction

Consider a nonparametric regression model

yi = f(ti) + εi, i = 1, ..., n (1)

where the yi’s are the observations, f(·) is an unknown function and the εi’s
are independent and identically distributed random variables with zero mean and
variance σ2 and the t’s have bounded support. All we know about f(·) is that it’s
first derivative is bounded by a constant, say L. Usually one fits the function f(·)
first and then estimates the variance σ2 from residual sum of squares.

The second class of estimators use differences that aim to remove the trend in
the data that arises from the function f(·). Such methods do not require an estima-
tor of the function f(·) and are often called difference-based estimators. Provided
that f(·) is differentiable and the t ordinates are closely spaced, it is possible to
remove the effect of the function f(·) by differencing the data appropriately.

The idea of differencing to remove the nonparametric effect in nonparametric
and semiparametric regression models is not new. In the partial linear model it is
examined by Ahn and Powell (1993). In a pure nonparametric regression setting
the idea of differencing has a longer history have been used to obtain estimators of
the residual variance. The difference-based estimation procedure is optimal in the
sense that the estimator of the linear component is asymptotically efficient and
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the estimator of the nonparametric component is asymptotically minimax rate
optimal for the partial linear model (Wang et al. 2007).

The gist of this approach is to deal with semiparametric models under differ-
encing methodology, for multicollinearity settings. Multicollinearity is defined as
the existence of nearly linear dependency among column vectors of the design ma-
trix X in the linear model y = Xb+ε. The existence of multicollinearity may lead
to wide confidence intervals for individual parameters or linear combination of the
parameters and may produce estimates with wrong signs, etc. The best way of
explaining the existence and structure of multicollinearity is to look at the eigen-
values and eigenvectors of X′X. If X′X is ill-conditioned with a large condition
number a ridge regression estimator can be used to estimate bb. In this paper, we
will examine a biased estimation technique when the matrix X′X appears to be
ill-conditioned in the partial linear model.

2. Model

Let (y1, x1, t1), · · · , (yn, xn, tn) be the observations that follow the partial linear
model given by

yi = xib+ f(ti) + εi, i = 1, ..., n (2)

where f(·) is as before, x′
is are known p-vectors for i = 1, ..., n and b = (β1, ..., βp)

′

is a vector of unknown parameters and we assume that in general, ε is a n-vector
of disturbances distributed with E(ε) = 0 and E(εε′) = σ2In. Partial linear mod-
els are more flexible than standard linear models since they have a parametric
and a nonparametric component. They can be a suitable choice when one suspects
that the response y linearly depends on x, but that it is nonlinearly related to t. In
model (2), Yatchew (1997) concentrates on estimation of the linear component and
used differencing to eliminate bias induced from the presence of the nonparametric
component. Wang et al. (2007) used higher order differences for optimal efficiency
in estimating the linear part by using a special class of difference sequences. They
noted that, although the differences are correlated, the correlation should be ig-
nored and the linear regression coefficient vector should be estimated by the
ordinary least squares estimator instead of a generalized least squares estimator
which takes into account the correlations among the differences. If the correlation
structure is incorporated in the estimation, the resulting generalized least squares
estimator will not be optimal. To motivate the form of the difference-based ridge
estimator first rewrite model (2) in matrix/vector notation as

y = Xb+ f(t) + ε, (3)

where y = (y1, ..., yn)
′,f(t) = (f(t1), ..., f(tn))

′, ε = (ε1, ..., εn) and X =
(x1, ...,xn)

′ is the n × p matrix. Let d = (d0, ..., dm) be a m + 1 vector, where
m is the order of differencing and d0, ..., dm are differencing weights satisfying the
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conditions
m∑

j=0

dj = 0,

m∑

j=0

d2j = 1. (4)

A differencing matrix denoted byD is a (n−m)×n known matrix with the elements
satisfying (4) (see Yatchew, 2003 for some examples). Imposing the differencing
matrix to the model (3), permits direct estimation of the parametric effect. In
particular, it takes

Dy = DXb+Df(t) +Dε. (5)

Since the data have been reordered so that the X’s are close, the application of
the differencing matrix D in model (5) removes the nonparametric effect in large
samples (Yatchew 2000). Thus, the underlying model is rewritten as

y
.
= Xb+ e, (6)

where y = Dy, X = DX, e = Dε.
Differencing allows one to perform inferences on b as if there were no nonpara-

metric component f in the model (2). Once b is estimated, a variety of nonpara-
metric techniques could be applied to estimate f(·) as if b were known.

3. Proposed Estimator

It can be totally accepted (Yatchew, 1997) that adopting the linear model (6), the
unbiased estimator of b is the following difference-based estimator given by

β̂D = CD
−1X ′y, CD = X ′X. (7)

It is observed from (7) that the properties of the difference-based estimator of
b depends heavily on the characteristics of the information matrix CD. If the CD

matrix is ill-conditioned (near dependency among various columns of CD), then
the β̂D produce unduly large sampling variances. Moreover, some of the regression
coefficients may be statistically insignificant with wrong sign and meaningful sta-
tistical inference become difficult for the researcher. As a remedy following of Hoerl
and Kennard (1970), it can be suggested to use the following estimator namely
difference-based ridge estimator

β̂D(k) = T kβ̂D, T k = (kCD
−1 + Ip)

−1, (8)

where k ≥ 0 is the shrinking parameter.
Now consider the linear non-stochastic constraint

Rb = r, (9)

for a given q × p matrix R with rank q < p and a given q × 1 vector r. Subject to
the linear restriction (9), the restricted difference-based estimator is given by

β̂RD = β̂D −CD
−1R′(RCD

−1R′)−1(Rβ̂D − r). (10)
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By Swamy et al. (1978) and Swamy and Mehta (1977) we obtain restricted
difference-based ridge estimator to improve the difference-based estimator by min-
imizing the sum of squared residuals given by

β̂RD(k) = D(k)−CD(k)−1R′[RCD(k)−1R′]−1[RD(k)− r], (11)

where CD(k) = X ′X + kIp and D(k) = CD(k)−1X ′y for k ≥ 0.

Then it is easy to see that the β̂RD(k) and β̂RD is restricted with respect to
Rb = r. It is also clear that for k = 0, we get β̂RD(0) = β̂RD.

4. Evaluation of Risk Functions

In this section, we calculate the risk function for the proposed estimator given in
previous section under quadratic loss function.

For driving the risk function of β̂RD(k), according to Roozbeh et al. (2009),
β̂RD(k) can be written as follows:

β̂RD(k) = ND(k)X ′y −ND(k)CD(k)b0 + b0, (12)

where, b0 = R′(RR′)−1r and

ND(k) = CD(k)−1 −CD(k)−1R′[RCD(k)−1R′]−1RCD(k)−1. (13)

Now, we can calculate the bias and covariance matrix of β̂RD(k) by using
equation (12) as follows:

E[β̂RD(k)− b] = ND(k)CDb−ND(k)CD(k)b0 + b0 − b

= ND(k)CD(k)(b− b0)− kND(k)b0 + b0 − b

= −kND(k)b, (14)

With direct calculation using CD = CD(k) − kIp , we conclude that
ND(k)CDND(k) = ND(k) − kND(k)2 and in particular, ND(0)CDND(0) =
ND(0) when k = 0.

Therefore, the MSE of β̂RD(k) is

Cov[β̂RD(k)] = σ2ND(k)CDND(k) = σ2ND(k)− kσ2ND(k)2. (15)

Then the bias and covariance matrix of β̂RD is obtained by letting k = 0 in (14)
and (15) as follow:

E(β̂RD − b) = 0, (16)

Cov(β̂RD) = σ2ND(0). (17)

So the risk function of the estimators under study can be expressed by

MSE[β̂RD(k), b] = σ2ND(k)− kσ2ND(k)2 + k2ND(k)bb′ND(k), (18)

and

MSE[β̂RD, b] = σ2ND(0). (19)
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Theorem 4.1. There exists at least a k∗ > 0 such that β̂RD(k
∗) dominates β̂RD

in the sense of MSE.

Proof. It is enough to show that there exists k∗ > 0 such that MSE(β̂RD, b) −
MSE[β̂RD(k∗), b] > 0. The partial derivative of (18) with respect to k is

∂MSE[β̂RD(k), b]

∂k
= −k2ND(k)2bb′ND(k)− k2ND(k)bb′ND(k)2,

then ∂MSE[β̂
RD

(k),b]
∂k

∣∣∣∣
k=0

= −2σ2ND(0)2 < 0. Since σ2 > 0 and ND(0)2 is non

zero, we conclude that the MSE[β̂RD(k), b] has decreasing trend at k = 0.
This implies that there exists at least k∗ > 0, satisfying MSE(β̂RD, b) −
MSE[β̂RD(k∗), b] > 0. Therefore, we can select a suitable positive number k
to let the estimator β̂RD(k∗) performs better than β̂RD in the sense of MSE. �

5. MSE-superiority of the difference-based ridge estimator
β̂RD(k) over the differencing estimator β̂RD

In this section, we provide necessary and sufficient conditions for which the esti-
mator β̂RD(k) performs better than β̂RD in the sense of MSE(β̂RD(k), b) ≤
MSE(β̂RD, b). From (18) and (19), the difference ∆ = MSE(β̂RD, b) −
MSE[β̂RD(k), b] is given by

∆ = σ2ND(0)− σ2ND(k) + kσ2ND(k)2 − k2ND(k)bb′ND(k), (20)

when Rb = r.

Theorem 5.1. Let the estimator β̂RD(k) given by under the linear regression
model with true restrictions Rb = r. If k > 0, then the MSE difference ∆ is
nonnegative definite if and only if

k[σ−2bb′ − (PCDP )+] ≤ 2P , (21)

where P = Ip −R′(RR′)−1R. Note that by a + superscript we denote the unique
MoorePenrose inverse of a matrix.

Proof. The proof is followed from the proof of Theorem 4.1 of Zhong and Yang
(2007) under differencing method. �

6. Choice of the Biasing Parameter

It is difficult to give a satisfying answer about how to select k. This is because
the best k always depends on the unknown b and σ2 in the practical applications
which make the problem to be complicated.

Belsley et al. (1980) proposed that the multicollinearity would take effect ap-
parently as the condition number of CD is bigger than 10. The correlation of the
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variables of X is strong comparatively when the condition number of CD is be-
tween 30 and 100. While the condition number is bigger than 100, the correlation
would become very strong and the estimated coefficients is very unstable. They
suggested that we can obtain the good and stable coefficients if the condition num-
ber of CD is not bigger than 10. Based on this criterion, we can easily choose the
k such that the condition number of CD is reduced to 10 (see Liu, 2003).

Although the criterion mentioned above is simple, our problem to select k is
not yet completely solved. Therefore, we give a range to select k in Theorem 4.1.

Theorem 6.1. Let us be given the estimator β̂RD(k) under the linear regression
model with true restrictions Rb = r and b 6= b0. If

0 < k ≤ 2σ2

b′Pb
, (22)

then the MSE difference ∆ is nonnegative definite.

Proof. The proof is a direct consequence of the proof of Theorem 4 of GroB (2003)
under differencing setting. �

Remark 6.1. In the above Theorem if σ2 is unknown, for driving a range for k
which the MSE difference ∆ is nonnegative definite, we estimate σ2 by

σ2 =
1

n− (p− q)
(y −Xβ̂RD)′(y −Xβ̂RD). (23)

7. Numerical Study

In this section, we proceed to the comparison of the proposed estimators by some
numerical computations. In the scalar comparison, the trace of MSE (see Ak-
deniz and Erol, 2003; Belsley et al., 1980; Hoerl and Kennard, 1970) will be
used as a measurement. That is, we will compare the trace of MSE[β̂RD(k)]
and MSE(β̂RD) and define scalar ∆ as

∆ = σ2tr[ND(0)]− σ2tr[ND(k)] + kσ2tr[ND(k)2]− k2b′ND(k)2b. (24)

Our sampling experiment consists of different combinations of k. In this study we
simulate the response for n = 5000 from the following model:

y = Xb+ f(t)+ ε, (25)

where b = (−1.5,−2,−3, 5,−4), ε ∼ N(0, σ2I) which σ2 = 4,

f(ti) =
√
ti(1 − ti) sin

( 2.1π

ti + 0.05

)
,

that is called the Doppler function for ti = i/n, and for i = 1, ..., n, xi ∼

N(µx,Σx) with
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µx =




2.5

2

3

1

−1



, Σx =




1.9 1.8 1.8 1 1

1.8 1.8 1.8 1 1

1.8 1.8 4.25 1 1

1 1 1 2.49 1

1 1 1 1 2.25



.

In model (6) the parametric effect, b, is estimated by a differencing proce-
dure. Optimal differencing weights do not have analytic expressions but may be
calculated easily using an optimization routine. Hall et.al. (1990) present weights
to order m = 10. These contain some minor errors. We use a fourth-order dif-
ferencing coefficients, d0 = 0.8873, d1 = −0.3099, d2 = −0.2464, d3 = −0.1901,
and d4 = −0.1409 in which case m = 4. Now we define the (5000 − 4) × 5000
differencing matrix and R respectively given by

D =




d0 d1 d2 d3 d4 0 0 ... 0

0 d0 d1 d2 d3 d4 0 ... 0
...
. . .

...

0 0 ... 0 d0 d1 d2 d3 d4


 R =




1 −2 1 4 5

−1 2 −1 −3 0

1 2 −1 −2 3

2 −1 3 −2 0


 .

k 0 1 2 3 4 5
Coefficients

β̂1 -1.499217 -1.499220 -1.499223 -1.499226 -1.499229 -1.499233

β̂2 -2.008458 -2.008424 -2.008390 -2.008356 -2.008321 -2.008287

β̂3 -3.005952 -3.005928 -3.005904 -3.005880 -3.005856 -3.005832

β̂4 4.996084 4.996100 4.996116 4.996132 4.996147 4.996163

β̂5 -3.999217 -3.999220 -3.999223 -3.999226 -3.999229 -3.999233

b′(β̂)b(β̂) 0 1.979e-09 7.918e-09 1.781e-08 3.166e-08 4.947e-08
tr(MSE) 0.0001915 0.00019155 0.00019154 0.00019153 0.00019153 0.00019153

∆ 0 1.614e-08 2.789e-08 3.523e-08 3.818e-08 3.673e-08
k 6 7 8 9 10 11

Coefficients

β̂1 -1.499236 -1.499239 -1.499242 -1.499245 -1.499249 -1.499252

β̂2 -2.008253 -2.008219 -2.008185 -2.008150 -2.008116 -2.008082

β̂3 -3.005808 -3.005784 -3.005759 -3.005735 -3.005711 -3.005687

β̂4 4.996179 4.996195 4.996211 4.996227 4.996243 4.996258

β̂5 -3.999236 -3.999239 -3.999242 -3.999245 -3.999249 -3.999252

b′(β̂)b(β̂) 7.123e-08 9.695e-08 1.266e-07 1.602e-07 1.978e-07 2.393e-07
tr(MSE) 0.00019153 0.00019154 0.00019156 0.00019158 0.00019160 0.00019163

∆ 3.088e-08 2.063e-08 5.993e-09 -1.304e-08 -3.646e-08 -5.428e-08

All computations were conducted using the R statistical package. The matrix
CD has eigenvalues: λ1 = 237.04, λ2 = 5723.24, λ3 = 6684.99, λ4 = 11883.56 and
λ5 = 39604.97 . Thus the ratio of the largest eigenvalue to the smallest eigenvalue
is λ5/λ1 = 167.07 which implies the existence of multicollinearity in the data set.

We estimated σ2 by making use of the equation (23) which are equal to 4.2683
in the model (25).

Table 1 gives several results including β̂RD(k), b′[β̂RD(k)]b[β̂RD(k)],
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tr(MSE[β̂RD(k)]) and ∆ when k is in different values in model (25). From this
Table, the ∆ increases (tr(MSE[β̂RD(k)]) decreases) at first and then decreases
(increases). Furthermore, the maximum of ∆ (minimum of the tr(MSE[β̂RD(k)]))

is obtained when k equals to median range of (22) i.e., σ2

b′Pb
which is approximately

equal to 4.17 in models (25), as it can be seen in Figure 1.

Fig. 1. The diagram of ∆ versus k.

In Figure 2, the nonparametric part of the model (25) is plotted, in the top
left plot. This functions are difficult to estimate and provide a good test case for
nonparametric regression methods. The function is spatially inhomogeneous which
means that it’s smoothness (second derivatives) varies over x. The top right plot
shows n = 5000 data points after removing the linear part, i.e., y − Xb. The
middle left and right plot shows the residuals which obtained after estimation of
the linear part of the models by β̂RD, i.e., y − Xβ̂RD and the fitted function,
respectively. The bottom left and right plot is the middle part when β̂RD replaced
with β̂RD(4).

According to Table 1 and Figure 1, it can be realized that for all combinations of

k, β̂RD(k) is better than β̂RD if k ≤ a, which a = 2σ2

b′Pb
and it is equal to 8.339113

in model (25). Furthermore, as it can be realized from Figures 2, the estimators
of wavy function is reasonable using the discussed method in this approach.
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Results on the Past Lifetime of (n − k + 1)-out-of-n Structures with

Nonidentical Components

E. Salehi and M. Asadi

Department of Statistics, University of Isfahan

We consider a (n − k + 1)-out-of-n system with independent and nonidentical com-
ponents. Under the condition that at time t the system has failed we study the past
lifetime of the components of the system. The mean past lifetime of the components
is defined and some of its properties are investigated. Stochastic comparisons are also
made between the past lifetime of different systems.

Keywords: Order statistics; Reversed hazard rate; Stochastic ordering; Reliability.

1. Introduction

The (n−k+1)-out-of-n systems are very popular type of redundancy in technical
systems and structures. A (n− k + 1)-out-of-n system is a system consisting of n
components and the system functions if and only if at least (n−k+1) components
out of n components are operating (k ≤ n). Two important special cases of (n −
k + 1)-out-of-n systems are parallel systems and series systems corresponding to
k = n and k = 1, respectively. In recent years several authors have studied the
reliability and aging properties of (n− k+1)-out-of-n systems. Among others, we
refer to Asadi and Bayramoglu (2006), Asadi (2006), Khaledi and Shaked (2007),
Li and Zhao (2008), and Navarro et al. (2008).

Consider a (n−k+1)-out-of-n system and assume that X1, X2, ..., Xn denote the
lifetimes of the components of the system. Denote by X1:n ≤ X2:n ≤ . . . ≤ Xn:n

the ordered lifetimes. Suppose that the system, which starts to work at t = 0, is
not working at time t > 0. On the basis of structure of the system if the failure
times of the components are not monitored continuously then the exact failure
times of components with lifetimes X1:n, X2:n, . . . , Xk:n are unknown. Hence it
might be important for engineers and system designers to have some information
about the average time elapsed since the failure of the components. The time that
has elapsed from the failure of Xl:n, l = 1, 2, . . . , k, given that system has failed at
or before t is X l,k,n

t = t−Xl:n|Xk:n ≤ t.
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In recent years some authors studied the properties of the conditional random
variables of the form X l,k,n

t . Most of the results in the literature are dealing with
the case in which the system has independent and identical components, i.e the
Xi’s are independent and have the same distribution function F . Under these
conditions Asadi (2006) considered the past lifetime of the components of a parallel
system and defined the concept of mean past lifetime (MPL) of the components as
follows Mk

n(t) = E(t−Xk:n|Xn:n ≤ t), k = 1, 2, . . . , n. Tavangar and Asadi (2009)
extended the result of Asadi (2006) to (n− k+1)-out-of-n system and defined the
MPL of the components of the system as followsM l,k

n (t) = E (t−Xl:n | Xk:n ≤ t),
1 ≤ l ≤ k ≤ n. Khaledi and Shaked (2007) studied the stochastic properties

of conditional random variables of forms X l,k,n
t in coherent systems. In real life

situation the systems might be designed with nonidentical components. Motivated
by this, Sadegh (2008) extended the results of Asadi (2006) for the parallel systems
with nonidentical components.

The aim of the present paper is to extend the results of Sadegh to (n−k+1)-out-
of-n systems and study the properties of the MPL M l,k

n (t) with nonidentical com-
ponents. When the independent random variables are not identically distributed,
the distributions of order statistics can be expressed in terms of permanents. Let
Sn be the set of permutations of {1, 2, . . . , n}. For an n×n matrix, say A = (ai,j),
the permanent of A denoted by PerA, is defined as

PerA =
∑

π∈Sn

n∏

i=1

ai,π(i),

where π = (π(1), π(2), . . . , π(n)). If a1, a2, . . . , denote the column vectors, then
[ a1︸︷︷︸

i1

, a2︸︷︷︸
i2

, . . . , ] = [a11
′
i1
, a21

′
i2
, . . . , ], where 1i1 shows a column vector of 1s of

length i1. The concept of permanent is like the concept of determinant, except
that all signs in the expansion are positive.

When X1:n, X2:n, . . . , Xn:n are order statistics of a set of independent random
variables with absolutely continuous distribution functions F1, F2, . . . , Fn and den-
sities f1, f2, . . . , fn, respectively, Vaughan and Venables (1972) showed that the
density of Xr:n can be expressed in terms of permanents. Bapat and Beg (1989)
showed that the distribution function of Xr:n, (1 ≤ r ≤ n) is given by

P (Xr:n ≤ x) =

n∑

i=r

1

i!(n− i)!
Per


F(x)︸ ︷︷ ︸

i

, F̄(x)︸ ︷︷ ︸
n−i


 , −∞ < x <∞,

where F(x) = (F1(x), . . . , Fn(x))
′, F̄(x) = (F̄1(x), . . . , F̄n(x)).
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This paper is organized as follows. In Section 2 we first obtain the survival func-
tion of X l,k,n

t . We show that the random variable X l,k,n
t is stochastically ordered

in terms of l and k, which in turn implies that M l,k
n (t) is ordered in terms of l

and k. We consider, in this section, two systems with same number of components
and show that when the components of the systems are ordered in terms of re-
versed hazard rates then the corresponding MPL of the systems are also ordered.
In Section 3 we study the aging properties of the system. It is shown that when
a component has a bathtub-shaped reversed hazard then the MPL of the compo-
nent has an upsidedown bathtub-shaped form. It is shown by an example that the
result is not necessary true for the system. In other words, we have shown when
the components of the system have bathtub-shaped reversed hazard rates then the
MPL M l,k

n (t) may not have an upsidedown bathtub-shaped form for all values of
l and k.

2. The Past Lifetime of the Components of the Systems

In this section we assume that a (n − k + 1)-out-of-n system consists of n inde-
pendent components with lifetimes X1, X2, . . . , Xn where Xi is distributed as Fi,
i = 1, 2, . . . , n. We denote the survival function of Xi by F̄i. We obtain several
properties of X l,k,n

t , the past lifetime of the components of the system. If we de-

note the survival function of X l,k,n
t by F̄l,k,n,t then we can prove the following

theorem using combinatorial arguments.

Theorem 2.1. For 1 ≤ l ≤ k ≤ n and 0 < x < t,

F̄l,k,n,t(x) = P (X l,k,n
t > x) =

∑n−k
i=0

∑
Ci
ψi(t)F̄

(Ci)
n−i−l+1,n−i,t(x)∑n−k

i=0

∑
Ci
ψi(t)

, (1)

where Ci denotes a subset of {1, 2, . . . , n} with i elements, Cc
i is the complement

of Ci, C0 = φ, ψi(t) =
∏

sεCi

F̄s(t)

Fs(t)
and

F̄
(Ci)
n−i−l+1,n−i,t(x) =

n−i−l∑

j=0

1

j!(n− i− j)!
Per


F̄t(x)︸ ︷︷ ︸

j

, Ft(x)︸ ︷︷ ︸
n−i−j



Cc

i

,

where Ft(x) is a vector in which the ith element is Fi(t−x)
Fi(t)

.

Remark 2.1. If k = n, then F̄l,k,n,t(x) denotes the survival function of past life-
time of the components of a parallel system with independent and non-identical
components which is already derived by Sadegh (2008). If Xi are i.i.d random
variables, that is, the system has independent and identical components the rep-
resentation (1) reduces to the result of Tavangar and Asadi (2009).
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We denote the expectation of X l,k,n
t by M l,k

n (t). That is M l,k
n (t) = E(t −

Xl:n|Xk:n ≤ t). M l,k
n (t) is called the MPL (or mean inactivity) of the system com-

ponents at the system level. For l = 1, 2, . . . , k the MPL M l,k
n (t) can be written

as

M l,k
n (t) =

∑n−k
i=0

∑
Ci
ψi(t)M

n−i−l+1
n−i,Ci

(t)
∑n−k

i=0

∑
Ci
ψi(t)

, (2)

where

Mn−i−l+1
n−i,Ci

(t) = E(t−X
(Ci)
n−i−l+1:n−i|X

(Ci)
n−i:n−i ≤ t),

is the MPL of X
(Ci)
n−i−l+1:n−i, l = 1, 2, . . . , n− i, in a parallel system consisting of

n− i non-identical components.

Remark 2.2. Note that MPL M l,k
n can also be represented as follows:

M l,k
n (t) =

n−k∑

i=0

∑

Ci

p(Ci)(t)Mn−i−l+1
n−i,Ci

(t),

where

p(Ci)(t) =
ψi(t)∑n−k

j=0

∑
Cj
ψj(t)

= P
(
ZCi
t = n− |Ci|

∣∣∣ Zt ≥ k
)
,

and Zt =
∑n

i=1Xt,i and Xt,i i = 1, 2, . . . , n are n independent random variables
distributed as binomial with parameters (1, Fi(t)). This shows that the MPL of
Xl:n, l ≤ k, of (n − k + 1)-out-of-n system can be represented as weighted mean
of the MPL’s of Xn−i−l+1:n−i, l = 1, 2, . . . , n− i, of parallel system.

Now, we have the following results.

Theorem 2.2. For 1 ≤ l ≤ k < n, and t > 0,

X l,k,n
t ≤st X

l,k+1,n
t ,

where st stands for the usual stochastic order (for more details see Shaked and
Shantikumar (2007)).

Proof. Note that, for 1 ≤ l ≤ k < n and 0 < x < t,

F̄l,k,n,t(x)− F̄l,k+1,n,t(x)

=

∑n−k
i=0

∑
Ci
ψi(t)F̄

(Ci)
n−i−l+1,n−i,t(x)∑n−k

i=0

∑
Ci
ψi(t)

−
∑n−k−1

i=0

∑
Ci
ψi(t)F̄

(Ci)
n−i−l+1,n−i,t(x)∑n−k−1

i=0

∑
Ci
ψi(t)

.
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We need to show that the right hand side of this equation is non-positive. To this
end, it is enough to show that, for 0 ≤ i ≤ n − k − 1, the following quantity is
non-positive

n−k−1∑

i=0

∑

Ci

∑

Cn−k

∏

sεCi+Cn−k

F̄s(t)

Fs(t)
F̄

(Cn−k)
k−l+1,k,t(x)

−
n−k−1∑

i=0

∑

C′
i

∑

C′
n−k

∏

sεC′
i+C′

n−k

F̄s(t)

Fs(t)
F̄

(C′
i)

n−i−l+1,n−i,t(x). (3)

Both expressions in (3) have the same number of terms. For each Ci, we can
choose C′

n−k such that Ci ⊂ C′
n−k and C′

i +C′
n−k = Ci +Cn−k. Thus, (3) can be

represented as follows

n−k−1∑

i=0

∑

Ci⊂C′
n−k

∏

sεCi+Cn−k

F̄s(t)

Fs(t)

[
F̄

(C′
n−k)

k−l+1,k,t(x) − F̄
(Ci)
n−i−l+1,n−i,t(x)

]
.

Since C′c
n−k ⊂ Cc

i , using Lemma Nanda and Shaked (2001), we have

F̄
(C′

n−k)

k−l+1,k,t(x) ≤ F̄
(Ci)
n−i−l+1,n−i,t(x) which gives the required result.

Theorem 2.3. For 1 ≤ l < k ≤ n, and t > 0,

X l+1,k,n
t ≤st X

l,k,n
t .

Proof. Note that, for 1 ≤ l < k ≤ n, 0 < x < t,

F̄l+1,k,n,t(x)− F̄l,k,n,t(x)

=

∑n−k
i=0

∑
Ci
ψi(t)F̄

(Ci)
n−i−l,n−i,t(x)∑n−k

i=0

∑
Ci
ψi(t)

−
∑n−k

i=0

∑
Ci
ψi(t)F̄

(Ci)
n−i−l+1,n−i,t(x)∑n−k

i=0

∑
Ci
ψi(t)

.

We show that the right hand side of the above equation is non-positive. To show
this, it is enough to show that the following equation is non-positive.

n−k∑

i=0

n−k∑

j=0

∑

Ci

∑

Cj

ψi(t)ψj(t)
[
F̄

(Ci)
n−i−l,n−i,t(x) − F̄

(Ci)
n−i−l+1,n−i,t(x)

]
.

Now from Lemma Nanda and Shaked (2001), we have F̄
(Ci)
n−i−l,n−i,t(x) ≤

F̄
(Ci)
n−i−l+1,n−i,t(x) for all i = 0, 1, . . . , n− k, which gives the required result.

Corollary 2.1.

(a) Under the conditions of Theorem 2.2,,for fixed values of l and n, M l,k
n (t) is

a increasing function of k, k = l, 2, . . . , n;
(b) Under the conditions of Theorem 2.3,for fixed values of k and n, M l,k

n (t) is
a decreasing function of l, l = 1, 2, . . . , k.
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Khaledi and Shaked (2007) proved that when the components of two (n − k +
1)-out-of-n systems ϕ1 and ϕ2(each consisting of n independent and identical
components, where components of ϕ1 and ϕ2 are distributed according to function
F and G, respectively) are ordered in term reversed hazard rates, then the systems
are ordered in terms of their MPL’s. In other words, they showed that if rF (t) ≤
rG(t), t > 0, (reversed hazard of absolutely distribution F with density function f

is rF (t) =
f(t)
F (t) ) then M

l,k
n (t) ≥ K l,k

n (t), where M l,k
n (t), is MPL of ϕ1 and K l,k

n (t),

is MPL of ϕ2. The following theorem extends the result of Khaledi and Shaked
(2007).

Theorem 2.4. Let X1, X2, . . . , Xn , Y1, Y2, . . . , Yn be independent continuous
random variables. If, either Xi or Yi are identically distributed, and for any
1 ≤ i, j ≤ n, Xi ≤rh Yj, where rh stands for reversed hazard rate order, then,
for 1 ≤ l ≤ k ≤ n, and t > 0,

X l,k,n
t ≥st Y

l,k,n
t .

Proof. We give the proof for the case where Yi, i = 1, 2, . . . , n are identically
distributed. Similar proof can be given for the case when Xi, i = 1, 2, . . . , n are
identically distributed. To get the result, it is enough to prove that Ḡl,k,n,t(x) −
F̄l,k,n,t(x) ≤ 0, or to show that the following expression is non-positive.

n−k∑

i=0

∑

Ci

ψY
i (t)Ḡ

(Ci)
n−i−l+1,n−i,t(x)

n−k∑

i=0

∑

Ci

ψX
i (t)

−
n−k∑

i=0

∑

Ci

ψX
i (t)F̄

(Ci)
n−i−l+1,n−i,t(x)

n−k∑

i=0

∑

Ci

ψY
i (t), (4)

where ψY
i (t) =

∏
sεCi

Ḡs(t)
Gs(t)

, ψX
i (t) =

∏
sεCi

F̄s(t)
Fs(t)

. Note that for 0 ≤ x ≤ t, (4) is

equal

n−k∑

i=0

n−k∑

j=0

∑

Ci

∑

Cj

ψX
j (t)ψY

i (t)
[
Ḡ

(Ci)
n−i−l+1,n−i,t(x) − F̄

(Cj)
n−j−l+1,n−j,t(x)

]

=

n−k∑

i=0

n−k∑

j=0

∑

Ci

∑

Cj

ψX
j (t)ψY

i (t)
[
Ḡ

(Ci)
n−i−l+1,n−i,t(x) − Ḡ

(Cj)
n−j−l+1,n−j,t(x)

+ Ḡ
(Cj)
n−j−l+1,n−j,t(x)− F̄

(Cj)
n−j−l+1,n−j,t(x)

]
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=
n−k∑

i=0

n−k∑

j=0

∑

Ci

∑

Cj

ψX
j (t)ψY

i (t)
[
Ḡ

(Ci)
n−i−l+1,n−i,t(x) − Ḡ

(Cj)
n−j−l+1,n−j,t(x)

]

+

n−k∑

i=0

n−k∑

j=0

∑

Ci

∑

Cj

ψX
j (t)ψY

i (t)
[
Ḡ

(Cj)
n−j−l+1,n−j,t(x)− F̄

(Cj)
n−j−l+1,n−j,t(x)

]

= φ1 + φ2.

We will show that both φ1 and φ2 are non-positive. We have

φ1 =

n−k∑

i=0

n−k∑

j=i

∑

Ci

∑

Cj

ψX
j (t)ψY

i (t)
[
Ḡ

(Ci)
n−i−l+1,n−i,t(x)− Ḡ

(Cj)
n−j−l+1,n−j,t(x)

]

+

n−k∑

i=0

i∑

j=0

∑

Ci

∑

Cj

ψX
j (t)ψY

i (t)
[
Ḡ

(Ci)
n−i−l+1,n−i,t(x)− Ḡ

(Cj)
n−j−l+1,n−j,t(x)

]

=

n−k∑

i=0

n−k∑

j=i

∑

Ci

∑

Cj

ψX
j (t)ψY

i (t)
[
Ḡ

(Ci)
n−i−l+1,n−i,t(x)− Ḡ

(Cj)
n−j−l+1,n−j,t(x)

]

+

n−k∑

i=0

n−k∑

j=i

∑

Ci

∑

Cj

ψX
i (t)ψY

j (t)
[
Ḡ

(Cj)
n−j−l+1,n−j,t(x)− Ḡ

(Ci)
n−i−l+1,n−i,t(x)

]

=
n−k∑

i=0

n−k∑

j=i

∑

Ci

∑

Cj

[
ψX
j (t)ψY

i (t)− ψX
i (t)ψY

j (t)
]

[
Ḡ

(Ci)
n−i−l+1,n−i,t(x)− Ḡ

(Cj)
n−j−l+1,n−j,t(x)

]
.

Under the assumption that Yi’s are i.i.d random variables, the above equation
can be rewritten as

n−k∑

i=0

n−k∑

j=0

∑

Ci

∑

Cj


∏

sεCj

F̄s(t)

Fs(t)

(
Ḡ(t)

G(t)

)i

−
∏

sεCi

F̄s(t)

Fs(t)

(
Ḡ(t)

G(t)

)j



×
[
Ḡn−i−l+1,n−i,t(x)− Ḡn−j−l+1,n−j,t(x)

]
. (5)

By using Lemma Nanda and Shaked (2001), we have
[
Ḡn−i−l+1,n−i,t(x) − Ḡn−j−l+1,n−j,t(x)

]
≥ 0,

for 0 ≤ i ≤ j ≤ n− k. Hence to show that φ1 is non-positive, it is enough to show
the first expression in summations in (5) is non-positive. But for i ≤ j, we have

∑

Ci

∑

Cj


∏

sεCj

F̄s(t)

Fs(t)

(
Ḡ(t)

G(t)

)i

−
∏

sεCi

F̄s(t)

Fs(t)

(
Ḡ(t)

G(t)

)j



=
∑

Cj

∏

sεCj

F̄s(t)

Fs(t)

∑

Ci

(
Ḡ(t)

G(t)

)i

−
∑

Ci

∏

sεCi

F̄s(t)

Fs(t)

∑

Cj

(
Ḡ(t)

G(t)

)j

.
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Since the first part of above expression has same number of terms as the second
part, for each Ci, we can choose Cj , such that Ci ⊂ Cj . Hence, the above equation
could be represented as

∑ ∑

Ci⊂Cj

∏

sεCi

F̄s(t)

Fs(t)

(
Ḡ(t)

G(t)

)i

 ∏

sεCj−i

F̄s(t)

Fs(t)
−
(
Ḡ(t)

G(t)

)(j−i)

 .

From the fact that X ≤rh Y one can easily see that this last expression is non-
positive. On the other hand φ2 can be written as

φ2 =

n−k∑

i=0

n−k∑

j=0

∑

Ci

∑

Cj

ψX
j (t)ψY

i (t)
[
Ḡ

(Cj)
n−j−l+1,n−j,t(x) − F̄

(Cj)
n−j−l+1,n−j,t(x)

]
.

The assumption that X ≤rh Y implies easily that (t−Y |Y < t) ≤st (t−X |X < t).
This in turn, implies that φ2 is non-positive. Hence, the proof is complete.

Corollary 2.2. Assume that M l,k
n (t) and K l,k

n (t) denote the MPLs of the systems
corresponding to F and G described in above theorem. Then under the assumptions
of the theorem we have

M l,k
n (t) ≥ K l,k

n (t).

3. Some aging properties of the system

Let X be a non-negative absolutely continuous random variable with distribution
function F , density function f , survival function F̄ = 1−F and hazard rate h(t) =
f(t)

F̄ (t)
. Mi (1996) proved that when the distribution function F has a bathtub-shaped

hazard rate h(t) then the corresponding mean residual life function m(t) has an
upsidedown bathtub-shape. Recall that a hazard rate h(t) is said to be bathtub-
shaped if there exist two change points t1 and t2 (0 ≤ t1 ≤ t2 ≤ ∞) such that h(t)
is strictly decreasing on (0, t1), is constant on (t1, t2) and is strictly increasing on
(t2,∞). In the following theorem we prove that when the reversed hazard rate r(t)
is bathtub-shaped then the corresponding MPL M(t) has upsidedown bathtub-
shaped.

Theorem 3.1. Let the distribution function F of a lifetime have a differentiable
bathtub shaped reverse hazard r(t) with change points t1 and t2 (0 ≤ t1 ≤ t2 ≤ ∞).
Then there exists a unique time t∗ such that t2 < t∗ ≤ ∞ such that

M(t∗) = max
t≥0

∫ t

0 F (x)dx

F (t)

Proof. Differentiating of M(t) in terms of t gives

M
′
(t) = 1− r(t)M(t). (6)
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Define A(t) = F (t) − r(t)
∫ t

0 F (x)dx. Hence, M
′
(t) = A(t)

F (t) . The derivative of A(t)

is given by A′(t) = −r′(t)
∫ t

0
F (x)dx. Hence, under the assumptions on r(t) we can

show that

A(t)





is strictly increasing, if 0 ≤ t ≤ t1;

is constant, if t1 < t < t2;

is strictly decreasing, if t2 ≤ t.

Note that for t ≤ t1 it can be concluded that

A(t) = F (t)

(
1− r(t)

∫ t

0

exp

{
−
∫ t

x

r(u)du

}
dx

)

> F (t) exp

{
−
∫ t

0

r(u)du

}

≥ 0.

Hence A(t) > 0, ∀t ≤ t2 since A(t) is a constant on [t1, t2]. Thus, from represen-
tation (6), M(t) is always strictly increasing in t ≤ t2. If A(∞) ≥ 0, then A(t) > 0
and hence for all t > 0, M ′(t) ≥ 0 which implies that M(t) is strictly increasing.
On the other hand, if A(∞) < 0, then there exits a unique t∗ ∈ (t2,∞] such that,
A(t∗) = 0 and

A(t)





> 0, if 0 ≤ t ≤ t∗;
= 0, if t = t∗;
< 0, if t∗ ≤ t.

This means that M(t) strictly increases (decreases) for 0 ≤ t ≤ t∗ (t∗ ≤ t), that is
MPL takes its maximum in t = t∗, or M(t∗) = maxt≥0M(t). Hence, the proof is
complement.

The following example gives an application of this theorem.

Example 3.1. Let X1, X2, X3 denote the lifetime of three components which are
connected in a system. Assume that Xi’s are distributed, respectively, as

f1(x) = 3(1− x)2/2, 0 < x < 2,

f2(x) = 5(1− x)4/2 0 < x < 2,

f3(x) = 7(1− x)6/2 0 < x < 2.

Figures 1 and 2 show the graphs of reversed hazards, and the MPLs of Xi’s,
respectively. It is seen from the graphs that the reversed hazard rates are bathtub-
shaped and the MPLs are upsidedown bathtub-shaped.
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A natural question here is whether the result of the above theorem is true for the
systems. In other words, can we conclude that when the reversed hazard rate r(t)
has bathtub-shaped then the MPL of the system, M l,k

n (t), for all l, k and n, has
an upsidedown bathtub-shaped? The answer in general is negative. To see this we
consider a system consisting of 3 components and assume that the components of
the system are distributed according to Example 3.1. The graphs of M l,k

n for the
case where n = 3, k = 2 and l = 1, 2 is given in Figure 3 and the graphs of M l,k

n

for the case where n = 3, k = 3 and l = 1, 2, 3 is presented in Figure 4. The graphs
in Figure 4 show that when the components have bathtub-shaped reversed hazard
rates then the MPL of the system for different values of l, l = 1, 2, 3 is upsidedown
bathtub-shaped. However, the graphs of Figure 3 indicate that the MPL of the
system is not necessarily upsidedown bathtub-shaped. The graph of M1,2

3 (t) (at
the bottom of Figure 3) is first upsidedown but after sometime starts to increase.

21.6

3

1.20.80.4

5

4

1

x

0

2

x

1.5 20.5

0.4

1

1.4

1.2

0.8

0

0

1

0.6

0.2

0.5

1.6

1.2

t

0.8

0.4

2

0

1.510

1.6

1.2

t

0.8

21.5

0

0.5

0.4

10

Fig. 1. Fig. 2. Fig. 3. Fig. 4.

References

1. M. Asadi, (2006). On the mean past lifetime of the components of a parallel system.
J. Statist. Plann. Inference, 136, 1197-1206.

2. M. Asadi, and I. Bayramoglu, (2006). The mean residual life function of a k-out-of-n
structure at the system level. IEEE Trans. Reliab., 55, 314-318.

3. R. B. Bapat, and M. I. Beg, (1989). Order statistics for nonidentically distributed
variables and permanents, Sankhya: Indian J. Stat. 51 (Ser. A) 79-93.

4. B.-E. Khaledi, and M. Shaked, (2007). Ordering conditional lifetimes of coherent
systems. J. Statist. Plann. Inference, 137, 1173-1184.

5. X. Li, and P. Zhao, (2008). Stochastic comparison on general inactivity time and
general residual life of k-out-of-n systems. Comm. Statist. Simu. Comp. 37, 1005-
1019.

6. J. Mi, (1996). Minimizing some cost functions related to both burn-in and field use.
Oper. Res., 44, 497-500.

7. A. K. Nanda, and M. Shaked, (2001). The hazard rate the reversed hazard rate
orders, with applications to order statistics. Ann. Inst. Statist. Math., 53, 853-864.

8. J. Navarro, N. Balakrishnan, and F. J. Samaniego, (2008). Mixture representations
of residual lifetimes of used systems. Appl. Probab., 45, 1097-1112.

400



July 28, 2010 16:45 ISC10 - Proceeding proceeding

The 10th Iranian Statistical Conference University of Tabriz, August 2010

9. M. K. Sadegh, (2008). Mean past and mean residual Life of parallel System with
Nonidentical Components. Comm. Statist. Theory Methods, 37, 1137-1145.

10. M. Shaked, and J. G. Shanthikumar, (2007). Stochastic orders and their applications.
Springer, New York.

11. M. Tavangar, and M. Asadi, (2009). A study on the mean past lifetime of the com-
ponents of (n− k + 1)-out-of-n system at the system level. To appear in Metrica.

12. R. J. Vaughan, and W. N. Venables, (1972). Permanent expressions for order statis-
tics densities, J. Royal Stat. Soc. B 34 (2) 308-310.

401



July 28, 2010 16:45 ISC10 - Proceeding proceeding

A Modified Rank Test For Model Selection

A. Sayyareh
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In this paper we consider a distribution-free test for nonnested distributions in the
context of the model selection. We introduced a new test and showed that this test
is asymptotically more efficient than the Vuong test and the test statistic based on B
statistic introduced by Clarke. This work is heavily based on the Clarke approach to
finding a test. But here we let to the magnitude of the data to give a better performance
to the test statistic. We showed that this test is an unbiased test.

Keywords: Cox’S Test, Hypothesis Testing, Kullback-Leibler Divergence, Model Selec-
tion, Mis-Specified Models, Non-Nested Models, Rank Test, Vuong’S Test.

1. Introduction

As we know rank statistics are distribution-free under the null hypothesis, the level
of a rank test is independent of the underlying distribution, which is the best possi-
ble protection of the level against misspecification of the model. On the other hand,
the power of a rank test is not necessarily robust against deviations from the pos-
tulated model. This might lead to the use of the best test for the wrong model. Let
Ȳ = (Y1, Y2, ..., Yn) be identically and independently distributed random variables
from unknown density h(.). Two rival model are assumed as possible explanation of
Y, represented by (fγ(.))γ∈Γ = {f(y; γ), γ ∈ Γ} and (gβ(.))β∈B = {g(y;β), β ∈ B}.
These functions are known but their parameters as γ ∈ Γ and β ∈ B are unknown.
The aim is to ascertain which of the two alternatives (fγ(.))γ∈Γ and (gβ(.))β∈B

if any can be viewed as a family contained h(.) or has a member which is a good
approximate for h(.). As we see, there is no trivial null hypothesis. The analysis
of non-nested hypothesis is carried out with both alternatives taken in turn as
the null hypothesis. There are three general approach to testing non-nested hy-
potheses. The Cox’s test [1], [2] involves centering the log-likelihood ratio statistic
under the null hypothesis. A second approach suggested by Cox [2] and improved
by [3] Their basic idea is to introduce a third hypothesis in which both (fγ(.))γ∈Γ

and (gβ(.))β∈B are nested. A third approach, considered by [4] as encompassing
procedure, focus on the ability of one model in explaining particular features of
an alternative model. On the other hand Vuong’s model selection test, [5], is mo-
tivated by testing that (fγ(.))γ∈Γ and (gβ(.))β∈B are observationally equivalent,
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using the Kullback-Leibler KL as a closeness measure. The focus of Vuong’s test is
based on a simple likelihood ratio statistics for testing the null hypothesis that the
rival models are equally close to the true model against the alternative hypothesis
that one model is closer in all case when the rival models are non-nested, overlap-
ping or nested and wether both, one or neither is misspecified. The distribution
free test as a model selection test introduced by Clarke [6]. The distribution-free
test is that wether or not the median of the underling distribution is equal to the
known value asM0. In section 2 we review the Vuong test and the distribution-free
test in brief. Section 3 introduce the new distribution free test for model selection.
Section 4 consider the asymptotic relative efficiency and the unbiasedness of the
test.

2. The Vuong and the Distribution-Free tests

The Vuong and the distribution free tests are based on the KL divergence. Consider
a sample of i.i.d. couple of variables (Yi, Xi), i = 1, 2, ..., n having joint pdf h(.),
h(y, x) = hY |X(y|x)ζX(x). Consider the model (gβ(.))β∈B such that gβ(y, x) =

gβY |X(y|x)ζX(x), the model is reduced because ζX(x) is assumed known. The KL
divergence is

Eh{log hY |X(Y |X)} − Eh{log gβY |X(Y |X)}. (1)

For β0 the pseudo true value of β where KL(gβ , h) = 0 we have gβ(.) = h(.),
that is β = β0. This risk in fact is the expectation of the log-likelihood loss of gβ

relatively to h(.) for observation Y condition on X, as, log
log hY |X (Y |X)

log gβ
Y |X (Y |X)

. It is known

that KL(gβ, h) ≥ 0. We shall say that (gβ(.))β∈B is closer to h than (fγ(.))γ∈Γ

if KL(gβ0 , h) < KL(fγ0 , h). We cannot estimate KL(gβ0 , h) because the entropy
of h, H(h) = Eh{log hY |X(Y |X)} cannot be correctly estimated. However we can

estimate the second part of (1) by n−1{Lgβ̂n

Ȳn|X̄n
} where β̂n is QMLE of β0 and

{Lgβ̂n

Ȳn|X̄n
} is the estimated log-likelihood function. However we can estimate the

difference of risks as

∆(gβ0 , fγ0) = KL(gβ0 , h)−KL(fγ0 , h) = Eh
{
log

fγ0

Y |X(Y |X)

gβ0

Y |X(Y |X)

}
,

by n−1{Lgβ̂n

Ȳn|X̄n
− Lf γ̂n

Ȳn|X̄n
} = n−1{LRgβ̂n ,f γ̂n

n }, where

n−1{LRgβ̂n ,f γ̂n

n } P−→ Eh
{
log

fγ0

Y |X(Y |X)

gβ0

Y |X(Y |X)

}
,

see Commenges, [7].
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2.1. Vuong’s model selection test

Vuong’s [5] test is constructed to test (gβ(.))β∈B against (fγ(.))γ∈Γ, using the
KL divergence as a closeness measure. The focus of this approach is to test the
hypothesis that the models under considerations are equally close to the true
unknown model, h. The null hypothesis of Vuong’s test is

H0 : Eh
{
log

fγ0

Y |X(Y |X)

gβ0

Y |X(Y |X)

}
= 0,

against

H1 : Eh
{
log

fγ0

Y |X(Y |X)

gβ0

Y |X(Y |X)

}
> 0,

or

H1 : Eh
{
log

fγ0

Y |X(Y |X)

gβ0

Y |X(Y |X)

}
< 0.

Under H0

V0
n =

LRgβ̂n ,f γ̂n

n√
nω̂n

L−→ N (0, 1),

where

ω̂n =
1

n

n∑

i=1


log

f γ̂n

Y |X(Y |X)

gβ̂n

Y |X(Y |X)



2

−


 1

n

n∑

i=1

log
f γ̂n

Y |X(Y |X)

gβ̂n

Y |X(Y |X)



2

,

ω̂n is a consistant estimator for ω∗ =

{
Varh

[
log

f
γ0
Y |X (Y |X)

g
β0
Y |X (Y |X)

]}1/2

.

2.2. Distribution Free-Test

Clarke [6] consider a simple distribution-free test for non-nested model selection.
This test is asymptotically more efficient than the Vuong test. His test is a modified
paired sign test to the differences in the individual log-likelihood from two non-
nested models. The null hypothesis of this test is

H0 : P

[
log

fγ0

Y |X(Y |X)

gβ0

Y |X(Y |X)
> 0

]
= 0.5.

This equation says that under the null hypothesis, the log-likelihood should be
distributed around zero. The test statistic is

B =

n∑

i=1

1(0,∞)(di)
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where di is log
f γ̂n
Y |X (Y |X)

gβ̂n
Y |X (Y |X)

. It is clear that under null hypothesis, B
i.i.d.∼ Bin(n, 0.5).

3. Linear signed rank test, modified for model selection

Since distribution free-test (DFT ) introduced by Clarke [6] utilize only the sign
of the difference between each likelihood ratio and the hypothesized median M0,
the magnitudes of these observations relative to M0, are ignored. A test statistic
which takes into account these individual relative magnitudes might be expected
to give better performance. These is reasonable If we accept that the distribution

of log
f
γ0
Y |X(Y |X)

g
β0
Y |X(Y |X)

is symmetric (especially about zero), then we can construct a new

DFT, say modified DFT. Consider

log
fγ0

Y1|X1
(Y1|X1)

gβ0

Y1|X1
(Y1|X1)

, ..., log
fγ0

Yn|Xn
(Yn|Xn)

gβ0

Yn|Xn
(Yn|Xn)

i.i.d.∼ F (d−M).

Under null hypothesis H0 : M = M0. The differences Dlm = log
f
γ0
Y |X(Y |X)

g
β0
Y |X(Y |X)

−M0

are symmetrically distributed about zero. So that positive and negative differences
of equal absolute magnitude have the same probability of occurrence, i.e.P(Dlm

i ≤
−a) = P(Dlm

i ≥ a). We order the absolute differences |Dlm
1 |, ..., |Dlm

n | in order
from smallest to largest. Their rank will be from 1 up to n, respectively. Define
Zi = 1(Dlm

i > 0) for i = 1, 2, ..., n, where 1 stands for indicator function and

Tn =

n∑

i=1

Zirank(|Dlm
i |).

Now without loss of generality assume that |Dlm
1 |, ..., |Dlm

n | are order statistic, then

Tn =

n∑

i=1

iZ(i),

where Z(i) is
a indicator function on {The absolute value of difference with rank i is positive}.
We reject H0 for Tn > c or Tn < d.

4. The efficiency and the unbiasedness of test

4.1. The efficiency

To compare modified DFT with Vuong’s test we consider the asymptotic relative
efficiency (a.r.e.) of one test with respect to another test. That is given the tests
Tn and Wn,

a.r.e.(Tn,Wn) = limn→∞
eff(Tn)

eff(Wn)
,
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where eff(Tn) is the efficacy of the test statistic Tn. For hypothesis θ = θ0,

eff(Tn) =
[∂E(Tn)/∂θ]2|θ=θ0

var(Tn)|θ=θ0

.

It is easy to see that

Tn =

(
n

2

)−1∑∑

1≤i≤j≤n

1(Dlm
i +Dlm

j > 0),

and [∂E(Tn)/∂θ]|θ=θ0 = 2
{

f(0)
n−1 +

∫∞
−∞ f2(y) dy

}
, where y = x − θ, also

var(Tn)|θ=θ0 = 3−1/2 which indicate that eff(Tn) = 12
{∫∞

−∞ f2(y) dy
}2

.

It is known that the efficacy of B is 4f2(F−1(0.5)). On the other hand the effi-
cacy of the Vuong test could be calculate using Theorem 3.3(ii), Lemma 4.1 and
Lemma 4.2. from Vuong(1989), as follows

Vn =

√
n

(
1
nLR

gβ̂n ,f γ̂n

n − Eh
{
log

f
γ0
Y |X (Y |X)

g
β0
Y |X (Y |X)

})

ω∗

L−→ N (0, 1),

and

ω̂n
a.s.−−→ ω∗

Vn under H0 is equal to V0
n. Using Slutsky Theorem, we have

√
n

(
1
nLR

gβ̂n ,f γ̂n

n − Eh
{
log

f
γ0
Y |X (Y |X)

g
β0
Y |X (Y |X)

})

ω̂n

ω̂n

ω∗

L−→ N (0, 1),

but as n gets large, ω̂n

ω∗
→ 1, which indicate that as n→ ∞

Eh{V0
n} =

√
n

ω∗
Eh
{
log

fγ0

Y |X(Y |X)

gβ0

Y |X(Y |X)

}
,

and

Var{V0
n} =

nVar{ 1
nLR

gβ̂n

n }
ω2∗

= 1.

The efficiency of the Vuong test will be n
ω2

∗
. Depending on the distribution of

individual log-likelihood density the efficiency of Vuong test for uniform, U(0, 1),
normal,N (µ, σ2), logistic, Logistic(α, β), and double exponential, Dexp(γ, λ), will
be 12n, n

σ2 ,
3n

π2β2 and n
2λ2 , respectively.

Table 1 shows the asymptotic relative efficiencies (a.r.e.) of the three tests statis-
tics relative to each others. The asymptotic efficiency for Tn is grater than the
asymptotic efficiency of B, unless for Double exponential density which is a lep-
tokurtic distribution with a high kurtosis. Columns 2 and 3 in Table 1 show that

406



July 28, 2010 16:45 ISC10 - Proceeding proceeding

The 10th Iranian Statistical Conference University of Tabriz, August 2010

in all four situations Tn is more efficient than B against the Vuong test based on
V0
n. For Uniform density which has no tails and no peak, Tn and V0

n are better
than the B statistic. For the normal density, the Vuong test is better than Tn
and B, but as we noted in this situation the Tn is more efficient than B statistic
(3/π > 2/π).

DLL eff(B, Tn) eff(B,V0
n) eff(Tn,V0

n)

Uniform 1/3 < 1 1/3 < 1 1

Normal 2/3 < 1 2/π < 1 3/π < 1

Logistic 3/4 < 1 π2/12 < 1 π2/9 > 1

Double exp. 4/3 > 1 2 6

4.2. The unbiasedness

Consider

Tn = Tn(|Dlm
1 |, ..., |Dlm

n |) =
n∑

i=1

iZ(i) =
n∑

i=1

iZ(M0,∞)
(i) .

This statistic is used for testing H0 : M = M0 against H1 : M > (<)M0. If
consideration is restricted to continuous distribution that are symmetric about
M then by noting that the distribution-free test reaches its significance level, Tn
provides an exact test at each of its natural level. Let m ≥ 0

Tn(|Dlm
1 |+m, ..., |Dlm

n |+m) =

n∑

i=1

i(Z(M0,∞)
(i) +m) =

n∑

i=1

i(Z(i) +m)(M0,∞),

Thus

Tn(|Dlm
1 |+m, ..., |Dlm

n |+m) =

n∑

i=1

iZ(M0−m,∞)
(i) ≥ Tn(|Dlm

1 |, ..., |Dlm
n |).

This indicates that the test has a monotone power function in M, and therefore
the test is an unbiased of H0 against H1.
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Non-Nested Model Selection

A. Sayyareh (Invited)

Statistics Department, Razi University

The question of choosing a model is of course central in statistics. Model selection is
estimating of different models in order to select the best one. It proceeds in two steps.
The first step is to select a model between rival models and second step is to select
a particular density. In this direction usually we are not in the situation without any
knowledge. We have a menu of rival models which could be used to describe the data.
In this paper we give an overview of statistical models, model selection and develop a
methodology of model selection. The known hypothesis testing is a part of nested model
selection. Our emphasize will be on the non-nested models and mis-specification. Here
our focus is on asymptotic theory. We study the situation under which, the model se-
lection procedures are asymptotically optimal for selecting a model. We will talk about
some model selection criteria and some test functions suitable for model selection and
compare their performances. We also give insight in the interpretation of the difference
of risks in model selection.

Keywords: Akaike Information Criterion, Bayesian Information Criterion, Cox’S Test,
Hypothesis Testing, Kullback-Leibler Divergence, Model Selection, Mis-Specified Mod-
els, Non-Nested Models, Vuong’S Test.

1. Introduction

An important problem in statistics concerning a sample of n independent and
identically distributed observations is to test whether these observations come
from a specified distribution. It means that there is a uncertainty and we have
to make a decision. Decision making process under uncertainty is largely based
on application of statistical data analysis for probabilistic risk assessment of our
decision. In realistic situation we have only a set of data at hand and we need to
build knowledge from it. The data are only crude information and not knowledge
by themselves. These lead us to consider a model for data at hand. There is some
essential questions in statistical inference about a mode as; What is a model? What
is model selection? What are the goals of model selection? What are the methods,
which methods perform better than others and in what circumstances? and so on.
we begin with a known consept. A probability model is a useful concept for making
sense of observations by regarding them as realizations of random variables, but
the model that we can think of as having given rise to the observations is usually
too complex to be described in every detail from the information available. In
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literature many variants of the tests and criteria have been proposed. We may cite
the Cox’s test [1] suitable for model selection, Kullback-Leibler divergence [2], as
a measure of discrepancy, Akaike [3] proposed the Akaike information criterion
(AIC), Schwarz [4] introduced other criterion as (BIC), Vuong [5], introduced a
test to model selection, Bozdogan [6] proposed complexity in model selection. In
which follows we talk about the theory of model selection in brief.

2. Statistical families and statistical models

Consider (ζ,A) as a measurable space and P a subset of probabilities on it. Such
a subset is called a family of probabilities. We may parameterized this family. A
parameterization can be represented by a function from a set B with values in
P : β → P β . This parameterization can be denoted by T = (P β ;β ∈ B). Then we
have P = {P β;β ∈ B}. We call T and P the statistical families.
A family of probabilities on the sample space of an experiment (Ω,F) can be called
a statistical model and a parameterization of this family will called a parameterized
statistical model. If we have two parameterized statistical models T = (Pβ, β ∈
B) on F1 and T ′ = (Pγ , γ ∈ Γ) on F2 specify the same statistical models if
F1 = F2 and they specify the same family of probability on (Ω,F1). The pair
(Y, T ) of a random variable and a parameterized statistical model induce the

parameterized family of distributions on (R,B) : TY = (P β
Y , β ∈ B). Conversely,

the pair (Y, TY ) induce T if F1 = F . In that case we may describe the statistical
model by (Y, TY ). Two different random variables Y and X induce two generally
different parameterized families on (R,B), TY and TX . For more details see [7].
Assume that there is a true, generally unknown probability P∗. Model selection
as apart of the statistical inference aims to approach P∗.

Definition 2.1. Model T is well specified if P∗ ∈ T and is mis-specified otherwise.
If it is well specified, then there is a β∗ ∈ B such that Pβ∗ = P∗

3. Kullback-Leibler Risk

in decision theory, estimators are chosen as minimizing some risk function. The
most important risk function is based on the Kullback-Leibler divergence [2] . Let
a probability P′ is absolutely continuous with respect to a probability P and F1

a sub-σ-field of F the loss using P′ in place of P is the LP/P′

F = log dP
dP′|F . Its

expectation is

EP{LP/P′

F } = KL(P,P′;F).

This is the Kullback-Leibler (KL) risk. If F is the largest sigma-field on the space,
then we omit it in the notation. If Y is random variable with p.d.f. fY and gY
under P and P′ respectively we have dP

dP′|F = fY (Y )
gY (Y ) and the divergence of the
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distribution P′ relative to P can be written as

KL(P, P ′) =

∫
log

fY (y)

gY (y)
fY (y) d(y).

We have that KL(P,P′;F) = KL(P, P ′) if F is the σ − field generated by y on
(Ω,F).

4. Model selection

Model selection is the task of choosing a model with the correct inductive bias,
which in practice means selecting family of densities in an attempt to create a
model of optimal complexity for the given data. Suppose a collection of data.
Let M denote a class of these rival models. Each model G ∈ M is considered
as a set of probability distribution functions for the data. We note that in this
framework that we do not impose that one of the candidate models G in M is a
correct model. A fundamental assumption in classical hypothesis testing is that h
belongs to a parametric family of densities i.e. h ∈ G. To illustrate model selection,
let Y be a random variable from unknown density h(.). A model is assumed as
possible explanation of Y, represented by (g) = {g(y;β), β ∈ B} = (gβ(.))β∈B .
This function is known but its parameter as β ∈ B is unknown. The aim is to
ascertain whethear g can be viewed as a family contained h(.) or has a member
which is a good approximate for h(.). The log−likelihood loss of gβ relatively to

h(.) for observation Y is log h(Y )
gβ(Y ) . The expectation of this loss under h(.), or risk,

is the KL divergence between gβ and h(.) as

KL(h, gβ) = Eh

{
log

h(Y )

gβ(Y )

}
.

Let Ȳ = (Y1, Y2, ..., Yn) be identically and independently distributed random
variables from unknown density h(.). Two rival models are assumed as possi-
ble explanation of Y, represented by (fγ(.))γ∈Γ = {f(y; γ), γ ∈ Γ},Γ ⊂ Rq and
(gβ(.))β∈B = {g(y;β), β ∈ B}, B ⊂ Rp. These functions are known but their pa-
rameters as γ ∈ Γ and β ∈ B are unknown.The aim is to ascertain which of the two
alternatives (fγ(.))γ∈Γ and (gβ(.))β∈B if any can be viewed as a family contained
h(.) or has a member which is a good approximate for h(.). As we see, there is no
trivial null hypothesis.

Definition 4.1. (i) (f) and (g) are nonoverlapping if (f)∩ (g) = ∅; f is nested in
(g) if (f) ⊂ (g); (g) is well specified if there is a value β∗ ∈ B such that gβ∗ = h;
otherwise it is misspecified.

We assume that there is a value β0 ∈ B which minimizes KL(h, gβ). If the model is
well specified β0 = β∗; if the model is misspecified, KL(h, gβ) > 0. The Quasi Max-

imum Likelihood Estimator (QMLE), β̂n, is a consistent estimator of β0, see [8,9].
The most plausible view about the statistical hypothesis is that all models are
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idealization of reality, and non of them is true. But if all models are false, then
the two types of errors never arises. One response to say that the null hypothesis
may be approximately true, so, in which case rejecting the null hypothesis does
count a mistake. Or does it? Selecting the alternative hypothesis can have more
serious consequences. But we consider the alternative hypothesis to construct suit-
able test to model selection. It leads us to measure how far from the truth each
model under null and alternative hypotheses is. This may not be possible, but we
can quantify the difference of risks between two models, see [10] . The problem of
testing hypothesis belonging to the same parametric family, also known as testing
nested hypotheses. In classical approach, the null hypothesis is obtained as a sim-
plified version of the alternative model. Well-known classical procedures such as
those based on the likelihood ratio, Wald, and Lagrange-multiplier principal are
available for testing hypotheses. When hypotheses do not belong to the same para-
metric family, a different approaches is necessary, since some classical procedures
can not be applied.

5. Some Tests and Criteria to model selection

5.1. Some non-nested tests

Consider two separate families of parametric densities G ∈ M and F ∈ M as
G = (gβ(.))β∈B, F = (fγ(.))γ∈Γ and an i.i.d. random sample from the true density
h(.). The model selection corresponds to the test:

Hg
0 : h(y) = gβ(y) for all y ∈ Y, β ∈ B (1)

against

Hf
1 : h(y) = fγ(y) for all y ∈ Y, γ ∈ Γ. (2)

Cox’s test [1] as a modified log-likelihood ratio statistic involves centering the
log-likelihood ratio statistic under the null hypothesis. Cox’s statistic is given by

Zgf
n =

√
n
{{

Lβ̂n
g − Lγ̂n

f

}
− Êg

{
Lβ
g − Lγg

f

}}

√
Vgf

where L stands for log likelihood function, Vgf is the asymptotic variance of
the numerator of Zgf

n , β̂n = argmaxβ∈BLβ
g , γ̂n = argmaxγ∈ΓLγ

f and γg =

argmaxγ∈ΓEg{Lγ
f}. It is known that Zgf

n has asymptotically standard normal dis-
tribution, see, White [9]. In Cox’s framework, there is no reason to set as hypothesis
as (1) and (2) since we may change the role of two hypotheses. He introduced the
test statistic Zfg

n and four rejection and acceptance regions are:

(i) : Reject both Hg
0 and Hf

1 if |Zgf
n | > Cα and |Zfg

n | > Cα

(ii) : Reject neither Hg
0 and Hf

1 if |Zgf
n | < Cα and |Zfg

n | < Cα

(iii) : Reject Hg
0 but not Hf

1 if |Zgf
n | > Cα and |Zfg

n | < Cα

(iv) : Reject Hf
1 but not Hg

0 if |Zgf
n | < Cα and |Zfg

n | > Cα
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where Cα is the critical value of the standard normal at level α. Vuong’s test [5]
is another model selection test. In fact, Vuong’s test is a relative hypothesis test
where Cox’s test is an absolute hypothesis test. Vuong’s test uses the KL as a
discrepancy or closeness measure to decide about Hg

0 and Hf
1 . Vuong’s test in fact

is testing

Hgf
0 : Eh

{
log

[
Lβ?
g

Lγ?

f

]}
= 0,

Where L stands for likelihood function. By this notation the alternative hypothesis
will be one of the

Hg
1 : Eh

{
log

[
Lβ?
g

Lγ?

f

]}
> 0 or Hf

1 : Eh

{
log

[
Lβ?
g

Lγ?

f

]}
< 0.

If we accept the Hg
1 it means that G is better than F to fit the data. In KL

sense it means that gβ(.) is closer than fγ(.) to data generating density h(.). The

acceptance of Hf
1 has the same interpretation. When two rival models gβ(.) and

fγ(.) are non-nested. Vuong’s statistic is defined as

ϑgf =

n1/2

{
1
n

[
Lβ̂n
g − Lγ̂n

f

]
− Eh

{
log

[
Lβ?

g

Lγ?
f

]}}

√
ω?

under Hgf
0 the test statistic is asymptotically distributed as a standard normal

distribution and Vuong’s statistic has the simpler form:

ϑgf =
n−1/2

{
Lβ̂n
g − Lγ̂n

f

}

√
ω̂n

,

where ω̂n is a consistent estimate of ω? = Varh
{
log

[
Lβ?

g

Lγ?
f

]}
, as

ω̂n =
1

n

n∑

i=1


log

f γ̂n

Y |X(Y |X)

gβ̂n

Y |X(Y |X)



2

−


 1

n

n∑

i=1

log
f γ̂n

Y |X(Y |X)

gβ̂n

Y |X(Y |X)



2

.

If Hgf
0 is not rejected by Vuong’s test, we accept that two models are equivalent.

5.2. Some model selection criteria

The goal of Akaike’s information criterion (AIC) is to minimize the KL divergence
of the selected model from the true model. The Akaike’s theorem provides a prin-
cipaled way of trading off simplicity and fit, see [6] for details. As a essential rule of
the Akaike’s information criterion, the AIC rule is to select the predictive density
that has the lowest estimated KL discrepancy, which amounts to the maximiza-
tion of a penalized likelihood function. There is some difference between AIC and
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classical hypothesis testing. As an important point their rationale is different. The
AIC applies to nested and as well nonnested models. Akaike effectively trades off
type I and type II errors in a principaled way to a tradeoff between type I and
type II errors. All that is required for the comparison of models is their maximum
likelihood values, the number of the parameters, and the number of data at hand.
There is no need to emphasize on the null hypothesis. The AIC estimate is minus
twice the expected log-likelihood and has had a huge impact on model selection,
see [11]. We notice that the important part of the KL divergence is Eh{log gβ(Y )}
which has an estimator as 1

n

∑n
i=1 log g

β̂n(Yi). It can be considered as an estimator
of the divergence between the true density and the model. Akaike [3] introduced
his criterion to model selection as

AIC = −2n{ 1
n

n∑

i=1

log gβ̂n(Yi)− b̂ias} = −2

n∑

i=1

log gβ̂n(Yi) + 2p,

which is a penalized likelihood function with penalty term as the number of pa-
rameter in model. Despite of the widespread use of AIC, some believes that is too
liberal and tends to select complex models (Kass and Raftery, [12]). A popular
alternative model selection criterion is the Bayesian information criterion, BIC,
proposed by Schwarz [4], which is defined as

BIC = −2

n∑

i=1

log gβ̂n(Yi) + p logn,

Schwarz assumed that the prior probabilities of all models were equal and then
derived an asymptotic expression for the likelihood of a model. Note that the BIC
is similar to AIC except that it gives greater weight to simplicity by a factor of
logn. Where classical hypothesis testing applies, BIC is equivalent to classical test
whose size slowly decreases as the sample size increases.

6. Some Recent Works

6.1. Estimating a difference of KL risks

We shall say that (g) is closer to h(.) than (f) if KL(h, gβ0) < KL(h, fγ0). Also,
we can estimate the difference of risks ∆(gβ0 , fγ0) = KL(h, gβ0) − KL(h, fγ0), a

quantitative measure of the difference of misspecification by −n−1(Lβ̂n
g − Lγ̂n

f ).

It is more relevant to consider the risk EKL(h, gβ̂n) = Eh

{
log h(Y )

gβ̂n (Y )

}
that we

call the expected KL risk. Thus what we really want to estimate is ∆(gβ̂n , f γ̂n) =

EKL(h, gβ̂n)−EKL(h, f γ̂n). Using the Akaike approximation, we obtain a simple

estimator of ∆(gβ̂n , f γ̂n) :

∆̂(gβ̂n , f γ̂n) = −n−1
(
Lβ̂n
g − Lγ̂n

f − (p− q)
)
.
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Thus, in contrast with AIC, ∆̂(gβ̂n , f γ̂n) has an interpretation since its expectation

tracks the quantity of main interest ∆(gβ̂n , f γ̂n) with good accuracy, its error is
from order o(n−1). In fact it is easy to see that

ph[ln < ∆(gβ̂n , f γ̂n) < un] = 1− α

where ln = ∆̂(gβ̂n , f γ̂n) − zα/2ω̂n and un = ∆̂(gβ̂n , f γ̂n) + zα/2ω̂n. We per-
formed a simulation resembling the situation of the Depression-BMI where we
have to choose between different logistic regression models. The result of simu-
lation for logit(hY |X(1|xi1, xi2)) = 0.5 + xi1 + 2xi2 as h, logit(gβY |X(1|xi1, xi2)) =

β0 + xi1 + β1x
i
2 as (g) which was wellspecified and the misspecified model (f) de-

fiend as logit(fγ
Y |X(1|xi1, xi2)) = γ0 +

∑2
j=1 γjx

i
1j + γ3x

i
2 where xi1j are dummy

variables indicating in which categories xi1 fell; the categories were defined using
terciles of the observed distribution of xi1 and this was represented by two dummy
variables for first and second tercile. Based on this simulation we studied the rela-
tion between BMI and depression for real data (The paquid data). In conclusion
it found that there is no reason to prefer the tercile model to the linear model
but there are some reasons to prefer the quadratic model to the linear model. We
also studied the interaction between HIV and the immune system (analysis of the
ALBI data). We fined the risks is larger than 0.28, a large difference as we have
seen. This means that this difference between quiescent and activated CD4 is an
important biological fact and that it must be taken into account, even though
fitting the more complicated model is more challenging.
The simulation and two real problem show that the ∆̂ statistic and the tracking
interval for the difference of risks are easy to compute and could be usefull in a
wide variety of applications. For more detail see, [10].

6.2. A comparison between some model selection criteria and
tests

Model selection is less clear when two models are equivalent. A question which
arise are they closed to the unknown true model or are they far from it ? Based on
a simulations, we study the results of Vuong’s test, Cox’s test, AIC and BIC and
the ability of these four tests to discriminate between models. It remains that we
decide whether or not the two rival models are two good models or two bad models
which have the same distance in KL sense from the true model. When we say two
models are equivalent, it is not clear whether two models are mis-specified or both
of them are well-specified. The second case will be worst when two models overlap.
Our goal is to pay attention to this problem. It seems that Cox’s test is a suitable
test to verify the result of Vuong’s test. On the other hand the AIC and BIC are
two criteria to model selection which are free of the level of test and they are not
in hypothesis testing discipline. In the next part we compare these four approaches
to search of the best model. To answer to our question we do a simulation study.
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At the first we consider the data generating probabilities as Lognormal(LN),
Gamma(Γ) andWeibull(W ), since they are widely used. For each case we consider

two hypothesis testing problem as Hg
0 : h(.) = LN(.;α1, α2) against Hf

1 : h(.) =

Γ(.; γ1, γ2) and Hg
0 : h(.) = LN(.;α1, α2) against Hf

1 : h(.) = W (.;β1, β2). We
generate 104 Monte-Carlo data sets of each sample size n =50, 80, 100,200, 500.
For each iteration of given sample size, we compute the test statistic for each of
the criteria under related hypotheses. As expected, when the sample size increases
the frequency of true decision also increases. In mis-specified case, when we use
Gamma distribution as data generating density, the frequency of Cox result for
rejecting both of hypothesis increases when the sample size increases. On the other
hand we choose Weibull as the data generating density with such the parameters
which set this density like a Gamma density. As we expected Cox’s test accepts the
Gamma distribution as the selected model to describe the data. In th situation
when the model is well-specified Vuong’s test rejects the hypothesis contained
the mis-specified one. To compare the three criteria we see that in mis-specified
case Vuong’s test indicates that two rival models are equivalent. As we mentioned
before, when the model is well-specified result of Cox’s test accepts the model as
a data generating density, and the result of Vuong’s test shows that this model is
better than the other one. In mis-specified situations, Vuong’s test indicates that
two rival models are equivalent, Cox’s test rejects both of two rival models. This
result under Vuong’s test means that two models are two bad equivalent models.
Consider AIC computation for our models. In the well-specified case AIC confirms
Cox and Vuong results. In the mis-specified situation AIC indicates that there is
not a evidence to prefer one model as before. As we see the difference of the
frequency of AIC for each of two rival models is very small. So we cannot prefer a
rival model to other one, absolutely, as well as the other columns. The simulations,
also, give similar results for AIC and BIC for relatively large samples. Since all
models have the same number of parameters, we expected this result. The goal of
AIC is to minimize KL divergence of alternative model from the true model. BIC
is similar to AIC except that it gives greater weight to simplicity by a factor of
log(n). The performance of the AIC, BIC and the likelihood function sometimes
leads sometime to prefer BIC to AIC when n gets large. We find that AIC and
BIC have the same behavior in non-nested model selection. An important point
is that, when the hypothesis is false, Vuong’s test is more sensitive to select a
model. In such situations the Cox’s test has the same behavior as AIC and BIC
and is different from zero. The performance of both tests can also be compared for
Gamma andWeibull densities. A special nonparametric case is when we consider a
symmetric distribution as a generating data model and an asymmetric distribution
as a model. There is no difference between the criteria. For all sample sizes, we
obtain the same conclusions. In fact the frequencies of all criteria are equal to
one. But, for parametric case, we cannot guarantee that the models are really
asymmetric. In our parametric example, the estimated model became asymmetric.
We consider simulation for the criteria when the Weibull density is considered
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as the symmetric data generating density. In a part of this case, the parametric
Lognormal density is considered as the rival model, which its estimated parameters
indicate that this model is asymmetric. The AIC, BIC and Cox’s test have higher
proportion of acceptance than Vuong’s test for an asymmetric wrong model when
the data generating model is symmetric. It seems Vuong’s statistic has a lower
probability to select a wrong model. Therefore Vuong’s test is preferable to test
asymmetry, see, [13].
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The main of this paper is to define the periodically correlated autoregressive process
in Hilbert space. We show some properties of these models such as strong law of large
number together with the central limit theorem.

Keywords: Periodically Hilbertian white noise, Hilbertian periodically autoregressive
process, Multivariate stationary.

1. Introduction

The Hilbertian Autoregressive model of order 1 (ARH(1)) generalizes the classical
AR(1) model to random elements with values in a Hilbert space. This model was
introduced by Bosq (1991), then studied by several authors such as Mourid (1993),
Besse and Cardot (1996), Pumo (1999) and Mas (2003, 2007).
Periodically correlated (PC) processes in general and PC autoregressive in par-
ticular have been widely used as underlying stochastic processes for certain phe-
nomena. The work of Hurd and miamee (1940) exhibits the importance of PC
processes in applied fields. Following growing interests in operatorial statistics and
practibility of functional data analysis, there is need to give attention to non-
stationary Hilbertian processes. Hilbertian PC processes introduced and studied
by Soltani and Shishehbor (1998, 1999). These processes assume fine time domain
and spectral structurs. The processes discussed by these two authors are indeed
weakly second order. Bosq in his fundamental work (2000) provides deep results
on Hilbertian strongly second order autoregressive and moving average Hilbertian
processes.
In this work we treate strongly second order Hilbertian PC autoregressive of order
1 (PCARH(1)), and provide results on the existence, moving average representa-
tion, strong law of large number, and central limit theorem for these processes.
This article is organized as follows.
Definition of PCARH(1) process and their existence are presented in section 2.
The strong law of large number together with the central limit theorem are given
in section 3.
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2. PCARH(1) Processes; Existence

In this article we let H to be a separable Hilbert space with an inner product
< ·, · > and L(X) stand for the Banach space of all bounded linear operators on
H, equipped with the operator norm. Let HT be the cartesian product of T copies
of H. If HT is equipped with the scalar product

< (x0, · · · , xT−1), (y0, · · · , yT−1) >T :=

T−1∑

j=0

< xj , yj > (1)

where x0, · · · , xT−1, y0, · · · , yT−1 ∈ H, it becomes a separable Hilbert space.
The norm in HT will be denoted by ‖ . ‖T , the space of bounded linear operators
over HT by LT , the space of Hilbert-Schmidt (resp. nuclear) operators over HT

by ST (resp. NT ),and the corresponding norms and scalar products by ‖ . ‖LT ,
‖ . ‖ST , < ., . >ST and < ., . >NT . The following definitions will be necessary.

Definition 2.1. A H-process {εn, n ∈ Z} is periodically H-white noise (PCHWN
(0, σ2

t , T )) if it has the following properties:
1. Eεn = 0, 0 < E ‖ εn ‖2= σ2

n <∞, σ2
n = σ2

n+T for every n
2. Cεn,εn = Cεn+T ,εn+T for every n
3. Cεn,εm = 0 for all n 6= m.

Definition 2.2. . A sequence {ρn, n ∈ Z} in L(X) is called T-periodic if ρn =
ρn+T , n ∈ Z, such a sequence is completely specified by T number of bounded
linear operators ρ0, · · · , ρT−1 on H.

Definition 2.3. Let {ρ0, · · · , ρT−1} ⊂ L(X). We define

A0,k = I, Ai,k = ρkρk−1 · · · ρk−i+1, A = AT,T−1. (2)

Definition 2.4. A centered discrete time second order Hilbertian process X =
{Xn, n ∈ Z} is called PCARH(1) with period T if it is periodically correlated and
such that

Xn = ρn(Xn−1) + εn (3)

where εn is periodically H-white noise and {ρn, n ∈ Z} is a T-period sequence in
L(X).

There is one-to-one relationship, between PC processes and multivariate sta-
tionary processes. Indeed if {Xn, n ∈ Z} is PC then the T-variate pro-
cess Yn = {(XnT , XnT+1, · · · , XnT+T−1)

′, n ∈ Z} is stationary. Conversely
if Yn = (Yn,0, · · · , Yn,T−1)

′ is a T-variate stationary process then the process
Xn = Ym,j , n = mT+j, is PC. It is natural to ask whether the class of PCARH(1)
and T-variate stationary ARH(1) coincide. We show below that the first class is
indeed a proper subset of the second class.
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Let X = {Xn, n ∈ Z} be a PCARH(1) process given by (3). Let Y = {Yn, n ∈ Z},
where

Yn = (XnT , XnT+1, · · · , XnT+T−1)
′, (4)

and

δn = (δn,0, δn,1, · · · , δn,T−1)
′, n ∈ Z, (5)

where δn,i =
∑i

k=0 Ak,iεnT−k+i for i = 0, · · · , T − 1 and Ak,i for all k = 0, 1, 2, · · ·
are given by (2). Also for given ρ0, · · · , ρT−1, we define the following operator on
HT

∆ =




0 0 · · · ρ0
0 0 · · · ρ1ρ0
...
...

...
...

0 0 · · · ρT−1 · · · ρ0


 . (6)

We suppose that ‖ ∆j0 ‖LT< 1, for some j0 ≥ 1 and ρis commute with each
other. From here on this assumptions will be denoted A1. Let us present the
following lemma, that appears to be crucial in our approach.

Lemma 2.1. Assume stochastic processes X and Y correspond to each other
through (3), (4). Then X is an PCARH(1) with period T, associated with
(ε, ρ0, · · · , ρT−1), if and only if Y is an ARHT (1) associated with (δ,∆).

Proof. At the first we show that δ is a HT -white noise,

Eδn = E(δn,0, · · · , δn,T−1)
′
= (E(δn,1), · · · , E(δn,T−1))

′

where E(δn,i) = E(
∑i

k=0 Ak,iεnT−k+i) =
∑i

k=0 Ak,iE(εnT−k+i) = 0. Thus Eδn =
0, 0 ∈ HT .
E ‖ δn ‖2T<∞, because

E ‖ δn ‖2T=
T−1∑

i=0

E ‖ δn,i ‖2≤ 2
T−1∑

i=0

i∑

k=0

(max ‖ ρi ‖)k max
i
σ2
i∞

because ρis are bounded linear operator and E ‖ εi ‖2= σ2
i <∞.

It is also easy to verify that for all n 6= m and x,y ∈ HT we have,

E < δn,x >< δm,y > =

T−1∑

i,j=0

i∑

k=0

j∑

l=0

< CεnT−k+i,εmT−l+j
(A∗

k,ixi), A
∗
l,jyj >

= 0. (7)

Therefore δn and δm are orthogonal, in HT .
Now we show that Cδn,δn

doesn’t depend on n.

Cδn,δn
= E < δn, . > δn = [Cij ]i,j=0,··· ,T−1
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For i ≤ j,

Cij =

j∑

k=0

i∑

l=0

Al,iEεnT−k+j ⊗ εnT−l+iA
∗
k,j

=
i∑

l=0

Al,iCεnT−l+i
A∗

l+j−i,j

Also for i > j,

Cij =

j∑

k=0

Ak+i−j,iCεnT−l+i
A∗

k,j

Since Cεn is periodic on n, thus Cδn,δn
= Cδn+1,δn+1

. Thus δ is HT -white noise.

It is clear that ∆ is linear operator from HT to HT . We show it is bounded. Indeed
using (1) we obtain that

‖ ∆ ‖2T≤‖ ρ0 ‖2L + ‖ ρ1ρ0 ‖2L + · · ·+ ‖ ρT−1ρT−2 · · · ρ0 ‖2L
Now we show that Y is a stationary process. For all x,y in HT ,

< CYn,Ym(x),y >T =

T−1∑

j,k=0

< CX(n+1)T+j ,X(m+1)T+k
(xj), yk >

= E < Yn+1,x >T< Ym+1,y >T

= < CYn+1,Ym+1(x),y >T

For the only if part, we define εi = δn,i−ρiδn,i−1 andXm = Yn,r, wherem = nT+r.
With easy computation we see that X is PCARH(1), and the proof is complete.

We now give a condition for existence of X. We will use the natural ”projector” of
HT onto H defined as

πi(x0, · · · , xT−1) = xi, (x0, · · · , xT−1) ∈ HT , i = 0, · · · , T − 1

Theorem 2.1. Under the assumption A1, the equation Xn = ρnXn−1 + εn has a
solution given by

XnT+i =
∞∑

j=0

Aj,nT+i εnT+i−j , n ∈ Z

where Aj,t are given by (2) and the series converges in L2
H(Ω,A, P ) and with

probability 1.

Proof. From property of ARHT (1) process, Yn = ∆Yn−1+δn when ‖ ∆j0 ‖LT<
1, for some j0 ≥ 1, has a unique stationary solution given by

Yn =
∞∑

j=0

∆j(δn−j), n ∈ Z,
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where the series converges in L2
HT (Ω,A, P ) and with probability 1. Moreover, (δn)

is the innovation process of (Yn). Noting that

XnT+i = πiYn, n ∈ Z.

We see that XnT+i = πiYn

= πi

∞∑

j=0

∆jδn−j

= εnT+i + ρiεnT+i−1 + · · ·+ ρi · · · ρ1εnT

+

∞∑

j=1

ρi · · · ρ0Aj−1[ρT−1 · · · ρ1ε(n−j)T + · · ·+ ρT−1ε(n−j)T+T−2 + ε(n−j)T+T−1]

= εnT+i + ρiεnT+i−1 + · · ·+ ρi · · · ρ1εnT

+

∞∑

k=0

Ak[ρi · · · ρ0ρT−1 · · · ρ1ε(n−k)T−T + · · ·+ ρi · · · ρ0ρT−1ε(n−k)T−2

+ ρi · · · ρ0ε(n−k)T−1]

= εnT+i + ρiεnT+i−1 + · · ·+ ρi · · · ρ1εnT +

∞∑

k=0

Ak
i+T∑

r=i+1

Ar,nT+iε(n−k)T+i−r

=

∞∑

j=0

Aj,nT+iεnT+i−j .

giving the result.
It is easily follows that under the assumption (C) there are k0, · · · , kT−1 such that∑T−1

i=0 ‖ ρi ‖ki< 1 then ‖ ∆j0 ‖< 1 for some j0.

Theorem 2.2. Let Xn be a PCARH(1) process with period T. Suppose that there
exist ν ∈ H and (αn) ∈ R such that

ρ∗j (ν) = αjν, for all j

and minnE < εn, ν >
2> 0. Then {< Xn, ν >, n ∈ Z} is an PCAR(1) process

that satisfies

< Xn, ν >= αn < Xn−1, ν > + < εn, ν >

Proof. Since Xn is PCARH(1) process, we have

< Xn, ν >=< ρnXn−1 + εn, ν > = < Xn−1, ρ
∗
n(ν) > + < εn, ν >

= < Xn−1, αnν > + < εn, ν >

= αn < Xn−1, ν > + < εn, ν >
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It is easy to verify that {< εn, ν >, n ∈ Z} is an innovation process for < Xn, ν >.
The scalers αn is T-periodic. Indeed if n = kT + r then

ρ∗kT+r(ν) = αkT+rν

ρ∗kT+r(ν) = ρ∗r(ν) = αrν

Thus αkT+r = αr for any k ∈ R, r = 0, · · · , T − 1.
X is standard PCARH(1) if assumption (C) is satisfied.

3. Large sample theorem

Theorem 3.1. Let X is a standard PCARH(1) and x0, · · · , xn−1 be a finite sam-
ple from this model, where n is a multiple of T, n=NT. Then as n→ ∞,

n
1
4

(logn)β
Sn(X)

n
→ 0, β >

1

2
. (8)

Proof. We transfer x0, · · · , xn−1 to a sample y0, · · · ,yN−1 from the T-variate
Y-process. According to Bosq (2000,86),

N
1
4

(logN)β
SN (Y)

N
→ 0, β >

1

2

But

N
1
4

(logN)β
SN (Y)

N

= (
N

1
4

(logN)β

∑N−1
i=0 XiT

N
,

N
1
4

(logN)β

∑N−1
i=0 XiT+1

N
, · · · , N

1
4

(logN)β

∑N−1
i=0 XiT+T−1

N
)′

Thus we obtain that

N
1
4

(logN)β

∑NT−1
i=0 Xi

N
=

N
1
4

(logN)β

∑N−1
i=0

∑T−1
j=0 XiT+j

N
→ 0, β >

1

2
.

On the other hand,

(NT )
1
4

(logNT )β
|
∑NT−1

i=0 Xi

NT
|≤ (NT )

1
4

(logN)β
|
∑NT−1

i=0 Xi

N
|

Thus we arrive at (8). The proof is complete.

Lemma 3.1. (IT −∆) is invertiable if and only if (I −AT,T−1) is invertiable in
H.

Proof. Let us consider the case T=2. We have

I2 −∆ =

(
I −ρ0
0 I − ρ1ρ0

)
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and invertibility of I2 −∆ means exists matrix

(
α β

γ δ

)
such that

(I2 −∆)

(
α β

γ δ

)
=

(
α β

γ δ

)
(I2 −∆) =

(
I 0

0 I

)

Where α, β, γ and δ are in L.
With easy calculation we can show that

(I2 −∆)−1 =

(
I ρ0(I − ρ1ρ0)

−1

0 (I − ρ1ρ0)
−1

)

It means that (I2 −∆)−1 exists if I − ρ1ρ0 is invertiable.
Conversely, if I − ρ1ρ0 is invertiable, one may set

α = I, β = ρ0(I − ρ1ρ0)
−1, γ = 0, δ = (I − ρ1ρ0)

−1

Then it is easy to verify that the matrix

(
α β

γ δ

)
is inverse of I2 −∆.

If T > 2, a recursive argument leads to the general statement.
We now state Central Limit Theorem.

Theorem 3.2. Let X be a standard PCARH(1) associated with periodically in-
dependent and identical distributed white noise and such that (IT − AT,T−1) is
invertiable Then

Sn

n

D−→ N (0,Γ)

Proof. By the theorem 3.10 of Bosq we obtain

SY =
Y0 +Y1 + · · ·+YN−1√

N

D−→ N ′(0,Γ)

where

Γ = (IT −∆)−1Cδn
(IT −∆∗)−1

Nothing that

SNT =

NT−1∑

i=0

Xi = A′SY

where A = (I, I, · · · , I)′. We get

SNT (X)√
NT

D−→ N (0,
A′ΓA

T
)
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On The Generalized Cauchy And Truncated Generalized Cauchy

Distributions
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The generalized Cauchy distribution is introduced by Rider (1957). He studied the prop-
erties of samples from these kind of distributions only in a special case, say m = 1. In
this paper, we have studied the properties of generalized Cauchy distribution for m ≥ 1.
A new representation for the characteristic function of a generalized Cauchy distribu-
tion is derived by the well-known generalized non-symmetric Linnik distributions. The
truncated generalized Cauchy distribution or cutoff generalized Cauchy distribution for
m ≥ 1, is also introduced. Particularly, the representation of the characteristic function
for these kind of distributions is derived.

Keywords: Generalized Linnik Distribution, Generalized Cauchy Distribution, Dual
Probability Density.

1. Introduction

Recently, the modeling and predicting of the financial data has attracted attention
of numerous researchers. Stable distributions provide approximations for sums of
i.i.d. random variables that have heavy tails, and thus seemed appropriate for
modeling financial data. A stable distribution with parameter α, is often called
α−stable and is reduced to Cauchy distribution if α = 1. The Cauchy distri-
bution is of considerable interest for several reasons. It is the distribution of the
quotient of two independent normal random variables. The distribution of means
of samples from it, is exactly the same as the parent distribution itself. Moreover,
the median of a sample from a Cauchy distribution is more efficient than the mean
in estimating the center of the population. Rider (1957) introduced the generalized
Cauchy distribution, but he studied the properties of samples from these kind of
distributions only in a special case, say m = 1. In this paper, we have studied the
properties of generalized Cauchy distribution for m ≥ 1. The truncated general-
ized Cauchy distribution or cutoff generalized Cauchy distribution for m ≥ 1, is
also introduced. Particularly, the representation of the characteristic function for
these kind of distributions is derived.
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2. The generalized Cauchy distribution

The probability density function of a random variable X with generalized Cauchy
(GC) distribution is of the form

f(x) = Γ(m)

bΓ( 1
2 )Γ(m− 1

2 )
(1 +

(
x− a
b

)2
)−m,m ≥ 1, x ∈ R, (2.1)

where a ∈ R and b > 0, (See Rider (1957) and Evans and Hastings (2000)). For
m = 1, this distribution corresponds to the Cauchy distribution and for a = 0, it
reduces to a t-student distribution with (2m− 1) degrees of freedom , multiplied
by b(2m− 1).

By taking a = − cos(ρπ) and b = sin(ρπ), the following representation of (2.1)
will follow

f(x) =
sin2m−1 (ρπ) Γ(m)

Γ(12 ) Γ(m− 1
2 )

(sin2(ρπ) + (x+ cos(ρπ))2 )−m ,m ≥ 1, 0 < ρ < 1.

(2.2)
Since the distribution is symmetric about − cos(ρπ), its odd moments, when they
exist, are zero. The mean, median and mode are also equal to µ = − cos(ρπ).

The r-th moment (for even r) about the mean is

E(X − µ)r =
Γ( r+1

2 ) Γ(m− r+1
2 )

Γ(1r ) Γ(m− 1
r )

, r < 2m− 1.

In the following theorem , we present a closed form of the corresponding char-
acteristic function φX(t) of the density given by (2.2).

Theorem 2.1 For 0 < ρ < 1, the characteristic function of the generalized
Cauchy distribution given by (2.2), can be represented by

φX(t) =

{
e−it cos(ρπ)e− sin(ρπ)|t|, m = 1

Γ(m)e−it cos(ρπ)

Γ( 1
2 ) Γ(m− 1

2 )
(2πi)Ψ

(m−1)(i)
(m−1)! , m ≥ 2

,

where Ψ(z) = eit(sin(ρπ))z

(z+i)m , and Ψ(m−1) denotes the (m− 1)th derivative of Ψ.

Proof. In the complex x-plane , consider the region

QR = {x = u+ iv : |x| < R , v > 0 } ,
and define x = |x| eiφ, 0 ≤ φ = argx ≤ π.

The integrand is analytic in the closure of QR except the simple poles at x =
±i .By using Cauchy’s residue theorem we have
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φX(t) =

∞∫

−∞

eitx fX(x)dx =
sin2m−1 (ρπ) Γ(m)

Γ(12 ) Γ(m− 1
2 )

∞∫

−∞

eitx

(x2 + 2x cos ρπ + 1)m

=
sin2m−1(ρπ) Γ(m)

Γ(12 ) Γ(m− 1
2 )

∞∫

−∞

eitx

((x+ cos ρπ)2 + sin2 ρπ)m
dx

=
sin2m−1 (ρπ) Γ(m)

Γ(12 ) Γ(m− 1
2 )

e−it cos(ρπ))

sin2m−1(ρπ)

∞∫

−∞

eit(sin(ρπ)u

(u2 + 1)m
du

=
Γ(m)e−it cos(ρπ))

Γ(12 ) Γ(m− 1
2 )

∞∫

−∞

eit(sin(ρπ)u

(u+i)m

(u− i)m
du

=

{
e−it cos(ρπ)(2πi)Ψ(i) m = 1

Γ(m)e−it cos(ρπ)

Γ( 1
2 ) Γ(m− 1

2 )
(2πi)Ψ

(m−1)(i)
(m−1)! m ≥ 2

=

{
e−it cos(ρπ)e− sin(ρπ)|t| m = 1

Γ(m)e−it cos(ρπ)

Γ( 1
2 ) Γ(m− 1

2 )
(2πi)Ψ

(m−1)(i)
(m−1)! m ≥ 2

The proof is now completed .�

In the next section, a new representation for the characteristic function of
a generalized Cauchy distribution is derived by the well-known generalized non-
symmetric Linnik distributions (GNSL) (see Kozubowski [2000] for more details
about GNSL).

3. A representation for the characteristic function of the GC
distribution by using GNSL distributions

It is a challenging task to derive the characteristic function of the GC distributions
by using generalized non-symmetric Linnik distributions (GNSL), which is also
called .the geo-stable distribution in the literature. Kozubowski [2000] provide
a representation of the GNSL density in terms of the corresponding α−stable
density. In the next theorem, we first present a direct integral representation for
the density of GNSL.

Theorem 3.1. For |θ| < 1, the density of GNSL(m, θ), f(x), can be repre-
sented by

f(x) = 1
π

∞∫
0

e−y |x| m∑
k=0

(mk )yk sin kπ 1
2 (1+θ sign(x))

[y2 + 2y cos π
2 (1+θ sign(x))+1]m

dy, x 6= 0,
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where sign(x) is equal to 1 for x > 0, and is equal −1 for x < 0.

Proof. First let x < 0, and split f(x) into two integrals as follows

I1(x) :=

∞∫

0

e−itxφX (t) dt, (3.1)

and I1(x) + I2(x) = 2πf(x).
In the complex t-plane, consider the region

QR = {t = u+ iv : |t| ≤ R , u ≥ 0 , v ≥ 0 } , R > 1,

and define t = |t| eiφ, 0 < φ = arg t < π
2 .

The function e−itx
[
1+te−i π

2
θ
]m is continuous in QR and analytic in the

interior of QR. Let q(R) be the boundary of QR and C(R) :=
{t = u+ iv : |t| = R , u ≥ 0 , v ≥ 0 } . Then by Cauchy theorem, we have

∫

q(R)

e−itx

[
1 + te−iπ2 θ

]m dt = 0.

Therefore,

R∫

0

e−itx

[
1 + te−iπ2 θ

]m dt+
∫

C(R)

e−itx

[
1 + te−iπ2 θ

]m dt− i

R∫

0

exy[
1 + yei

π
2 (1−θ)

]m dy = 0.

The integral over C(R) tends to zero as R tends to infinity. Hence,

I1(x) = i

∞∫

0

exy[
1 + yei

π
2 (1−θ)

]m dy. (3.2)

Then I1(x) is an exponentially convergent integral, since x < 0.
To obtain an analogous representation for

I2(x) = −i
R∫

0

exy[
1 + yei

π
2 (θ−1)

]m dy.

Consider now region

PR = {t = u+ iv : |t| ≤ R , u ≥ 0 , v < 0 } , R > 1.

In the complex t-plane and define t = |t| eiφ−2πi, 3π
2 < φ = arg t < 2π.

Applying to function I2(x) and set PR , the arguments similar to those used
in above for I1(x), leads to the representation
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I2(x) = −i
R∫

0

exy[
1 + yei

π
2 (θ−1)

]m dy.

Combining the representations for I1(x) and I2(x), we obtain

f(x) =
1

π

∞∫

−∞

eyx
m∑

k=0

(mk ) yk sin kπ 1
2 (1− θ )

[
y2 + 2y cos π

2 (1− θ ) + 1
]m dy, x < 0. (3.3)

Proceeding in a similar way for x > 0 , we obtain

f(x) =
1

π

∞∫

−∞

e−yx
m∑

k=0

(mk ) yk sin kπ 1
2 (1 + θ )

[
y2 + 2y cos π

2 (1 + θ ) + 1
]m dy, x > 0. (3.4)

The proof is now completed .�

Rosseberg (1990) introduced the probability densities which are proportional
to the characteristic functions and therefore are positive definite. Positive definite
densities f(x) are continuous , symmetric, and satisfy 0 ≤ f(x) < f(0), x 6=
0. Their most attractive property, however, is the existence of an adjoint, reciprocal
or dual probability density f̂ . Denoting the corresponding characteristic functions
by φ and φ̂ , the densities f and f̂ are connected by the fundamental relations

φ(t) =
f̂(t)

f̂(0)
, φ̂(t) =

f(t)

f(0)
, 2πf(0)f̂(0) = 1,

see Rosseberg (1990) for details.
Now, we are in position to provide an alternative transparent derivation of the

characteristic function of the GC distributions, by using the density of GNSL. Let
a = − cos( θπ2 ) and b = sin( θπ2 ), 0 < θ < 1 in (2.1) and let X ∼ GNSL(m, θ).

Consider also a random variableY independent of X such that −Y d
= X. We are

interested to the distribution of Z = X + Y. Evidently, the characteristic function
of Z will be

φZ (t) =
1(

1 + |t| eiπ2 θ sign(t)
)m × 1(

1 + |t| e−iπ2 θ sign(t)
)m

=
1

∣∣1 + |t| e−iπ2 θ sign(t)
∣∣2m , t ∈ R,
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and the density function of Z is

fZ(z) = fX+Y (z) =

+∞∫

−∞

fX(x)fY (z − x) dx

=

+∞∫

0

[
1

π

∞∫

0

2

(η + ν)

eν z
m∑

k=0

(mk ) νk sin kπ 1
2 (1 + θ)

∣∣1 + νei
π
2 (1+ θ)

∣∣2m dν

× 1

π

∞∫

0

eη z
m∑

k=0

(mk ) ηk sin kπ 1
2 (1− θ )

∣∣1 + ηei
π
2 (1− θ)

∣∣2m dη],

where z ∈ R .
Since

fZ(0) =

+∞∫

0

[
1

π

∞∫

0

2

(η + ν)

m∑
k=0

(mk ) νk sin kπ 1
2 (1 + θ )

∣∣1 + νei
π
2 (1+ θ)

∣∣2m dν

× 1

π

∞∫

0

m∑
k=0

(mk ) ηk sin kπ 1
2 (1 − θ )

∣∣1 + ηei
π
2 (1− θ)

∣∣2m dη] ,

we arrive at the following representation for the characteristic function of the GC
random variables

φGC (z) =
fZ(z)

fZ(0)
.

4. The truncated generalized Cauchy distribution

The random variable X is said to be the truncated generalized Cauchy (TGC)
distribution, if its density function has the following form,

fX(x) = 1
A

1
(x2+2x cos ρπ+1)m , m > 0, 0 < ρ < 1, (4.1)

where

A =

{
−1

2m− 1

m−2∑

k=0

(2m− 1) (2m− 3) ... (2m− 1− 2k)

(m− 1) (m− 2) ... (m− 1− k)

cos ρπ

2k+2 sin2k+1 ρπ

}

+

{
(2m− 3)× (2m− 5)× ...5× 3× 1

(m− 1)× (m− 2)× ...2× 1

(ρπ)

2m−1 sin2m−1 ρπ

}
.
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The moments of TGC distribution is

E(Xr−1) =

∞∫

0

xr−1

A (1 + 2x cos ρπ + x2)
m dx

=
1

A
2m− 1

2 (sin ρπ)
1
2−mt Γ(m+

1

2
) B(r , 2m− r) × P

1
2−m

r−m− 1
2

(cos ρπ)

where 0 < ρπ < π , 0 < Re(r) < Re(2m), and

P s
m(cosφ) =

√
2

π

sins φ

Γ(12 − s)

φ∫

0

cos(υ + 1
2 ) t

(cos t− cosφ)s+
1
2

dt,

where 0 < φ < π,Re(s) < 1
2 .

Theorem 4.1 For 0 < θ < 1, the characteristic function of the truncated
generalized Cauchy distribution can be represented by

φX(t) =
i

A

∞∫

0

e−υ|t| sgn(t)

(1 + υ ei
π
2 (θ+1)sgn(t))m(1 + υ e−iπ2 (θ−1)sgn(t))m

dν.

Proof. We have

φX(t) =

∞∫

0

eitx fX(x)dx

=

∞∫

0

1

A

eitx

(x2 + 2x cos θπ
2 + 1)m

dx

=
1

A

∞∫

0

eitx

(1+x ei
π
2

θ)m

(1 + x e−iπ2 θ)m
dx.

Then in the complex x-plane, we consider the region

QR = {x = u+ iv : |x| ≤ R , u ≥ 0 , v ≥ 0 } .
and define x = |x| eiφ, 0 < φ = arg x < π

2 .
According to the Cauchy theorem , we have

∫
C(R)

eitx

(1+x e
i π
2

θ
)m

(1+x e−i π
2

θ)m
dx = 0
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Therefore

1

A

R∫

0

eitx

(1+x ei
π
2

θ)m

(1 + x e−iπ2 θ)m
dx+

1

A

∫

C(R)

eitx

(1+x ei
π
2

θ)m

(1 + x e−iπ2 θ)m
dx

− i

A

R∫

0

e−υt

(1+υ ei
π
2

(θ+1))m

(1 + υ e−iπ2 (θ−1))m
dν = 0.

The integral over C(R) tends to zero as R tends to infinity. Hence,

I1(x) =
i

A

∞∫

0

e−υt

(1+υ ei
π
2

(θ+1))m

(1 + υ e−iπ2 (θ−1))m
dν, t > 0

Consider now region

PR = {x = u+ iv : |x| ≤ R, u ≥ 0, v ≤ 0} .

In the complex x-plane and define x = |x| eiφ−2πi, 3π
2 < φ = argx < 2π.

The similar arguments to those used in above for I1(x) leads to the following
representation

I2(x) =
−i
A

∞∫

0

eυt

(1+υ ei
π
2

(θ−1))m

(1 + υ e−iπ2 (θ+1))m
dν, t < 0.

Combining the representations for I1(x) and I2(x), we obtain

φX(t) =

∞∫

0

eitx fX(x)dx =

∞∫

0

1

A

eitx

(x2 + 2x cos θπ
2 + 1)m

dx

=
1

A

∞∫

0

eitx

(1+x ei
π
2

θ)m

(1 + x e−iπ2 θ)m
dx

=
i

A

∞∫

0

e−υ|t| sign(t)

(1 + υ ei
π
2 (θ+1)sign(t))m(1 + υ e−iπ2 (θ−1)sign(t))m

dν.

The proof is now completed .�
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Criteria For Model Discrimination And Parameter Estimation

Performance Of Search Designs

H. Talebi (Invited) and N. Esmailzadeh

Department of Statistics, University of Isfahan

Department of Statistics, University of Kurdistan

Since introduction of search designs by Srivastava (1975), these designs have been
constructed by many researchers. There also have been developed some criteria in
order to evaluate the search ability of these designs. These criteria are reviewed in
this paper. Search designs, which are efficient with respect to search, may be poor in
parameter estimation. In this paper, we propose a dual-task criterion to deal with both
search and estimation performance of the search designs. The criterion is implied to
some designs and the results are given.

Keywords: Search Designs, Search Linear Model, Search Probability , Model Discrim-
ination

1. Introduction

In a 2m factorial experiment, let β′ = (β′
1, β

′
2) be a p × 1 vector of factorial

effects. β1(ν1×1) is vector of fixed unknown parameters and β2(ν2×1) is partially
known. It is known that at most k elements of β2 are nonzero but those elements are
unknown. The problem is search for nonzero elements of β2 to identify and estimate
them along with estimating the effects in β1. This is so-called search problem
introduced by Srivastava (1975), though deals with both search and estimation.
The following search linear model is considered to solve the problem,

y = X1β1 +X2β2 + e, V ar(e) = σ2I, (1)

where y(N × 1) is a vector of observations, Xi(N × νi) are known design matrices,
e(N×1) is an error vector, σ2 is the error variance and IN is the identity matrix of
order N . A design which is able to solve this problem is so-called a search design.
For every N×2k submatrix X22 of X2, the search design must satisfy the following
condition (Srivastava, 1975),

rank(X1;X22) = ν1 + 2k. (2)

For the noiseless case, σ2 = 0, this is necessary and sufficient condition. How-
ever, for the noisy case, σ2 > 0, it is not sufficient but is still necessary. Several
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researchers have been studied and obtained the search designs for the noiseless
case. Some of those are Ghosh (1981), Onishi and Shirakura (1985), Gupta (1984,
1988), Shirakura (1991) and Ghosh and Talebi (1993). One can see Ghosh(1996)
for more details on design constructions. For noisy case, Srivastava (1975) sug-
gested to calculate sum of squared error (SSE) for all of possible

(
ν2
k

)
candidate

models, include β1 in common and different β2i(k × 1) in β2 from (1). That is

Mi : y = X1β1 +X2iβ2i + e, i = 1, 2, ...,

(
ν2
k

)
(3)

where β2i ∈ β2 and X2i are columns in X2 corresponding to β2i. The model with
minimum SSE is chosen over the alternatives as the true model, M0, including
β20 ∈ β2. However, one may come up with a wrong decision , due to stochastic
property of SSE. Shirakura et al. (1996) considered the search ability of a design
in discriminating the true model. They defined the search probability (SP) to
measure such an ability. That is, for SSE0 and SSEi of true and any alternative
models, respectively, the SP is P (SSE0 < SSEi|β20, β2i, σ2). They also obtained
an exact expression of SP for k = 1, when errors are normally distributed. Namely,
for N × N matrix Q = X1(X

′
1X1)

−1X1 and r2i = x′2i[I − Q]x2i, in which x2i is
N × 1 column of X2 corresponding to β2i ∈ β2, the SP is reduced to

G(β20, β2i, ρ) = 1− Φ(c1ρ)− Φ(c2ρ) + 2Φ(c1ρ)Φ(c2ρ), (4)

where Φ(·) is the standard normal cdf, c1 =
√

r20
2 (1− x), c2 =

√
r20
2 (1 + x), x =

x′20[I−Q]x2i/[r20r2i]
1/2 and ρ = β20/σ. Clearly, G depends on the design through

c1 and c2 and is a symmetric function of unknown effect size ρ. By symmetric
property of G in ρ, we take ρ as a non-negative constant for case k = 1, from
now on. For such a ρ, given r20 and |x| < 1, function G is an increasing function
of c1 ( Ghosh and Teschmacher, 2002 ). Note that for each β20 ∈ β2 there are(
ν2
k

)
− 1 alternative sets β2i ∈ β2, ” of which at least one effect in β2i is not of

β20. We denote this by A(β20, β2). Consider the ν2 × ν2 matrix with elements
G(β20, β2i, ρ), whose columns are corresponding to all β20 ∈ β2 and rows to the
alternatives β2i ∈ β2. This is so-called search probability matrix (SPM). Clearly,
the diagonal elements of SPM are not of interest. Based on (4) and by considering
the SPM, several authors have been developed some criteria for measuring and
comparing the search performance of designs. They are Shirakura et al. (1996),
Ghosh and Teschmacher (2002) and Talebi and Esmailzadeh (2009). The results
of these researchers are briefly reviewed and presented in the following section.
For k ≥ 1, recently, Talebi and Esmailzadeh (2010) proposed two criteria based on
Kullback - Leibler distance to do the task. Note that, all of above mentioned criteria
measure the search performance of designs, but not of considering the efficiency of
the designs in parameter estimation for underlying models. So, one may come up
with efficient search design which is poor in estimation properties. Construction of
a design with a dual efficiency, i.e. model discrimination and parameter estimation,
is back to Hill et al. (1968). Later on, this problem has been tackled by Dette
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(1993), Biswass and Chaudhuri (2002) and Waterhouse et al. (2004). The most
recent works have been done by Atkinson (2008) and Tommasi (2009), in which
they presented new criteria for obtaining optimum design, which is also efficient
in model discrimination. In Section 3 we will develop new criteria to do the dual
task in the context of search linear model (1). This allows us to balance between
these two aspects of performance efficiency of designs.

2. A review to search criteria

In this section we review the search criteria, which has been developed for k = 1.
The off-diagonal elements of SPM are the SP, which measure the ability of a design
in searching the true nonzero effect, β20, from an alternative β2i ∈ β2. That is, the
probability of discriminating the true model, M0, from another candidate model.
Shirakura et al. (1996) considered the least discrimination strength of a design and
suggested to take the smallest off-diagonal elements of SPM as a search capability
criteria of a search design. That is,

P (ρ) = min
β20

min
A(β20;β2)

G(β20, β2i, ρ). (5)

This criterion depends on the unknown parameter ρ. So, using P (ρ) for comparing
two search designs, at a given ρ-value, provides an enormous task. To overcome
this problem, Ghosh and Teschmacher (2002) considered |ρ| and used the property
|x| < 1 to show that G in (4) is an increasing function of c1, at a given r20. This
provides a one-to-one correspondence between the elements in SPM and a matrix
with elements c1 (CM), which are given in (4). They proposed three criteria,
based on comparing the elements of CMs of two rival search designs. That is,
let CM1-CM2 be the difference of c1 matrices for two designs, say T1 and T2.
Let ñ+ denotes the number of positive elements of CM1-CM2. If ñ

+ > ν2(ν2 −
1)/2, then T1 is better than T2 in searching the non zero effect β20 ∈ β2. This
procedure is independent of unknown parameter ρ and is able to compare two
search designs once, however, in price of losing information in ρ. This may decrease
the discrimination between two designs. So, the challenge would be for obtaining
a more precise such a criterion. Talebi and Esmailzadeh (2009) gave a criterion
based on SP, which is independent of ρ, with a higher degree of searching ability.
They considered a weighted average of G(β20, β2i, ρ) over ρ by a weight function
f(ρ). Namely,

W (β20, β2i) =

∫ ∞

0

G(β20, β2i, ρ)f(ρ)dρ. (6)

The weighted search probability WSP criterion for a design T, has been given by

PT = min
β20

min
A(β20;β2)

W (β20, β2i). (7)

They took f(ρ) to be the density function of a Gamma random variable ω =
ρ2 with parameters υ and λ and mean υ

λ . For this particular weight function,
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W (β20, β2i) simplify to the following closed form expression:

W (β20, β2i) = 1− T
(
c1(

υ

λ
)1/2

)
− T

(
c2(

υ

λ
)1/2

)

+2T
(
c1(

υ

λ
)1/2

)
T
(
c2(

υ

λ
)1/2

)
(8)

where T (.) is cdf of t-student random variable. This criterion enables one to com-
pare two isomorphic class of search designs. It also works for heteroscedastic un-
derlying search models. Note that all of above criteria are capable to do the eval-
uation and comparison search ability of search designs for k = 1. For general case
k ≥ 1, two new criteria have been developed, based on Kullback-Leibler distance
by Talebi and Esmailzadeh ( 2010 ).

3. Optimal-search criterion

The criteria which have been reviewed in the previous section are so-called dis-
crimination efficiency (DE) criteria of a design. By these criteria the estimation
efficiency (EE) of a design is not taken into account. In contrast, many researchers
have been presented criteria to obtain optimum design, which are efficient in pa-
rameter estimation. Most of these criteria are a function of covariance matrix of
estimators. The most popular one is D-optimality, which minimize(maximize) the
determinant of covariance (information) matrix. Several authors have developed
criteria to do the dual task of model discrimination and parameters estimation.
Mostly, these criteria have been given for nested regression models. In this sec-
tion, we consider the partially non-nested models, given in (3), in the context of
search linear models (1). In order to develop a dual task criterion for measuring
the search and estimation efficiency of a design, we consider a convex weighted
geometric average compound quantity by:

C = (DE)α(EE)1−α, 0 < α < 1. (9)

We take the D-optimality as the EE part in C. However, note that there are
(
ν2
k

)

candidate models, given in (3), with N × f models matrices H2i = (X1;X2i), i =
1, 2, ...,

(
ν2
k

)
, where f = ν1 + k. The f × f information matrix for the i-th model is

H ′
2iH2i. Let define EE to be:

EE = min
i

[
1

N
|H ′

2iH2i|1/f
]
. (10)

Clearly, EE in (10) is a positive value, which is less than 1. For the case k = 1, we
take DE to be PT , given in (7). So, the positive quantity in (9), for the chosen DE
and EE, is less than 1, i.e. 0 < C < 1. Note that for large positive effect size, ρ,
almost all rival designs are efficient in searching the true nonzero effects β20. So, one
may be interested in focussing on estimation efficiency of a design for large effect
sizes. Therefore, by increasing property of PT on ρ, through the hyper parameter
υ and λ in f(ρ), we suggest to take α to be a decreasing function of positive ρ. Let
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we assume α = e−θρ, where positive constant θ depends on balancedness priority
of the DE and EE in (9). So, we propose the dual-task criterion by

C = [PT ]
e−θρ

[
min
i

(
1

N
|H ′

2iH2i|1/f
)]1−e−θρ

, θ > 0, 0 < ρ < a, (11)

at a given level of ρ. One may calculate and use the mean efficiency, over a rea-
sonable range [0, a] on ρ, by:

Cm =
1

a

∫ a

0

Cdρ. (12)

For k ≥ 1, one may replace KL-criterion, given by Talebi and Esmailzadeh (2010)
for DE. For more efficient design, in a sense of both search and estimation, a large
value of C or Cm, i.e. closer to 1, is desirable. We will imply this criterion to
compare some search designs in the next section.

Table 1. D1, D2, D3 and D4 with 12 runs and 4 factors

D1 D2 D3 D4

A B C D A B C D A B C D A B C D

1 1 1 1 1 -1 1 -1 -1 1 -1 -1 1 1 1 1
-1 -1 -1 -1 1 1 -1 1 1 1 1 1 1 -1 -1 -1
-1 -1 -1 1 -1 1 1 -1 -1 -1 -1 -1 -1 1 -1 -1
-1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 -1 -1 1 -1
-1 1 -1 -1 1 1 -1 1 -1 1 -1 -1 -1 -1 -1 1
1 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 -1 -1 -1 -1
-1 -1 1 1 -1 1 1 1 -1 -1 1 1 -1 -1 1 1
-1 1 -1 1 -1 -1 1 1 -1 1 1 1 -1 1 1 1
1 -1 -1 1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1
-1 1 1 -1 1 -1 -1 -1 1 1 1 -1 1 1 -1 -1
1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 1
1 1 -1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 -1 -1

4. Implementation

Consider search designs D1 −D4, given in Table 1, for a 24 factorial experiment.
DesignsD1−D3 are given in Ghosh and Teschmacher (2002) andD4 obtained from
Latin square, given by Talebi and Esmailzadeh (2009). Design D1 is a balanced
array of full strength, D2 is an orthogonal array and D3 is partially orthogonal.
These designs have been ranked with respect to their search performance, using
WSP given in (7). The calculated WSP for some values of hyper parameters υ and
λ are given in Table 2. The result is PD1 > PD2 > PD4 > PD3 . That is, D1 is the
most superior to the D2, D3 and D4. Now, we use (11) and (12) to evaluate and
rank the four designs with respect to both search and estimation capability. To do
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Table 2. WSP values for D1, D2 , D3 and D4

(υ, λ) (1,1) (1,2) (2,1) (2,2) (2,3) (3,1) (3,2) (3,4) (4,2)

D1 0.8381 0.9020 0.9516 0.9822 0.9908 0.9837 0.9962 0.9993 0.9991
D2 0.8315 0.8976 0.9489 0.9813 0.9904 0.9829 0.9961 0.9993 0.9991
D3 0.7735 0.8515 0.9057 0.9597 0.9776 0.9576 0.9877 0.9973 0.9959
D4 0.7886 0.8632 0.9152 0.9641 0.9801 0.9622 0.9891 0.9976 0.9964

this, we take θ = 0.5 and a = 5. Note that N = 12 and f = 6. Figure 1 presents
the graphs of the C in (11) for D1, D2, D3 and D4 as functions of ρ. It shows that
D1 and D2 are better than D3 and D4 for all values of ρ > 0 and D4 is better
than D3, however D2 is inferior to D1 only for lower values of ρ. It means that the
comparison between D1 and D2 is inconclusive for all ρ, if one uses the C criterion
in (11). The mean efficiency, Cm given in (12) solves this inconclusive problem.
The values of Cm, for four designs, are given in Table 3. The result shows that
based on this criterion D2 is superior to D1, D3 and D4, D1 is better than D4 and
D4 is better than D3.
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Fig. 1. Plot of C for D1, D2, D3 and D4

Table 3. Cm values for D1,D2 , D3 and D4

(υ, λ) (1,1) (1,2) (2,1) (2,2) (2,3) (3,1) (3,2) (3,4) (4,2)

D1 0.9085 0.9329 0.9513 0.9625 0.9656 0.9630 0.9676 0.9687 0.9686
D2 0.9106 0.9361 0.9553 0.9671 0.9704 0.9677 0.9725 0.9736 0.9736
D3 0.8226 0.8519 0.8715 0.8905 0.8967 0.8898 0.9002 0.9035 0.9030
D4 0.8309 0.8587 0.8775 0.8947 0.9002 0.8940 0.9033 0.9063 0.9058
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5. Conclusion

A design, which is more efficient in a sense of model discrimination may not be
good in parameter estimation of the underlying models. An example is D1 and
D2 designs in this paper. The search superiority of D1 to D2 has been shown by
Ghosh and Teschmacher (2002) and confirmed by the WSP given in (7) too. The
later is presented in Table 2. However, the values of Cm-criterion, given in Table 3,
show that D1 is inferior to D2. That is, when both discrimination and estimation
efficiency of search designs have been taken into account once, the conclusion may
reverse. Of course, this may depend on the chosen criterion and subjective priority
of design experimenter, for balanced made between two efficiency properties. The
criteria, given in this paper are very flexible in a sense of making balance priority
between efficiency properties.
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A Note on Stochastic Comparisons and Aging Properties of

Conditional Generalized Order Statistics

M. Tavangar and M. Asadi

Department of Statistics, University of Isfahan

The generalized order statistics (GOS) model is a unified model which contains the well
known ordered random data such as order statistics and record values. In the present
paper, we study some partial ordering results and aging properties of the conditional
GOS. The results of the paper subsume some of the existing results which recently are
obtained in the literature. In particular, our results hold for the model of progressively
Type-II right censored order statistics without any restriction on the censoring scheme.

Keywords: Likelihood ratio order; Residual lifetime; Inactivity time; Mean residual life;
Progressive censoring.

1. Introduction

In the past ten years, several results have been appeared in the literature which
deal with the stochastic comparisons of the residual lifetime or inactivity time of
order statistics and record values . Some recent articles on the subject are Franco
et al. (2001), Belzunce et al. (2005), Hu and Zhuang (2005), Xie and Hu (2008),
Asadi and Bayramoglu (2005,2006), Li and Zhao (2006,2008), Asadi (2006),
Khaledi and Shaked (2007), Khaledi and Shojaei (2007), Raqab and Asadi (2008)
and Tavangar and Asadi (2009a,2009b). Hu et al. (2007) and Zhao and Balakr-
ishnan (2009) have generalized some of these results to generalized order statis-
tics (GOS) with equal parameters. In this paper, we generalize some of the existing
results in the literature to compare the residual lifetime or the inactivity time of
GOS under less restrictions on the parameters of the GOS model. We also pro-
vide some results on the aging properties of conditional GOS. It is shown that
our findings cover various useful models of ordered random variables, mentioned
in Kamps (1995), such as the sequential order statistics and Pfeifer record model.
Some interesting comparisons on the residual lifetimes and the inactivity times of
progressively Type-II right censored order statistics with an arbitrary censoring
scheme R̃ are also established.

The concept of GOS is introduced by Kamps (1995). He showed that order
statistics, record values, progressively Type-II right censored order statistics and
some other ordered random variables can be considered as special cases of the
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GOS model. For more details on properties of these models, readers may refer to
Kamps (1995), Arnold et al. (1992,1998), David and Nagaraja (2003) and Balakr-
ishnan and Aggarwala (2000). Let F (x) be an absolutely continuous distribution
function with density function f(x). Let also F̄ (x) = 1−F (x) denote the survival
function. The random variables X(1, n, m̃, k), X(2, n, m̃, k), . . . , X(n, n, m̃, k) are
called the GOS based on F if their joint density function is given by

fX(1,n,m̃,k),...,X(n,n,m̃,k)(x1, . . . , xn)

= k



n−1∏

j=1

γj



[
n−1∏

i=1

{F̄ (xi)}mif(xi)

]
{F̄ (xn)}k−1f(xn),

F−1(0) < x1 ≤ · · · ≤ xn < F−1(1−),

where n ∈ N, k > 0 and m1,m2, . . . ,mn−1 ∈ R such that γr = k + n − r +∑n−1
j=r mj ≥ 1 for all r ∈ {1, 2, . . . , n− 1}, and m̃ = (m1,m2, . . . ,mn−1), if n ≥ 2

(m̃ ∈ R is arbitrary, if n = 1). Based on the different values of the parameters of
the model one can obtain the joint density of order statistics, record values, etc.

Before giving the main results, we first recall some stochastic orders that are
pertinent to the developments of the paper.

Definition 1.1. For two random variables X and Y , with their densities f and g
and distribution functions F and G, respectively, let F̄ = 1 − F and Ḡ = 1 − G
be their survival functions. As the ratios in the statements below are well defined,
X is said to be smaller than Y in

(a) likelihood ratio order (denoted by X ≤lr Y ) if g(x)/f(x) is increasing in x;
(b) hazard rate order (denoted by X ≤hr Y ) if Ḡ(x)/F̄ (x) is increasing in x;
(c) reversed hazard rate order (denoted by X ≤rh Y ) if G(x)/F (x) is increasing

in x;
(d) stochastic order (denoted by X ≤st Y ) if Ḡ(x) ≥ F̄ (x).

For a comprehensive discussion on these stochastic orders, we refer the reader
to Shaked and Shanthikumar (2007) and Müller and Stoyan (2002).

We recall that a non-negative function h(x, y) is said to be totally positive of
order 2 (TP2) if

h(x1, y1)h(x2, y2)− h(x1, y2)h(x2, y1) ≥ 0,

whenever x1 < x2 and y1 < y2. Karlin (1968) provides some important properties
of TP2 functions.

The next lemma will be helpful in deriving our main results.

Lemma 1.1. (Misra and van der Meulen, 2003). Assume that Θ is a subset of
the real line R, and U is a non-negative random variable having a distribution
function belonging to the family P = {H(. | θ), θ ∈ Θ}, which is such that, for
θ1, θ2 ∈ Θ, and θ1 < θ2,

H̄(x | θ1) ≤ (≥)H̄(x | θ2), x ≥ 0.
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Let ψ(u, θ) be a real valued function defined on R × Θ, which is measurable in u
for each θ such that Eθ{ψ(U, θ)} exists. Then

(a) Eθ{ψ(U, θ)} is increasing in θ, if ψ(u, θ) is increasing in θ and increasing
(decreasing) in u; and

(b) Eθ{ψ(U, θ)} is decreasing in θ, if ψ(u, θ) is decreasing in θ and decreasing
(increasing) in u.

Throughout the paper, for any random variable W , fW and F̄W denote its
probability density function and survival function, respectively.

2. Stochastic comparisons

In the following, we first provide a modified version of the result of Hu and
Zhuang (2005) which will be used in next section. For our derivations, we consider
a parameter vector µ̃ which is different from that used in Hu and Zhuang (2005).
For proof see Tavangar and Asadi (2010).

Theorem 2.1. Let X(1, n, m̃, k), X(2, n, m̃, k), . . . , X(n, n, m̃, k) be the GOS
based on a continuous distribution function F (x) and µ̃ = (m2,m3, . . . ,mn−1),
n ∈ N. Then

(a) X(r − 1, n, m̃, k) ≤∗ X(r, n, m̃, k), r = 2, 3, . . . , n;
(b) X(r, n, m̃, k) ≤∗ X(r, n − 1, µ̃, k), r = 1, 2, . . . , n − 1, if mi ≥ −1 for each

i = 1, 2, ..., r, and
(c) X(r − 1, n− 1, µ̃, k) ≤∗ X(r, n, m̃, k), r = 2, 3, . . . ,m,

where the order “≤∗” is “≤lr” if F is absolutely continuous, and is “≤hr” or “≤rh”
if F is continuous.

It should be mentioned here that part (a) of Theorem 2.1 is proved in Hu
and Zhuang (2005) under the assumption that mj ≥ −1 for each j. We will use
this theorem in Section 3 to study some aging and monotonicity properties of the
conditional GOS.

Assume that X and Y are two absolutely continuous random variables with the
distribution functions F and G, the density functions f and g, and the hazard rates
λ1 and λ2, respectively. Further, let X(r, n, m̃, k) and Y (r, n, m̃′, k′) denote the
GOS based on F andG, with parameters k andmi, and k

′ andm′
i, i = 1, 2, ..., n−1,

respectively. Tavangar and Asadi (2010) proved the following theorem which is an
extension of a result of Zhao and Balakrishnan (2009) under the more general
assumptions on the parameters of the model of GOS.

Theorem 2.2. Let k ≥ k′ and mi ≥ m′
i for all i = 1, 2, ..., n−1. For 1 ≤ r ≤ s ≤ n

and any t ∈ R, suppose that (a) mi ≥ 0 or m′
i ≥ 0 for all i = 1, 2, ..., n− 1 and

X ≤lr Y , or (b) mi ≥ −1 or m′
i ≥ −1 for all i = 1, 2, ..., n − 1, X ≤hr Y and

λ2(x)/λ1(x) is increasing in x. Then

(i) [X(s, n, m̃, k)−t | X(r, n, m̃, k) > t] ≤lr [Y (s, n, m̃′, k′)−t | Y (r, n, m̃′, k′) > t];
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(ii) [t−X(r, n, m̃, k) | X(s, n, m̃, k) ≤ t] ≥lr [t − Y (r, n, m̃′, k′) | Y (s, n, m̃′, k′) ≤
t].

3. Aging properties

In this section, we obtain some stochastic properties of conditional GOS

[X(s, n, m̃, k)− t | X(r, n, m̃, k) > t], 1 ≤ r ≤ s ≤ n, (1)

which, in recent years, has aroused the interest of many authors. For some discus-
sions along this line, one may refer to Asadi and Bayramoglu (2005, 2006), Li and
Zhao (2006), Khaledi and Shaked (2007), Hu et al. (2007) and Zhao and Balakr-
ishnan (2009). To prove the results of this section, we apply the following useful
representation for the survival function of (1) given in Tavangar and Asadi (2010):

H̄m̃
r,s,n,t(x) =

∑r−1
j=0 γ

−1
j+1fX(j+1,n,m̃,k)(t)F̄Xt(s−j,n−j,µ̃j ,k)(x)∑r−1

j=0 γ
−1
j+1fX(j+1,n,m̃,k)(t)

. (2)

Here Xt = (X − t | X > t) denotes the residual life random variable. Representa-
tion (2) can be used to establish the properties of conditional GOS from those of
unconditional ones.

In reliability theory, to describe the aging properties of lifetime random vari-
ables, there have been defined several aging concepts. The best studied (univariate)
ageing classes are increasing failure rate (IFR) and decreasing failure rate (DFR)
classes. A lifetime distribution with survival function F̄ belongs to IFR (DFR)
class if F̄ (x + t)/F̄ (t) is decreasing (increasing) in t for each x > 0. Distributions
with a Lebesgue density belong to the IFR (DFR) class if and only if their haz-
ard rates λ(t) = f(t)/F̄ (t) are increasing (decreasing) (see Barlow and Proschan,
1978). Lifetimes with IFR distributions occur in many situations. Examples are
failure times of diverse mechanical units and lifetimes of humans after some initial
period.

We will now focus on stochastic monotone properties of [X(s, n, m̃, k) − t |
X(r, n, m̃, k) > t] with respect to t. The following lemma will be useful in proving
next result.

Lemma 3.1. For any integer r such that 1 ≤ r ≤ n, [X(r, n, m̃, k) − t |
X(1, n, m̃, k) > t] is stochastically decreasing (increasing) in t ∈ R+ if and only if
X is IFR (DFR).

Theorem 3.1. For any two integers r and s such that 1 ≤ r ≤ s ≤ n, and
arbitrary m̃ ∈ Rn−1,

(a) if X is IFR, then [X(s, n, m̃, k) − t | X(r, n, m̃, k) > t] is stochastically de-
creasing in t ∈ R+;

(b) if [X(s, n, m̃, k)− t | X(r, n, m̃, k) > t] is stochastically increasing in t ∈ R+,
then X is DFR.
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Proof. First note that by Representation (2), the survival function H̄m̃
r,s,n,t(x) can

be rewritten as

H̄m̃
r,s,n,t(x) = Et{ψ(U, t)},

where ψ(j, t) = H̄
µ̃j

1,s−j,n−j,t(x) and the distribution function of the random vari-
able U belongs to the family P = {H(. | t), t ∈ R+} with densities

h(j | t) =
γ−1
j+1fX(j+1,n,m̃,k)(t)∑r−1

i=0 γ
−1
j+1fX(j+1,n,m̃,k)(t)

, j = 0, 1, ..., r − 1.

(a) Let X be IFR. Then by Lemma 3.1, ψ(j, t) is decreasing in t ∈ R+ for all
j. From part (c) of Theorem 2.1, we have

Xt(s− j − 1, n− j − 1, µ̃j+1, k) ≤st Xt(s− j, n− j, µ̃j , k).

This, in turn, implies that ψ(j + 1, t) ≤ ψ(j, t) and hence ψ(j, t) is decreasing in j
for all t ∈ R+. It follows from part (a) of Theorem 2.1 that h(j + 1 | t)/h(j | t) is
increasing in t ∈ R+. Thus h(j | t) is TP2 in (j, t) ∈ {0, 1, ..., r − 1} × R+ which,
in turn, implies that H̄(j | t1) ≤ H̄(j | t2), j = 0, 1, ..., r − 1, whenever t1 < t2.
Taking into account these observations, from Lemma 1.1, we can conclude that
Et{ψ(U, t)} is a decreasing function of t, from which the result of part (a) of the
theorem follows.

(b) If Et{ψ(U, t)} is increasing in t ∈ R+, then we must have ψ(j, t) is
increasing in t ∈ R+ for some j ∈ {0, 1, ..., r − 1}. Hence there exists some

j ∈ {0, 1, ..., r − 1} such that H̄
µ̃j

1,s−j,n−j,t(x) is increasing in t ∈ R+ which , by
Lemma 3.1, in turn implies thatX is DFR. The proof of the theorem is complete.

The next result carries out the stochastic comparisons of conditional GOS and
unconditional ones.

Theorem 3.2. For any two integers r and s such that 1 ≤ r ≤ s ≤ n, and
arbitrary m̃ ∈ Rn−1, if X is NBU, then

[X(s, n, m̃, k)− t | X(r, n, m̃, k) > t] ≤st X(s, n, m̃, k),

for t ∈ R+, and if X is NWU, then

[X(s, n, m̃, k)− t | X(r, n, m̃, k) > t] ≥st X(s− r + 1, n− r + 1, µ̃r−1, k),

for t ∈ R+.

Proof. For 1 ≤ r ≤ n, let H̄m̃
r,n(x) denote the survival function of X(r, n, m̃, k). If

X is NBU (NWU), then Ft(x) ≥ (≤)F (x) and hence

H̄m̃
1,s,n,t(x) = P{U(s, n, m̃, k) > Ft(x)} ≤ (≥)P{U(s, n, m̃, k) > F (x)} = H̄m̃

s,n(x),
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where Ft(x) denotes the distribution function of the residual life random variable.
According to Theorem 2.1(c) we have

H̄
µ̃r−1

1,s−r+1,n−r+1,t(x) ≤ H̄
µ̃j

1,s−j,n−j,t(x) ≤ H̄m̃
1,s,n,t(x),

which implies that

H̄
µ̃r−1

1,s−r+1,n−r+1,t(x) ≤ H̄m̃
r,s,n,t(x) ≤ H̄m̃

1,s,n,t(x).

By combining these results, we obtain H̄m̃
r,s,n,t(x) ≤ H̄m̃

s,n(x) when X is NBU,

and H̄m̃
r,s,n,t(x) ≥ H̄

µ̃r−1

s−r+1,n−r+1(x) when X is NWU. Hence, the desired result
follows.

Remark 3.1. Some well known IFR distributions are the Gamma distribution
and the Weibull distribution both with shape parameters greater than one, the
half-normal distribution, and the half-logistic distribution. It is known that the
class of IFR distribution is contained in the class of NBU distribution (see, for ex-
ample, Barlow and Proschan, 1975). Hence the cited distributions are also NBU.
There exists a similar relation between DFR and NWU distributions. Some DFR
statistical models are the Gamma and the Weibull distributions with shape pa-
rameters less than one, the Pareto distribution with shape parameter greater than
one, and the mixture of two exponential distributions.

4. Applications in progressive censoring

An important application of the results established in this section is in the field
of progressive censoring. Let X1, X2, . . . , Xn denote the failure times of n in-
dependent and identically distributed (i.i.d.) items which are placed on a life-
test. Suppose that R1, R2, . . . , Rm are some fixed non-negative integers such that∑m

v=1 Rv = n − m. It is planned that only m failures will be observed and
the remaining n − m lifetimes will be censored progressively according to the
censoring scheme R̃ = (R1, R2, . . . , Rm). More specifically, at the time of the
ith failure, Ri surviving items will be randomly withdrawn from the experi-
ment, i = 1, 2, . . . ,m. The resulting ordered observed failure times, denoted by

XR̃
1:m:n, X

R̃
2:m:n, . . . , X

R̃
m:m:n, are called the progressively Type-II right censored or-

der statistics of size m from a sample of size n with a progressive censoring scheme
R̃. These ordered random variables form a special case of GOS if we set n = m,
mi = Ri, i = 1, 2, ...,m− 1, and k = Rm + 1 (in the model of GOS). We refer the
reader to Balakrishnan and Aggarwala (2000) and references therein for a com-
prehensive discussion and inferential procedures based on progressive censoring.

LetXR̃
1:m:n, X

R̃
2:m:n, . . . , X

R̃
m:m:n bem progressively Type-II right censored order

statistics arising from n i.i.d. non-negative random variables distributed as X , and

similarly let Y S̃
1:m:N , Y

S̃
2:m:N , . . . , Y

S̃
m:m:N be m progressively Type-II right censored

order statistics arising from n i.i.d. non-negative random variables distributed as Y .
From Theorem 2.2 we obtain the following corollary which gives some comparisons
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of the residual lifetimes and the inactivity times of progressively Type-II right
censored order statistics.

Corollary 4.1. Let Ri ≥ Si for all i = 1, 2, ...,m − 1 and X ≤lr Y . Then for
1 ≤ r ≤ s ≤ m ≤ min{n,N} and t ∈ R+,

(a) [XR̃
s:m:n − t | XR̃

r:m:n > t] ≤lr [Y
S̃
s:m:N − t | Y S̃

r:m:N > t], and

(b) [t−XR̃
r:m:n | XR̃

s:m:n ≤ t] ≥lr [t− Y S̃
r:m:N | Y S̃

s:m:N ≤ t].

In recent years, various concepts of the mean residual life and the mean inac-
tivity time (or the mean past life) of ordered data have been defined. Bairamov
et al. (2002) and Asadi and Bayramoglu (2005,2006) studied the mean residual
life of k-out-of-n systems. Asadi (2006) and Tavangar and Asadi (2009b) obtained
some properties of the mean inactivity time of k-out-of-n systems. The mean resid-
ual life of record values is studied in Raqab and Asadi (2008). Recently, Hashemi
et al. (2010) investigated the mean residual life

E
(
XR̃

s:m:n − t | XR̃
r:m:n ≤ t < XR̃

r+1:m:n

)
,

of progressively Type-II right censored order statistics given that exactly r items,
in the experiment, failed at time or before time t.

Consider an experiment with arbitrary censoring scheme R̃. For design en-
gineers and survival analysts, it will be of interest to have a knowledge of the
properties of the mean residual life of unfailed items in the experiment. For this
reason, one can consider

M R̃
r,s,m(t) = E

(
XR̃

s:m:n − t | XR̃
r:m:n ≥ t

)
, 1 ≤ r ≤ s ≤ m ≤ n,

the mean residual life of the sth failure time given that at most (r − 1) failures
occurred at or before time t.

Now, we can apply Theorems 3.1 and 3.2 to obtain the following corollary

regarding the mean residual life M R̃
r,s,m(t) of progressively Type-II right censored

order statistics defined above.

Corollary 4.2. For any two integers r and s such that 1 ≤ r ≤ s ≤ m ≤ n, and
arbitrary censoring scheme R̃, we have the following results:

(a) If F is IFR, then M R̃
r,s,m(t) is decreasing in t ∈ R+;

(b) If F is NBU, then

M R̃
r,s,m(t) ≤ E

(
XR̃

s:m:n

)
,

and if F is NWU, then

M R̃
r,s,m(t) ≥ E

(
X

(Rr,Rr+1,...,Rm)
s−r+1:m−r+1:γr

)
.
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By using the results of this paper, one can also establish some stochastic order-
ings and aging monotonicity results for other models of ordered random variables
such as Pfeifer records and sequential order statistics based on general distributions
F1, F2, . . . , Fn.
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The Gamma-Uniform Distribution

H. Torabi and N. H. Montazeri
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Up to present for modeling and analyzing of random phenomenons, some statistical
distributions are proposed. This paper considers a new general class of distributions,
generated from the logit of the gamma random variable. A special case of this family
is the Gamma-Uniform distribution. We derive expressions for the four moments, vari-
ance, skewness, kurtosis, Shannon and Rényi entropy. We also discuss the asymptotic
distribution of the extreme order statistics and simulation issues.

Keywords: Gamma-Uniform Distribution, Expintegrale Function, Regularized Incom-
plete Gamma Function, Confluent Hypergeometric Function, Shannon And RÉNyi En-
tropy, Pochhammer Symbol.

1. Introduction

In recent years a class of distribution was proposed based on logit of a beta random
variable. One major benefit of the Beta generalized class of distributions is its abil-
ity of fitting skewed data that cannot be properly fitted by existing distributions.
Starting from a parent cumulative distribution function (cdf) G(x), Eugene et al.
(2002) defined a class of generalized distributions by

F (x) =
1

B(α, β)

∫ G(x)

0

wα−1(1− w)β−1 dw = IG(x)(α, β), α > 0, β > 0

where Iz(a, b) =
Bz(a,b)
B(a,b) is the regularized incomplete Beta function and Bz(a, b) =∫ z

0
ta−1(1 − t)b−1 dt, 0 < z < 1 is the incomplete Beta function and B(a, b) =

B1(a, b) is the Euler Beta function.
Note that the supports of random variables associated with F (.) and G(.)

are equal. This class of generalized distributions has been receiving considerable
attention over the last years, in particular after the works of Eugene et al. (2002)
and Jones (2004). Eugene et al. (2002) introduced what is known as the Beta-
Normal (BN) distribution by taking G to be cdf of the Normal distribution. Some
more properties of this distribution have been studied by Nadarajah and Gupta
(2005). Nadarajah and Kotz (2004) introduced what is known as the Beta-Gumbel
(BG) distribution by taking G to be cdf of Gumbel distribution. Nadarajah and
Gupta (2004) introduced the Beta-Fréchet (BF) distribution by taking G to be
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the Fréchet distribution. Further, Nadarajah and Kotz (2006) examined the Beta-
Exponential (BE) distribution by taking G to be cdf of Exponential distribution.
Alfred Akinsete et al. (2006) defined the Beta-Pareto (BP) distribution by taking
G to be cdf of Pareto distribution. Lee et al. (2007) defined the Beta-Weibull
(BW) distribution by taking G to be cdf of Weibull distribution. Fredy Castellares
et al. (2009) introduced the Beta Log-Normal (BLN) distribution by taking G
to be cdf of Log-Normal distribution. Barreto et al. (2009) introduced the Beta
Generalized Exponential distribution (BGE) by taking G to be cdf of Generalized
Exponential distribution. Pescim et al. (2010) proposed the Beta-Generalized Half-
Normal distribution (BGHN) by taking G to be cdf of Generalized Half-Normal
distribution.

In this paper we will introduce a new general class of distribution generated
from the logit of the Gamma distribution. In this new class, similar to the previous
class if G denote the cdf of a random variable, then cdf for a generalized class of
distributions can be defined by

F (x) =
1

Γ(α)βα

∫ G(x)

G(x)

0

e−
w
β wα−1 dw = 1−Q(α,

G(x)

βG(x)
), α > 0, β > 0 (1)

where G(x) = 1−G(x) and Q(a, z) = Γ(a,z)
Γ(a) is the regularized incomplete gamma

function and Γ(a, z) =
∫∞
z ta−1e−t dt, z > 0 is the incomplete gamma function

and Γ(a) is Euler gamma function.
Note that the support of random variables associated with F (.) and G(.) are

equal. The probability density function (pdf) corresponding to Eq. (1) can be
written as

f(x) =
1

Γ(α)βα

g(x)

G
2
(x)

exp
(
− G(x)

βG(x)

)(G(x)
G(x)

)α−1

, α > 0, β > 0

where g(x) = dG(x)
dx is the parent density function. The pdf f(x) will be most

tractable when both functions G(x) and g(x) have simple analytic expressions. In
this article, we study the case when G(x) is the cdf of the Uniform distribution
in (a, b), i.e, U(a, b). In this case, the random variable X is said to be have the
Gamma-Uniform distribution and denoted by GU(α, β, a, b).

2. The Gamma-Uniform Distribution

One of the simplest distribution in Statistics is the Uniform distribution. Thus,
we motivated to introduce the Gamma-Uniform (GU) distribution by taking G in
Eq. (1) to be cdf of a U(a,b). The cdf of GU distribution becomes

F (x) =

∫ x−a
b−x

0

e−
w
β wα−1

Γ(α)βα
dw = 1−Q(α,

x− a

β(b − x)
), a < x < b (2)
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The corresponding probability density function (pdf) and the hazard rate function
associated with Eq. (2) are:

f(x) =
(b − a)e−

x−a
β(b−x) (x−a

b−x )
α−1

(b − x)2βαΓ(α)
, a < x < b (3)

and

λ(x) =
(b − a)e−

x−a
β(b−x) (x−a

b−x )
α−1

(b− x)2βαΓ(α, x−a
β(b−x) )

a < x < b (4)

respectively. Figure 2 illustrates some of the possible shapes of pdf, cdf and hazard
rate function of GU distributions for various values of α, β and a = 0, b = 5.

Fig. 1. The pdf, cdf and hazard rate function for a = 0 and b = 5.

3. Moments

In general, exact moments of a GU distribution cannot be calculated. However we
derive some closed form expressions for the first four moments, variance, skewness
and kurtosis.
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In the subsequent, we will use the function ExpIntegralE[n, z] = E[n, z] which
is defined by E[n, z] =

∫∞
1 e−

zt
tn dt.

E(X) =
1

β

{
e

1
β
(
aE[α,

1

β
] + bαβE[1 + α,

1

β
]
)}

E(X2) =
1

β2

{
β
(
(a− b)2 + b2β

)
− (a− b)e

1
βE[α,

1

β
]
(
a+ aβ(α− 1)− b(1 + β + αβ)

)}

E(X3) =
1

2β2

{
β
(
α(a− b)3 + β

(
2a3 − 3α(a− b)2(a+ b) + α2(a− b)3

))

−(a− b)αe
1
βE[1 + α,

1

β
]
(
− 2ab

(
1 + β + 2αβ + β2(α2 − 1)

)

+a2
(
1 + β(α − 1)(β(α − 2) + 2)

)
+ b2

(
1 + β(α + 2)(β + αβ + 2)

))}

E(X4) =
1

6β4

{
β
(
(a− b)4 + (a− b)3β

(
a(2α− 3)− b(2α+ 9)

)
+ (a− b)2β2

×
(
a2(α− 3)(α− 2)− 2ab(−6 + α+ α2) + b2(18 + α(α+ 7))

)
+ 6b4β3

)

+(b− a)e
1
βE[α,

1

β
]
(
− 3a2b

(
1 + β + 3αβ + β2(α− 1)(2 + 3α)

+β3(α− 2)(α− 1)(α+ 1)
)
+ 3ab2(1 + β + αβ)

(
1 + β(α+ 2)(2 + β

×(α− 1))
)
+ a3

(
1 + (α− 1)β(3 + β(α− 2)(3 + β(α − 3)))

)

+b3
(
− 1− β(α+ 3)(3 + (2 + α)β(3 + β + αβ))

))}

Suppose X is a random variable with the pdf given by Eq. (3). If a = 0 and b = 1
then

E(Xn) = (α)nU
(
n, 1− α,

1

β

)

where (α)n = Γ(α+n)
Γ(α) is Pochhammer symbol and U(a, b, z) = 1

Γ(a)

∫∞
0 e−ztta−1(1+

t)b−a−1 dt is confluent hypergeometric function.
Further calculations show that first three central moments, skewness and kur-

tosis of X can be given by

V ar(X) =
(a− b)2

β2

{
β − e

1
βE[α,

1

β
]
(
1 + (α− 1)β + e

1
βE[α,

1

β
]
)}

=:
(a− b)2s1

β2
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E[{X − E(X)}3] = (a− b)3

2β3

{
− β(1 + (α− 2)β) + e

1
βE[α,

1

β
]

×
(
1 + 2β(α− 4) + β2(α− 2)(α− 1) + 2e

1
βE[α,

1

β
]

×
(
3 + 3β(α− 1) + 2e

1
βE[α,

1

β
]
))}

=:
(a− b)3s2

2β3

E[{X − E(X)}4] = (a− b)4

6β4

{
β
(
1 + β

(
− 3 + 2α+ (6− 5α+ α2)β

))

−e 1
βE[α,

1

β
]

(
1 + 3β(α− 5) + 3β2(α− 5)(α− 2)

+β3(α− 3)(α− 2)(α− 1) + 6e
1
βE[α,

1

β
]

×
(
2
(
1 + β(−5 + 2α+ (2− 3α+ α2)β)

)
+ 3e

1
β

×E[α,
1

β
]
(
2 + 2β(α− 1) + e

1
βE[α,

1

β
]
)))

}
=:

(a− b)4s3
6β4

and

Skewness(X) =
−s2
2
√
s1
, Kurtosis(X) =

s3
6s21

− 3,

respectively.
Note that the skewness and kurtosis measures depend only on α and β.

Table 1. Mean, variance, skewness and kurtosis of GU(α, β,−5, 5)
for various values of α, β.

α β E(X) Var(X) Skewness(X) Kurtosis(X)

0.02 0.2 -4.9660 0.0446 10.2131 133.3170
2 -4.8178 0.7369 6.0870 40.3935

10 -4.6067 2.2505 4.36755 18.8672
0.5 0.2 -4.2079 0.8622 1.6905 2.9297

2 -1.5568 7.0084 0.3140 -1.1780
10 0.9443 9.7743 -0.5957 -1.0360

2 0.2 -2.3945 1.65467 0.3393 -0.4545
2 2.3073 2.3584 -1.3031 1.7293

10 4.2015 0.5784 -3.3861 17.4109
10 0.2 1.5189 0.5329 -0.5709 0.4121

2 4.4769 0.0294 -1.3776 3.7337
10 4.8903 0.0015 -1.5605 5.0870

From Table 1, it is concluded that for a constant α, the skewness measurement
is a decreasing function of β.
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4. Percentailes

The pth percentile xp, is defined by F (xp) = p. From Eq. (2), we have

1 − Q
(
α,

xp−a
β(b−xp)

)
= p. If z1−p =

xp−a
β(b−xp)

, then z1−p = Q−1(α, 1 − p), where Q−1

is the inverse of regularized incomplete gamma function. Thus xp =
a+βbz1−p

1+βz1−p
.

Example 4.1. If X ∼ GU(2, 4, 0, 5) and p = 0.5, then z0.5 = Q−1(2, 0.5) =
1.67835. Therefore the median of the distribution is x0.5 = 4.35178.

5. Asymptotic properties

Let X1, . . . , Xn be a random sample from Eq. (2). Sometimes one would be
interested in the asymptotic of extreme values Xn:n = max(X1, . . . , Xn) and
X1:n = min(X1, . . . , Xn). The limiting distribution of Yn = Xn:n−bn

an
is Type I

(Exponential type), since limn→∞ n[1 − F (any + bn)] = e−y in which an and bn
are the solution of the system F (an + bn) = 1− (ne)−1 and F (bn) =

n−1
n . Hence,

it follows from Theorems 7.8.3 and 7.8.5 from [2] that

G(1)(y) ≈ P (Yn ≤ y) = exp(−e−y) −∞ < y <∞
and the exact distribution of Yn is

Gn(y) = [FX(any + bn)]
n =

[
Q
(
α,

any + bn − a

β(b − any − bn)

)]n
,

a− bn
an

< y <
b− bn
an

and the limiting distribution of Wn = X1:n+bn
an is type III (limiting Type), since

limn→0
1− F (ky − bn)

F (y − bn)
= kα where bn = − inf{x| F (x) > 0} = −a and an =

bn + sn in which sn is the solution of nF (sn) = 1. Hence, it follows from Theorem
7.8.6 from [2] that

H(3)(w) ≈ P (Wn ≤ w) = 1− exp(−wα), w > 0

and the exact distribution of Wn is

Hn(w) = 1−[1−FX(anw−bn)]n = 1−
[
1−Q

(
α,

anw

β(b − anw − a)

)]n
, 0 < w <

b− a

an

Example 5.1. Suppose again that X ∼ GU(2, 4, 0, 5), and we are interested to
obtain the distribution of the maximum and minimum of a random sample of size
n = 100. It can be easily shown that bn and an is obtained from the solution of
the system 1−Q

(
2, bn

4(5−bn)

)
= 99

100 and 1−Q
(
2, an+bn

4(5−an−bn)

)
= 1− (100e)−1 which

gives an = 0.025748 and bn = 4.81853.
For minimum of a random sample have bn = a = 0 and sn is obtained from

1−Q
(
2, sn

4(5−sn)

)
= 1

100 which gives sn = 1.86367, thus an = 1.86367.

This is illustrated in Fig. 2, which graphs of Gn(y), G
(1), Hn(w) and H

(3)(w)
for n = 100.
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Fig. 2. comparison of cdf Gn(y) with limiting cdf G(3)(y) and cdf Hn(w) with limiting cdf
H(1)(w) for n = 100.

6. Shannon and Rényi Entropy

An entropy of a random variable X is a measure of variation of the uncertainty.
Denote byHSh(f) the well-known Shannon entropy introduced by Shannon (1948).
It is defined by

Hsh(f) = E[− log f(X)] = −
∫

X
f(x) log(f(x)) dx (5)

One of the main extensions of was defined by Rényi (1961). This generalized en-

tropy measure is given by HR(λ) = HR(λ, f) = logG(λ)
1−λ for λ > 0 and λ 6= 1,

where

G(λ) =

∫

X
f(x)λ dx (6)

The additional parameter λ is used to describe complex behavior in probability
models and the associated process under study. Rényi entropy HR(λ) is monoton-
ically decreasing in λ while Shannon entropy Eq. (5) is obtained from Eq. (6) for
λ ↑ 1.[ 10]

Theorem 6.1. The Shannon and Rényi Entropy of Gamma-Uniform distribution
are equal with the Shannon and Rényi Entropy of Gamma distribution.

Proof. By taking w = x−a
b−x in Eq. (5) and Eq. (6) have;

Hsh(f) = −
∫ ∞

0

e−
w
β wα−1

Γ(α)βα
log

(
e−

w
β wα−1

Γ(α)βα

)
dw = α+ log

(
βΓ(α)

)
(α− 1)ψ(α)
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where ψ(z) = d ln Γ(z)
dz = Γ

′
(z)

Γ(z) = is Poly Gamma function. Rényi entropy is

HR(λ) =
1

1− λ
log
( ∫ ∞

0

(e−w
β wα−1

Γ(α)βα

)λ
dw
)

=
1

1− λ

[
log Γ(λα − λ+ 1)− λ log Γ(α) − (λ+ 1) log β

−(λα− λ+ 1) logλ
]
, if r < 1

1−α or α > 1.

7. Simulation

For simulation of the distribution, note from Eq. (2) that if w is a random number
from a G(α, β), then a+bw

1+w will follow the pdf of Eq. (2).

8. Conclusions

In this paper, a new flexible class of distributions is considered, then for a special
case of this class, some moments, Shannon and Rényi entropy are derived. Finally,
the asymptotic distribution of the extreme order statistics and simulation issues
are discussed.
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This paper introduces the application of the posterior likelihood ratio for hypothesis
testing in 2 × 2 contingency tables. The analysis has been done by using of different

prior distributions and the log of Odds Ratio. It also evaluates another application
of the posterior likelihood ratio for hypothesis testing in nonnested models, such as
Geometric against Poisson and Gamma against Weibull. To make inferences, this paper
uses noninformative prior distributions for all parameters independently from previous
trials. Because the posterior distributions are not well-known, and as a result, they
cannot be simulated easily, Acceptance-Rejection and Metropolis-Hastings algorithms
and also Gibbs sampler are used to obtaining random draws from exactly the posterior
distributions.

Keywords: Posterior Distribution; Likelihood Ratio; Fisher Exact Test; Nonnested
Models; Metropolis-Hastings Algorithm; Acceptance-Rejection Algorithm; Gibbs Sam-
pler.

1. Introduction

In the point null hypothesis testing the results of Bayes factor and P-value ap-
proach are not consistent, so we consider a new approach in hypothesis testing,
the posterior likelihood ratio. The results of this approach are consistent with
frequentist P-value conclusions. Section 2 of the paper illustrates the general ap-
proach of the posterior likelihood ratio in the presence of nuisance parameters, and
analyzes it more. As a new practical use Section 3 introduces the application of
this new approach in Fisher’s Exact test. We use the log of Odds Ratio, δ = log(ψ),
to examine the relation between rows in 2 × 2 contingency tables. Moreover, we
make use of Fisher’s famous example with informative and noninformative prior
distributions to represent how this approach works.

The other new application of the posterior likelihood ratio in nonnested models
such as Geometric against Poisson and Gamma against Weibell is evaluated in
Section 4. . We use data which are provided by R software to deal with an extensive
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domain of data. Finally, we illustrate the conclusions in Section 5.

2. The Posterior Likelihood Ratio

Let θ be an interesting parameter and φ be a nuisance parameter. So, for the given
data, y, the likelihood of these parameters is:

L(θ, φ) = f(y | θ, φ).
The prior distribution for these parameters represents our uncertainty about

these parameters. Consider the point null hypothesis, H0, which specifies the value
of θ0. An alternative hypothesis, H1, specifies either that θ is completely unspec-
ified, θ 6= θ0, or that θ has a different specified value θ1. In either case φ is
unspecified. The likelihood ratio between the null and alternative hypothesis is
defined in the following way:

LR = LR(θ, φ) =
L(θ0, φ)

L(θ, φ)
,

where for simplicity the dependency of LR on θ0 and y is ignored.
Suppose π(θ, φ | y) be the joint posterior distribution for θ and φ. As LR is a

function of φ and θ, we can calculate the posterior distribution of LR, especially
the posterior probability P (LR < k | y) for any specific k, such as 0.1 or 0.01.

Although this approach is different from classical testing, the form of the pos-
terior likelihood ratio, (γ, k) where γ = P (LR < k), for hypothesis testing has
the same results as the significant test (Dempster, 1974-1997). But the posterior
likelihood ratio is more conservative than the significant test. When a researcher
knows LR ≥ 1, he cannot accept the alternative hypothesis. For example, when
an observed data is in the boundary points of the rejection region,a frequentist
rejects the null hypothesis, but in the posterior likelihood ratio approach, we need
stronger evidence, which is provided by the posterior probability LR ≥ k to reject
the null hypothesis.

Dempster(1974-1997) and Aitkin(1997) for uniform priors and normal likeli-
hoods showed that:

P (LR < 1 | y) = 1− P − value. (1)

In classical framework, when P-value is smaller than the significant level , we
evaluate the existing evidence fine. For example, when:

0 ≤ P − value ≤ 0.05

according to existing evidence, we reject the null hypothesis at 0.05 significant level.
The aim of introducing the posterior likelihood ratio was the consistency between
the results of this approach and the results of classical approach (Aitkin et.al.,
2005). Therefore, in relation to (1), we obtain following limits for P [LR < 1 | y],
corresponding to 0.05 significant level:

0.95 ≤ P [LR < 1 | y] < 1.

460



July 28, 2010 16:45 ISC10 - Proceeding proceeding

The 10th Iranian Statistical Conference University of Tabriz, August 2010

On the other hand, we emphasized that the posterior likelihood ratio is more
conservative than classical approach. One of the reasons which causes to think
about the conservative structure of this approach is that we can calculate posterior
probabilities P [LR < k | y] for all 0 < k < 1 and care about them. Actually, this
approach assesses the existing evidence to reject the null hypothesis insufficient,
when the probability of P[LR < 0.1 | y] is small.

Now, we evaluate the mathematical structure of LR more precisely. For the
point null hypothesis, we have:

LR(θ) = LR(θ) =
LH0(θ)

LH1(θ)
=

L(θ0)

LH1(θ)
.

For the compound alternative hypothesis, the minimum value of LR is obtained
when LH1(θ) gets its maximum value, i.e. when θ = θML. Therefore:

θML ∈ {θ;LR(θ) < k},
and this set also contains the most probable points of Θ − {θ0} in respect to
the observed data. As a result, when P [LR < k | y] is a considerable probability,
existing evidence convinces us to reject the null hypothesis. Although the minimum
level of the posterior probability in order to reject or accept the null hypothesis is
chosen by the researcher according to the importance of the null hypothesis, one
may count probabilities such as 0.25 or more as a large probability(Aitkin et. al.
2005)

Another important point which is introduced is the limits of k. As this pa-
per reminds, Fisher(1958) made use of the likelihood to find confidence intervals.
Fisher’s main goal was the usage of these functions to obtain confidence intervals
when a pivotal quantity was not available. Actually, he used the MLE to specify
the inner points of the interval, around that and the excluded points of the pa-
rameter space with likelihoods less than 1

15 of the MLE. In the posterior likelihood
ratio, similarly, Aitkin(1997) and Aitkin et.al.(2005) specified values of the param-
eter space with LR < 0.1 as parameters which are suspicious to be accepted as
the true value of the population parameter.

3. Application of the posterior likelihood ratio in 2 × 2
contingency tables

When the sample size is large, classical framework in hypothesis testing has a great
power. But sometimes in practice, we have to work with the small sample size. In
this case, classical approaches are too conservative.

In this section, 2× 2 contingency tables are evaluated by Dempster’s approach
with different prior distributions. We use Metropolis-Hastings and Acceptance-
Rejection algorithm to obtain random samples from the posterior distributions.

Consider a hypothesis testing which appraises the hypothesis of no association
between rows and columns in a 2 × 2 contingency table versus the hypothesis
of positive association between them. In general, conditional distribution of N11
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statistics given their marginal values is the noncentral Hypergeometric as follows
(Fisher(1935) and Agresti(2002)):

f(n11 | n, n1+, n+1; θ) =

(
n1+

n11

)(
n2+

n+1−n11

)
θn11

∑
u

(
n1+

u

)(
n2+

n+1−u

)
θu
,

where

u ∈ {max{0, n+1 + n1+ − n}, ...,min{n1+, n+1}},
and θ > 0 is Odds Ratio. If we define δ as the log of Odds Ratio(ln θ),therefore
it is equivalent to zero when the variables are not associated. In this case, the
noncentral Hypergeometric distribution converts to the central Hypergeometric
distribution. Under the null hypothesis δ is also symmetric around zero. This
reparameterization helps us to analyze the use of the posterior likelihood ratio
under different prior distributions on δ such as N(µ, σ2) and the noninformative
prior distribution and also conjugate prior distributions of Exponential family like:

K(η, τ)
exp(δη)

[
∑

u

(
n1+

u

)(
n2+

n+1−u

)
exp(δu)]τ

(2)

where η and τ are hyperparameters, K is the normalizing constant, and

u ∈ {max{0, n+1 + n1+ − n}, ...,min{n1+, n+1}}.

3.1. Applied Example

Consider Fisher’s famous example. We want to examine the null hypothesis, H0 :
θ = 1 versus the alternative hypothesis, H1 : θ > 1.

At first, we assess the conjugate prior distributions (2) which define probability
density function on δ ∈ [0,∞).

According Berger and Robert (1990), we know that using hirachical Bayesian
models with flat prior distributions on hyperparameters provides robust Bayesian
estimators. Therefore, we apply the hirechical Bayesian approach with flat priors
on η and τ in order to solve the problem. We use uniform prior distributions on η
and τ to obtain robust Bayesian estimators in this problem:

η ∼ Uniform(−100,−1),

τ ∼ Uniform(1, 6).

Because we cannot generate random draws from the conjugate prior distri-
butions directly, we use Acceptance-Rejection algorithm to obtain random draws
from them. At first, we need to find an envelope . Our choice is an exponential
distribution with mean one. After that, we should find a constant c, such that for
all pairs of (η, τ) the envelope , cexp(−δ), as a coverage for all prior distributions.
By simplicity we can find the following condition for constant c:

c ≥ 106×K(−100, 6).
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Now, we generate samples from the hirechical prior distribution. We apply
the following Gibbs sampler to obtain random variables from the hirechical prior
distribution.

1. Generate η ∼ Uniform(−100,−1) and independently τ ∼ Uniform(1, 6),
2. Simulate K(η, τ) from Importance sampling method where the proposed dis-

tribution is Gamma(1,1),
3. Generate δ from (2) with above parameter (η, τ) by the Acceptance-Rejection

algorithm.

The next steps show how Acceptance-Rejection algorithm is used to obtaining
random draws:

• Draw a sample y ∼ exp(−δ),
• Draw a sample t ∼ Uniform(0, c exp(−y)),
• If K(η, τ) exp(ηδ)

(1+4 exp(δ)+exp(2δ))τ ≤ t, accept y as a random draw from the con-

jugate prior distribution with known parameters (η, τ) and come back to the
first step. Otherwise, reject y and come back to the first step.

We input δ’s which are samples from Gibbs sampler into Metropolis-Hastings
algorithm in order to get random draws from the posterior distribution. The sim-
ulated probabilities are:

P (LR < 0.1) ≈ 0, P (LR < 0.167) ≈ 0.005, P (LR < 0.375) ≈ 0.5.

TruncatedN(µ, σ2) distribution at zero is evaluated here as another prior distribu-
tion(this distribution assigns probabilities on δ ∈ [0,∞) as same as the conjugate
prior distribution). The parameters of the truncated N(µ, σ2) are computed ac-
cording to the following formula for Fisher’s example:

log(ψ) ∼ N(log(ψ̂), ASE(log(ψ̂))),

where

ASE(log(ψ̂)) =

√
1

n11 +
1
2

+
1

n12 +
1
2

+
1

n21 +
1
2

+
1

n22 +
1
2

.

Thus, we have truncated N(3.219, 4.8) at zero. As the null hypothesis is ac-
cepted with two previous prior distributions, we decide to assess the importance of
information which is provided by prior distributions. To gain this purpose, we put
noninformative distribution π(δ) = 1 on −∞ ≤ δ ≤ ∞. As same as the previous
prior distributions, noninformative prior distribution confirms the null hypothesis.

4. The nonnested hypothesis testing via the posterior likelihood
ratio

Generally, our aim in statistics is to make inferences about some quantities of
interest, ∆, on the basis of some observed data X and Y (the quantity ∆ may
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be a regression parameter, a forecast of some future observation, or some other
quantity of interest). In classical statistical theory, the data are only informative
about ∆ when they are interpreted in light of definite statistical model, M, which
specifies a relevant population, a set of relevant variables, the functional form
of the relationships among these variables, and the nature of relevant stochastic
influences. All of our inferences about ∆ depend not only upon the data X and
Y , but also assumptions embodied in the model M. When there is some doubt
about the model of stochastic process, it seems necessary to test models in order
to choose the best one which shows the stochastic process well. Sometimes these
models are from different families. In this case, we want to test nonnested models.

In this section, nonnested models are evaluated via the posterior likelihood
ratio by using noninformative prior distributions on all parameters.

4.1. Applications of the posterior likelihood ratio in nonnested
models

4.1.1. Geometric versus Poisson

Suppose that we want to evaluate the null hypothesis of Geometric distribution
with unknown parameter θ versus the alternative hypothesis of Poisson distribu-
tion with unknown parameter λ. In this case the likelihood ratio is:

LR(θ, λ) =
θn(1− θ)

∑n
i=1 xi

∏n
i=1

1
xi!
e−nλλ

∑n
i=1 xi

. (3)

For calculating the posterior likelihood ratio probabilities, it is enough to generate
θ and λ values from their own posterior distributions and to substitute them
in (3). We use Metropolis-Hastings algorithm to generate from these posterior
distributions.

When we simulate data from Geometric distribution, proposal approach works
as well as possible. Even by interchanging the null and the alternative hypotheses,
there is not any contradictions to accept Geometric distribution. An interesting
point occurs when we evaluate the generated data from Poisson distribution. When
the true value of λ > 1, the posterior likelihood ratio approach determines the
true distribution correctly. But when λ ≤ 1, we face a problem. In this case,
our approach chooses Geometric distribution or both of Geometric and Poisson
distributions while we interchange the null and the alternative hypotheses.

Because the prior distributions are improper, we can neither compute Bayes
Factor nor inference based on it.

4.1.2. Gamma versus Weibull

Another example of nonnested models is Gamma distribution where α is the in-
teresting parameter and β is the nuisance parameter versus Weibull distribution
where δ is the interesting parameter and λ is the nuisance parameter. We get the
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likelihood ratio as:

LR(α, δ) =

βnα

Γn(α) (
∏n

i=1 xi)
(α−1) exp(−β∑n

i=1 xi)

δnλn(
∏n

i=1 xi)
(δ−1) exp(−λ∑n

i=1 x
δ
i )

As usual, we put flat prior distributions on α > 0, β > 0, δ > 0, and λ > 0. We
find out that the posterior distributions of this example are not well known. Thus,
we need to make use of Gibbs sampler to generate random variables.

The resulted outcomes are not consistent with our data. This means that al-
though data which is provided by Gamma or Weibull distributions, respectively is
tested and accepted by the null hypothesis of Gamma and Weibull distributions,
by interchanging the null and the alternative hypotheses , it is also accepted as the
null hypothesis. Therefore, the application of the posterior likelihood ratio in this
problem is as same as Cox’s test. Both of them cannot determine the true distribu-
tion when we interchange the null and the alternative hypotheses. Thus, whenever
we use the posterior likelihood ratio approach in nonnested models hypothesis
testing, we should choose the null hypotheses carefully.

We cannot compute Bayes Factor as the previous example of the nonnested
models because of improper prior distributions.

5. Conclusions

As we have considered, the posterior likelihood ratio is a new approach which
needs to make a lot of efforts in order to improve it. In this article, we analyze the
posterior likelihood ratio more mathematically.

On the other hand, Aitkin et. al.(2005) emphasized when Classical approach
and Bayes Factor are in contradiction, the posterior likelihood ratio leads to out-
comes similar to Classical approach. As we show in this paper, the null hypothesis
of no association is accepted by the posterior likelihood ratio approach with differ-
ent prior distributions, which is the same result as P-value in Classical approach.

One of the most important advantages of this approach is the ability of mak-
ing a Bayesian test when we cannot calculate Bayes Factor when the prior dis-
tributions are improper. As we see, Bayes Factor cannot be calculated in both
examples of nonnested models. But by using the posterior likelihood approach, we
made Bayesian inferences. Outcomes for the test of nonnested models Geometric
against Poisson choose the correct distribution of data when the true distribution
is Geometric, but when we obtain data from Poisson distribution, this approach
selects the true model under some conditions. In addition, the proposal approach
is not capable enough to choose the true model when we test Gamma distribution
versus Weibull distribution and interchange the null the alternative hypotheses.
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This paper improves the existing nonparametric estimators, of the entropy of a contin-
uous distribution, using a proposed nonparametric cdf estimator. We prove the consis-
tency of the proposed estimator and show, by simulation, that our estimator has less
bias and less root mean squared error (RMSE) than the leading estimators proposed
by Ebrahimi et al(1994).
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1. Introduction

Suppose X is distributed according to a continuous distribution with cumulative
distribution function(cdf) F, having support I = [a0, b0] where a0 ≥ −∞, b0 ≤ ∞.
The entropy of F is

H(X) = −
∫
f(x) ln(f(x))dx,

where f is the probability density function (pdf) of X .
The entropy estimator of F has been discussed by many authors including Ah-
mad and Lin (1976),Vasicek (1976), Mack (1988), Joe(1989), Makkadem(1989)
and Ebrahimi et al.(1992).
Ebrahimi et al.(1994) proposed two estimators of the entropy in the following
forms:

Hc =
1

n

n∑

i=1

ln(
xi+m − xi−m

cim/n
), (1)

where

ci =





1 + i−1
m 1 ≤ i ≤ m,

2 m+ 1 ≤ i ≤ n−m,

1 + n−i
m n−m+ 1 ≤ i ≤ n.

Here x1, ..., xn are ordered values of random observation of X and m is a positive
integer less than or equal to n/2, which is called window size. We take xi−m = x1
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for i−m < 1 and xi+m = xn for i+m > n.
The second estimator of Ebrahimi et al. is

Hd =
1

n

n∑

i=1

ln(
zi+m − zi−m

dim/n
), (2)

where

di =





1 + i+1
m − i

m2 1 ≤ i ≤ m,

2 m+ 1 ≤ i ≤ n−m,

1 + n−i
m+1 n−m+ 1 ≤ i ≤ n,

and zi’s are

zi−m = a+ i−1
m (x1 − a) = x1 − m−i+1

m (x1 − a), 1 ≤ i ≤ m,

zi = xi, m+ 1 ≤ i ≤ n−m− 1,

zi+m = b− n−i
m (b− xn) = xn + m+i−n

m (b − xn), n−m ≤ i ≤ n,

where a and b are equal to a0 and b0, respectively, except when a = −∞(b = ∞),
in which case a(b) is taken to be x̄− ks (x̄ + ks), where

x̄ =
1

n

n∑

i=1

xi, s2 =
1

n− 1

n∑

i=1

(xi − x̄)2,

where k is an integer(usually between 3 and 5), which minimizes the simulated
RMSE.
In this paper we use a new estimator of F . In Section 2 we introduce a new cdf
estimator which can be regarded a constrained MLE of F . In Section 3, using a
new cdf estimator, we introduce an estimator of the entropy of F and show that
it is consistent and that the bias and mean squared error of this estimator is scale
invariant. Section 4 contains the results of a simulation study which shows that
our entropy estimators compare favorably with those of Ebrahimi et al.(1994)’s.

2. A New cdf Estimator

Let x1, ...xn, F and f be as in Section 1. Let

P (xi−1 < X < xi) = wi, i = 2, ..., n,

approximating P (X < x1) and P (X > xn) by
1

n+1 .
We impose the condition

n∑

i=2

wi =
n− 1

n+ 1
. (3)

Here wi is taken to be the area, under the plot of f , between xi−1 and xi. Then
we can approximate wi by

wi ≈
fi−1 + fi

2
di, (4)
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where di = xi − xi−1, fi = f(xi) and we define d1 = dn+1 = 0. We maximize the
likelihood function subject to (4). For this purpose we write the Lagrangian as

L =

n∑

i=1

fi − 2λ[

n∑

i=2

wi −
n− 1

n+ 1
],

which leads us to solving the equations

∂L

∂fi
= 0, ∀i = 1, ..., n,

which yeild

fi =
1

λ(di + di+1)
,

λ =
n+ 1

2(n− 1)

n∑

i=2

(
1

di + di+1
+

1

di−1 + di
)di =

n(n+ 1)

2(n− 1)
,

and

wi =
n− 1

n(n+ 1)
(

1

di−1 + di
+

1

di + di+1
)di, i = 1, ..., n,

which leads to

F̂n(xi) =

i∑

j=1

wj =
n− 1

n(n+ 1)
(i +

1

n− 1
+

xi − xi−1

xi+1 − xi−1
),

as estimator of F (xi)’s, i = 2, ..., n − 1. Considering (3) we have F (x1) = 1
n+1 ,

F (xn) =
n

n+1 .
We use the linear interpolation for x < x1, and for x > xn as follow

F̂n(x) =





1
n+1

x−a
x1−a a ≤ x ≤ x1,

1
n+1 (n+ x−xn

b−xn
) xn ≤ x ≤ b,

(5)

where a and b are as in Section 1.

Theorem 2.1. Let x1, ..., xn be an ordered random sample from a distribution
with cdf F. Then F̂n(x) is a consistent estimator of F (x) .

Proof. We can write F̂n(x) as

F̂n(xi) =
n− 1

n(n+ 1)
(i+

1

n− 1
+

xi − xi−1

xi+1 − xi−1
), , i = 1, ..., n.

So we have

F̂n(xi) ≤
n− 1

n(n+ 1)
(i+

1

n− 1
+ 1) ≤ n− 1

n(n+ 1)
(i + 2), , i = 1, ..., n.
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Then

F̂n(x) ≤
n− 1

n+ 1
(Fn(x) +

2

n
), x1 ≤ x ≤ xn,

where Fn(x) is empirical distribution function. Similarly

F̂n(x) ≥
n− 1

n+ 1
(Fn(x)). x1 ≤ x ≤ xn.

So we conclude that

E(F̂n(x)) −→ F (x), V ar(F̂n(x)) −→ 0,

and thus F̂n(x) is consistent.

3. Entropy Estimator

Using the above estimator of F, analogous to (1) and (2), we propose two estimators
for the entropy H(X) of an unknown continuous distribution F, by

Ha(m,n) =
1

n

n∑

i=1

ln
xi+m − xi−m

F̂n(xi+m)− F̂n(xi−m)
(6)

and

Hb(m,n) =
1

n

n∑

i=1

ln
zi+m − zi−m

F̂n(zi+m)− F̂n(zi−m)
, (7)

where xi andzi are as in Section 1.
The following theorem is used in the proof of Theorem 3.2.

Theorem 3.1 (Vasicek, 1976). Let x1, ..., xn be an ordered sample from a dis-
tribution F with a density f and a finite variance. Then

H ′
mn

p−→ H(X) as n,m→ ∞, such that m/n→ 0,

where H ′
mn = Hmn − E(Umn),where

Hmn = 1
n

n∑
i=1

log(xi+m−xi−m

2m/n )

= − 1
n

n∑
i=1

log f(xi) + Vmn + Umn,

where

Vmn =
1

n

n∑

i=1

log(
F (xi+m)− F (xi−m)

f(xi)(xi+m − xi−m)
,

Umn =
1

n

n∑

i=1

log(
F (xi+m)− F (xi−m)

2m/n
).
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The consistency of Ha and Hb are proved by the following theorem.

Theorem 3.2. Let x1, ..., xn be an ordered random sample from a continuous dis-
tribution F . then as n,m→ ∞, such that m

n → 0,

• Ha(m,n) → H(X) in probability
• Hb(m,n) → H(X) in probability.

Proof.

• In view of Theorems 2.1 and 3.1, the proof is easy and is thus omitted.
• We can write

Hb(m,n) =
1
n

n∑
i=1

ln zi+m−zi−m

F̂n(zi+m)−F̂n(zi−m)

= 1
n

m∑
i=1

ln xi+m−zi−m

F̂n(xi+m)−F̂n(zi−m)
+ 1

n

n−m−1∑
i=m+1

ln xi+m−xi−m

F̂n(xi+m)−F̂n(xi−m)

+ 1
n

n∑
i=n−m

ln zi+m−xi−m

F̂n(zi+m)−F̂n(xi−m)
,

also

Ha(m,n) =
1

n

n∑

i=1

ln
xi+m − xi−m

F̂n(xi+m)− F̂n(xi−m)

=
1

n

m∑

i=1

ln
xi+m − x1

F̂n(xi+m)− F̂n(x1)
+

1

n

n−m−1∑

i=m+1

ln
xi+m − xi−m

F̂n(xi+m)− F̂n(xi−m)

+
1

n

n∑

i=n−m

ln
xn − xi−m

F̂n(xn)− F̂n(xi−m)
.

Thus

Hb(m,n)−Ha(m,n) =

1

n

m∑

i=1

ln
xi+m − zi−m

F̂n(xi+m)− F̂n(zi−m)
− 1

n

m∑

i=1

ln
xi+m − x1

F̂n(xi+m)− F̂n(x1)

+
1

n

n∑

i=n−m

ln
zi+m − xi−m

F̂n(zi+m)− F̂n(xi−m)
− 1

n

n∑

i=n−m

ln
xn − xi−m

F̂n(xn)− F̂n(xi−m)

=
1

n

m∑

i=1

ln(
xi+m − zi−m

xi+m − x1

F̂n(xi+m)− F̂n(x1)

F̂n(xi+m)− F̂n(zi−m)
)
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+
1

n

n∑

i=n−m

ln(
zi+m − xi−m

xn − xi−m

F̂n(xn)− F̂n(xi−m)

F̂n(zi+m)− F̂n(xi−m)
)

≤ 1

n

m∑

i=1

ln
xi+m − zi−m

xi+m − x1
+

1

n

n∑

i=n−m

ln
zi+m − xi−m

xn − xi−m
.

Ebrahimi et al.(1994) show that the right hand side of the above inequality
goes to zero in probability. Also we can write

Hb(m,n)−Ha(m,n)

≥ 1

n

m∑

i=1

ln
F̂n(xi+m)− F̂n(x1)

F̂n(xi+m)− F̂n(zi−m)
+

1

n

n∑

i=n−m

ln
F̂n(xn)− F̂n(xi−m)

F̂n(zi+m)− F̂n(xi−m)

= I + II,

where I = 1
n

m∑
i=1

Ai and II = 1
n

n∑
i=n−m

Bi, where

Ai =
F̂n(xi+m)− F̂n(x1)

F̂n(xi+m)− F̂n(zi−m)
and Bi =

F̂n(xn)− F̂n(xi−m)

F̂n(zi+m)− F̂n(xi−m)
.

It is easy to see that

Ai ≥
n−1
n [i+m+ 1

n−1 ]− 1
n−1
n [i+m+ 1 + 1

n−1 ]− i−1
m

≥ m

2m+ n
n−1

and

Bi ≥
n− n−1

n [i−m+ 1
n−1 + 1]

n+ m+i−n
m − n−1

n [i−m]
≥ m

2m+ 2 n
n−1

.

So, as n,m→ ∞ s.t. m
n → 0

I ≥ m

n
ln

m

2m+ n
n−1

→ 0 and II ≥ m

n
ln

m

2m+ 2 n
n−1

→ 0.

Thus the result follows.

The next theorem shows that the scale of the random variable X has no effect on
the accuracy of Ha(m,n) and Hb(m,n) in estimating H(X).

Theorem 3.3. Let H(X) and H(W ) denote entropies of X and W, respectively,
and let X1, X2, ..., Xn be a an ordered random sample from a distributed with cdf
F and Wi = kXi, i = 1, ..., n, where k > 0. Then the following relations hold.
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1. E(HW
a (m,n)) = ln k + E(HX

a (m,n)),
2. V ar(HW

a (m,n)) = V ar(HX
a (m,n)),

3. MSE(HW
a (m,n)) =MSE(HX

a (m,n)),

where the superscripts X and W refer to the corresponding distribution.

Proof. It is easy to see that

F̂X
n (Wi) =

n−1
n(n+1) (i+

1
n−1 + Wi−Wi−1

Wi+1−Wi−1
)

= F̂W
n (Xi),

for i = 1, ..., n. So we have

HW
a (m,n) =

1

n

n∑

i=1

ln
k(Xi+m −Xi−m)

F̂n(kXi+m)− F̂n(kXi−m)
= ln k +HX

a (m,n).

Theorem 3.4. Under the assumptions of Theorem 3.3 the following relations
hold.

1. E(HW
b (m,n)) = ln k + E(HX

b (m,n))
2. V ar(HW

b (m,n)) = V ar(HX
b (m,n))

3. MSE(HW
b (m,n)) =MSE(HX

b (m,n))

Proof. The proof is similar to the proof of Theorem 3.3 and is, thus, omitted.

4. Simulation Results

In this section we compare the bias and root mean squared error of our proposed
estimator with those of the estimators of Ebrahimi et al.(1994)’s and those of the
estimator based on kernel density estimate of f .
As can be seen from the tables, in almost all cases the bias and RMSE of the pro-
posed estimators are less than those of Ebrahimi et al.(1994)’s and the estimator
based on the kernel density estimator.
The output of kernel density of R 2.0.0 software, which was used for the kernel
density estimate, has 512 ordered pairs (x, f̂d), in which f̂d is the value of the
density estimate at point x.
The entropy estimator based on kernel density is thus

Hk = −
512∑

i=1

ln(f̂di)f̂di∆x,

where ∆x is the difference between any two consecutive values of x in the output
of kernel density estimate. The values in these tables are based on 10000 random
samples, each of sizes 10, 20 and 30 and give the bias and root mean squared error
of the estimators, for Uniform, Exponential and Normal distributions. It can be
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Table 1. Bias and RMSE of entropy estimators for Uniform(0,1)
distribution, H(X) = 0.

Bias RMSE

n m Hc Hd Hb Hc Hd Hb

10 1 -0.381 -0.250 -0.201 0.445 0.288 0.245
2 -0.218 -0.151 -0.076 0.283 0.184 0.128
3 -0.167 -0.122 -0.034 0.237 0.156 0.101
4 -0.141 -0.108 -0.0126 0.215 0.143 0.093
5 -0.127 -0.101 -0.001 0.209 0.140 0.095

20 1 -0.327 -0.261 -0.224 0.355 0.282 0.247
2 -0.174 -0.141 -0.098 0.202 0.158 0.121
3 -0.127 -0.105 -0.057 0.157 0.122 0.084
4 -0.101 -0.085 -0.035 0.133 0.103 0.066
5 -0.088 -0.075 -0.022 0.122 0.093 0.059
6 -0.078 -0.067 -0.013 0.112 0.086 0.054
7 -0.072 -0.063 -0.007 0.108 0.083 0.054
8 -0.067 -0.059 -0.002 0.105 0.081 0.055
9 -0.064 -0.057 0.001 0.106 0.081 0.057
10 -0.061 -0.055 0.002 0.104 0.080 0.058

30 1 -0.307 -0.263 -0.230 0.325 0.276 0.245
2 -0.158 -0.136 -0.106 0.175 0.147 0.120
3 -0.112 -0.098 -0.065 0.130 0.109 0.081
4 -0.089 -0.078 -0.043 0.108 0.090 0.062
5 -0.075 -0.066 -0.031 0.096 0.078 0.051
6 -0.067 -0.060 -0.023 0.088 0.072 0.046

7 -0.060 -0.054 -0.016 0.083 0.067 0.043
8 -0.056 -0.050 -0.012 0.079 0.064 0.042
9 -0.051 -0.047 -0.008 0.076 0.061 0.042
10 -0.049 -0.044 -0.005 0.074 0.060 0.041
11 -0.047 -0.043 -0.003 0.073 0.059 0.041
12 -0.045 -0.041 -0.002 0.073 0.058 0.041
13 -0.043 -0.040 -0.000 0.073 0.059 0.043
14 -0.041 -0.038 0.001 0.073 0.059 0.044
15 -0.040 -0.037 0.002 0.073 0.058 0.045

seen from the above tables that bias and RMSE of Hb, Hc and Hd depend on the
value of m. The optimum values of m for Hb for different sample sizes are

n m

10 2

20 3

30 4

which do not depend on the true distribution, while the optimum value of m for
Hc and Hd depend on the true distribution as well as on the sample size.
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Table 2. Bias and RMSE of entropy estimators for Exponential
distribution, H(X) = 1.

Bias RMSE

n m Hc Hd Hb Hc Hd Hb

10 1 -0.408 -0.203 -0.152 0.566 0.406 0.382
2 -0.246 -0.0729 0.004 0.434 0.342 0.334
3 -0.181 -0.002 0.088 0.401 0.336 0.347
4 -0.130 0.062 0.160 0.383 0.345 0.375
5 -0.095 0.113 0.215 0.385 0.370 0.413

20 1 -0.341 -0.241 -0.203 0.433 0.347 0.321
2 -0.189 -0.106 -0.0627 0.310 0.257 0.242

3 -0.134 -0.050 -0.001 0.279 0.241 0.235
4 -0.099 -0.009 0.042 0.262 0.232 0.235
5 -0.072 0.025 0.079 0.254 0.233 0.245
6 -0.046 0.059 0.114 0.249 0.240 0.259
7 -0.020 0.094 0.150 0.248 0.252 0.278
8 0.008 0.132 0.189 0.254 0.273 0.305
9 0.0309 0.164 0.222 0.266 0.296 0.331
10 0.0564 0.197 0.256 0.274 0.318 0.357

30 1 -0.317 -0.254 -0.221 0.381 0.325 0.299
2 -0.170 -0.118 -0.087 0.260 0.225 0.210
3 -0.120 -0.068 -0.034 0.229 0.201 0.192
4 -0.087 -0.032 0.003 0.212 0.191 0.188
5 -0.065 -0.005 0.031 0.205 0.187 0.190
6 -0.044 0.020 0.058 0.200 0.189 0.196
7 -0.024 0.0449 0.083 0.197 0.192 0.204
8 -0.004 0.071 0.109 0.201 0.202 0.219
9 0.012 0.092 0.132 0.202 0.212 0.232
10 0.030 0.116 0.156 0.205 0.222 0.245
11 0.049 0.140 0.180 0.211 0.238 0.263
12 0.068 0.164 0.204 0.221 0.254 0.282
13 0.083 0.185 0.225 0.229 0.269 0.299
14 0.098 0.205 0.246 0.240 0.287 0.317
15 0.121 0.233 0.274 0.253 0.309 0.341

A serious drawback of the estimators proposed by Ebrahimi et al.(1994) is that
the optimum values of m for their estimators very much depend on the type of
the true distribution. The fact that in our procedure the optimum values of m are,
more or less, the same for all types of distributions, is a clear advantage.
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Table 3. Bias and RMSE of entropy estimators for Standard
Normal distribution, H(X) = 1.419.

Bias RMSE

n m Hc Hd Hb Hc Hd Hb

10 1 -0.458 -0.038 -0.127 0.556 0.280 0.304
2 -0.332 0.143 0.013 0.433 0.297 0.254
3 -0.302 0.223 0.051 0.403 0.337 0.260
4 -0.296 0.270 0.076 0.395 0.368 0.261
5 -0.295 0.299 0.085 0.390 0.387 0.267

20 1 -0.363 -0.147 -0.189 0.419 0.242 0.269
2 -0.227 0.029 -0.050 0.295 0.178 0.183

3 -0.184 0.109 0.003 0.259 0.206 0.168
4 -0.171 0.162 0.034 0.247 0.235 0.171
5 -0.159 0.206 0.052 0.241 0.265 0.179
6 -0.156 0.242 0.069 0.237 0.294 0.181
7 -0.156 0.270 0.081 0.239 0.318 0.185
8 -0.155 0.294 0.087 0.237 0.336 0.189
9 -0.153 0.314 0.092 0.234 0.355 0.190
10 -0.155 0.330 0.099 0.235 0.369 0.195

30 1 -0.329 -0.184 -0.211 0.369 0.242 0.261
2 -0.194 -0.016 -0.079 0.244 0.144 0.161
3 -0.150 0.056 -0.024 0.208 0.151 0.142
4 -0.131 0.107 0.005 0.192 0.174 0.137
5 -0.117 0.143 0.027 0.184 0.198 0.137
6 -0.109 0.178 0.045 0.182 0.224 0.141
7 -0.100 0.205 0.057 0.175 0.245 0.145
8 -0.097 0.235 0.069 0.173 0.271 0.152
9 -0.091 0.258 0.081 0.172 0.290 0.158
10 -0.088 0.278 0.087 0.171 0.309 0.161
11 -0.090 0.296 0.094 0.171 0.325 0.165
12 -0.090 0.313 0.100 0.175 0.340 0.167
13 -0.091 0.326 0.103 0.176 0.353 0.171
14 -0.091 0.341 0.109 0.174 0.366 0.173
15 -0.091 0.346 0.109 0.176 0.371 0.174

Table 4. Bias and RMSE of entropy estimators
based on kernel density.

n uniform(0,1) Exponential Normal(0,1)

Bias RMSE Bias RMSE Bias RMSE

10 0.175 0.273 0.112 0.412 -0.06 0.285
20 0.204 0.232 0.190 0.327 -0.001 0.177
30 0.203 0.218 0.204 0.296 0.019 0.139
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Results on Monotonicity of the Residual Rényi Entropy of Order

Statistics and Record Values
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This paper explores some monotonicity properties of the residual Rényi entropy of
some ordered random variables. The residual Rényi entropy of the kth order statistic
from a continuous distribution function is represented in terms of the residual Rényi
entropy of the kth order statistic from uniform distribution. The monotone behavior
of the residual Rényi entropy of order statistic under various conditions is discussed.
The analogues results regarding the residual Rényi entropy of record values are also
investigated.

Keywords: Order statistic, Record value; Rényi entropy, Residual lifetime, Incomplete
beta function, Incomplete gamma function.

1. Introduction

In information theory to measure the amount of information in a probability distri-
bution function a well known criterion is the Shannon entropy (which is introduced
by Shannon [1] and is also known as differential entropy). Let X be a non-negative
continuous random variable with density function f , distribution function F and
the survival function F̄ = 1− F . The Shannon entropy of F , which we denote by
H , is defined as

H(X) = −
∫ ∞

0

f(x) log f(x)dx. (1)

The Shannon entropy H plays a central role in the field of information theory. It
is known that H(X) measures the uniformity of F . The larger amount of H(X),
more difficult to predict an outcome of F . Rènyi [2] introduced a one parameter
extension of Shannon entropy that is more flexible than Shannon entropy and has
a wide range of applications in many fields. The Rényi entropy of X, which we
denote by Hα(X), is defined as follows:

Hα(X) =
1

1− α
log

∫ ∞

0

fα(x)dx

where α > 0, α 6= 1. It is easy to show that when α tends to 1, Hα(X) tends
to Shannon entropy in (1). Several properties of the Rényi entropy are explored
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by many authors. Among others, we refer to Rényi [2], Morales et al. [3], Song [4]
and Nadarjah and Zografos [5].

Let the random variable X denote a duration such as the lifetime of a
system. Usually in reliability theory and survival analysis, when the system is
still operating at time t, random variable of interest is the residual lifetime of
the system. The residual lifetime of the system, which we denote by Xt, is Xt =
X − t|X > t with density function

f(x; t) =
f(x+ t)

F̄ (t)
, x > 0.

Ebrahimi [6] argued that to measure the entropy of the system lifetime X at time
t, the measure (1) is no longer an appropriate measure and one should obtain the
entropy of Xt. Then he introduced the following time dependent entropy which
measures the uncertainty of the residual lifetime Xt

H(X ; t) := −
∫ ∞

0

f(x; t) log f(x; t)dx.

In last two decades, several authors have studied the properties of H(X ; t); see,
for example, [7]-[9].

Gupta and Nanda [10] introduced the concept of Rényi entropy of the residual
lifetime (RRE) as follows:

Hα(X ; t) =
1

1− α
log

∫ ∞

t

fα(x)

F̄α(t)
dx (2)

where α > 0, α 6= 1 . Various properties of this measure have been investigated by
Asadi et al. [11], Nanda and Paul [12] and Mahmoudi and Asadi [13].

Different kinds of ordered random data are appeared in statistical studies.
Order statistics are an important kind of ordered data which are used in many
branches of probability and statistics including characterization of probability dis-
tributions, analysis of censored samples, reliability analysis, goodness-of-fit tests,
quality control etc. Assuming thatX1, ..., Xn is a random sample from F , the order
statistics corresponding to the sample is defined by the arrangement of X1, ..., Xn

from the smallest to the largest, denoted as X1:n ≤ X2:n ≤ ... ≤ Xn:n. For a
comprehensive review on the theory and applications of order statistics one can
refer to Daivid and Nagaraja [14].

The other important concept of ordered random variables which arises in many
areas of applications is the concept of record values. Consider a sequence of i.i.d.
random variables {Xi ; i ≥ 1}. An observation Xj is called an upper record value
if its value exceeds of all previous observations. Thus, Xj is an upper record if
Xj > Xi for every i < j. Examples, in which the record values arise naturally,
include industrial stress testing, meteorological analysis, hydrology, sporting and
athletic events, economy etc. For more details about records and their applications,
one may refer to Arnold et al. [15].
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The wide scope of applications of order statistics and record values gives a
strong motivation to study the information properties of them. Recently attempts
have been made regarding this. Ebrahimi et al. [16] explored some properties of
the Shannon entropy of the order statistics. Baratpour et al. [17] investigated some
results on the Rényi entropy of the order statistics and record values.

The aim of the present paper is to study some monotonicity properties
of RRE of order statistics and record values. In Section 2, we represent the RRE
of order statistics Xk:n from distribution function F in terms of RRE of order
statistics of uniform distribution. We show that, under some mild conditions the
RRE of minima and the maxima of a sample which correspond to the lifetime of a
series and a parallel system, respectively, are monotone functions of the number of
the components in the system. Using a counter example we show that the RRE of
other order statistics Xk:n is not necessary monotone function of n. In the sequel
of Section 2, we study the monotone behavior of RRE of order statistics Xk:n in
terms of k. It is shown that the RRE of Xk:n is not a monotone function of k in
entire support of F . Section 3, investigates the monotonicity properties of RRE of
record values. In this section we also prove that, under some mild conditions, the
RRE of record values is monotone function of number of records in the sequence.

Before giving the results of the paper we would like to mention here that,
because of the page limit, we have not given the proofs of the theorems and lemmas
in the manuscript. The proofs can be obtained from the authors upon request.

Throughout the paper increasing (decreasing) means non-decreasing (non-
increasing).

2. The residual Rényi entropy of order statistics

In this section we concentrate on the RRE of order statistics. First note that the
density function fk:n(x) and the survival function F̄k:n(x), k = 1, ..., n of Xk:n are,
respectively, given by

fk:n(x) =
1

B(k, n− k + 1)
[F (x)]k−1[1− F (x)]n−kf(x) (3)

and

F̄k:n(x) =

k−1∑

i=0

(
n

i

)
F i(x)F̄n−i(x) (4)

where

B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx, a > 0, b > 0.

It is well known that F̄k:n(t) can also be represented as

F̄k:n(x) =
B̄F (x)(k, n− k + 1)

B(k, n− k + 1)
(5)
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where

B̄x(a, b) =

∫ 1

x

ua−1(1− u)b−1du, 0 < x < 1.

B(a, b) and B̄x(a, b) are known in the literature as the beta and the incomplete
beta functions, respectively (see, for example, [14]).

Notation: Throughout this section we use the notation Y ∼ B̄t(a, b) to show
that Y has a distribution with density function

fY (y) =
1

B̄t(a, b)
ya−1(1− y)b−1 ; t ≤ y ≤ 1. (6)

Remark 2.1. A (n − k + 1)-out-of-n system, which is an important structure
in reliability engineering, functions if and only if at least k components out of
n components function. Let X1, X2, ..., Xn denote the independent lifetimes of n
components of such system. Then it is well known that the lifetime of a (n−k+1)-
out-of-n system is equal to the kth order statistics Xk:n. The special cases of k = 1
and k = n are corresponding to systems which are known as series and parallel
systems, respectively.

The result of the following lemma is useful in the sequel.

Lemma 2.1. Let Uk:n be kth order statistic based on a sample of size n from
uniform distribution on (0, 1). Then

Hα(Uk:n; t) =
1

1− α
log B̄t(α(k − 1) + 1, α(n− k) + 1)− α

1− α
log B̄t(k, n− k + 1)

It is well known, from the probability integral transformation, that Uk:n
d
=

F (Xk:n), k = 1, ..., n where Xk:n is the kth order statistic based on a random
sample of size n from continuous distribution F (see, for example, [14]). Using
this, the RRE of order statistics Xk:n from an absolutely continuous distribution
can be represented in terms of RRE of order statistics of uniform distribution
function. This is shown in the following theorem.

Theorem 2.1. The RRE of the kth order statistic from an absolutely continuous
distribution function F having density function f can be represented in terms of
the RRE of kth order statistic from uniform distribution, over the unit interval,
as follows

Hα(Xk:n; t) = Hα(Uk:n;F (t)) +
1

1− α
logE[fα−1(F−1(Yk))]

where Yk ∼ B̄F (t)(α(k − 1) + 1, α(n− k) + 1).

Remark 2.2. The quantity f(F−1(x)) is known, in the literature, as the density-
quantile function and is used to approximate the moments of order statistics (see
[14]).
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Under the assumptions of Theorem 2.1, we have the following corollary regarding
the residual Shannon entropy of order statistics.

Corollary 2.1. The residual Shannon entropy of kth order statistic from abso-
lutely continuous distribution function F can be written in terms of the residual
Shannon entropy of kth order statistic from uniform distribution, over the unit
interval, as follows

H(Xk:n; t) = H(Uk:n;F (t)) − E[log f(F−1(Yk))] (7)

where Yk ∼ B̄F (t)(k, n− k + 1). The specialized version of this result for t = 0, is
already obtained by Ebrahimi et al. [16].

In the following we give one example.

Example 2.1. Suppose that X is a random variable having the exponential dis-
tribution with mean 1

θ . Then f(F
−1(y)) = θ(1 − y) and we have

E[fα−1(F−1(Y1))] =
θα−1F̄nα(t)

nαB̄F (t)(1, α(n− 1) + 1)

For k = 1, Theorem 2.1 gives

Hα(X1:n; t) =
logα

α− 1
− log(nθ)

On the other hand, we have

Hα(X ; t) =
logα

α− 1
− log θ.

This gives

Hα(X1:n; t)−Hα(X ; t) = − logn.

That is, the difference between of RRE of the lifetime of a series system and RRE
of the lifetime of each components is free of time and, in fact, is equal to − logn,
where n is the number of the components of the system.

In the following we explore some monotone behavior of RRE of order statistics.
First we prove the following lemma.

Lemma 2.2. Consider a series (parallel) system with n components each having
uniform distribution over unit interval. Then the RRE of the system lifetime is a
decreasing function of the number of components.

We use the result of the lemma to prove the following theorem.

Theorem 2.2. Let X1, ..., Xn be a set of i.i.d random variables representing the
lifetime of the components of a series (parallel) system having a common distri-
bution function F . Assume that F has a density function f which is decreasing
(increasing) in its support. Then the RRE of system lifetime is decreasing in n.
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The following example shows that the result of above theorem is not in general
valid for any (n− k + 1)-out-of-n system.

Example 2.2. Assume that the structure of the system is (n− 1)-out-of-n. Then
the lifetime of the system is X2:n. Assume that the components of the system have
uniform distribution on (0, 1). Figure 1 shows the graph of RRE of X2:n at time
t = 0.2 for n = 2, . . . , 30. This is evident from the graph that the RRE of the
system is not a decreasing function of n. In fact the graph shows that RRE of X2:2

is less than that of X2:3.

n
0 10 20 30

K2.5

K2.0

K1.5

K1.0

K0.5

Fig. 1. The plot of RRE of (n− 1)-out-of-n system, n = 2, . . . , 30 when the parent distribution
is uniform.

Remark 2.3. Another situation in which the RRE of first order statistic X1:n, is
decreasing in the number of the components of the system arises as follows. Asadi
et al. [11] showed that when X and Y are two non-negative continuous random
variables, under the condition that either X or Y has a decreasing failure rate,
the X ≤hr Y (that is the hazard rate of X is more than the hazard rate of Y
everywhere) implies that Hα(X ; t) ≤ Hα(Y ; t) for all t ≥ 0. Now assuming that
X has a decreasing failure rate, based on Asadi et al.’s result and the fact that
X1:n ≤hr X , we have Hα(X1:n; t) ≤ Hα(X ; t). If X has decreasing failure rate
then X1:n, n ≥ 1, has also a decreasing failure rate. On the other hand

X1:1 ≥hr X1:2 ≥hr ... ≥hr X1:n
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Hence, we have

Hα(X1:1; t) ≥ Hα(X1:2; t) ≥ ... ≥ Hα(X1:n; t).

That Hα(X1:n; t) is decreasing in n. Examples of distributions with decreasing
failure rate include Weibull distributions with shape parameter less that one,
Gamma distribution with shape parameter less than one, mixture of two expo-
nential distributions, etc. Hence for these distributions the RRE of a series system
is a decreasing function of the number of components.

In the following we study the behavior of RRE of order statistics Xk:n in terms
of k. First we prove the following lemma.

Lemma 2.3. Let Uk:n denote the kth order statistic of uniform distribution over
unit interval. If k1 ≤ k2 ≤ n, are integers then for t ≥ k2−1

n−1 ,

Hα(Uk1:n; t) ≤ Hα(Uk2:n; t).

As a conclusion of the above lemma we have the following theorem.

Theorem 2.3. Let X be a non-negative absolutely continuous random variable
with distribution function F . Let F have a density function f which is decreasing
in its support. If k1 and k2 are integers such that k1 ≤ k2 ≤ n, then Hα(Xk1:n; t) ≤
Hα(Xk2:n; t) for t ≥ F−1(k2−1

n−1 ).

The class of distribution functions with decreasing density functions are a wide
class of distributions. Examples are exponential, Pareto, mixture of exponential
and Pareto distributions etc.

The following example shows that the condition t ≥ F−1(k2−1
n−1 ) can not be

dropped from the conditions of theorem.

Example 2.3. Let the density function of X be given by

f(x) =
(1− x)e(−

4x
3+3x )

(1 + x)1/3
, 0 < x < 1.

Figure 2 displays the plots of RRE of order statistics Xk:7, for k = 1, 2, ..., 7 based
on density function of X . It is seen from the plots that the RRE of the order
statistics are not ordered in terms of k for all values of t, t ∈ (0, 1).

Corollary 2.2. Let X be a non-negative absolutely continuous random variable
with decreasing density function f . If k ≤ n+1

2 then Hα(Xk:n; t) is increasing in k
for values greater than the median of distribution.
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Fig. 2. The plot of RRE of Xk:7, k = 1, ...,7 based on the parent distribution given in Example
2.3

3. The Residual Rényi entropy of record values

In this section we focus on the RRE of record values. Let U1, U2, ... be a sequence of
upper record values based on a sequence of non-negative continuous random vari-
ables Xi’s with cdf F and pdf f . Then the density function and survival function
of Un, which we denote by FUn and fUn , respectively, are given by

fUn(x) =
[− log F̄ (x)]n−1

(n− 1)!
f(x), x > 0, n ≥ 1

F̄Un(x) =

n−1∑

j=0

[− log F̄ (x)]j

j!
F̄ (x)

=
Γ(n;− log F̄ (x))

Γ(n)
.

The result of the following lemma is easy to verify.

Lemma 3.1. Let U∗
n denote the nth upper record value from U(0, 1). Then

Hα(U
∗
n; t) =

1

1− α
log

Γ(α(n− 1) + 1;− log(1− t))

Γα(n;− log(1 − t))
.

The following theorem represents the RRE of upper record Un in terms of upper
record U∗

n of uniform distribution.
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Theorem 3.1. The RRE of Un can be written in terms of the RRE of U∗
n as

follows

Hα(Un; t) = Hα(U
∗
n;F (t)) +

1

1− α
logE[fα−1(F−1(1− e−Vn))]

where Vn ∼ Γ− log F̄ (t)(α(n − 1) + 1, 1).

Under assumptions of Theorem 3.1, we have the following corollary regarding the
residual Shannon entropy of upper record values.

Corollary 3.1. The residual Shannon entropy of nth upper record value of con-
tinuous distribution function F can be written in terms of the residual Shannon
entropy of nth upper record value of U(0, 1) as follows

H(Un; t) = H(U∗
n;F (t))− E[log f(F−1(1− e−Zn))] (8)

where Zn ∼ Γ− log F̄ (t)(n, 1).

Example 3.1. Let X have Weibull distribution with density

f(x) = βλβ(x − µ)β−1e−[λ(x−µ)]β , x ≥ µ.

Here, F−1(x) = 1
λ (−log(1− x))β + µ. Then we have for β ≥ 1,

E[fα−1(F−1(1−e−Vn))] =
(λβ)α−1

Γ(α(n− 1) + 1; (λ(t− µ))β)

Γ( 1β (1− α) + nα;α(λ(t− µ))β)

α
1
β (1−α)+nα

.

Therefore

Hα(Un; t) =
1

1− α
log

Γ( 1β (1− α) + nα;α(λ(t− µ))β)

Γα(n; (λ(t− µ))β)
− log(λβ)− 1

β
logα− nα

1− α
logα.

The following lemma and theorem investigate the behavior of RRE of upper
records in terms of n.

Lemma 3.2. The RRE of upper record values of uniform distribution on (0,1) is
decreasing in n.

Now we can prove the following theorem.

Theorem 3.2. Let {Xi, i ≥ 1} be a sequence of i.i.d random variables from dis-
tribution function F having an increasing density function f . If {Un, n ≥ 1} rep-
resents the sequence of upper record values corresponding to F , then Hα(Un; t) is
decreasing in n.

An example of the distributions for which this theorem can be applied is the
power distribution with distribution function F (x) = xβ , 0 < x < 1, β > 1.
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