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PREFACE

This volume contains the abstracts of invited and contributed papers
presented at the Sixth International Statistics Conference (ISC6). This con-
ference is a three day conference held every two years with cooperation the
Iranian Statistical Association. ISC6 is jointly organized by Department of
Statistics and Department of Biostatistics of Tarbiat Modares University. It
is taking place from 26 to 28 August at Tarbiat Modares University, Tehran,
Iran. Previous ISCs from 1992-2000 were at Isfahan University of Technology,
Ferdowsi University of Mashad, Iranian Statistical Center, Shahid Beheshty
University, Isfahan University of Technology respectively.

The scientific committee of the conference selected 193 abstracts for oral
presentations, 73 abstract for posters, and 5 abstracts for workshops. from
over 340 submitted abstracts.

We would like to thank our colleagues and all who helped us for this publi-
cation. We gratefully acknowledge the careful efforts of R. Safari, A. Kavoosi,
S. Jolani and S. Khafry to made the publication of abstracts possible.

M. Mohammadzadeh

. August 2002
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Convergence of Weighted Sums Of r.v.s Using
Sub - Gaussian Techniques

Amini, M. and Bozorgnia, A.

A11098

Department of Statistics, Ferdowsi University, Iran.

Abstract. In this paper, we study some strong limit theorems for the se-
quence {1/nβ

∑n
i=1 Xn, n ≥ 1} for each β > 0 and weighted sum

∑
ankXk

where {Xn,, ≥ 1} is a sequence of negatively dependence sub - Gaussian ran-
dom variables and ank is an array of nonnegatively real numbers.

Keywords: Negatively Dependent Random Variables, Strong Law of Large
Numbers, Weighted Sums.

1 Introduction

Convergence theorems for weighted sums have been obtained by Chow []
Hamson[3].
Pruitt [5] ,Bozorgnia et . al. [2] , Amini et.al. [1] ,and for independent,generalized
Gaussian r.v.by Chow [3],and by Taylor and Chung Hu [6].

Lemma 2 (a)Let X1, ...,Xn be ND random variables and f1, ..., fn be a
sequence of Borel-fanctions which are monotone,then f1(X1), ..., fn(Xn) are
ND random variables.
Let X1, ...,Xn be ND random variables, then

E(
n∏
1

Xj) ≤
n∏
1

E(Xj)

Definition 2. A Symetric r.v is said to sub-Gaussian r.v. if these exists a
real number α ≥ 0 such that for each real number t

Eetx ≤ exp[
α2t2

2
]

lemma 1. If X is a sub-Gaussian r.v. with

τ(X) = inf{α ≥ 0 : EetX ≤ exp[fracα2t22]}

then

a)E[et(X)] ≤ 2exp[α2t2

2 ] , t ∈ R

b) P (|X| ε) ≤ 2exp[−ε2

2α2 ], ε > 0
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c)If |X| ≤ M then τ(X) ≤ √
2M .

Theorem 1 .Let {Xn, n ≥ 1} be a sequence of stochastically bounded by
random variables X , with E(X2) and let {anj , 1 ≤ j ≤ n} be a triangular
array of real numbers with

∑n
j=1 a2

nj = O(n−β), β > 1, then

n∑
1

anjXj → 0

Theorem 2 . Let {Xn, n ≥ 1} be a sequence of ND random variables with
EXj = 0,

a)if sup|Xn| ≤ C and max|anj | = O(n−1),then∑
anjXj → 0 hspace1cma.e

b)If |Xn| ≤ C, a.e and max|anj | = O(n−1), β > 1/2 then∑
anjXj → 0 hspace1cma.e

c)If B2
n =

∑n
1 σ2

j and
∑

exp{− 2ε2

αβ2
n

∑
a2

nj

} then

∑
anjXj → 0 a.e

Theorem 3. Let {Xn, n ≥ 1} be a sequence of ND sub-Gaussian r.v.s, with
τ(Xn) ≤ αn

i)Sn =
∑n

1 Xk is a sub-Gaussianr.v. with α2 =
∑n

1 α2
i .

ii) If
∑n

1 α2
i = O(n2−β), β > 0 ,then

lim
n

1
n

n∑
1

Xk a.e

iii) If α1 = α2 = ... = αn = α then for some β > 1
2 ,

lim
n

1
nβ

n∑
1

Xk a.e

Teorem 4 . (a) Let {Xn, n ≥ 1} be a sequence of ND random variables
satisfying P (a ≤ Xi ≤ b) = 1, then

lim
n

1
nβ

n∑
1

(Xk − E(Xk)) = 0 a.e
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b)If {Xn, n ≥ 1} is ND and identically distriduted r.v.s with E(X1) = 0,
var(X1) = 1, E(Xk

1 ) < ∞ then Sn√
n

is an asymptotically sub-gaussian r.v.

teorem 5 .Let {Xn, n ≥ 1} be a sequence of ND sub-gaussian r.v.s

i)If limn

∑n
1 a2

nk = l �= 0 < ∞ , then for β > 0,

lim n−β
∑

ankXk = 0 a.e

ii)If ank = O(n−β) for some k ≤ n and β > 1
2 ,then

lim
n

∑
ankXk = 0 a.e

iii)If
∑

a2
nk = O(n−β), β > 0 ,then

lim
n

∑
ankXk = 0 a.e

2 Some strong limit theorems for weighted sums

In this section we some obtain some strong limit theorems for weithed sums
.let Tn =

∑∞
k=1 ankXk and Tnk =

∑∞
k=1 ankXk when {Xn, n ≥ 0} is a se-

quence of negetivly dependence sub -Gaussian r.v.s and {ank} is an array of
real numbers.
We prove Tn =

∑∞
k=1 ankXk converges a.e underr the condition that E(Xn|Fn−1) =

0 where fn = σ(X1, ...,Xn) and
∑∞

k σ2
nj = O(K−β), β 0

lemma 2 . Let {Xn, n ≥ 1} be a sequance of ND sub-Gaussian r.v.s with
τ(Xk) ≤ α , then

i)Tn is a sub-Gaussian r.v . with τ(Tn) ≤ α
√

an

ii) for every ε 0

P (|Tn| ε) ≤ 2exp[− ε2

2α2An
]

were An =
∑∞

k=1 a2
nk.

Corollary 1. If
∑

2exp[− ε2

2α2An
≤ ∞ ,then

lim
n→∞ sumankXk = 0 , a.e

In particular if An = O(ln−1(n)) then (1) holds.

ii) IfSn =
∑

Xk and β > 0, then

lim n1/2(ln−(1+β)/2(n))Sn = 0 a.e
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Teorem 6 (a) Let {Xn, n ≥ 1} be a sequance of ND sub-Gaussian r.v.s
then for every x ∈ R

P (max|Tnj | > x) ≤ 2exp[− x2

2α2An
]

b)If {Tnm,m ≥ 1} converges in probability for every n , then it converges
a.e.

c) Tn =
∑

ankXk convereges a.e . for each n .
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The Effect of Different Parameters on Students
Scores

Badshah, S.

P17023

Islamia College, University of Peshawar, Pakistan.

Abstract. This study was designed to estimate the effect of different pa-
rameters (i.e. SSC marks, mathematics, statistics, handwriting, attendance,
hostel, study hours, parent’s education and medium of schools) on student
marks in FA Intermediate part-I. The effects of mathematics, statistics, hand-
writing, attendance and educated mother are significantly positive whereas
those of ”English Medium” schools are significantly negative. Father’s edu-
cation, study hours and position among siblings have no significant effect on
one’s academic achievement. This study also shows that weak students are
more studious.

1 Introduction

There are verbal debates among parents of the students about different pa-
rameters effecting students’ marks at the time of admission in colleges and
their results. The common parameters, which the authors considered are SSC
marks, mathematics, statistics, handwriting, attendance, hostel, study hours,
parent’s education and medium of school. Some people prefer hostel for stud-
ies whereas a few do not do so. Some teachers advocate that students having
a sound background in mathematics and statistics get higher marks. Some
teachers insist on improving the handwriting of students because it has a
positive effect on evaluation of papers. According to some views about ”En-
glish Medium Schools”, their students are bold, take part in extra-curricular
activities speak better English but they are generally weak in mathemat-
ics. Attendance also plays a very important role in a student’s achievement.
To study the above parameters, their effects and importance, a study is de-
signed based on 112-second year students of Islamia College Peshawar. The
methodology and results is given below.

2 Material and Methods

To study different parameters related to one’s marks in intermediate arts,
part-I, the data of 112 students, sessions 1998-99 and 1999-2000, are collected
through a questionnaire*. The parameters studied are: First year marks in
intermediate (FM), Marks in Mathematics (MM), Marks in Statistics (MS),
Boarder or day-scholar (H), Father’s Education (FE), Mother’s Education
(ME), Position among siblings (PB), Study hours (SH), Handwriting (WR)
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”fair or not”, Attendance percentage (AP), Medium of School in SSC (SC)
and Marks in matriculation (SSC). The Intermediate part-I marks are taken
as dependent variable and the remaining parameters are independent vari-
ables. The effects of different parameters on 112 students were studied. The
details are given below:

The data shows that the statistic for Intermediate part-I marks recorded
are 112 (with zero missing values.), having mean marks 325.01, with minimum
marks of 229 and maximum of 409. The mean of the distribution is 610.95
in S.S.C with minimum marks of 529 and maximum of 651 etc. as shown in
table 1.

Parametes Median Minimum Maximum
Intermediate Part-I

332 229 409
Marks
hline S.S.C Marks 612 529 651
Marks in

70 33 97
Mathematics
Marks in Statistics 65.5 37 98
Attendance in Study hours 4 1 8

Among these students 56.3% were found boarders and 39.3% day-scholars
with 4.4% missing. In father’s education category, out of which 65.2% were
found literate whereas 32.1% illiterate, while 2.7% missed the said parame-
ter. 110 recorded their mother’s education, where it is found that 21.4% are
literate,76.8% are illiterate, and 1.8% missed this column. 41.1% are from
English medium, and 58% are from Urdu medium schools. 0.9% missed this
column. The handwriting of 69.6% students is found fair, 27.7% is not fair
and 2.7% missed this category. It is found that 27.7% are the first among
siblings who joined the college.

Linear Model:

Stepwise selection Criteria was used in the selection of the model, i.e.
”Probability-of-F-to-enter ≤ 0.05 , Probability-of-F-to-remove ≥ 0.10”. The
models estimated are given below:

FM = f(MM,MS,BD,FE,ME,PB, SH,WR,AP,MS) (1)

The above model is not only effected by quantitative variables (MM, MS, SH
and AP), but also qualitative variables to capture the effect of the qualitative
variables (BD, FE, ME, PB, WR and MS).

The Variance Inflation Factor (VIF) for every regression coefficient was
calculated, to detect the multicollinearity (John, Neter,. 1987, pp: 382-92)
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effects on the regression coefficients and models themselves. ” A maximum
(V IF )k in excess of 10 is often taken as an indicator that multicollinearity
may be unduly influencing the least squares equation.” (John, Neter., 1987,
pp: 391-3).

Effect of Parameters:

To estimate the regression coefficients of all variables (Quantitative and
Qualitative) in the model, all variables were entered in the model simultane-
ously as given below:

FM = β0 + sum11
i=1βiPi

where Pi represents the different parameters under study. That is

FM = β0 + β1(MM) + β2(MS)β3(AP ) + β4(WR) + β5(H) + β6(SSC)
+ β7(SC) + β8(ME) + β9(FE) + β10(PB) + β11(SH) (2)

Where

BD = ”1” for Boarder and ”0” otherwise.
FE = ”1” for Educated Father, ”0” otherwise.
ME = ”1” for Educated Mother, ”0” otherwise.
PB = ”1” for First in brothers, ”0” otherwise.
WR = ”1” for Fair writing, ”0” otherwise.
SC = ”1” for English Medium, ”0” otherwise.

The estimated regression coefficients in model (1) are given below:

FM = −63.90 + 1.01(MM) + 1.11(MS) + 0.92(AP ) + 14.02(WR) + 9.53(H)
(6.61)∗ (6.31)∗ (5.08)∗ (3.01)∗ (2.15)∗∗

+ 0.26(SSC)− 9.88(SC) + 9.64(ME) + 1.48(FE) + 0.98(PB)− 0.65(SH)
(2.84)∗ (−2.38)∗∗ (1.89)∗∗ (0.34)∗∗∗ (0.23)∗∗∗ (−0.54)∗∗∗

(3)

(Figures in parenthesis are t-ratios)
R− square = 0.79, F = 30.4∗and
1.04 ≤ (V IF ) ≤ 1.60
for all coefficients in the abovemodel.

And (*) for ”Sig. at 1%”, (**) for ”sig. at 5%” and (***) for ”not sig.
at 5%”, which shows that FE, PB and SH are not significant at5% where
as H, SC, and ME are significant at5%. SC and SH shows negative effect.
The remaining variables are significant at 1%. (David, R., 1991, pp: 281-
4, 89) When Stepwise selection Criteria (John, Neter.,1987, pp: 430-5), was
used in the selection of the model: i.e. ”Probability-of-F-to-enter leq .050,
Probability-of-F-to- remove ≥ .100”. The model (2) and (3) emerged as given
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below with their R-squares, F- ratio and t-statistic (David, R., 1991, pp: 401-
4).

FM = −58.14 + 1.03(MM) + 1.08(MS) + 0.92(AP ) + 14.29(WR) + 8.99(H)
(6.91)∗ (6.61)∗ (5.19)∗ (3.12)∗ (2.16)∗∗

+ 0.25(SSC)− 9.48(SC) + 10.15(ME) (4)

(2.82)∗ (−2.37)∗∗ (2.13)∗∗

R− square = 0.79, F = 42.97∗
1.20 ≤ (V IF ) ≤ 1.50
for all coefficients in the above model.
(Figures in parenthesis are t-ratios)

And (*) for ”Sig. at 1%”, (**) for ”sig. at5%” and (***) for ”not sig.
at5%”. Among all these models, model (3) is more appropriate, on the bases
of its F=68.34, which is the highest among the models selected. Which shows
that the model 3 and its regression coefficients are highly significant at 1

FM = 86.60 + 1.22(MM) + 1.09(MS) + 0.84(AP ) + 17.91(WR) (5)
(5.08)∗ (7.95)∗ (6.18)∗ (4.61)∗ (3.74)∗

R − square = 0.74, F = 68.34∗and
1.10 ≤ (V IF ) ≤ 1.40
for all coefficients in the above model.
(Figures in parenthesis are t-ratios)

(*) For ”Significant at 1 %”.

3 Conclusions

1. This study reveals that Marks in Mathematics, Marks in Statistics, At-
tendance, and Handwriting are significantly positive at α = 0.01.

2. S.S.C marks, Hostel stay and Mother’s education has significantly posi-
tive effects at α = 0.05 on students performance in Inter part-I examina-
tion.

3. Equation 2 shows that the performances of English Medium schools are
weaker as compared to Urdu medium schools (the coefficient of ”SC” in
equation 2 is negative).

4. Father’s education, Position among siblings and study hours have no
significant effect.

5. The Coefficient of study hours ”SH” is negative in equation 2, which
shows that relatively dull students are more studious.
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Inflattionary Trends in Marks and Quality of
Education

Badshah, S.
P27023

Islamia College, University of Peshawar, Pakistan.

Abstract. The average marks of the students are increasing day by day,
where as the relative quality of education is decreasing accordingly. A new
model of question paper has been devised after careful study of the existing
question papers. The proposed model question paper will not only reduce the
quantity of marks obtained, selective teaching and selective studies but it will
also improve attendance of the students, quality of education, teachers and
student-teacher relationship. It will also help in reducing the non-productive
activities in educational institutions.

1 Introduction

A technical and rational administrative decision has to be based on database,
which not only solves the direct problems but also plays a very important
role in solving indirect problems as well. Inflationary Trend in examination
marks started a few years ago, with the result that now every student scores
such a high percentage of marks, that even the parents do not accept and
express their opinion by saying that ”Standard of education is dropping day
by day”.

Prior to 1980, only 1st division was sufficient for admission to profes-
sional college, where as from 1994 and onwards, every normal student in
NWFP gets 800 plus marks out of 1100 at Intermediate (Science) level. The
case was different in other provinces of the country and the inflationary trend
of marks was present even before 1994. The students of NWFP always crit-
icized such abnormally high marks. In 1995, the students, as well as their
parents protested against the high percentage of marks in examinations of
other province for admission in Khyber Medical College NWFP Pakistan. As
a result the Govt. of NWFP decided in 1996 to conduct ”Entry Test” for
the admission to Medical and Engineering Colleges to reduce the effect of
inflationary trend in marks. This in turn has created a problem for the stu-
dents and their parents. Now the students not only have to get high marks in
Intermediate (Science) examinations, but also have to go through the coach-
ing classes for ”Entry Test”. Most of the centers for the coaching classes are
located in urban centers of the province. As such participation in the classes
has become easy for students living in urban areas, but not for poor students
living in rural areas. Therefore, the candidates of urban areas are able to get
more marks and the poor students are badly effected. As such the candidates
from rural areas are deprived from admission to professional colleges.
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The race of inflationary marks is primarily because of the style of question
papers, which allows 50% of the course to be enough for solving %100 of the
question paper (i.e., 5 out of 10 questions). As a result

This creates a lot of problems for teachers in the class, because the students
miss about%50 of the classes, and the teachers’ interest also decreases.
Therefore, the student-teacher interaction decreases.

The students residing in hostels lose interest in studies and get involved in
creating problems for administration.

They cover %50 of the course in one month through private tuition, and
are not serious in attending classes. Therefore, the quality of education
is lower whereas percentage of marks obtained increases.

The students have more opportunities to get involved in politics, because
they can cover their courses in half the time (%50 course) and rest of the
time is used for such activities.

Therefore, it is important to have a standard format of question papers
for all subjects having at least the following properties:

1. Compel students to study %100 courses and work hard, and thus compel
students to attend maximum classes.

2. The question paper should enhance the award of standard marks and
reduce the inflationary trend in marks.

3. The question paper should test the real knowledge of the students.
4. It should be in a style, which discourages private tuition, and encourages

class- room teaching.

2 Analytical Investigation

The above mentioned problem of inflationary trend in marks has been studied
through careful observation of the various question papers from B.I.S.E. and
the universities as described in the following sections.

2.1 Material and Methods

The style of a question paper and instructions for attempting the question pa-
pers at B.I.S.E. (for Intermediate) and University of Peshawar (for Bachelors
and Masters) and Gomal university (for Masers) papers have been studied
(Table- 2, 3). It is found that all the question papers are of different nature.
The numbers of questions, parts of papers and instructions for attempting the
questions are different in different subjects even with in the same institutions.
Also the result of B.I.S.E. Peshawar for a period of 1981-94 was collected and
analyzed to study the trend in Intermediate (Science) marks obtained by the
students. It is found that found that there is a highly positive and significant
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F = 8.77038, P − value = 0.0119 linear relationship with 62.07 increase in
grades A and B every year. (See Table-1)

Table 1.

Variable B
Year 62.072527*
(Constant) 726.527473**

Significant at 0.05,**significant at 0.01

Institiutions Category Subjects Total Q’s Comp Parts Attpt. Choice
given .Q’s any

Econometrics
Statistics

A1 Civics 10 - - 5 5 out of 10
Isl./History
Philosophy

Mathematics 2=A
A2 Physics 10 one A,B,C 2=B 6 out of 10

B.I.S.E Chemistry
A English

Peshawar A3 Urdu 8 - - 8 OR among
Pashto parts of a Q’s
Islamiat OR among

A4 5 - - 5
parts of a Q’s

Biology 3 out
A5 8 Tow A,B 5 out of 8

of 6
Peshawar All subjects

B1 10 - - 5 5 out of 10
University MA/M.Sc

B All subjects
Gomal B2 7 - - 4 4 out of 7

University MA/M.Sc

Table 2. Style of Question Papers of different Subjects of different Institution

Source: Exam.Section B.I.S.E Peshawar,U.O.Peshawar and Gomal
University D.I.Khan
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2.2 Interpretation of data

2.3 Category A

Section A1 Includes Economics, Statistics, Civics, Islamiat/History
and Philosophy. Total questions given in this section are 10, with no
parts (such as part A, B or C), no compulsory question and with in-
struction to attempt any five questions out of ten (i.e.,100% choice).

Section A2 Includes Mathematics, Physics and Chemistry. Total
questions given in this section are ten, with one compulsory question
and the remaining nine are divided in to three parts (i.e., parts A, B
and C), with instructions to attempt a total of five questions from the
remaining nine questions at least one question from each section. Here
the total questions to be attempted are six.

Section A3 Includes English, Urdu and Pashto. Total questions in
this section are eight, having ”OR” between two parts of a question.
Here the total questions to be attempted are eight (thus in reality eight
out of sixteen questions i.e., 100% choice).

Section A4 Includes only one subject Islamiat and is different from
all the given question papers discussed above. Total questions given
are five, with the instruction to attempt all questions, and there is
”OR” between two part of each question (i.e., 100% choice).

Section A5 Includes only one subject of Biology. Here total number
of questions is eight with instruction that first and second questions
are compulsory and the remaining six questions are divided into two
parts (A and B) with instruction to attempt any three questions from
the remaining six questions. Thus five questions out of eight have to
be attempted.

2.4 Category B

This category is divided into two sections (i.e., B1 and B2), which
includes question papers of Peshawar and Gomal Universities discussed
in detail as follows.

Section B1 Includes all MA/M.Sc question papers of the University
of Peshawar. The question papers are of same type. Total questions
given are 10, with the instructions to attempt any five questions (i.e.,
choice is 100%). Section B2 Includes all question papers of MA/M.Sc of
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Gomal University. Total questions given are seven, with the instruction
to attempt any four questions (i.e.,75% choice).

2.5 Table 3

It shows BA/B.Sc. style of the question paper of the University of
Peshawar. The question papers are classified in ten categories (C1 to
C10). Every category is different from the other. The major category
is C3 and includes seven subjects. In this category total questions are
10, with instructions to attempt any five.

The second major category is C5 and the question papers have two
parts (A & B), with instructions to attempt at least two questions from
each part. Category C1, C9 and C10 are different from the other seven
categories in a way that each question paper has ten parts separated by
”OR” (i.e., 100% choice). Another important result based on Table-
2 is that the categories C1, C2, C3, C8, C9 and C10 have no parts
where as category C4, C5 and C7 question paper have two parts and
the category C6 type of question paper has three parts (i.e., A, B and
C).

After analyzing all the categories given in Table-2,3 it is observed
that all question papers are different and have different percentages of
choice available. In order to overcome this problem the proposed style
of question papers is given in Table-4. This proposal requires a student
to study all of the course/ chapters, otherwise he /she will loose a part
or full questions of the paper.

The total contents should be divided into ten equal portions for
two parts (questions) form each portion. This proposal will require
the students to study entire of the syllabus, otherwise risk the loss of
a proportional number of questions to be attempted.

The proposed model will require a teacher to teach the entire course.
As a result the students will also study complete course. This will
minimize the inflation of marks in the results and also upgrade our
education standard.
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Total Comp. Attpt. Choice
Category Subjects Q’s Q’s Parts Any

given
C1 English(C,E) 5 - - 5 5OUT OF 5

Botany-A,B
C2 8 - - 4 4out8

Chemistry-B
Zology-A
Physics-A
Chemistry-A

C3 Geography-A 10 - - 5 5out10
Pol.Scince
Law-A
Education
Zoology-B At least 2 questions

C4 10 - I,II 5
Physics-B from each part
Math’s-a Atleast 2 questions

C5 economics 10 - A,B 5
History from each part

C6 Math’s-B 10 - A,B,C 5 No more than tow form
each part

C7 Computer-A,B 10 - A,B 5 3 from part A
2 from part B

C8 Statistics-A,B 10 1 - 5 4 out of nine.
C9 Islamiat 4 - - 4 Or among part ”a”

”b” of all questions
C10 Pashto 7 - - 7 Or among part ”a”

”b” of all questions.

Table 3. Present Q .Oaper Style of BA/B.Sc.University of Peshawar

Source: Examination Section University of Peshawar.

Questions.No Part A Part B Choice
1 Portion1 Portion2 OR
2 Portion1 Portion2
3 Portion3 Portion4 OR
4 Portion3 Portion4
5 Portion5 Portion6 OR
6 Portion5 Portion6
7 Portion7 Portion8 OR
8 Portion7 Portion8
9 Portion9 Portion10 OR
10 Portion9 Portion10

Table 4. The Proposed Model Question Paper for 10 Chapter /Portions
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3 Conclusions

1. The inflationary trend in marks obtained by the students has to
be controlled in a systematic way.

2. The style of the question papers requires changes so that both the
teachers and the students should get involved in teaching / learning
of the entire syllabus rather than limiting only to a few chapters
of the syllabus.

3. In order to achieve the above-mentioned target a new model of the
question paper has been proposed which will help us in streamlining
the academic activities in our education institutions, as follows

Study hours will be increased,
Attendance of the students and teachers will be improved,
Class teaching will be strengthened,
Discipline in college hours and hostels will be improved,
Student-teacher relations will be enhanced,
Cheating in the examination halls will be minimized,
Students non-productive activities will be reduced,
Selective teaching and studies for examinations will be avoided.
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On The Rank of Variance Covariance Matrices

Bazargan-Lari, A.
P11121

Department of Statistics, Shiraz University, Iran.

Abstract. It is assumed that one has a set of n individuals that are
to be randomly assigned to q different treatment groups. There are
v variables and for variable α, there are mα different categories. The
expected value of Fiαj (frequency of ith category and jth group for
variable α), covariance of two random variables Fiαj and Fgβt are com-
puted. The mean vector of Fiαj and the rank of variance covariance
matrix is investigated.

Keywords. Categorical Data, Variance Covariance Matrix, Rank of
Matrices, Direct Sum, Kronecher Product, Trac, Idempotent matrix.

1 Introduction

Assume that we have a set of n individuals that are to be randomly
assigned to q different treatment groups. There are v variables and
each variable is measured by nominal scale. For variable α there are
mα(α = 1, 2, . . . , v) different catergories. Let R1, R2, . . . , Rn denote the
random variables with following joint probability.

P (R1 = r1, R2 = r2, . . . , Rn = rn) =

⎧⎪⎨⎪⎩
1
n! for each permutation {r1, . . . , rn}

of{1, 2, . . . , n}
0 otherwise

And A1, A2, . . . , Aq denote sets (treatment groups) which are a par-
tition of {1, 2, . . . , n}. Then Rp ∈ Aj means that individual p goes
in treatment group j. Finaly let B1α,B2α, . . . ,Bmαα be a partition of
{1, 2, . . . , n} then for each α, p ∈ Biα means that for variable α indi-
vidual p is in the ith category.

Let Fiαj be the number of individuals in the ith category of variable
α, and in group j. We define

Biαj(p, Rp) =

{
1 p ∈ Biα andRp ∈ Aj

0 otherwise
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Then, for i = 1, 2, . . . , mα, α = 1, 2, . . . , v and j = 1, 2, . . . , q we have

Fiαj =
n∑

p=1

Biαj(p, Rp) (1.1)

In section 2, the mean vector of Fiαj , (frequency of ith category
and jth group for variable α) and the variance covariance matrix of
Fiαj is investigated. In section 3, the rank of the variance covariance
matrix of section 2 is discussed. Section 4 contains three examples.

2 Mean Vector and Vriance Covariance Matrix

Since R1, R2, . . . , Rn takes on the values of each permutation of {1, 2, . . . , n}
with equal probability, so

P (Rp = r) =
1
n

(2.1)

and

P (Rp = r, Rs = t) =

⎧⎪⎨⎪⎩
1
n p = s and r = t

1
n(n−1) p �= s and r �= t

0 otherwise
(2.2)

hence

F̄iαj = E(Fiαj) =
∑

r∈Aj

∑
p∈Biα

P (Rp = r) =
∑

r∈Aj

∑
p∈Biα

1
n

If N(Biα) denote the number of elements in the set of Biα, and
N(Aj) denote the number of elements in the set of Aj , then

F̄ =
1
n

N(Biα)N(Aj) (2.3)

and

Cov(Fiαj , Fgβh) = 1
n2(n−1)

[nN(Biα ∩ Bgβ) − N(Biα)N(Bgβ)]
× [nN(Aj ∩ Ah) − N(Aj)N(Ah)]

(2.4)

The four subscripted set of values

N(Biα ∩ Bgβ) − 1
n

N(Biα)N(Bgβ)
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can be arranged into a two dimensional array and denote it by matrix
C, i.e.

C =
[
N(Biα ∩ Bgβ) − 1

n
N(Biα)N(Bgβ)

]
which its dimension is

v∑
α=1

mα by
v∑

α=1
mα. Similarly we define matrix

T =
[
N(Aj ∩ Ah) − 1

n
N(Aj)N(Ah)

]
q×q

Then the variance covariance matrix of Fiαj can be written as:

V =
1

n − 1
C ⊗ T (2.5)

In which ⊗ denotes the kronecher product.

3 Rank of Variance Covariance Matrix

The purpose of this section is to find the rank of variance covariance
matrix of Fiαj . The following theorem will be useful.

Theorem 3.1: Let matrix M be written as follows:

M =
[
m

1
2
i m

1
2
j δij − 1

n
mimj

]
k×k

(3.1)

in which
k∑

i=1
mi = n, mi > 0 and δij =

{
1 i = j

0 i �= j
, Then

rank(M) = k − 1 (3.2)

Proof: Let D be a diagonal matrix with diagonal elements m
− 1

2
i , i.e.

D = Dia

(
m

− 1
2

1 m
− 1

2
2 . . . m

− 1
2

k

)
Then we construct matrix T = DMD which reduces to T = Ik − P ,

in which P = 1
np p

′
and p

′
=
[
p

1
2
1 p

1
2
2 . . . p

1
2
k

]
. It is easy to show that P

is a symmetric idempotent matrix, so T is also symmetric idempotent
matrix and hence

rank(T ) = Trace(T ) = Trace(Ik − P ) =
k∑

i=1

(1 − mi

n
) = k − 1
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and since D is a nonsingular matrix, so rank of M is equal to rank of
T and the proof is completed.

Now we try to find the rank of matrix C. In order to do that, lets
construct a quadratic form with matrix C and column vector X.

X
′
CX =

v∑
α=1

v∑
β=1

mβ∑
g=1

mα∑
i=1

(
N(Biα ∩ Bgβ) − 1

n
N(Biα)N(Bgβ)

)
xgβxiα

We put the follwoing distribution on the space consisting of the actual
observation

f̂αβ(i, g) =
1
n

N(Biα ∩ Bgβ)

which is bivariate probability density function and then the marginal
probability density function is:

f̂α(i) =
1
n

N(Biα)

so X
′
CX becomes

X
′
CX =

v∑
α=1

v∑
β=1

mβ∑
g=1

mα∑
i=1

N(Biα ∩ Bgβ)
[
xiα − 1

n

mα∑
i=1

N(Biα)xiα

]
×
[
xgβ − 1

n

mβ∑
g=1

N(Bgβ)xgβ

] (3.3)

Now consider

X
′
CX = n

v∑
α=1

v∑
β=1

Cov(Xiα, Xjβ) = n
v∑

α=1

v∑
β=1

σ̂αβ(x)

where x represent the assignment of scores to categories. Then X
′
CX =

0 implies that there are certain relationships between the variables. Let

O
′
j =

[
Oj11, Oj12, . . . , Ojvv

]
, j = 1, 2, . . . , n

denote the vectors of observed categories for each variable. If each Ojii

is replaced by the corresponding value Xjii, on obtains a transformed
set of observations.

O∗′
j = [Xj11, Xj22, . . . , Xjvv] , j = 1, 2, . . . , n

Then X
′
CX = 0 implies that for each j = 1, 2, . . . , n,

v∑
i=1

Xjii is con-

stant. Since rank of C is equal to dimension of C minus dimension of
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orthocomplement of C, and in most cases the maximum rank of C will
be all that is necessary, so we will find the maximum rank of C, which
is equal to dimension of C minus the minimum dimensin of orthocom-
plement of C. Thus, in order to find the minimum dimension of the
orthocomplmente of C, we construct v linearly independent vectors of

size
v∑

α=1
mα by 1 as follows:

[X11, X21, . . . , Xm11, 0, 0, . . . 0, 0, 0, . . . , 0]
′

[0, 0, . . . , 0, X12, X22, . . . , Xm22, 0, 0, . . . 0, ]
′

. . . . . . . . .

[0, 0, . . . , 0, 0, 0, . . . , 0, X1v, X2v, . . . , Xmvv]
′

where Xji = Xgi = ki and j, g = 1, . . . mi. These vectors are linearly
independent because they are pairwise orthogonal. The above v vectors
are in the orthocomplement of C, that is each vector is orthogonal to
C, because it is possible to show that CX = 0. Therefore, in the
orthocomplement of C there are v linearly independent vectors which
implies that the dimension of orthocomplement can not be less than
v, or a lower bound for dimension of orthocomplement of C is equal
to v. Finally

rank(C) ≤
v∑

α=1

mα − v =
v∑

α=1

(mα − 1) (3.4)

Now we show that
v∑

α=1
(mα −1) is the maximum rank of the matrix

C, to prove that, it is sufficient to show that there exists a matrix C

with the exact rank equal to
v∑

α=1
(mα − 1). To construct such C, we

make the following assumptions:

1: If α �= β then N(βiα ∩ Bgβ) = 1
nN(Biα)N(Bgβ)

2: If α = β then N(βiα ∩ Bgβ) = δijN(Biα)

3: For all i and α, N(Biα) �= 0
with these assumption the matrix C becomes a block diagonal matrix
where each matrix on the diagonal has the property that the sum of
each row and each column is zero. In matrix notation, we can write C
as follows:

C = Diag[Pα], α = 1, 2, . . . , v
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where P1 is m1 by m1 and P2 is m2 by m2 and so on. Now each Pα’s,
α = 1, 2, . . . , v can be written as:

Pα =
[
δigN

1
2 (Biα)N

1
2 (Bgβ) − 1

n
N(Biα)N(Bgβ)

]

where dimension of Pα is mα by mα and
mα∑
i=1

N(Biα) = n.

The rank of matrix C is equal to the sum of the ranks of the Pα’s.
So by using the theorem (3.1) the rank of each Pα’s, α = 1, . . . , v is
equal to (mα − 1) for α = 1, 2, . . . , v. Hence

rank(C) =
v∑

α=1

rank(Pα) =
v∑

α=1

(mα − 1)

It is easy to show that the rank of matrix T is equal to (q − 1).
So from (2.5) we conclude that the rank of V is equal to rank of T
multiply by rank of C. So the maximum rank of V is as follows:

max .rank(V ) = (q − 1)

[
v∑

α=1

(mα − 1)

]
(3.5)

Remark 3.1: In the most case the exact rank of variance covariance
matrix is equal to the maximum rank, except for the case that there
exists a certain linear relationship between variables, or in the case in
which the sample size is small. Weeks and Williams (1964), have given
a sufficient condition for having the rank of V attain its maximum.

4 Examples

Example 4.1: A survey was being conducted on the prevalence of
pneumoconioses among miners. The miners has chest X-ray taken.
These X-ray films were then submitted to three doctors. The different
machines A, B and C were used to read the X-ray films. These machines
remained stationary. Each of the machines were situated in a different
location far from each other. The doctors with no consultation among
themselves, categorized the films according to the three categories:

0- No disease

1- Stage 1 and 2 simple pneumoconiosis
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2- Stage 3 simple pneumoconiosis
A sample of thirty X-ray films were taken, and were randomly assigned
to three groups 1, 2 and 3. Each groups consisted of ten films. The
films comprising group 1 were sent to the doctors and each of the
three doctors read the group 1 films on machine A. Likewise, groups
2 films were read on machine B by all three doctors and group 3 films
were read on machine C by all three doctors. The assignment of these
films to three groups is given in the following table:

Group 1

Doctors

Film M P Q

7 1 1 1

5 1 1 0

20 1 2 1

22 2 2 2

30 1 1 0

28 1 2 0

19 1 2 1

4 1 0 0

1 1 1 0

Group 2

Doctors

Film M P Q

12 1 2 1

8 0 0 0

24 1 2 2

2 1 0 1

9 0 0 0

16 0 0 0

13 0 1 0

17 1 2 1

28 0 1 0

Group 3

Doctors

Film M P Q

29 1 2 1

3 1 0 0

11 1 2 1

6 1 0 0

10 1 2 2

21 1 1 0

25 0 1 1

27 2 2 2

14 1 2 1
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then

Fiαj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

9

1

1

5

4

5

4

1

5

4

1

4

2

4

6

3

1

1

8

1

2

3

5

3

5

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F̄iαj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.0

7.0

1.0

2.3

3.3

4.3

4.7

4.0

1.3

2.0

7.0

1.0

2.3

3.3

4.3

4.7

4.0

1.3

2.0

7.0

1.0

2.3

3.3

4.3

4.7

4.0

1.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the matrices C and T are computed as follows:
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C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.8 −4.2 −0.6 1.6 1.0 −2.6 2.2 −1.4 −0.8
−4.2 6.3 −2.1 −0.9 0.0 0.9 −1.8 2.6 −0.8
−0.6 −2.1 2.7 −0.7 −1.0 1.7 −0.4 −1.2 1.6

1.6 −0.9 −0.7 5.3 −2.3 −3.0 2.7 −1.8 −0.9
1.0 0.0 −1.0 −2.3 6.6 −4.3 1.3 0.0 −1.3

−2.6 0.9 1.7 −3.0 −4.3 7.3 −4.0 1.8 2.2
2.2 −1.8 −0.4 2.7 1.3 −4.0 7.4 −5.6 −1.8

−1.4 2.6 −1.2 −1.8 0.0 1.8 −5.6 7.2 −1.6
−0.8 −0.8 1.6 −0.9 −1.3 2.2 −1.8 −1.6 3.4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T =

⎡⎢⎣ 6.6 −3.3 −3.3
−3.3 6.6 −3.3
−3.3 −3.3 6.6

⎤⎥⎦

Then V = 1
29T ⊗C and its rank is equal to (3−1)(

3∑
i=1

(3−1)) = 2×6 =

12.
Example 4.2: In theorem 3.1, if m1 = m2 = . . . = mk = 1, then
M = Ik − 1

kJk in which Jk is a square matrix that all its elements are
equal to one. In this case matrix M is called centring matrix and is
denoted by C. Then rank of C is equal to (k − 1) which is degrees of
freedom for distribution of quadratic form X

′
CX. Also it is useful for

rank of wishart matrix.
Example 4.3: Let Mi for i = 1, 2, . . . N be a square matrix ki by ki

which satisfy conditions of theorem 3.1, and if

D = M1 ⊕ M2 ⊕ . . . ⊕ MN = Diag(M1M2 . . . MN )

which ⊕ denotes direct sum, then

rank(D) =
N∑

i=1

rank(Mi) =
N∑

i=1

(ki − 1)
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To illustrate example 4.3 consider the following matrix

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 −1

2 0 0 0 0 0 0 0
−1

2
1
2 0 0 0 0 0 0 0

0 0 2
3 −1

3 −1
3 0 0 0 0

0 0 −1
3

2
3 −1

3 0 0 0 0
0 0 −1

3 −1
3

2
3 0 0 0 0

0 0 0 0 0 3
4 −1

4 −1
4 −1

4

0 0 0 0 0 −1
4

3
4 −1

4 −1
4

0 0 0 0 0 −1
4 −1

4
3
4 −1

4

0 0 0 0 0 −1
4 −1

4 −1
4

3
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
then rank(D) = (2 − 1) + (3 − 1) + (4 − 1) = 6
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Abstract. The theory of smoothing splines in the context of semi-
parametric generalized linear models is well developed( e.g. Green and
Silverman, 1994), but applications tend to raised computational and
pragmatic problems. In this paper an example is considered and we
compare the use of smoothing splines in logistic regression model, hav-
ing discretised event history sequences both with and without random
effect specification to control for omitted variables. The main emphasis
is upon using cubic spline functions for a number of temporal variables.

Keywords: Exponential Family Distribution, Spline Smoothing
Function, Penalized Likelihood, Homogeneity, Heterogeneity, Akaike’s
Information Criterion.

1 Introduction

It is often important to identify the functional relationship between a
number of temporal variables and the response variable in modelling
panel and other longitudinal micro-level data. It can also be impor-
tant to avoid spurious time dependencies by controlling for the effect
of variables omitted from the analyses. In this paper we are interested
in disentangling the simultaneous effects of three temporal variables:
age, year, and duration of stay and with using cubic smoothing splines
to characterise the individual effects. We investigate a non-parametric
approach because temporal effects often vary in complex ways. Mod-
elling temporal variables needs to allow for residual heterogeneity; it
is well known that results for duration and other temporal effects can
be seriously biased if residual heterogeneity is ignored ( Lancaster and
Nickel, 1980 and Heckman and Singer, 1985).
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Migration is a relevant process to study because there is evidence
that all the temporal effects mentioned above are relevant. Migration
behaviour is characterised by strong temporal dependencies. A deci-
sion to migrate depends upon the interval since a previous move. In
particular, migration is a duration dependent with evidence of iner-
tial effects( Dale and Davies, 1994). A comparison by the use of cubic
smoothing splines in logistic regression models is performed both with
and without random effect specifications to control for omitted vari-
ables when the migration history sequences are discretised. We adopt
an empirical, investigative approach using a dataset on inter-county
migration, we also examine the further complications which arise in
fitting univariate splines.

2 The Data

The migration history data were extracted from a large retrospective
survey of life and work histories conducted in the U.K. in 1986. The
analyses presented are from male respondents from a specific area in
the north of England. Migration is defined as a move between counties.
The sequence for each individual commences with their first job.

3 Methodological Approach

Let Yij denote the outcome or the binary response of the i-th individual
at time j, for i = 1, 2, . . . , n and j = 1, 2, . . . , Ti. Yij takes value 1 if
individual i has a move at time j and 0 otherwise.

The explanatory variables, Xij , consist of age (A), year-1900 (Y),
and duration of residence (D) of respondents at each time interval.
Interest focuses on the functional relationships between these variables
and Yij . Initially we model two of the variables parametrically and, in
turn, the third variable non-parametrically using a smoothing spline
function. Let the probability of move for the individual i at time j
be pij , with Yij ∼ B(1, pij). Also assume the monotone differentiable
link function G is a logit link such that G(pij) = xT

ijβ + g(tij), where
pij = E(Yij |Xij), β is a p-vector of unknown parameters and g is a
smooth real function of the splined variable, t. If all tij are not distinct,
we can construct a matrix N to transform tij into a set of distinct
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values sk, where k = 1, 2, . . . , q. So instead of tij we put sk and in the
linear predictor g is replace by Ng. Therefore the likelihood for both
homogeneous and heterogeneous models are:

3.1 Homogeneous Model

The likelihood for the ith individual becomes

Li =
∏ Ti

lim
j=1

{
exp

[
xT

ijβ + (Ng)(j)
]}yij

1 + exp
[
xT

ijβ + (Ng)(j)
] .

The log likelihood can be written as, l(β, g) =
n∑

i=1
log(Li). Following

Good and Gaskin (1971), Silverman (1985), and Green (1987) we use
the penalized likelihood that should be maximized over all β and g
and is given by

lp (β, g) = l (β, g) − 1
2
λ

b∫
a

g
′′2

(t)d(t), (1)

where
b∫
a

g
′′2

denotes a measure of rapid local variation and the

smoothing parameter λ controls smoothness of the estimated g, 0 <

λ < ∞. As λ tends to zero the graph of ĝ shows many rapid fluctu-
ations. Whereas, as λ tends to infinity the estimate of g tends to a
linear curve.

3.2 Heterogeneous Model

We allow for unobserved heterogeneity in migration behaviour by in-
cluding an unknown nuisance parameter, ei, in the linear predictor of
the model. Inference is based upon the integrated likelihood

lm (β, g) =
n∑

i=1

log

⎧⎨⎩
∫ Ti∏

j=1

{
exp

[
xT

ijβ + (Ng)(j) + ei

]}yij

1 + exp
[
xT

ijβ + (Ng)(j) + ei

] f (ei) dei

⎫⎬⎭ ,

(2)
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Variable
Model 1 : Homogenous

P. E. S.E.
Model 2 : Heterogenous

P. E. S.E.

Duration -1.070 0.080 -0.073 0.100

Year -0.041 0.006 -0.051 0.009

Scale - - 0.920 0.132

λ 19.5 19.5
Deviance 2285.90 2259.90

Table 1. Model Fitting Results with Smoothing Spline for Age

where f(ei) is the density function of ei. Assuming that ei ∼ N(0, σ2),
the integral in (2) can be calculated numerically using standard quadra-
ture methods. The corresponding penalized log likelihood is given by

lmp (β, g) = lm (β, g) − 1
2λ

b∫
a

g
′′2

(t)d(t).

4 Model Fitting

Following Marx and Eiler (1996) we investigate the use of Akaike’s
Information Criterion, AIC, to derive an empirically reasonable value
for the smoothing parameter λ. Akaike’s Information Criterion for a
fixed parameter λ is defined as:

AIC(λ) = Deviance(y, β̂, ĝ, λ) + 2dim(β̂, ĝ, λ), (3)

where dim(β̂, ĝ, λ) = Trace(A), A = S + S1, S = N(NT WN +
λK)−1NT W,

S1 = (I−S)X
{
XT W (I − S)X

}−1
XT W (I−S), S is the smoother

or hat matrix, K is a fixed and W is a diagonal matrix. For model
selection, after maximizing the penalized log likelihood over a range of
different values for λ we select the λ which minimizes the AIC.

Three temporal explanatory variables are under consideration: Two
in the parametric part of the model and the third in the nonparametric
part. Also, two types of the models are of interest : homogeneous and
heterogeneous.

The results using a spline representation for Age are given in Table
1. Duration of stay and year are included as linear terms. Moreover,
computation of the AIC was simplified by specifying A = S in (3) .
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As expected, the random effects specification gives a substantial
improvement in the model deviance. Also, controlling for omitted vari-
ables in this way attenuates substantially the cumulative inertia (neg-
ative duration-of-stay) effects. The spline results for λ = 1, 19.5, 30 are
also illustrated graphically in Figure 1 with year set at 1986 and dura-
tion of stay at 10 years. As expected, the graph of probability against
age becomes smoother in both models as λ increases. These figures
reveal three peaks. This is a novel finding, perhaps because no one has
attempted to fit polynomials of order 6 to migration data, and raises
interesting substantive questions.
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Fig. 1. Spline representation for age

5 Advantages and disadvantages of AIC

Although AIC attains its minimum value at different λ’s in homoge-
neous and heterogeneous models the values tend to be similar and it
appears that the λ which minimises AIC in a homogeneous model is
an adequate approximation for the corresponding heterogeneous model
(See Tables 2 and 3). Also, visual inspection of plots (as in Figure 1)
confirm that the simplified AIC gives plausible results for age and
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Homogeneous Model
λ Simplified AIC Full argumented AIC
1 2315.72138 2319.70893
10 2307.46256 2311.45621
19.47 2306.86344 2310.85577
20 2306.86510 2310.85721
30 2307.17283 2311.16392

Table 2. Comparison of the values of AIC

Heterogeneous Model
λ Simplified AIC Full argumented AIC
10.0 2281.18966 2285.18436
19.47 2280.66969 2284.66446
70.0 2283.69634 2287.68567

Table 3. Comparison of the values of AIC

duration of stay. The full AIC ( i.e. with A = S + S1) requires sub-
stantially more computation but was found to attain its minimum at
the same λ. This is because Trace(S1) is relatively insensitive to λ and
is approximately equal to the number of parameters in the parametric
part of the linear predictor, for both homogenous and heterogenous
models.

However, the AIC was not successful in identifying an appropri-
ate value of the smoothing parameter λ when year was used as the
splined variable. This contrasted with the visual impression that at
approximately λ = 100 there was a compromise smoothness with ir-
regular fluctuations smoothed out but more systematic variations still
evident. Other authors have noted that statistical criteria for choosing
a smoothing parameter are not always as effective as visual methods
(e.g. Hastie and Tibshirani, 1990).

6 Other Issues

The AIC was found to give identical optimum λ values for correspond-
ing homogenous and heterogenous specifications. The same result was
noted by Chesher (1997). As the heterogenous models are so com-
putationally excessive, this is an important result. It enables the re-
peated model fitting to locate the minimum AIC to be confined to the
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computationally simpler homogenous model with just one fit of the
heterogenous model when the optimum λ has been identified.

To investigate the sensitivity of the smoothing splines for one vari-
able to the parametric representation of the others, we fitted polyno-
mials of degree 4 for duration of stay and year, using age as a spline
variable. The AIC again gave λ = 19.5 and there was encouragingly
little change in the plot of probability of move against age (see Figure
2). In particular, the three peaks remained; they do not appear to be
an artifact of misspecification of the other two variables.
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Fig. 2. Comparison of values of AIC

We fitted the same polynomials of the same degree for duration-of-
stay and year with age as a spline variable with the optimum λ = 19.5
in a heterogeneous model corresponding to the homogeneous model
(see Figure 3). Random effect specification does not alter the shape.

7 Concluding comments

The use of smoothing splines is computationally more demanding for
heterogenous ( random effect) models than for the corresponding ho-
mogenous specification but they do not appear to pose any additional
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Fig. 3. Smoothing spline representation for age in heterogeneous model with 4th
degree polynomial for the other variables

problems. Moreover, computational effort can be reduced by identify-
ing the appropriate value of the smoothing parameter from repeated
fitting of the homogenous model.

The effectiveness of smoothing spline methods is demonstrated by
the application described in the paper. Not only do we identify an un-
expectedly complex relationship between age and residential mobility
but we also show that this result is unlikely to be due to misspecifica-
tion of the parametric part of the model.
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Empirical Bayes Analysis of Generalized Logis-
tic Regression Models for Multinomial Responses
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Abstract. In this paper, we develop an empirical Bayes approach
for estimation of a generalized logistic regression model with repeated
expriments. For a hypothesis concerning the parameters of a logis-
tic regression model, first we compute the exact posterior distribution
coresponding to the conjugate prior distribution where in the super-
parametrs have been estimated by the method of moments and Maxi-
mum likelihood method. Finally, to describe the relationship between
responce vector and covariates, we estimate vector of ββ, via itterative
empirical Bayes approach. Following Bayesian paradigm, the Bayes
and empirical Bayes estimators relative to various loss functions are
obtained. These procedures are illustrated by a real example.

Keywords. Logistic models, Multinomial distribution, Bayes, Empir-
ical Bayes, Model Selection

1 Introduction

In many applications, the response of each subject is measured at sev-
eral occasions, for instance at several time points or under several con-
ditions belonging to one and only one of certain distinct categories. As
an example, consider the situation where we wish to study tumor type
(embryonal, alveolar, pleomorphic) for patients with rhabdomyosar
coma. Furthermore, there may be some covariates of interest such as,
age(′′0′′ ≡≤ 15 years, ′′1′′ ≡> 15 years) and sex(′′0′′ ≡ male, ′′1′′ ≡
female). Usually the response is observed for each subject at I occa-
sions or I locations, and interest centers on the relationship between
the response variable and the covariates. As another real-life example,
Schmidt and Strauss (1975) modeled the occuptional attainment in the
United States, using covariates such as years of schooling, labor market
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experience (calculated as age-years of schooling -5), race(1≡ white, 0≡
black), and sex(1≡ male, 0≡ female). The categories of occupational
attainment are professional, white collar, blue collar, craft, and me-
nial. In another application, Schull(1958) studied pregnancy outcome
in three districts of Shizuoka city, Japan, according to the degree of
consanguinity between the parents. In his study, death ( categorized as
abortion, stillbirth, in less than 12 months, in 13-60 months, survived)
is considered as a multinomial response variable, and residence( Ru-
ral district, Intermediate district, Urban district) and Consanguinity
( no relation, 2nd cousins, 1st cousins) are covariates. Alternatively,
Forster (1999) developed Metropollis-Hastings algorithm for exact in-
ference on binomial and multinomial logistic regression models based
on repeated categorical response. In this paper, these types of prob-
lems are studied via the empirical Bayes approach.
Explicity, we consider the logistic regression analysis for a multino-
mial response variable. In Section 2, the model is presented. Section
3 provides the posterior distribution of the regression parameters. In
Section 4, Bayes and empirical Bayes estimates are obtained. Section
5 contains the model selection procedure. Finally, in Section 6, a real
data set is analysed.

2 The Model

Consider a multinomial response variable Y with categories 0, 1, · · · , K
where for i = 1, 2, · · · , I, the vector Yi ∼ Mult(Ni,Pi). The ith count
vector is denoted by (yi0, · · · , yiK), whose total count Ni =

∑K
j=0 yij is

assumed to be fixed. Let

Y =

⎛⎜⎜⎜⎜⎝
y10 y11 · · · y1K

y20 y21 · · · y2K
...

... · · · ...
yI0 yI1 · · · yIK

⎞⎟⎟⎟⎟⎠ =
(
y0,y1, · · · ,yK

)
,

denote an I × (K + 1) matrix of responses whose columns are y1, y2,
· · ·, yK with y0 = N−∑K

j=1 yj , and N = (N1, · · · , NI)
′
. The likelihood

fuction is

L(P) =
(∏

i

Ni!∏
j yij !

)
exp

(∑
i

∑
j

yijLn(Pij)
)

,
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i.e., Y ∼ Product Mult(N,P), with

P =

⎛⎜⎜⎜⎜⎝
p10 p11 · · · p1K

p20 p21 · · · p2K
...

... · · · ...
pI0 pI1 · · · pIK

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
P1

P2
...

PK

⎞⎟⎟⎟⎟⎠ ,

and
∑K

j=0 pij = 1. Suppose, for i = 1, 2, · · · , I and j = 1, 2, · · · , K, we
set

H : ηij = Ln

(
NiPij

NiPi0

)
. (2 − 1)

Then, the canonical form of the likelihood function with respect to
(2-1) will be

L(ηη) =
(∏

i

Ni!∏
j yij !

)
exp

{∑
i

∑
j

yijηij −
∑

i

NiLn

(∑
j

exp(ηij)
)}

.

(2 − 2)
The conjugate prior distribution for the vector of Pi is a Dirichlet
distribution with superparameter αα = (α0, α1, · · · , αK). To determine
the prior distribution for the canonical form (2-2), one should modify
the Dirichlet distribution according to the transformation (2-1). From
(2-1), the joint distribution of ηηi is obtained as

π(ηη) =
(∏

i

Γ (α.)∏
j Γ (αj)

)
exp

{∑
i

∑
j

αjηij − α.

∑
i

Ln

(∑
j

exp(ηij)
)}

.

(2 − 3)
with α. =

∑
j αj .

3 The Posterior Distribution

First, we compute the marginal distribution of Y, assuming αα is known.
From (2-2) and (2-3), we have

f(y|αα) =
∫

ηη
L(ηη) × π(ηη)dηη

=
∫

ηη

∏
i

Ni!∏
j yij !

exp

{∑
i

∑
j

yijηij −
∑

i

NiLn

(∑
j

exp(ηij)
)}

×

∏
i

(
Γ (α.)∏
j Γ (αj)

)
exp

{∑
i

∑
j

αjηij −
∑

i

(α.)Ln

(∑
j

exp(ηij)
)}

dηη.
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=
∏
i

Ni!∏
j yij !

(
Γ (α.)∏
j Γ (αj)

)
∫

ηη
exp

{∑
i

∑
j

(αj + yij)ηij −
∑

i

(Ni + α.)Ln

(∑
j

exp(ηij)
)}

dηη

=
∏
i

Ni!Γ (α.)
∏

j Γ (αj + yij)∏
j yij !

∏
j Γ (αj)Γ (α. + Ni)

)

Hence, the posterior distribution is equal to

π(ηη|Y = y) =
L(ηη) × π(ηη)∫

ηη L(ηη) × π(ηη)dηη

= C.exp

{∑
i

∑
j

(αj+yij)ηij−
∑

i

(α.+Ni)Ln

(∑
j

exp(ηij)
)}

. (3 − 1)

where

C =
∏
i

(
Γ (α. + Ni)∏
j Γ (αj + yij)

)
.

Later, we need to compute the posterior moments of ηη. However, the di-
rect calculation of the posterior moments of ηη is somewhat intractable.
Thus, for this purpose we shall use the posterior distribution of P
which is known to have a Dirichlet distribution for each component.
Hence, we have

E(ηij |yi, αα) = E

(
Ln(Pij |yi, αα)

)
− E
(
Ln(Pi0|yi, αα)

)

=

∫
Ln(pij)

Γ (α. +Ni)

Γ (αj + yij)Γ (α. +Ni − αj − yij)
p

αj+yij−1

ij (1−pij)
α.+Ni−αj−yij−1dpij

−
∫
Ln(pi0)

Γ (α. +Ni)

Γ (α0 + yi0)Γ (α. +Ni − α0 − yi0)
pα0+yi0−1

i0 (1−pi0)
α.+Ni−α0−yi0−1dpi0

=
Γ (α. +Ni)

Γ (αj + yij)Γ (α. +Ni − αj − yij)

∫
pij

∂

∂αj
p

αj+yij−1

ij (1−pij)
α.+Ni−αj−yij−1dpij

− Γ (α. +Ni)

Γ (α0 + yi0)Γ (α. +Ni − α0 − yi0)

∫
pi0

∂

∂α0
pα0+yi0−1

i0 (1−pi0)
α.+Ni−α0−yi0−1dpi0

=
Γ (α. +Ni)

Γ (αj + yij)Γ (α. +Ni − αj − yij)

∂

∂αj
(
Γ (αj + yij)Γ (α. +Ni − αj − yij)

Γ (α. +Ni)
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− Γ (α. +Ni)

Γ (α0 + yi0)Γ (α. +Ni − α0 − yi0)

∂

∂α0

Γ (α0 + yi0)Γ (α. +Ni − α0 − yi0)

Γ (α. +Ni)
).

Hence,

E(ηij |yi, αα) = Ψ(αj + yij)− Ψ(α0 + yi0)− d

dαj
Ψ

(
α. +Ni

)
+

d

dα0
Ψ

(
α. +Ni

)
,

(3− 2)

where Ψ(x) = Γ
′
(x)

Γ (x)
.

Similarly, the Covariance matrix of (ηηi|yi) as function of αα is computable as

Cov

(
ηηi|αα,yi

)
= ΣΣi(αα,yi) =

⎛⎜⎜⎝
σ2

1i σ12i · · · σ1Ki

σ21i σ2
2i · · · σ2Ki

...
... · · ·

...
σK1i σK2i · · · σ2

Ki

⎞⎟⎟⎠ (3− 3)

where

σ2
ji = V ar(ηij |yi) =

d

dαj
Ψ(αj + yij) +

d

dα0
Ψ(α0 + yi0)

and

σjj
′
i = Cov(ηij , ηij

′ |yi) =
d2

dαjdα0
Ψ

(
α. +Ni

)
− d2

dαj′dαj
Ψ

(
α. +Ni

)
− d2

d2α0
Ψ

(
α. +Ni

)
+

d2

d2α0
Ψ(α0) +

d2

dα0dαj′
Ψ

(
α. +Ni

)
.

These moments will be used to obtain the empirical Bayes estimators of ββ.

4 Estimation

Under the squared error loss function, the mean of the posterior distribution is the
Bayes estimator for ηη. That is, as given in (3-2),

ηB
ij = E(ηij |yi, αα).

To obtain the empirical Bayes estimator, we need to replace αα by its estimate r.
Using the method of moments, the estimate r is obtained. Details of this procedure
are given in Eskandari and Meshkani (2000). Hence

ηEB
ij = E(ηij |yi, r) ≡ f(rj),

where

rj =
M̄jX̄j

M̄j(1− M̄j)− X̄j

,

with M̄j = 1
I

∑I

i=1
(

yij

Ni
) and X̄j = 1

I

∑I

i=1
(

yij

Ni
(1− yij

Ni
)).

To build a relation between ηB
ij and ηEB

ij , we use the Taylor-series expansion

f(rj) = f(αj) +
∂f(rj)

∂rj

∣∣∣∣
rj=αj

(rj − αj) + · · ·+ ∂kf(rj)

∂rk
j

∣∣∣∣
rj=αj

(rj − αj)
k

k!
+ · · ·



Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Since Ψ(x) ∼ log(x) + 1
2x

(Harisson et al., 1985), from (3-2)

f(rj) = f(αj) + o(
1

k
).

Therfore, we can write

ηEB
ij = E(ηij |yi, αα) + eij (4− 1)

where E(eij) = 0,

V ar(eij) = V ar(ηEB
ij |yi) =

d

dαj
Ψ(αj + yij) +

d

dα0
Ψ(α0 + yi0) = σ2

ji,

and Cov(eij , ei′j) = 0. This is because for each j, the row elements eij correspond
to independent replicates of the observations.

Now suppose for j = 1, 2, · · · ,K, ββ
′
j = (βj0, βj1, · · · , βjq) is the vector of regres-

sion parameters coressponding to the vector of q covariates x
′
i = (1, xi1, · · · , xiq).

The assumed structure for the logistic regression is

H0 : ηij = x
′
iββj . (4− 2)

Furthermore, from (4-2), for i = 1, 2, · · · , I, we can write

H0 : ηηj =

⎛⎝ η1j

...
ηIj

⎞⎠ =

⎛⎜⎝x
′
1

...

x
′
I

⎞⎟⎠ββj = Xββj ,

Thus (4-1) is rewritten as

ηηEB
j =

⎛⎜⎝ η
EB
1j

...
ηEB

Ij

⎞⎟⎠ =

⎛⎝E(η1j |y1)
...

E(ηIj |yI)

⎞⎠+

⎛⎝ e1j

...
eIj

⎞⎠ = E(ηηj |Y) + ej

or in matrix form as

ηηEB
j = XE(ββj |Y) + ej ,

where

ej ∼ [0, Σj ], (4− 3)

and Σj = Diag{σ2
j1, σ

2
j2, · · · , σ2

jI}. Thus, a weighted least squares estimate of
E(ββj |Y) is (

E(ββj |Y)

)EB

=

(
X ′ΦjX

)−1(
X ′Φjηη

EB
j

)
, (4− 4)

where Φj = Σ−1
j .

The estimate

(
E(ββj |Y)

)EB

is considered as an empirical Bayes estimate of ββj

required in (4-2), which in turn provides the estimates of ηηj . This finally leads
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to the estimates of P via (2-1). Hence, the proposed model gets estimated. The

covariance matrix of

(
E(ββj |Y)

)EB

is

V ar

[(
E(ββj |Y)

)EB]
=

(
X ′ΦjX

)−1

X ′ΦjΣjΦjX

(
X ′ΦjX

)−1

=

(
X ′ΦjX

)−1

. (4− 5)

5 Example: Analysis of Pregnancy Data

In this Section, we analyze a subset of the pregnancy outcome in consanguineous
marriages. Schull (1958), analyzed these data using a frequentist approach, and
Forster (1999) reanalyzed it via Metropolis-Hastings algorithms.
The study sample, according to degree of consanguinity between the parents, in-
cluded 6258 pregnants women in three districts of Shizuka city, Japan. Here, we have
two covariates, R≡Residence(Rural district, Intermediate district, Urban district)
and C≡Consanguinity( no ralation , 2nd cousions, 1st cousions). The categories of
Death are A≡Abortion, S≡ Stillbirth, U≡ in less than 12, V≡ in 13-60 and Su≡
Survived. We consider multinomial regression model (4-1) for pregnancy outcome,
with district as a categorical covariates. The design matrix X is

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1
1 −1 0
1 −1 1
1 0 −1
1 0 0
1 0 1
1 1 −1
1 1 0
1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
With the category labelling in Schull, the baseline category for model (4-1) is sur-
vived. Table 1 present the estimated superparameters and statistics required for
each cells. Furthermore we can estimate, d

dαj
Ψ(αj + yij) matrix for j = 0, 1, 2, 3, 4,

hence by (3-3) the estimate covariance matrix are shown in Table 2. From Tables
1 and 2, we can obtain estimates of the parameters and hence the estimated logits
for any pair of Death groups for each cell. These results are shown in Table 3. For
instance, the second equation is

Ln

(
P̂S

P̂Su

)
= −2.08− 0.735R+ 0.2918C

Using this result, for residence, the estimated odds of Stillbirth instead of Survived
are exp(0.735) = 2.08 times higher for Rural district than Intermediate district and
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(exp(0.735) = 2.08)/(exp(−0.735) = 0.479) = 4.35 times higher for Rural district
than Urban district, and for Consanguinity, the estimated odds Stillbirth instead of
Survived are exp(−0.2918) = 0.75 times higher for no relation than 1st cousins and
(exp(−0.2918) = 2.08)/(exp(0.2918) = 1.338) = 0.56 times higher for no relation
than 2nd cousins. Finally, Table 4 reports expected probabilities for the logistic
regression models. In column survived, given Residence is Urban district and Con-
sanguinity is no relation, Muximum probability is 0.92, and in colomn stillbirth
from top to blow, we can obtain expected numbers of pregnancy by multiplying
each probability by the number of observations at that Residence and Consanguin-
ity level.

Table 1: The Estimated Superparameters and Statistics Requaired

Death Abortion Stillbirth ≤ 12Months 13− 60Months Survived
M1 .028 .0156 .0595 .0261 .871
X1 .0272 .0154 .05595 .0254 .1123
M2 .0063 .0063 .081 .0375 .87
X2 .00626 .00626 .074 .0361 .1131
M3 .042 .011 .069 .0363 .841
X3 .040 .0108 .0642 .0349 .1337
M4 .0251 .0075 .048 .0285 .891
X4 .024 .0074 .0456 .0277 .0971
M5 .0325 .0029 .074 .0296 .8609
X5 .0314 .0289 .0685 .0287 .1198
M6 .0381 .011 .061 .044 .846
X6 .0366 .01088 .0573 .0421 .1303
M7 .0129 .0092 .0386 .0258 .913
X7 .0127 .00912 .0371 .0251 .0794
M8 .057 0 .0143 .0286 .9
X8 .054 0 .01409 .0278 .09
M9 .037 .0037 .0741 .048 .837
X9 .0356 .00368 .0686 .0457 .136

M̄ .031 .0078 .0577 .0338 .8699
X̄ .0297 .0074 .054 .0326 .1124

r 2.888 .868 7.061 19.162 126.343

Table 2: The Estimated Covariance Matrix
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ij σ2
4i σ2

3i σ2
2i σ2

1i

1 .0329 .0610 .01549 .02238
2 .22413 .39204 .0464 .0389
3 .0543 .1843 .0307 .0306
4 .0142 .0468 .0074 .0105
5 .0694 .3920 .0307 .0337
6 .0267 .0878 .0162 .0170
7 .096 .1559 .0350 .0297
8 .1346 .4884 .1164 .046
9 .074 .392 .0363 .0306

Table 3: Estimated Parameters in logit Models for Pregnancy Data using Survived
as baseline category

Death. Source β̂ V ar(β̂) Z Sig.

Cons. −3.49 .009 −36.78 0
Abor. Resid. .0021 .005 .03 .95

Consan. .249 .003 4.54 0
Cons. −2.08 .008 −23.18 0

Still. Resid. −.735 .006 −9.83 0
Consan. .2918 .003 5.23 0
Cons. −4.236 .041 21.04 0

≤ 12Mon. Resid. −.363 .031 −2.076 .02
Consan. −.014 .018 −.107 .67
Cons. −3.5 .017 26.68 0

13− 60Mon. Resid −.32 .012 −2.89 .003
Consan. .37 .006 4.87 0

Table 3: The Expected Probabilities for each cell
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Resid. Consan. Abortion Stillbirth ≤ 12Mon. 13− 60Mon. Survived

no relation .026 .012 .109 .026 .827

Rural 2nd cousins .038 .012 .145 .034 .771

1st cousins .053 .012 .188 .0419 .705

no relation .019 .009 .053 .027 .891

Interm. 2nd cousins .027 .009 .069 .034 .861

1st cousins .038 .008 .091 .042 .820

no relation .014 .006 .026 .028 .925

Urban 2nd cousins .021 .006 .035 .035 .903

1st cousins .028 .006 .043 .042 .881
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Stochastic Models for the Planning of Pharma-
ceutical Research

Gittins, J.

P17013

Unieversity of Oxford, UK.

Abstract. Recent work on two aspects of this large topic are described. Both are
concerned with the ’research’ or ’discovery’ phase of pharmaceutical R & D, during
which there is a search for new chemical entities which are sufficiently promising to
be used in clinical trials.

The first aspect is a statistical procedure for the selection of compounds to be
submitted to the screening tests which characterise this search process. Secondly,
a stochastic optimisation model for the allocation of resources over the successive
stages of a discovery-phase project is described.

1 GENERAL DESCRIPTION

1.1 Summary

CPSDAI is a computer program to help chemists to use the results of testing
compounds for some form of desirable activity as a guide to finding highly active
compounds. It is based on statistical principles. The program is written in Fortran
77 and may be run on any platform with access to at least 1Mb of memory.

1.2 Purpose

In pharmaceutical and agro-chemical research thousands of chemical compounds
are synthesised and screened for every new product which is ultimately marketed.
In the early stages of screening one of the main aims is to identify compounds with
a sufficiently high level of interesting activity to warrant more extensive testing.
Targets of this kind may be defined in terms of any appropriate scale for measuring
activity - for example the percentage of test animals showing signs of improvement
at a given dosage. The record of activity measurements (or scores) for successive
compounds gives some indication of the attainability of such a target, and hence
either provides encouragement to carry on selecting new compounds for screen-
ing with approximately the same characteristics as before, or indicates that some
change of direction is necessary if the target is to be achieved within a reasonable
time. CPSDAI analyses the past record along these lines. It may be used in the
context of high-throughput screening or in following up known lead compounds.
Preliminary versions have been around for several years and have been used in the
pharmaceutical and agro-chemical industries and in the design of abrasive-resistant
materials. A flexible user-friendly version is now available. Readers wishing to try
it out should contact the author.
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1.3 Outputs

CPS stands for Current Probability of Success. This is the estimated proportion of
compounds with scores above the target, assuming that the distribution of future
scores is essentially the same as the distribution of past scores. The case of greatest
interest is often for a target which is higher than the largest score so far achieved.
The CPS is then estimated by extrapolating the distribution of past scores beyond
the target in such a fashion as to minimise the inevitable risk of error in such a
procedure.

The compounds which have been tested can often be divided into different
groups, defined so that the compounds within a group have similar chemical struc-
tures. A different CPS can then be calculated for each group. In general a group
with a high CPS is a better prospect for achieving the target by screening more
compounds than is a group with a low CPS. However, for two groups with similar
values for the CPS preference should be given to the group for which the number
of compounds so far tested is least. This is because when only a few compounds
have been tested there is a good chance that the CPS substantially underestimates
the proportion of compounds which in the long run would turn out to have scores
above the target, and some priority should be given to resolving this uncertainty,
so that in future compounds may be selected for testing in a more informed way.

The Dynamic Allocation Index (DAI) for the scores achieved by a set of com-
pounds belonging to a particular group is greater than the CPS for the same
compounds by an amount which measures the importance of reducing uncertainty
about the group as a whole. It is calculated so that, if there were several dis-
tinct groups of compounds available for screening, and the compounds were to be
screened one by one, the expected number of compounds which would have to be
screened before attaining the target score would be minimised by at each stage
allocating for screening a compound from the group with the largest current value
of the DAI. Thus the DAI is an index of priority. It is called dynamic because it
changes whenever the score for an additional compound is added to the distribution
of scores on which it is based. Of course compounds are not usually screened one
at a time, but the DAI remains a useful indicator.

In addition to the CPS and the DAI for each specified group of compounds
the CPSDAI program calculates upper and lower 90% probability limits, and the
median value, for the number of additional compounds from the group which would
need to be screened before finding a compound which attains the target. The scores
for the different groups are summarised by means of histograms.

1.4 Inputs

The inputs required by the program are: any assessments of the likely distribution of
scores within each group that the user would like to take into account to supplement
the information yielded by the scores themselves; the actual scores; and an estimate
of the experimental variation to which the observed scores are subject.

1.5 Validity

The outputs are valid if it is a reasonable assumption that the scores of the as yet
untested compounds in a group are randomly selected from the same distribution
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of scores as those of the compounds which have already been tested. For this to
be true it is not necessary that the structures of the compounds to be screened
should be determined in a random manner, which is not often true. Care should,
however, be taken to ensure that the set of already tested compounds on which
an analysis is based do cover a range of structures which is broadly similar to the
range from which further compounds are likely to be drawn. For example, if it is
proposed to synthesise a series of derivatives of a given lead compound which all
involve modifications at a particular site, whereas all previously tested derivatives
of that lead compound have been at other sites, the only directly relevant previously
tested compound may well be the lead compound itself. Later on the search may
range once again over a wider class of derivatives, and the appropriate reference
set of tested compounds would then widen again to include at least some of the
compounds which were excluded when the focus was on modifications at a particular
site.

2 A LITTLE MORE DETAIL

2.1 The General Idea

When there are a number of different jobs to be done, projects in which we might
invest, or lines of research we might pursue, the question arises of how we should
assign priorities so as to minimise costs or maximise rewards. A dynamic allocation
index (DAI) is a number associated with any particular alternative, with the prop-
erty that the optimal policy is to assign priority to the alternative with the largest
DAI. These indices typically change as work progresses, so that an optimal policy
may well switch back and forth between projects. DAIs with these properties may
be defined for a variety of probabilistic models, some of which are relevant to as-
pects of chemical research. These are reviewed in a book on the subject (Gittins,
1989).

One such model has been designed as an aid in the selection of formulations
for screening in new-product chemical research. The idea is that within a typical
project there are a number of alternative routes (or groups of compounds or other
formulations) representing different possible lines of attack, which vary in difficulty
and which may lead toward the solution of the chemical problem for which the
project was set up. CPSDAI makes calculations for each of these routes. The
different routes are defined by the different classes of formulations that could be
tested. These might be suggested by various chemical hypotheses as to the ways in
which the desired result might be achieved, or simply emerge empirically by not-
ing those formulations which have already been found to be reasonably promising.
They might, for example, correspond to clusters identified by some form of statis-
tical cluster analysis, perhaps in association with a consideration of the physical
properties of the molecules. Sometimes, as in the example illustrated in figure 1,
there is only one route.

We suppose that for each formulation a score may be calculated from the test
results, the more promising formulations being those with the higher scores. When
compounds are being tested to find one that would be suitable for use as a drug,
the important thing is the level of therapeutic activity. This is frequently measured
by a single number, such as the proportion of diseased animals that recover when
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treated with the compound, which we may regard as the score for the compound.
In this respect, however, pharmaceutical research is the exception rather than the
rule. Generally speaking, several different attributes are relevant to the desirability
or otherwise of a formulation. However, provided that it is possible to give an order
of preference to formulations on the basis of the values taken by the attributes,
a single score for each formulation may fortunately still be determined. We shall
assume that this has been done, without wishing to suggest that this is always a
simple task.

Let T be a target score, whose achievement would represent a significant step
forward in a project. The choice of T is at the chemist’s discretion, but it should be
large enough so that a formulation with a score above T is worthy of serious further
consideration, and not so large that the project is likely to have to be terminated
before such a formulation is found.

A histogram of the scores of the formulations that have so far been tested from
a route, showing also the value of T , gives a good indication of the promise of
the route, as figure 1 illustrates. The figure shows the successive histograms for a
hypothetical route after 2, 8 and 16 formulations have been tested, respectively.
Two possible targets, T1 and T2, are also shown, of which T2 is the more ambitious.

2 Formulations tested
T1 T2

X X score

8 Formulations tested
X X T1 T2

X X X X X X score

16 Formulations tested
X

X X X
X X X X T1 T2

X X X X X X X X score

Fig. 1. Successive histograms for a route

Not much can be said after just two scores have been obtained, although they
are sufficiently widely spread to give grounds for hoping that the targets may both
be attainable. When eight formulations have been tested the picture is clearer.
The suggestion that T1 is likely to be reached fairly soon is strengthened, but
it is beginning to look as though T2 may not be reached for a long time, unless
the chemist hits on some method of finding formulations with higher scores. After
testing 16 formulations this picture is confirmed.

The dynamic allocation index for a route is a number that quantifies these
impressions obtained from the histogram of scores so far achieved. It is a measure
of the current promise of a route, insofar as this is reflected in the scores of the
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formulations that have already been tested. In many cases chemists have additional
information, perhaps sometimes amounting to little more than a hunch, which leads
them to believe that a route is either more or less promising than the DAI suggests.
When this happens they will, quite rightly, take such considerations into account
in deciding on which routes to concentrate, and availability and ease of synthesis
are, of course, also relevant. What the CPSDAI calculations for the various routes
do is to provide an aid to the continual dialogue between the chemist and the
experimental data, and to indicate those routes which, on the basis of past results,
and taking account of any prior beliefs, it seems most profitable to pursue.

A DAI which prioritises routes on the basis of minimum expected cost to reach
the target may be obtained by dividing the DAI given by CPSDAI by the cost of
testing a compound from a given route. Alternatively, to minimise expected time
we may divide by the time taken to test a compound.

It is worth noting that the appropriate choice of routes depends on the level of
the target. This is illustrated by the route whose history is shown in figure 1. It is
fairly obvious that for the target T2 the DAI for the route must decrease at each
successive stage, as it becomes increasingly clear that most of the scores are well
below T2. For T1, on the other hand, the DAI may well increase.

This phenomenon is not surprising. It is a reflection of the fact that if what is
required is a modest improvement over current performance levels, it is probably
best to try modifications of one of the currently used formulations; whereas if
the target is a really substantial improvement, it is worth considering completely
different and relatively untried routes. It does, however, show the importance of an
appropriate choice of target. There are occasions when it is worthwhile applying
CPSDAI simultaneously for two or more different target values.

2.2 Some Technicalities

For a given route a score of I is chosen, either by the program or by the user,
and the scores are rescaled linearly so that I = 0 and T = 1. The number of
transformed scores above any positive value x is assumed to be proportional to
exp(−θ((x + 2)r − 2r)) for appropriately chosen parameters θ and r. The value of
I needs to be close enough to T for a model of this form to be a reasonable fit
to the distribution of scores, but not so close that the frequency of scores above I
is very low. Formulations with scores above I are termed interesting formulations.
Let p be the proportion of formulations with scores below I. These uninteresting
formulations are essentially modelled only in terms of estimates for p, without
taking further account of their distribution.

The DAI for a route is equal to the posterior probability, given the results from
the route to date, that the next formulation tested has a score exceeding T , which we
term the current probability of success (CPS) , together with an upward correction
which is large if the uncertainty associated with that posterior probability is also
large. Since our primary interest is in routes for which at most one score over T
has so far been noted, it follows that the CPS is something like an extrapolated
estimate of the tail area of the distribution of scores in the route, based on the
current histogram of scores. This means that both DAI and CPS are subject to
considerable error if there is any appreciable departure from the assumed form
for the distribution of scores, and any such error will be particularly great if the
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extrapolated distribution is fitted to those parts of the histogram for which the
scores are well below T . This is the reason for treating scores differently according
as they are above or below I. In fact the treatment of scores near I allows a gradual
transition from uninteresting scores to interesting scores, so the procedure is not
sensitive to whether particular scores are just over or just under I.

On the basis of information provided by the user the program sets up prior
distributions for p, r and θ. These will have large or small variances depending on
the strength of the user’s prior information. A beta prior distribution is assumed
for p, and gamma distributions for r and θ.

For example, the prior density function for r is of the form
Γ (n)−1Σnxn−1exp(−Σx), where x = r. Values of r which are much greater than
one are rather implausible - for example a normal distribution of scores would mean
r = 2.0. Reasonable values for many purposes are n = 2.0 and Σ = 2.0. With these
values the prior probability that r lies between 0.1 and 3 is 0.965. The program
sets n = Σ, with a common value of at least 2.0, and as close to 2.0 as is consistent
with the input prior probabilities.

The scores of the formulations which have been tested are used to modify the
prior distributions for the parameters by means of Bayes theorem. The program
then uses the resulting posterior distributions to calculate CPS, DAI, and a pre-
diction interval for the number of further formulations which will need to be tested
to reach the target. All these are defined in terms of the true score, without ex-
perimental error. The assumption is that if the observed score of a formulation is
near the target the formulation is likely to be further investigated, at least to some
extent, so compounds which achieve the target are unlikely to be missed.

Experimental error is allowed for by assuming the differences between xr and
yr, where y is the observed score and x is the true score, to be normally distributed,
with a variance calculated from user-provided input.

The calculation of DAI is based on tables given in Gittins and Jones (1974)
and Gittins (1989). Some approximation is needed as these tables are for the case
when r is known to be equal to one. An account of these calculations, and of the
underlying theory, is given in Gittins (1994).

2.3 Some Advice on Using CPSDAI

The CPSDAI calculations for a route are on the basis that the scores achieved by
the different chemical formulations in the route may be regarded as independently
drawn from the distribution of scores for the entire set of chemical formulations
defining the route. Now this is a considerable oversimplification. The point is that
formulations which are similar in chemical composition are also likely to have similar
scores, and there are certain to be degrees of similarity in chemical composition even
for formulations belonging to the same route.

A basic organic molecule, for example, may have one or more sites at which
side-chains could be attached. Compounds all having this same basic component
may then be compared on the basis of whether there are side-chains, and if there are
whether they have common features, such as halogen atoms. Then there are those
formulations which consist of mixtures of compounds, a class which includes, for
example, nearly all detergents. There will clearly be a tendency for those mixtures
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which contain the same, or similar, ingredients to have similar scores. The homely
term ingredient, which is natural when thinking of mixtures of compounds, we shall
also use in reference to particular features of complex molecules.

All this means that the total amount of variability of the scores in a route should
be recognised as being attributable to a number of specific identifiable causes. To
the statistician this naturally suggests what is known as a components of variance
model: a model, that is to say, in which the over-all variation of scores within a
route is divided into components assigned to the different individual ingredients
of which the formulations in the route may consist. A model of this kind would,
in principle, lead to a more general CPSDAI analysis, indicating which ingredi-
ents should be changed as well as the promise of the route as a whole. There are,
however, some difficulties, the most important being that the assumptions of the
model would probably not hold. It is often impossible to specify in advance what
types of ingredient might be used, and, contrary to the model, the different ingredi-
ents would not typically contribute independent amounts to the score. In addition,
the computations required would be quite unmanageable, and the resulting man-
agement aid would in any case be distinctly unwieldy. Some alternative, and less
formal, method of coping with the problem of different types of ingredient is called
for.

One point which needs to be remembered is that the formulations tested are se-
lected by a chemist from the total population of possible formulations in a route as
being worth testing. They would be wise to try at an early stage those types of in-
gredient which are particularly promising. It would be a waste of time to test a large
number of formulations which differ only in respect of types of ingredient which do
not cause much variation in score. Thus there should be a tendency for the impor-
tant types of variability all to be explored at an early stage, a consideration which
favours the validity of our simplified model, up to the point at which the search
starts to be concentrated on sub-populations of particular interest. Nonetheless,
for the sake of building up chemical knowledge in a systematic fashion the chemist
may well test more formulations of a fairly similar nature than is justified simply
on the basis of a rapid exploration of all the important sources of variability. This
leads to the idea of limiting the number of formulations whose scores are used as
a basis for CPSDAI calculations according to the number of distinct ingredients
which have been used. With these considerations in mind, the following scheme for
applying CPSDAI is suggested:

As a first essential, the score for every formulation tested in a route should be
plotted sequentially, together with the CPS and the DAI. Histograms of scores
should also be plotted for each route and regularly updated.

In general, every formulation tested should be counted in the calculations, ex-
cept when the same ingredients are mixed together in different combinations or
proportions. When this happens the number of scores which are counted from a
group of chemicals with ingredients in common is limited to the number of ingredi-
ents in the group which occur just once, plus twice the number of ingredients which
occur more than once. The score of any formulation which includes an ingredient
which does not occur anywhere else is counted. If more formulations from the group
have been tested than the number of scores which are allowed to count, then the
scoring formulations are selected so that (i) as far as possible each ingredient is in
a scoring formulation equally often, and (ii) subject to (i) the scoring formulations
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are chosen so as to be representative of the range of variation of the scores recorded
for the group. If some particular class of ingredient has members which differ only
in hydrocarbon chain length, then only three ingredients belonging to the class are
counted as separate ingredients for the purposes of this paragraph: those ingredients
having the greatest and the smallest chain lengths, and one with an intermediate
chain length.

There will be occasions when a particular line of investigation becomes so
promising and permanent as in effect to constitute a new route. It may be ob-
vious on chemical grounds that this is happening, or it may be suggested in the
first instance by a change in the general level of scores. When this happens, those
formulations which belonged to the old route but not to the new one must be
excluded from future calculations.

The notion of different particular lines of investigation all within the same route
suggests a further application of CPSDAI which might sometimes be useful. This
is to keep a record of the highest score obtained by a formulation within each
line of investigation and to carry out an analysis on this basis. This would give
an indication of the number of similar lines of investigation required before one is
found which produces a formulation with a score above the target. Its usefulness
will depend on the number of potential sub-routes being large.

2.4 An Example

Target 125 125
Cutoff point for interesting formulations 50 70
Dynamic allocation index 0.0036 0.0020
Probability next formulation reaches the target 0.0028 0.0013
Lower 90% limit for the number of further formulations
required to reach the target

19 42

Median for the number of further formulations required
to reach the target

380 1400

Upper 90% limit for the number of further formulations
required to reach the target

5900 96000

Table 1. Results of analysis for route 1.

In tables 1 and 2 the results of tests on formulations drawn from two routes in
a research program designed to produce a herbicide are summarised. The raw data
for each formulation consisted of assessments of the severity of the effect when the
formulation was applied to a particular plant species in a particular way and at
a given dosage level. In all, forty observations were available for each formulation
for different combinations of these factors. The target of 125 represents an existing
herbicide, the aim being to find a formulation which is at least as toxic to the
relevant plant species. Similar raw data were available for this target herbicide.
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Target 125 125
Cutoff point for interesting formulations 50 70
Dynamic allocation index 0.0028 0.0012
Probability next formulation reaches the target 0.0021 0.00063
Lower 90% limit for the number of further formulations
required to reach the target

24 87

Median for the number of further formulations required
to reach the target

410 2300

Upper 90% limit for the number of further formulations
required to reach the target

3700 67000

Table 2. Results of analysis for route 2.

Scores for each formulation were obtained by first taking an appropriate weighted
average of the differences between the forty observations for target herbicide and
formulation respectively, and then adding a constant so that the lowest observed
score was zero. The scores for each route are summarised in figures 2 and 3.

For both routes the reason for the relatively large number of formulations with
scores near the maximum is because several formulations all with very similar molec-
ular structures were tested. The next step was to remove some of these from the
analysis, along the lines mentioned in the previous section. The resulting reductions
are shown by the dotted lines in figures 2 and 3. The analysis given in tables 1 and
2 was based on the resulting modified sets of scores.

The choice of the cutoff point between uninteresting and interesting formu-
lations, not surprisingly, has a significant influence on the analysis. The overall
message from this data is, however, fairly clear. For both routes there is a reason-
able chance that a few hundred more formulations sampled along similar lines would
produce one which achieved the target. However the number needed might well also
run into thousands, or even tens of thousands, without some further refinement of
the populations of formulations being sampled.

PartI

Algorithms for Allocating

Resources to Multi-Stage

Pharmaceutical Research
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Fig. 2. Data for route 1 (dots indicate reduced numbers of observations).

Projects

3 Summary

Two alternative stochastic models are described for a stage in a multi-stage phar-
maceutical research project. These may be used to estimate the most profitable
number of scientists to allocate. General properties of these optimal allocations are
derived and algorithms to calculate the optimal allocations are described, together
with examples of their use. Optimal allocations are higher than those which are
likely to complete the project in the minimum number of scientist-years.

4 Introduction

The process which begins with exploratory research in an industrial pharmaceutical
laboratory and culminates in the marketing of a new drug is usually described either
as research (or as discovery) in its early stages and later on as development. The
dividing point between research and development is often defined to be when a
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Fig. 3. Analysis of route 2 (dots indicate reduced numbers of observations).

compound is designated as a potential new drug, or development compound often
referred to as a new chemical entity. At, or soon after, this point the compound
moves out of the laboratory and clinical trials begin. On average fewer than 20% of
development compounds finally emerge as marketable drugs, and consequently more
than one development compound are usually selected from any given project. The
research phase of a project is characterised by screening tests on a large number
of compounds, many of which may have been synthesised for the purpose. The
duration of the research phase varies widely, ten years being typical. The time-
scales in development are more predictable, eight years being typical.

For the research to be profitable it is important to keep these long periods
within bounds. Gittins (1997) investigates the relationships between profitability
and the numbers of scientists allocated at the different stages of the research phase
of a project, using a stochastic model. The general conclusion is that larger project
teams than those which are typical of current practice would in some cases be much
more profitable.

Here the stochastic model is described and used to derive some of the properties
of an optimal policy. These in turn have been used to construct algorithms for the
calculation of optimal policies for two versions of the model, and examples are
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given of these policies. More details of the structure of the process of research in
the pharmaceutical industry are given, for example, by Boschi (1982), Bergman
and Gittins (1985), Spilker (1989), and in reports by Andersen Consulting (1998)
and by Price Waterhouse Coopers (1998).

5 Modelling Assumptions

The research phase of a project consists of four stages: stage 1, preliminary; stage
2, identifying the first lead compound; stage 3, identifying the first development
compound; and stage 4, identifying a further development compound. The stages
take place in sequence, and stage 4 may be repeated (or omitted) as often as is
necessary to produce the required number of development compounds.

If ui scientists are allocated to stage i of a project the rate of progress is ei(ui). If
the rate of progress was simply proportional to the number of scientists, we could
choose appropriate units so that ei(ui) = ui. However it is widely believed that
there is an optimal size for a team of scientists, and that higher or lower numbers
lead to a loss of efficiency. To model this we use an effectiveness function e (dropping
the subscript i) such that

maxu(e(u)/u) = 1.

Let ueff be the value of u such that

e(ueff )/ueff = 1.

Thus e(u)/u is the relative efficiency of a team of u scientists compared with ueff ,
the most efficient team size. The numerical calculations used functions of the form

e(u) = au2/(1 + bur).

These functions mean that the relative efficiency has the required unimodal
shape as a function of u.

Two alternative models for a research stage will be described, the second model
being more detailed and realistic, as well as leading to more complicated calcula-
tions.

Model 1

When u scientists are allocated, the time T needed to complete the stage is
X/e(u), where X is known in advance, and is the number of scientist-years needed
to complete the stage when u = ueff . On completion of the stage it has either been
successful, with probability p, or unsuccessful, with probability 1 − p. At stage 4,
p = 1. After an unsuccessful stage the project is terminated.

Model 2

The number of scientists allocated at a time t after the beginning of the stage
is u(t). Thus we may define the effective work done up to time t to be
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x(t) =

∫ t

0

e(u(s))ds.

The effective work X required to complete the stage successfully has distribu-
tion function F and density function f , and the time required is T , so that X =
x(T ). It follows that T has the distribution function F (x(·)) and density function
e(u(·))f(x(·)).

The expected cost of the project is measured in scientist-years, on the basis that
the cost of a scientist includes the cost of overheads, equipment, accomodation, and
technical and secretarial assistance. Future costs are discounted by a factor which
expresses the lower value of a sum of money in the future compared with the value
of the same sum if it was available immediately. If the present value of £1 which
becomes available (indexed for inflation) after t years is £exp(−γt), the cost in
scientist-years of employing u scientists for t years is

∫ t

0

u exp(−γs)ds = uγ−1(1− exp(−γt)). (1)

Obsolescence means that the exponential rate γ1 at which future rewards from
the project are discounted is higher than the rate γ which applies to future costs.

The expected value of a development compound available now for clinical trials
is £V . This expected value is based on the distribution of possible cash flows
resulting from a new drug, and takes account of all costs, and the possibility that
the compound may not survive clinical trials. When the possibility that any of the
first three stages of research may be unsuccessful is taken into account, and the
value of the development compound is discounted to allow for the fact that it is
not available now but after a time T1 + T2 + T3, the expected value of the first
development compound which may emerge becomes

p1p2p3exp[−γ1(T1 + T2 + T3)]V

for Model 1.

Subsequent development compounds have a lower expected value for two rea-
sons. First there is an additional discount factor because any rewards occur later.
Secondly, the expected market for each successive compound in the series is reduced
by competition from its predecessors. The effect of this competition is to multiply
the value of the j’th compound in the series by θj for some θ in the range (0,1).
Thus if there are in all k of these backup development compounds, with u4j sci-
entists allocated during the search for the j’th compound, which therefore takes a
time T4j , the total expected discounted reward R under Model 1 from the k + 1
development compounds may be written as

d11d
1
2d

1
3(1 +

k∑
j=1

θj

j∏
i=1

d14i)V, (2)
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where d1i = piexp(−γ1Ti), (i = 1, 2, 3), and d14i = exp(−γ1T4i), (i = 1, 2, ..., k) (di

and d4i will be used to denote the similar quantities with γ in place of γ1).

Now writing

ci = uiγ
−1(1− exp(−γTi)) (i = 1, 2, 3),

c4i = u4iγ
−1(1− exp(−γT4i)) (i = 1, 2, ..., k),

and referring to equation (1), it follows that under Model 1 the total expected
discounted cost C incurred in finding the k + 1 development compounds is

c1 + d1c2 + d1d2c3 + d1d2d3

k∑
j=1

j−1∏
i=1

d4ic4j . (3)

For Model 2 the expressions (2) and (3) for R and C still hold if we redefine
the discount factors di, d4i, d

1
i , d

1
4i, and the costs ci, c4i, now as expected discount

factors and expected costs. Dropping all subscripts, the expected discount factor for
costs for a stage under Model 2 may be written

d = E(exp(−γT )) =

∫ ∞

0

e(u(t))f(x(t))exp(−γt)dt. (4)

The expression for d1, the expected discount factor for rewards, is of the same
form with γ1 in place of γ. Again dropping subscripts, the expected cost of a single
stage under Model 2 may be written

c =

∫ ∞

0

P (T > t)u(t)exp(−γt)dt

=

∫ ∞

0

u(t)(1− F (x(t)))exp(−γt)dt. (5)

It is also possible to describe some stages by Model 1 and others by Model 2.
In this case the appropriate terms in (2) and (3) are replaced by expressions of the
forms (4) and (5), with suitable suffixes.

6 Optimising the Effort Allocations

6.1 General

Since the time-scale of the development phase is similar for all projects a good
approximation to a strategy which maximises profitability is to select projects for
which R/C is large, and for those projects which are selected to allocate effort so
as to maximise R/C, which serves as an index of profitability and will be denoted
by P . Given an unlimited supply of projects for which the time-scales of research
as well as development are identical this strategy would be precisely optimal. For
simplicity we will from now on describe it as optimal, although strictly this is only
approximately true.
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¿From the expressions (2) and (3) it follows that if γ1 = γ then

V C

R
=
c1
d1

(d2d3
∑

R
)−1 +

c2
d2

(d3
∑

R
)−1 +

c3
d3

∑−1

R
+
∑

C

∑−1

R
, (6)

where
∑

R
= 1 +

k∑
j=1

θj

j∏
i=1

d4i and
∑

C
=

k∑
j=1

j−1∏
i=1

d4ic4j . To maximise P we must

minimise the right-hand side of (6). This is with respect to u1, u2, u3 and u4i (i =
1, 2, ..., k), including the value of k. For Model 1, u1, u2, u3 and u4i are constants.
For Model 2 they are functions of t.

Since the only quantities c and d which depend on a given u are those which
correspond to the same stage (and hence have the same subscript(s)) it follows from
(6) that, to maximise P , u1 must minimise c1/d1. Let this minimum be A1. Then
u2 must minimise (A1 + c2)/d2. Let this minimum be A2. Then u3 must minimise
(A2 + c3)/d3. Let this minimum be A3. Then u4i (i = 1, 2, ..., k) must minimise

(A3 +
∑

C
)
∑−1

R
.

Thus the complete set of optimal allocations for the different stages may be
calculated one stage at a time by means of a nested sequence of calculations if
γ1 = γ. When γ1 > γ we might hope to find that to optimise in turn with respect
to u1, u2, u3 and u4i (i = 1, 2, ..., k), and if necessary to iterate, would be a good
strategy. For Model 1 this turns out to be true, and an algorithm has been written
which, after some adaptation, should show whether the same is true for Model 2.

References

Andersen Consulting (1998),Re-Inventing Drug Discovery, Executive Briefing, www.andersen.com

Bergman, S.W. and Gittins, J.C. (1985), Statistical Methods for Pharmaceutical
Research Planning,Marcel Dekker, New York.

Boschi, R.A.A. (1982),Modelling exploratory research. European Journal of Oper-
ations Research, 250–259.

Gittins, J. C. and Jones, D. M. (1974), A Dynamic Allocation Index for New-
Product Chemical Research, Cambridge University Engineering Dept. Technical
Report - Mgt.Stud/TR13 (1974).

Gittins, J. C. (1989), Multi-Armed Bandit Allocation Indices, Wiley.

Gittins, J. C. (1994), Indices on thin ice, in Probability, Statistics and Optimisa-
tion: a Tribute to Peter Whittle, editor F.P.Kelly, Wiley.

Gittins, J.C. (1997),Why Crash Pharmaceutical Research, R & D Manage ment,
79–85.

Price Waterhouse Coopers (1998), Pharma 2005 – An Industrial Revolution int
R&D, www.pwcglobal.com/pharma/

Spilker, B. (1989),Multinational Drug Companies – Issues in Drug Discovery and
Development,Raven Press, New York.



62 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Sixth International Statistics Conference

GittJ Gittins, J. C. and Jones, D. M. (1974), A Dynamic Allocation Index for New-
Product Chemical Research, Cambridge University Engineering Dept. Technical
Report - Mgt Stud/TR13 (1974).

Gitt1 Gittins, J. C. (1989), Multi-Armed Bandit Allocation Indices, Wiley.

Gitt2 Gittins, J. C. (1994),Indices on thin ice, in Probability, Statistics and Opti-
misation: a Tribute to Peter Whittle, editor F.P.Kelly, Wiley.



Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Certain Characterizations of the Uniform Dis-
tribution

Hamedani, H. and Volkmer, H.

A17004

Marquette University, USA.

Abstract. Let X1,X2,...,Xn be i.i.d. random variables with an absolutely continu-
ous (with respect to Lebesgue measure) distribution F. Denote the corresponding
order statistics by X1:n¡=X2:n¡=...¡=Xn:n. If the distribution F is uniform [0,c],
then the spacing Xs:n-Xr:n and the order statistic Xs-r:n are identically distributed
for 1¡=r¡s¡=n,i.e.

Xs : n−Xr : nandXs− r : narei.d. (1)

The present work is mainly concerned with characterizations of the uniform distri-
bution based on (1) for some r and s.

0. Introduction.

The problem of characterizing uniform distribution based on the identical distribu-
tions of certain spacings has been studied by many authors, in particular by Arnold,
Ghosh, Huang, Shimizu, and Ahsanullah (see [?], [?], [?]).

Let X1, X2, . . . , Xn be i.i.d. random variables with an absolutely continuous
(with respect to the Lebesgue measure) distribution function F . Denote the cor-
responding order statistics by X1:n ≤ X2:n ≤ . . . ≤ Xn:n. If the distribution F
is uniform [0, c], then the spacing Xs:n − Xr:n and the order statistic Xs−r:n are
identically distributed for 1 ≤ r < s ≤ n, i.e.

(0.1) Xs:n −Xr:n ∼ Xs−r:n.

The present work is mainly concerned with characterizations of the uniform dis-
tribution based on (0.1) for some r and s. Sections 2 – 6 lead to improvements
as well as generalizations of some results and characterization theorems of [?] and
[?]. We also present a different proof of Shimizu and Huang’s Theorem, [?], which
we believe is much simpler. Finally, we mention some open problems for interested
readers.

1 Preliminary Lemmas.

It is well-known [?, page 9] that the pdf fk:n of Xk:n is given by

fk:n(x) =

(
n
k

) (
F (x)

)n−k
k f(x) (F (x))k−1, (2)



64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Sixth International Statistics Conference

where F (x) = 1− F (x), and f is the pdf corresponding to F . The pdf fr,s,n (x) of
the spacing Xs:n − Xr:n, 1 ≤ r < s ≤ n, [?, page 11] vanishes for x < 0, and for
x ≥ 0 it is given by

fr,s,n(x) =
n!

(n− s)!(s− r − 1)!r!
× (3)∫ ∞

−∞
f(t+ x)

(
F (t+ x)

)n−s
[F (t+ x)− F (t)]s−r−1 d(F (t))r.

Recall that a is called a point of increase for F if F (a + δ) − F (a − δ) > 0 for
all δ > 0. The support of F , denoted by SuppF , is the set of all points of increase
for F . It is a closed set and it has no isolated points (the latter holds because we
assume that F is continuous.)

Lemma 1.1. If a ∈ IR, b ≥ 0 and a, a+ b ∈ Supp F , then b ∈ Supp Fr,s,n for
all r, s where Fr,s,n is the distribution function of the spacing Xs:n −Xr:n.

Proof.We first assume additionally that

0 < F (a) < F (a+ b) < 1. (4)

Now, there is δ > 0 (which can be chosen arbitrary small) such that, for all x ∈
[b− δ, b+ δ] and t ∈ [a− δ, a+ δ],

0 < F (t) < F (t+ x) < 1. (5)

Since F (a+ b+ δ)− F (a+ b− δ) > 0, there is an ε ∈ (0, δ) such that

F (t+ b+ δ)− F (t+ b− δ) > 0 for all t ∈ [a− ε, a+ ε]. (6)

We claim that H(b+ δ)−H(b− δ) > 0 where H = Fr,s,n. If not, we have∫ b+δ

b−δ

∫ ∞

−∞
f(t+x)

(
F (t+ x)

)n−s
[F (t+ x)− F (t)]s−r−1 f(t) (F (t))r−1 dt dx = 0.

By (5), ∫ b+δ

b−δ

∫ a+ε

a−ε

f(t+ x) f(t) dt dx = 0,

or ∫ a+ε

a−ε

[F (t+ b+ δ)− F (t+ b− δ)] f(t) dt = 0.

In view of (6), we have, from the last equation,

0 =

∫ a+ε

a−ε

f(t) dt = F (a+ ε)− F (a− ε).

This is a contradiction since a is a point of increase of F . Therefore H(b − δ) <
H(b+ δ) and since δ can be arbitrary small, b ∈ SuppH.

If a, a+ b ∈ SuppF , we can find sequences {an}, {bn} in SuppF converging to
a and b respectively, such that for an, bn, the extra assumption (4) holds. We used
here the fact that SuppF has no isolated point. Therefore, by the first part of the
proof, bn ∈ SuppH. Since SuppH is closed, we conclude that b ∈ SuppH.

Lemma 1.2. For every spacing, 0 ∈ SuppFr,s,n.

Proof.Choose b = 0 in Lemma 1.1.
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2 Formulation of the problem.

For the special pdf

f(x) =

{ 1
c

, 0 ≤ x ≤ c
0 , otherwise,

(7)

with 0 < c <∞, we have [?, page 12]

fr,s,n = fs−r:n (8)

Conjecture. Every pdf f satisfying (8) for given r and s is of the form (7)
a.e.

The following lemma is given in [?, Lemma 1], for the special case of s− r = 1.

Lemma 2.1. If the pdf f satisfies (8), the support of its distribution function
F is an interval [0, c], where c is a positive real number or infinity.

Proof.Let f be a solution of (8). It is clear that F (0) = 0. It is also easy to see
that the support of F agrees with the support of the distribution function Fk:n of
the order statistic Xk:n for any k. Therefore, by (8)

SuppF = SuppFr,s,n.

By Lemma 1.2, 0 ∈ SuppFr,s,n and hence 0 ∈ SuppF . Assume that the statement
of the lemma is false. Then there are x1, x2 with 0 < x1 < x2 such that F (x1) =
F (x2) < 1. We may assume that x2 ∈ SuppF . Since 0 ∈ SuppF and F (0) = 0, there
is c ∈ SuppF∩(0, x2−x1). By Lemma 1.1, we see that x2−c ∈ SuppFr,s,n = SuppF .
This is a contradiction since x1 < x2 − c < x2 and F is constant on the interval
(x1, x2). The statement of the lemma is now proved.

3 Solution of the problem if F is subadditive.

Theorem 3.1. Let f be a pdf satisfying (8) for given r and s, and assume that F
is subadditive on its support (SuppF = [0, c] by Lemma 2.1), i.e.,

F (x+ y) ≤ F (x) + F (y) if x, y, x+ y ∈ [0, c]. (9)

Then c is finite and f is of the form (7).

Proof.By (8) and (9), we have for x > 0

fs−r:n(x) = fr,s,n(x) ≤ n!

(n− s)!(s− r − 1)!r!

∫ ∞

0

f(t+x)(F (t+x))n−s (F (x))s−r−1 d(F (t))r.

Since F (x) > 0 we can cancel (F (x))s−r−1 on both sides to obtain, after simplica-
tion of the factorials,

f1:N ≤ fr,r+1,N , where N = n− s+ r + 1.

Since both sides of this inequality are pdf’s, we conclude that

f1:N = fr,r+1,N . (10)



66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Sixth International Statistics Conference

Thus, we have reduced the proof of the theorem to the special case s− r = 1. We
now solve equation (10) but we write again n in place of N . Using the substitution

s = F (t)

F (x)
we calculate

(F (x))n =

(
n
r

)
(F (x))n

∫ 1

0

(1− s)r dsn−r

= −
(
n
r

) ∫ ∞

x

[F (x)− F (t)]r d (F (t))n−r

= −
(
n
r

) ∫ ∞

0

[F (x+ t)− F (x)]r d (F (t+ x))n−r.

The variable of integration in the last integral is t. If we integrate equation (8) over
x from x to ∞, we obtain

(F (x))n =

(
n
r

) ∫ ∞

0

(
F (t+ x)

)n−r
d(F (t))r = (11)

−
(
n
r

) ∫ ∞

0

(F (t))r d
(
F (t+ x)

)n−r
.

This equation can now be written as∫ ∞

0

[(F (t+ x)− F (x))r − (F (t))r] d
(
F (t+ x)

)n−r
= 0. (12)

In view of (9) we have, from (12),

F (t+ x) = F (t) + F (x) if t, x, t+ x ∈ [0, c]. (13)

This implies that F (t) = at for t ∈ [0, c]. Hence c is finite. Since F (c) = 1, we obtain
a = 1

c
, which completes the proof.

Remark 3.2. Theorem 3.1 improves a similar result given in [?] in two di-
rections: The support of F is not assumed to be finite and s need not be equal to
r + 1.

For the special case of r = 1, s = 2, the assumption of subadditivity of F can
be dropped, as shown in [?]. Here we provide a much simpler proof for this special
case.

Theorem SH. Uniform distribution is the only absolutely continuous distri-
bution whose X2:n −X1:n and X1:n are identically distributed.

Proof.By Lemma 2.1, SuppF = [0, c]. Assume that SuppF = [0,∞]. From (8)
we have (

F (x)
)n

= n

∫ ∞

0

(
F (t+ x)

)n−1
f(t) dt, x ≥ 0. (14)

This implies that(
F (x)

)n ≥ nF (u)
(
F (u+ x)

)n−1
, x ≥ 0, u ≥ 0. (15)
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Again by (8)

f(0)
(
F (0)

)n−1
= (n− 1)

∫ ∞

0

(F (t))n−2 (f(t))2 dt,

which implies f(0) > 0. Since f is lower semicontinuous at 0 (this is not too hard
to show), there is δ > 0 and ε > 0 such that

f(t) > ε for 0 < t < δ.

Then

f(x)
(
F (x)

)n−1
= (n− 1)

∫ ∞

0

(
F (t+ x)

)n−2
f(t+ x) f(t) dt

≥ (n− 1)

∫ δ

0

(
F (t+ x)

)n−2
f(t+ x) f(t) dt

≥ ε (n− 1)

∫ δ

0

[
F (t+ x)

]n−2
f(t+ x) dt

= ε
[(
F (x)

)n−1 −
(
F (x+ δ)

)n−1
]
.

Thus

f(x) ≥ ε
(

1−
(
F (x+ δ)

)n−1(
F (x)

)n−1

)
,

and in view of (15)

f(x) ≥ ε
(

1− 1

n
· F (x)

F (δ)

)
for x > 0.

This is a contradiction since f is integrable. Thus SuppF = [0, c] where c <∞.

4 Solution of the problem if F is superadditive.

Theorem 4.1. Left f be a pdf satisfying (8) for given r and s, and assume that
F is superadditive on its support (SuppF = [0, c] by Lemma 2.1), i.e.,

F (x+ y) ≥ F (x) + F (y) if x, y, x+ y ∈ [0, c]. (16)

Then c is finite and f is of the form (7).

Proof.The proof is almost the same as that of Theorem 3.1. There is, however,
a minor simplification: one can conclude that c is finite directly from (16).

Remark 4.2. The above theorem is a generalization of Theorem 1 of [?] to
arbitrary r and s.
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5 Solution of the problem if F is symmetric and
s = r + 1.

Let s = r + 1. Then from (8) we have

n f(x)
(
F (x)

)n−1
=

(
n
r

)
(n− r) × (17)∫ ∞

0

f(t+ x)
(
F (t+ x)

)n−r−1
d(F (t))r for x ≥ 0.

Lemma 5.1. Let f be a pdf satisfying equation (8) with s = r + 1. Then the

limit of the difference quotient F (x)
x

exists as 0 < x→ 0 (it may be infinity).

Proof.Let f be a solution of equation (17). This equation has the form

n f(x)
(
F (x)

)n−1
=

∫ ∞

0

g(t+ x)h(t) dt (18)

with nonnegative integrable functions

g(t) =

(
n
r

)
(n− r) f(t)

(
F (t)

)n−r−1
,

h(t) = f(t) r (F (t))r−1.

Therefore, f is lower semicontinuous on [0, c) and (18) holds for all x ≥ 0 (not just

a.e.). If f(0) = ∞, this gives limx→0+
F (x)

x
= ∞. Now assume that f(0) is finite.

Since F is decreasing and F is increasing, we have

g(t+ x)h(t) ≤
√
g(t+ x)h(t+ x) g(t)h(t).

Hence

nf(x)
(
F (x)

)n−1−nf(0) ≤
∫ ∞

0

(√
g(t+ x)h(t+ x)−

√
g(t)h(t)

)√
g(t)h(t) dt.

(19)
Since f(0) is finite,

√
gh is square-integrable. Using the Cauchy-Schwarz inequality

we find that the right-hand side of the inequality (19) tends to 0 as x → 0. Since
f is lower semicontinuous at 0, this implies that f is continous at 0. Therefore,
F (x) =

∫ x

0
f(t) dt is differentiable at 0.

Theorem 5.2. If the pdf f satisfies (8) with s = r + 1 and is symmetric on
its support [0, c] (0 < c <∞), that is, f(c− x) = f(x), then f is of the form (7).

Proof.Let f be a solution of (17). Because of the symmetry, the substitution
y = c− x leads from (12) to

0 =

∫ y

0

[(F (y)− F (y − t))r − (F (t))r] d(F (y − t))n−r. (20)

By Lemma 5.1, F ′(0) exists (it may be infinity). Let α ∈ (0, F ′(0)). Assume that
the graph of u = F (t), t ∈ (0, c], intersects the line u = αt. Then there is y ∈ (0, c]
such that

F (y) = αy, F (t) > αt for 0 < t < y.
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This implies that

F (y)− F (t) < α(y − t) < F (y − t) for t ∈ (0, y).

This is, however, impossible because of (20) and the fact that SuppF = [0, c]. Hence
F (t) ≥ αt for t ∈ [0, c]. Since α is an arbitrary number between 0 and F ′(0), this
shows that F ′(0) is finite and F (t) ≥ F ′(0) t for t ∈ [0, c]. Similarly, one shows that
F (t) ≤ F ′(0) t. Hence F (t) = F ′(0) t for t ∈ [0, c] which completes the proof.

6 Solution of the problem if F is symmetric and
r = 1, s = n.

Let r = 1 and s = n. Then equation (8) can be written as

n(n−1) f(x)F (x) (F (x))n−2 = n(n−1)

∫ ∞

0

f(t)f(t+x) [F (t+ x)− F (t)]n−2 dt.

(21)
If we integrate over x from 0 to x we obtain

n (F (x))n−1 F (x) + (F (x))n = n

∫ ∞

0

[F (x+ t)− F (t)]n−1 f(t) dt. (22)

We can write this also as

(F (x))n−1 F (x) =

∫ ∞

0

[F (t+ x)− F (t)]n−1 f(t+ x) dt (23)

and

0 =

∫ ∞

0

[
(F (t+ x)− F (t))n−1 − (F (x))n−1

]
f(t+ x) dt. (24)

Lemma 6.1. Let f be a pdf satisfying (21) and such that c is finite (see Lemma
2.1). If f is not the uniform density function, then

lim inf
x→0+

F (x)

x
>

1

c
.

Proof.We divide both sides of (22) by nxn−1 and then form the limit inferior
of both sides as x→ 0+. Fatou’s lemma gives(

lim inf
x→0+

F (x)

x

)n−1

≥
∫ ∞

0

(f(t))n dt =

∫ c

0

(f(t))n dt. (25)

Since f is not a constant function, Hölder’s inequality gives

1 =

∫ c

0

f(t) dt <

(∫ c

0

(f(t))n dt

) 1
n
(∫ c

0

1
n

(n−1) dt

) (n−1)
n

.

Hence ∫ c

0

(f(t))n dt > c1−n.
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By (25)

lim inf
x→0+

F (x)

x
>

1

c
.

Theorem 6.2. If the pdf f satisfies (21) and is symmetric on [0, c] (with c
finite), then f is of the form (7).

Proof.Assume that f is not a uniform density function. By Lemma 6.1, there
is δ > 0 such that F (x) > x

c
for 0 < x < δ. By the symmetry, we also have F (x) < x

c

for
c − δ < x < c. Choose the maximal number y which is less than c and such
that F (y) = y

c
. Then F (y + t) < (y+t)

c
for 0 < t < c − y and, by the symmetry,

F (t) > t
c

for 0 < t < c− y. Hence

[F (y + t)− F (t)]n−1 − [F (y)]n−1 < 0 for 0 < t < c− y.
This is a contradiction to equation (24) for x = y, which proves the theorem.

Remark 6.3. Theorem 6.2 greatly improves Theorem 2.3 of [?].

Theorem 6.4. Let X be a positive random variable having an absolutely
continuous distribution function F . If the pdf f is strictly monotone on SuppF and

Xi:n −Xi−1:n ∼ Xi+1:n −Xi:n for some i, (26)

then f is of the form (7).

Proof.By (26)

(i+ 1)

(
n
i+ 1

) ∫ ∞

0

(
F (t+ x)

)n−(i+1)
(F (t))i f(t) dt (27)

= i

(
n
i

) ∫ ∞

0

(
F (t+ x)

)n−i
(F (t))i−1 f(t) dt, x > 0 a.e.

Upon integration by parts on the right-hand-side of (27) we obtain∫ ∞

0

(F (t))i
(
F (t+ x)

)n−i−1
[f(t+ x)− f(t)] dt = 0, x > 0 a.e. (28)

In view of the fact that f is strictly monotone, we have from (28)

f(t+ x)− f(t) = 0 for x > 0, t > 0 a.e.

This shows that
f(x) = 0 for x > some constant c.

Otherwise ∫ ∞

0

f(t+ x) dt =

∫ ∞

0

f(t) dt = 1

or
F (x) = 0 a.e. x > 0,

which is obviously a contradiction. Thus f is constant on [0, c].

Remark 6.5. Theorem 6.4 improves Theorem 2.2 of [?].
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7 Summary.

We have solved our problem if F is either subadditive or superadditive for any
1 ≤ r < s ≤ n. Under the assumption of symmetry we have solved the problem
only for the cases s = r+1 and r = 1, s = n. It would be worth-while to investigate
the symmetric case for arbitrary r and s.
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Nonparametric covariance analysis in field ex-
periments

Jose, C. T.

A17015

Central Plantation Crops Research Institute, India.

Abstract. In this paper, a method is proposed to estimate/eliminate positional
effect in field experiments nonparametrically. A semiparametric regression model
with treatment effect as the parametric component and the positional/location ef-
fect (covariate) as a bivariate nonparametric function has been used to analyse the
field experimental data. The only assumption about the positional effect is that it
is a smooth spatial (bivariate) function. The method is also extended to analyse
the data in the presence of treatment x position interaction effect. The proposed
method is illustrated through a simulation study.

Keywords. Covariance Analysis, Kernel Smoothers, Local Linear Regression, Non-
parametric Regression, Semiparametric Regression.

1 Introduction

Nonparametric modeling technique is a rapidly growing and exciting branch of
statistics in recent years because of the recent theoretical developments and the
widespread use of the fast and inexpensive computers. In this paper we discuss its
applications in field experiments. We generally use block designs in field experi-
ments to control the experimental error due to positional variations. The under-
lying assumption in classical block designs that the homogeneity of experimental
area within the block may not satisfy always, particularly when the block size is
large. Also we may not know in advance the soil fertility gradient and other factors
influencing the response variable to divide the experimental area into homogeneous
blocks. The treatment x block interaction effect is usually taken as experimental
error in the analysis of block designs and wherever this interaction effect is present,
the experimental error will be high. In the present study, semiparametric technique
has been used to estimate/eliminate the positional effect. The treatment effect is
the parametric component and the positional/location effect is the covariate, which
is taken as a bivariate nonparametric function. The only assumption about the po-
sitional effect is that it is a smooth spatial (bivariate) function. The method is also
extended to analyse the data in the presence of treatment x position interaction
effect. The proposed method is illustrated through a simulation study.

2 Model Settings and estimators

A semiparametic regression model with treatment effects as parametric component
and the positional effect (covariate) as nonparametric component is considered for
the field experiment. The semiparametric model is given by

Y = Xβ + f(U, V ) + ε
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(1) Where Y = [Y1, Y2, ..., Yn]T is the observation vector which is taken as the devia-
tion from the mean,X = [X1, X2, ..., Xn]T is the design matrix, β = [β1, β2, ..., βp]T

is the treatment effect vector,f(U, V ) = [f(U1, V1), f(U2, V2), ..., f(Un, Vn)] is the
nonparametric spatial function representing the positional effect and ε is the iid
random error vector with mean zero. It is assumed that f(U, V ) is a smooth func-
tion and

∑
f(Ui, Vi) = 0. Backfiting algorithm is used to estimate the treatment

and positional effect in the regression model and the estimates are given by

β = (XT (I − S)X)−1XT (I − S)Y and f = S(Y −Xβ)

Where, S is the smoothing matrix derived using local linear regression (Ruppert
and Wand, 1994). Let SUV be the row of the smoother matrix correspond to the
smoother vector ST

UV evaluated at the observation point (U, V ) = (U1, V1), (U2, V2), ..., (Un, Vn).
Then,

S[SU1V1 ...SUnVn ]T

where,

ST
uv = eT1 (ZT

uvWuvZuv)
−1ZT

uvWuv

with, eT1 = [100],Wuv = diag{k[(U1−u
h1

), (V1−v
h2

)], ..., k[(Un−u
h1

), (Vn−v
h2

)]} for some
bivariate kernel functions K and bandwidths h1 and h2 and

Zuk =

⎡⎣ 1 (u1 − u) (V1 − v)
...

...
...

1 (Un − u) (Vn − v)

⎤⎦
Under the assumption that the treatments are allotted at random to the spatial

locations, it can be shown thatβ is asymptotically unbiased and its asymptotic
variance is σ2(XTX)−1 which is same as when the model is fully parametric. An
estimate of σ2 is given by

σ2 =
1

(n− k − 1− trace(S))
[y −Xβ − f ]f [y −Xβ − f ]

The variance of is obtained by

V (β) = PPTσ2

where,P = (XT (I−S)X)−1XT (I−S). Under some regularity conditions, it can be
proved that β is

√
n -consistent (0psomer and Ruppert, 1999). The significance of

the positional effect f can be tested using the lack-of-fit test (Hart, 1997). In model
(1), it is assumed that the treatment x position interaction effect is absent and in
the presence of this effect the model (1) can be modified as follows

yij = fi(Uij , Vij) + εij , i = 1, 2, ..., k; j = 1, 2, ....ni;
∑

ni = n

Where,yij is the observed value of the of the ith treatment at the spatial loca-
tion (Uij , Vij), fi(Uij , Vij) is the expected value of the ith treatment at the spatial
location(Uij , Vij) and εij is the iid random error with mean zero. We assume that the
mean functionsfi(.), i = 1, , k are smooth. Let Y ∗ = [y11, y12, ..., y1n1y21, y22, ..., yknk ]T

be the rearranged observation vector,Yi = [yi1, ..., yini ]
T , andFi is the nix1 vector
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[fi(Ui1, Vi1), ..., fi(Uini, Vini)]
T . Then the model (2) can be written in matrix form

as

Y ∗ =

⎡⎣ Y1

...
Yk

⎤⎦ =

⎡⎣F1

...
Fk

⎤⎦+ ε∗

or
Y ∗ = F + ε∗

(3) Where, ε∗is the error component corresponding to Y ∗. The solution to the above
regression problem can be obtained asF = S∗Y ∗ Where, the smoothing matrix S∗

is given by

S∗ =

⎡⎢⎢⎢⎣
S1 0 · · · 0
0 S2 · · · 0
...

· · ·
0 0 · · · Sk

⎤⎥⎥⎥⎦
and Si is the nixni smoother matrix for the observations (Uij , Vij), j =

1, 2, ....ni. An estimate of σ2 is given by

σ2 =
1

(n− k − 1− trace(S∗))
[F ∗ − F ]T [Y ∗ − F ]

The variance of is obtained by

V (F ) = S∗S∗Tσ2

The significance of the treatment x position interaction effect can be tested by
comparing the fitted models of the equations (1) and (2) using the lack of fit test
(Hart, 1997). In many situations, the number of experimental units may compar-
atively small and estimating the spatial function using the bivariate smoother will
be inadequate. In such situations, bivariate additive model can be fitted instead of
the two dimensional spatial function used in models (1) and (2). By using bivariate
additive function, the model (1) can be modified as

Y = Xβ + f1(U) + f2(V ) + ε (3)

Where, f1 and f2 are the univariate nonparametric function representing the effect
of the U and V directions and it is assumed that

∑
f1(Ui) =

∑
f2(Vi) = 0.

LetM1 andM2 are the centered smoother matrices corresponding to U and V. The
backfitting algorithm will provide an explicit solution to the above semiparametric
regression model and the estimates are given by β = (XT (I−Q)X)−1XT (I−Q)Y
and f = f1 + f2 = Q(Y −Xβ) The estimates f1 ,f2 and Q are obtained by solving
the set of equations [

I M1

M2 I

] [
f1
f2

]
=
[
M1

M2

]
(Y −Xβ)

f1 = {I − (I −M1M2)
−1(I −M1)}(Y −Xβ) = Q1(Y −Xβ)

f2 = {I − (I −M2M1)
−1(I −M2)}(Y −Xβ) = Q2(Y −Xβ)
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and
Q = Q1 +Q2

An estimate of ? 2 is given by

σ2 =
1

(n− k − 1− trace(Q))
[y −Xβ − f ]T [y −Xβ − f ]

Ignoring the bias, an approximate ?-level pointwise confidence band around the

estimated function f is given by f(Ui, Vi) = zα/2σ
√

[QQT ]ii fori = 1, ..., n, where,

[QQT ]ii represents the element in the iith position of the matrix [QQT ]

3 Simulation Study

A simulation study is carried out to see the practical implications of the theoretical
results given in Section 2. For the simulation study, we considered the following
model

yij = fi(uij , vij) + εij i = 1, k; j = 1, ..ni;
∑

ni = n

whereyij is the jth observation of the ith treatment,(uij , vij) is the spatial loca-
tion and ? is the mean zero random error. In this study we have taken k=4,
n=400,f1(u, v) = 2, f2(u, v) = f3(u, v) = 2(2 + sin(u + v))andf4(u, v) = 2(3 +
sin(3u + 2v)). The spatial locations of the 400 observations are obtained by di-
viding the region [0,1]x[0,1] equally andε is taken as N(0, σ2). The treatments are
allotted randomly to the spatial locations. Based on the above 100 sets of data
were simulated for different values ofσ and the functions fi’s and the error variance
? were estimated using the method given in Section 2. The Mean Squared Errors
(MSE) of the estimated values with the true values of 100 sets of simulated data
were worked out (Table 1). It can be observed that the estimates were very close
to the true values. The MSE varies with change in error variance and the choice of
bandwidths.

The optimum bandwidth (bandwidth corresponds to the minimum MSE) will
depend on the error variance and the curvature of the function. It can be observed
from the table that the optimum bandwidth is more when the error variance is
large. The optimum bandwidth is comparatively small for the functions with large
curvature (f4) than the functions with small curvature (f1, f2 or f3). The optimum
bandwidth can be obtained using the method of cross-validation (Hardle, 1990).

Conclusion

We generally use block designs to eliminate positional effect in field experiments.
The underlying assumption of homogeneity with in the block may not be true in
many situations. Also in classical block designs, we are taking block x treatment
interaction effect as experimental error. Whenever the above assumptions fail, the
experimental error become very large. In the present study, a method is proposed
to eliminate the positional effect nonparametrically and the only assumption about
the positional effect is that it is a smooth spatial (bivariate) function. The method is
also extended to analyse the data in the presence of treatment x position interaction
effect.
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Bandwidth MSE of the estimates multiplide by 1000
σ (h1 = h2) σ f1 f2 f3 f4

0.25 0.20 0.12 11.70 15.44 16.31 17.15
0.25 0.16 10.93 11.77 10.61 13.79
0.30 0.12 5.95 6.27 6.95 15.58
0.35 0.18 7.72 36.65 6.21 24.58

0.50 0.20 0.58 58.5 55.31 54.67 55.86
0.25 0.43 36.33 37.10 37.27 37.09
0.30 0.34 31.81 27.20 25.28 36.06
0.35 0.26 24.17 21.55 24.36 42.47

0.75 0.20 0.60 116.96 112.21 110.18 122.18
0.25 0.55 65.23 69.92. 65.18 72.77
0.30 0.48 62.05 61.47 62.00 70.94
0.35 0.43 49.65 55.91 52.74 61.11

1.00 0.20 2.01 219.70 212.14 218.3248.44
0.25 2.11 149.29 141.68 141.24 174.16
0.30 1.67 116.30 115.46 111.49 150.46
0.35 1.39 83.33 86.09 86.86 96.32
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Abstract. In this paper we consider durations from an epidemiological study of
breast cancer. The first duration for each patient is the time from initial treatment
to recurrence of the disease. For many women this duration will be right-censored.
The second duration is the time to second recurrence for those women who re-
sponded to treatment after first recurrence.

1 Introduction

Worldwide, over half a million women develop breast cancer each year but half of
all these cases occur in North America and Europe, which contain less than one-
fifth of the female world population . There are several types of breast cancer, some
slow-growing, some aggressive. Those that go undetected or untreated can spread
to surrounding breast tissue, then to the lymph nodes under the arm, and then to
other parts of the body in a process known as metastasis.

In England and Wales, approximately 25000 women will develop carcinoma of
the breast annually and at the Christie Hospital in the city of Manchester, UK,
where the data used in this paper were collected , about 1600 women are registered
with a diagnosis of breast carcinoma each year (Dos Santos 1994).

A number of factors have been identified which increase a woman’s chance of
developing breast cancer: increasing age, late child-bearing (first child after the age
of 30 years), nulliparity ( no children), early menarche, late menopause , family
history (first degree relative, e.g. sister or mother, particularly premenopausal),
obesity, and ionizing radiation.

Four types of treatment (surgery, radiotherapy, hormone therapy, and chemother-
apy) are used in the management of breast cancer. The women will, in general,
receive an adjuvant therapy or therapies (radiotherapy and/or adjuvant treatment,
for instance, Tamoxifen ) to surgery following initial diagnosis. Three different types
of surgery are used in the management of breast cancer: minor surgery, simple mas-
tectomies, and radical mastectomies.

Section 2 introduces the dataset providing information about the covariates and
some simple statistics about the data. It also discusses the substantive context of
the study. Initial data analysis is reported in section 3. Model formulation and the
model fitting results are presented and discussed in section 4. Section 5 conclude.

2 The Data

The data used in this research cover the women referred to the Christie Hospital,
UK, with breast cancer between 1980 and 1985, and their subsequent monitoring
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until July 1991. This dataset was used by Dos Santos (1994) and Dos Santos et.
al. (1995), in a study of recurrence following treatment for breast cancer. The
youngest patient in the study was aged 21 years, the oldest 88, their mean age was
56.6 years (standard deviation 13.1 years). Out of the 917 women in the sample,
more than half (513) had no recurrence by the end of the study. The two durations
of interest are the durations, measured in years, from primary treatment to first
recurrence (Duration 1), and from response to treatment following first recurrence
to second recurrence (Duration 2). No recurrence, death from other causes and loss
from the study were treated as right-censoring.

The explanatory variables used in the analysis are AGE, STAGE of tumour
at diagnosis with three levels measuring the severity of the disease, and treatment
(TREAT) with three levels : treatment1-minor surgery; treatment2 -simple mas-
tectomy; and treatment 3 - radical mastectomy. It is emphasized that treatment
always includes one of these three surgical interventions.

The classification that was used in order to assign a patient clinically to a stage
that would be easy to monitor subsequently was based on the largest diameter of the
lump that can be felt by clinical examination. The classification is used consistently
as follows:

Stage 1 - Tumour size ≤ 2 cm and no nodes involved;

Stage 2 - Tumour size > 2 cm but ≤ 5 cm and no nodes or tumour size ≤ 5 cm
with

nodes;

Stage 3 - Tumour size > 5 cm with or without nodes.

After dropping those patients with bilateral disease (left and right breast cancer)
and those whose measurements for stage were missing (27 of them), the sample size
is 917 women and this is the total number of patients considered in the analysis.

2.1 Initial Data Analysis

Piecewise exponential plots of the log-hazards are shown in Figures (1) and (2)
for the first and second recurrence respectively. These were produced using GLIM
macro Phaz (Francis et al., 1993), with no explanatory variables. Although the
piecewise log-hazards are widely dispersed, there is some evidence in both plots
of a “sickle” -shape with the hazard first increasing and then decreasing. This is
a common feature of hazard rates in medical research and is consistent with the
result of (Dos Santos et al. 1994), in their analysis of these data. Kaplan Meier
plots for survival functions for first and second recurrences are shown in Figure 3;
these plots confirm the poor outcomes for second recurrences. The complementry
log-log plots for the Kaplan Meier survival function are shown in Figure 4. Both
are non-linear providing further evidence of a non-monotonic hzard rate. First and
second recurrence duration are plotted against each other in Figure 5. The wide
scatter of points provides no visual evidence of any systematic relationship.

To give clearer evidence about the shape of the hazard function when controlling
for covariates, a number of standard “two parameter” survival models were fitted
to both the first and second durations using GLIM. The model fitting results are
shown in Tables 2 and 3. The best fits are provided by the log-normal for both
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durations, confirming that the hazards are sickle shaped. The log-logistic is the
second best in each case. For duration 2, the log-logistic shape parameter is greater
than 1 indicating a sickle shape. However, for duration 1, the log-logistic indicates a
monotonically declining hazard although the fit is substantially worse than for the
log-normal. The Weibull and Gompertz distributions with their monotonic hazards
provide decidedly worse fits.

The structural parameter estimates are generally as expected. In particular,
the hazard increases (for the Weibull and Gompertz) and the expected duration to
recurrence (for the log-logistic and the log-normal) correspondingly decreases with
the stage of the disease at initial diagnosis; the smaller the tumour, the better the
prognosis. Moreover, recurrence is less likely for older women.

The estimated treatment effects present a more complex pattern. Recurrence
appears to be more likely for treatment 2 (simple mastectomy) than for the reference
treatment category (minor surgery). In interpreting this result, it is important to
note that treatment has not been randomized and it is plausible that minor surgery
tends to be used for the least threatening cases. More reassuringly, treatment 3 (rad-
ical mastectomy) reduces the hazard (or correspondingly increases the expected
duration) for duration 1. However, it is estimated to have a disadvantageous effect
on second duration. We would speculate that this is a “sample selection” effect
whereby those patients with the extreme surgery treatment of radical mastectomy
and recurrence tend to have particularly pernicious cancers.
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Fig. 1. Piecewise exponential plot for log-hazard to first recurrence (time to failure
measured in days). Both scales use natural logarithms.
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Fig. 2. Kaplan Meier graph for both recurrence (time to recurrence measured in
years).

Fig. 3. Complementary log-log transformation of Kaplan Meier estimates (time to
recurrence measured in years).

3 Statistical Modelling

3.1 Model Formulation

The initial data analysis of the previous section indicates that the marginal distri-
butions of the t1 and t2 have sickle-shaped hazards, but we have no substantive
theory to inform us of the likely shapes of the conditional distributions. For this kind
of data, it is possible that the cancer is never eliminated and presents an increasing
risk of recurrence with time at an individual level. The sickle-shaped hazard at an
aggregate level would then be explained by the sample selection effects of hetero-
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Fig. 4. First and second recurrence durations are plotted against each other (time
to recurrence measured in years). Both scales use natural logarithms.

Weibull Model(PH) Log-Logistic Model(AL)
Duration 1 Duration 2 Duration 1 Duration 2

Estimate SE Estimate SE Estimate SE Estimate SE
shape 0.786 .034 .721 .031 .984 .043 1.106 0.049
constant -2.037 .246 -.405 .273 2.027 .322 -0.229 .412

age*10−2 -.629 .377 -.853 .446 .901 .519 1.302 .649
Stage2 0.785 .109 .422 .123 -1.163 .152 -0.596 .174
Stage3 1.567 .184 .663 .204 -2.046 .282 -0.792 .282
Treatment2 0.305 .122 .473 .154 -0.379 .160 -0.702 .206
Treatment3 -0.259 .153 .675 .177 0.354 .195 -0.792 .246
LOG-LIKE -1303.20 -426.75 -1284.50 -403.84

Table 1. Model fitting results for conventional Weibull and log-logistic models

Log Normal Model(AL) Gompertz Model(PH)
Duration 1 Duration 2 Duration 1 Duration 2

Estimate SE Estimate SE Estimate SE Estimate SE
Shape 1.745 .068 1.564 0.634 -.228 0.025 -.522 .059
Constant 2.009 .324 -0.223 .406 -1.768 .246 .056 .281

Age*10−2 .975 .515 1.316 .646 -.678 .378 -.915 .449
Stage2 -1.133 .152 -.555 .176 .770 .109 .428 .122
Stage3 -2.119 .295 -.711 .298 1.492 .184 .618 .203
Treatment2 -.356 .159 -.721 .205 .315 .122 .470 .153
Treatment3 .355 .194 -.806 .249 -.155 .153 .652 .177
LOG-LIKE -1273.20 -403.20 -1638.50 -679.07

Table 2. Model fitting results for conventional Log-normal and Gompertz models.
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geneity; with time, those with higher levels of frailty will suffer recurrence leaving
the least susceptible in remission. On the other hand, it is possible that a regen-
erative process does begin to protect against recurrence after a period, the hazard
accordingly having a sickle-shape at both the individual and aggregate levels.

To deal with these two possible situations , we use two different families of
models. To represent sickle-shape hazards for the conditional distributions, we pro-
pose log-logistic formulations. These are preferred over the alternative log-normal
because (i) they are easier to handle analytically, (ii) they permit a monotonically
declining hazard which is not entirely ruled out as a possibility for duration 1 , and
(iii) they include very similar shapes to the log-normal. To represent monotonically
increasing hazards we use the conventional Weibull distribution. We note that the
Weibull also permits a monotonically declining hazard.

3.2 Log-logistic Log-logistic Normal Model (LLN Model)

In this subsection we specify our LLN model, with a log-logistic distribution for the
first and second durations and a Normal distribution for the random effect. With
this specification we can write the densities for the two durations as follows

f1
(
ti1 |xi, υ i

)
=
α1

θi1

(ti1/θi1)
α1−1

[1 + (ti1/θi1)
α1 ]2

f2 (ti2 |ti1,xi, υi ) =
α2

θi2

(ti2/θi2)
α2−1

[1 + (ti2/θi2)
α2 ]2

where θi1 = exp

(
R∑

r=1

β1rxi1r+εi

)
and θi2 = exp

(
R∑

r=1

β2rxi2r + t1 + εi

)
, υi =

exp (εi) represent the random effect for ith individual, α1and α2 are shape parameters.
The likelihood for this model is

L =

n∏
i=1

∫
f (ti1, ti2 |xi , υi) dF (υi)

=

n∏
i=1

∫
f1 (ti1 |xi , υi) f2 (ti2 |xi, ti1, υi ) dF (υi) .

Since there is no close form for this integral we have to use the quadrature
method again by changing the integral to a summation over quadrature points.
When there is a failure in both durations, the contribution of the i-th likelihood is
given by

Li =

m∑
k=1

{
α1

θi1

(ti1/θi1)
α1−1

[1 + (ti1/θi1)
α1 ]2

} {
α2

θi2

(ti2/θi2)
α2−1

[1 + (ti2/θi2)
α2 ]2

}
Pk,

where the (ξk, Pk) are the quadrature locations and masses for the numerical in-
tegration (although we also use a closed form approach), and m is the number of
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quadrature points, where for m = 4, 6, 8, the log-likelihood turns out to be the
same.

When there is no failure in the second duration, the contribution of the i-th
likelihood is

Li =

m∑
k=1

{
α1

θi1

(ti1/θi1)
α1−1

[1 + (ti1/θi1)
α1 ]2

}
1

1 + (ti2/θi2)
α2 Pk.

If treatment is not successful following first recurrence , the contribution to the
likelihood is given by

Li =

m∑
k=1

α1

θi1

(ti1/θi1)
α1−1

[1 + (ti1/θi1)
α1 ]2

Pk.

The last situation occurs when there is no failure in the first duration. The
contribution of the i-th likelihood for this situation is

Li =

m∑
k=1

1

1 + (ti1/θi1)
α1 Pk.

3.3 Weibull Weibull Gamma (Burr Distribution)

In this subsection we specify the WWG model, with Weibull distributions for the
first and second durations and a gamma distribution for the random effect. The
gamma distribution is a common model for a multiplicative frailty term υ (Clayton
1978; Oakes 1982 ; Lindley and Singpurvalla 1986; Clayton and Cuzik 1985). It has
the density

g (υ) =
υk−1 exp (−υ)

Γ (k)
k > 0.

If the mean of the frailty distribution is specified as k. With a constant term in the
linear predictor, this does not result in any loss in generality. Specifically, writing

λ = exp
(
β′x + ε

)
,

where υ = exp (ε) is the frailty random effect, we may alternatively and equivalently
write

λ = υ exp
(
β′x
)
.

The advantage of the gamma is that it is conjugate with the Weibull, giving
the Burr distribution. This conjugate property is not confined to univariate dura-
tion distributions but extends to a range of multivariate distributions, including the
bivariate Weibull considered in this subsection. The main advantage is computa-
tional; numerical integration is not required in fitting the model. In this application,
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we therefore follow the common practice in medical statistic of assuming a gamma
frailty distribution.

We specify the Weibull location parameters as

λ∗i1 = exp

(
β10 +

R∑
r=1

β1rxir + εi

)
= υi exp

(
β10 +

R∑
r=1

β1rxir

)
= υiλi1,

and

λ∗i2 = exp

(
β20 +

R∑
r=1

β2rxir + tt1 + εi

)
= υi exp

(
β20 +

R∑
r=1

β2rxir + ti1

)
= υiλi2,

where R is the number of covariates. The model is given by

f (ti1, ti2 |xi ) =

∫
f1 (ti1 |xi, υi ) f2 (ti2 |ti1,xi, υi ) dG (υi)

and the likelihood is

Li =

∫
υiλi1γ1t

γ1−1
i1 exp (−υiλi1t

γ1
i1 )

×υiλi2γ2t
γ2−1
i2 exp (−υiλi2t

γ2
i2 )
υk−1

i exp (−υi)

Γ (k)
dυi

= (k + 1) (k)
[
λi1γ1t

γ1−1
i1 λi2γ2t

γ2−1
i2

]
× (1 + λi1t

γ1
i1 + λi2t

γ2
i2 )−k−2

If the second recurrence time is right-censored , the contribution to the likeli-
hood is given by

Li =

∫
f1 (ti1 | xi, θi)S2 (ti2 | ti1,xi, θi) dG (θi)

=

∫
θiλi1γ1t

γ1−1
i1 exp (−θiλi1t

γ1
i1 )

× exp (−θiλi2t
γ2
i2 )
θk−1

i exp (−θi)
Γ (k)

= kλi1γ1t
γ1−1
i1 (1 + λi1t

γ1
i1 + λi2t

γ2
i2 )−k−1

If treatment is not successful following first recurrence , the contribution to the
likelihood is given by

Li =

∫
f1 (ti1 | xi, θi) dG (θi) d

=

∫
θiλi1γ1t

γ1−1
i1 exp (−θiλi1t

γ1
i1 )
θk−1

i exp (−θi)
Γ (k)

= kλi1γ1t
γ1−1
i1 (1 + λi1t

γ1
i1 )−k−1
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Finally, if the first duration is right-censored, the contribution to the likelihood
is given by

Li =

∫
S1 (ti1 | xi, υi ) dG (υi)

Li =

∫
exp (−υiλi1t

γ1
i1 )
υk−1

i exp (−υi)

Γ (k)
dυi

= (1 + λi1t
γ1
i1 )−k .

3.4 Model Fitting Results

The model fitting results for the full LLN (log-logistic ,log-logistic,Normal) and
WWG (Weibull Weibull Gamma) models are shown in Table 4. NAG algorithm
(1993) E04UCF was used to maximize the log-likelihood function in each case. The
parameter estimates from the homogeneous models reported in section 2 were used
as starting values for the modified Newton-Ralphson algorithm. It is emphasized
that, following the conventional parametrization, the explanatory variables scale the
hazard in the WWG model but scale the mean in the LLN model. This explains
the different signs of most of the parameter estimates.

With a difference in the log-likelihoods of only 0.30, the WWG model provides
a very marginally better fit to the data than the LLN model. The WWG model
indicates an increasing hazard at an individual level for survival times to first and
second recurrences although, for second recurrence, the estimated shape parameter
is only marginally greater than 1 (the value for a constant hazard ) suggesting a low
rate of increase. The slightly worse fitting LLN model gives a sickle-shape hazard
for both durations. On the basis of these two similarly fitting models, we therefore
conclude whether the conditional distributions for the times to first and second
recurrences have increasing, sickle or even differently shaped, hazards.

The Weibull and log-logistic conditional hazards for time to first recurrence are
plotted in Figure ?? with age set to 40 years, stage 2 tumour size, and treatment 2.
The same plots for time to second recurrence are shown in Figure ?? with duration
1 assumed to be 1.5 years. Both plots show alarmingly different patterns for the
Weibull and log-logistic models.

The marginal hazards for first and second recurrence are compared for the Burr
model in Figure ??. The explanatory variables were given the same values as for
Figures ?? and ??. These plots are consistent with the earlier evidence of sickle-
shapes hazards and the higher hazards for second recurrence. However, they also
suggest that after about two years the hazards have converged.

The marginally better fitting model (WWG:Burr) is compared with various
simplified versions in Table 5. This table also includes p-values for the parameter
estimates for the full model. These were calculated from likelihood ratio test statis-
tics and required refitting the model with each covariate removed, in turn. This
method was adopted because of difficulty experienced in recovering the Hessian
matrix from the NAG(1993) routine E04UCF (see Khoshbin). The p-values indi-
cate that STAGE is highly significant and that the age effects are not significant at
least for duration to first recurrence. Treatment 2 is marginally significant (at the
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10% level) and treatment 3 is not significantly different from treatment 1 for dura-
tion to first recurrence, but treatment 2 is significantly different from treatment 1
for duration to second recurrence. Treatment 3 is significantly different at the 10%
level.

The model denoted by WWG-t1 is the full model without the Markov-type
effect. The large reduction in the log-likelihood (corresponding to LR X2 = 10.78
with 1 degree of freedom) provides strong evidence for the dependence of t2 on t1
after controlling for frailty. The direction of the effect is unexpected: longer dura-
tions to first recurrence are associated with higher hazards for second recurrence.
Moreover , we are unable to explain the increase in the random effect parameter
on dropping the Markov-type variable. The observed increase would be expected
if the Markov variable represented a positive dependence, as is usually the case;
some of the positive dependence would be picked up by the frailty terms which
would therefore have an increased variance. We would not have expected this to
happen when the Markov dependence is negative. However, we note that there are
complex inter-relationships between the two durations for these data which may
make it difficult to find simple explanations for some of the model sensitivities. The
marginal (Burr) hazards for this model are plotted in figure 9. The general shapes
are similar to those for the full model with Markov effect and, in particular, the
locations of the maxima are approximately the same.

The model denoted by WW+t1 is a homogeneous model (i.e. no frailty) with
Markov dependence. The reduction in the log-likelihood of circa 55 in comparison
to the full model provides unequivocal evidence of frailty effects even though a
likelihood ratio test is not strictly appropriate because the simplified model lies
at the boundary of the parameter space of the full model. With two exceptions,
the estimated values of the coefficients of the covariates are substantially lower in
absolute value than the corresponding estimates for the full model. This attenuation
of parameter estimates when frailty is omitted is consistent with the theoretical
results of Lancaster and Nickell (1980).

One exception is the coefficient for the treatment 3 covariate (radical mas-
tectomy) for the second duration . The anomalous result for this covariate in a
homogeneous model has already been discussed in section 2. It was argued that,
since treatments have not been randomized, it is possible that minor surgery tends
to be used for the least threatening cases and treatment 3 for the worst. The results
for the full model are more plausible and tend to confirm that at least part of the
explanation lies in the failure to allow for frailty; with frailty explicitly modelled
in the full model, the treatment 3 effect is not significantly different from that for
treatment 1 at the 5% level and is estimated to have a lower hazard than treat-
ment 2. The full model results are still surprising in estimating lower hazards for
treatment 1 (minor surgery) than for treatment 2 (simple mastectomy). But this
pattern is consistent across duration 1 and duration 2 and may be due to treatment
1 being used primarily for cases with a good prognosis.

The second exception to the attenuation of parameter estimates in the WW+t1
model is the coefficient for the Markov-type variable t1 ; it is negative while the cor-
responding estimate for the full model is positive. However, this marked discrepancy
is consistent with theoretical expectations for Markov-type variables. As noted, for
example, by Massey et al. (1970), ignoring frailty will tend to induce a spurious
positive Markov dependence. In effect, the Markov variable acts as a ”proxy” vari-
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Duration 1 LLN+t1 WWG+t1

gamma 1.512 1.498
constant 2.142 -0.466

Age×10−2 0.779 -1.062
Stage2 -1.131 1.471
Stage3 -1.999 2.401
Treat2 -0.413 0.535
Treat3 0.311 -0.416
Duration 2
gamma 1.391 1.066
constant 0.922 0.465

Age×10−2 1.675 - 2.097
Stage2 -1.032 1.298
Stage3 -1.528 2.136
Treat2 -0.932 1.040
Treat3 -0. 740 0.729
t1 -0.089 0.241
Random effect 1.261 0.247
LOG-LIKE -1672.31 -1672.01

Table 3. Results for the Log-Logistic/ Log-Logistic/ Normal (LLN+t1), and Burr
(WWG+t1)models. ( With only one scale parameter).

able for the temporal dependence due to the omitted frailty. As already noted, the
Markov variable in the full model indicates a negative dependence, with duration
to first recurrence therefore having a positive effect on the hazard (and hence a
negative effect on duration ) of second recurrence. It appears that the spurious pos-
itive Markov dependence created by ignoring frailty in the WW+t1 model exceeds
this ”true” negative dependence and thereby results in a potentially misleading
net positive dependence (indicated by the negative estimated effect on the hazard).

4 Conclusion

Substantively, we cannot draw firm conclusions from the analyses in this paper
because of problems over the robustness of the models investigated. Nevertheless,
some tentative conclusions are in order.

First, there appear to be distinctively different processes governing the dura-
tions to first and second recurrences. The hazards are different, especially at short
durations; the chances of a rapid recurrence are much higher for second recurrence.
The explanatory variables also have different impacts. For example, the stage of the
disease at diagnosis appears to have rather less impact on the second recurrence.

Second, not only do the marginal hazards have a sickle shape, but there is some
evidence that the conditional hazards may also be sickle shaped in that the log-
logistic formulations perform better overall than the Weibull formulations in the
random effect models. This could be an important result. If the conditional hazards
are Weibull with a monotonically increasing hazard, then each patient is heading
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Duration 1 WW WW+t1 WWG-t1 WWG+t1 p value
Variables homogeneous Markov Frailty Full model
gamma 0.790 .790 1.255 1.498
constant -2.055 -2.054 - 1.047 -.466

age×10−2 -0.6 -.6 -0. 863 - 1.062 0. 32
stage2 0.775 0.775 1. 343 1.471 2.781e-06
stage3 1.566 1.566 2. 194 2. 401 3.292e-05
treat2 0.309 0.309 0. 499 0. 535 0.097
treat3 -.256 -.256 -0. 376 -. 416 0.313
Duration 2
gamma 0.723 0.721 1. 042 1.066
constant -0.406 -.117 .512 0.465

age×10−2 -0.009 -0.010 -1.915 -2.097 0.066
stage2 0.414 0.341 .981 1.298 7.089e-06
stage3 0.663 0.598 1.701 2.136 2.044e-04
treat2 0.481 0.490 .946 1. 040 3.245e-03
treat3 0.685 0.781 .889 0. 729 0. 094
dur1 - -0.104 - 0.241 0.020
random effect - .371 0. 247 1.499e-13
LOG-LIKE -1730.96 -1726.58 -1 677.40 - 1672.01

Table 4. Results for nested Weibull models. tww: WW- Homogeneous Weibull
model for each duration WW+t1- As WW with first duration as a covariate for
second duration WWG-t1- Heterogeneous (Gamma) extension of WW (Bivariate
Burr Model) WWG+t1- As WWG-t1 with first duration as a covariate for second
duration.

for a recurrence sooner or later, although, of course, she could die through old age
before experiencing recurrence if she has a low ”frailty” measure. On the other
hand, if hazards are sickle-shaped this suggests that there is a tissue regeneration
process with at least some of the patients moving towards a negligible chance of
recurrence in due course.

Methodologically, the breast cancer analyses have revealed the expected type of
relationship between the individual level (conditional) hazards and the aggregate
(marginal) hazards, within a more complex modelling context than that required
in the previous work (Khoshbin ). They have demonstrated also the attenuation
of parameter estimates to be expected on theoretical grounds when fitting models
without random effects.

The other methodological lessons to be learned from this paper are less precise
and concern the robustness of random effect models. Our results tend to confirm
that sensitivity to parametric specification in random effect models can be an indi-
cation of more serious misspecifications. Extended models attempting to disentangle
these various effects proved to be highly sensitive to the parameterization adopted.
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Duration 1 LLN-t1 LLN+t1 WWN+t1 WWN-t1

gamma 1.702 1. 703 .891 0.824
constant 2.121 2.121 -2. 290 -2.115

Age×10−2 0.787 0.788 -.692 -0.709
Stage2 -1.082 -1.081 .919 0.828
Stage3 -2.082 -2.082 1. 730 1.610
Treat2 -0.417 -0.417 0.305 0.312
Treat3 0.311 0.310 -0.327 -0.285
Randorm effect1 1.379 1.380 -0.734 -.436
Duration 2
gamma 1.192 1.190 1. 523 1.578
constant 0.381 0.365 1.734 -.163

Age×10−2 1.506 1.504 -2.236 -0.731
Stage2 -0.794 -0.788 0.425 0.820
Stage -1.285 -1.277 .323 0.941
Treat2 -0.844 -.842 1.070 0.892
Treat3 -0.817 -0.818 1.981 1.532
t1 - .003 -0.379 -
Random effect2 0.762 .751 2.202 2.151
LOG-LIKE -1671.46 -1671.45 - 1692.36 -1709.33

Table 5. Model fitting results with two scale parameters for the
Log-Logistic/Log-Logistic/Normal, and Weibull/Weibull/Normal, with and with-
out Markov type effect..
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Fig. 5. Plot log hazard versus log failure time for first recurrence. The solid line(—–)
is Burr specification and dotted line(.....) is log-logistic/log-logistic/normal, (time
to failure measured in years). Both scales use natural logarithms.
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Fig. 6. Plot of log hazard of duration 2 versus log failure time with Burr specifica-
tion with Markov effect ,solid line(—), and then plot log-logistic/log-logistic/normal
specification with Markov effect, dotted line(......), ( time to failure measured in
years). Both scales use natural logarithms.
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Fig. 7. Log hazard of duration 1 and duration 2 versus log failure time with Burr
specification (Model 3 of chapter 3), (time to failure measured in years). Both scales
use natural logarithms.
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Abstract. For the problem of estimating under squared error loss the mean of a
p-variate spherically symmetric distribution where the mean lies in a ball of radius
m, a sufficient condition for an estimator to dominate the maximum likelihood
estimator is obtained. We use this condition to show that the Bayes estimator with
respect to a uniform prior on the boundary of the parameter space dominates the
maximum likelihood estimator whenever m ≤ √

p in the case of a multivariate
student distribution with d degrees of freedom, d ≥ p. The sufficient condition m ≤√
p matches the one obtained by Marchand and Perron (2001) in the normal case

with identity matrix. Furthermore, we derive a class of estimators which, for m <√
p, dominates the maximum likelihood estimator simultaneously for the normal

distribution with identity matrix and for all multivariate student distributions with
d degrees of freedom, d ≥ p. The family of distributions where dominance occurs
includes the normal case; and includes all student distributions with d degrees of
freedom, d ≥ 1, for the case p = 1.

Keywords. Maximum Likelihood Estimator, Restricted Parameter Space, Squared
Error Loss, Dominance, Simultaneous Dominance, Spherically Symmetric Distribu-
tion, Scale Mixture of Normals, Multivariate Student Distribution.

1 Introduction

Consider the problem of estimating under squared error loss the mean θ of a spher-
ically symmetric distribution, based on the observation X and with the constrained
parameter space Θ(m) = {θ ∈ Rp : ‖θ‖ ≤ m} for some m fixed, m > 0. In the
normal case with identity covariance matrix, Marchand and Perron (2001) showed
that the Bayes estimator δBU with respect to the boundary uniform prior on ∂Θ(m)
dominates the maximum likelihood estimator δmle whenever m ≤ √

p. An inter-
esting question is whether a similar result holds for other spherically symmetric
distributions. This is indeed the objective of our research and, moreover, we fo-
cus on the multivariate student distribution which represents perhaps one of the
most important alternatives to the normal model and permits us, through its scale
mixture of normals representation, to give explicit results.

The starting point in our inquiry is a sufficient condition (Theorem 1) for an
estimator to dominate δmle, which was implicitly given by Marchand and Perron
(2001, Theorem 3), and which is applicable in general to spherically symmetric
distributions. We then study how this condition applies to δBU and obtain further
specifications for the multivariate student case with d degrees of freedom. We es-
tablish in Section 3 ( Example 1 ) that the condition m ≤ √p is, whenever d ≥ p,
once again sufficient for δBU to dominate δmle. The common sufficient condition
is interesting and somewhat surprising, in view of its simplicity, and the fact that
both the functional form of the estimator δBU and the distribution under which
the risks are evaluated vary with d.
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We also can view the sufficient condition for dominance of Theorem 1 as a
sufficient condition for simultaneous dominance (Theorem 2), meaning a condition
under which a single estimator δ0 dominates δmle simultaneously for a subfamily of
spherical distributions. Of course, it is the hope that such a simultaneous condition
of dominance can be made explicit for important subfamilies of spherical distribu-
tions, possibly including the normal case. Simultaneous dominance is an appealing
property in view of the intrinsic motivation of assessing or searching for procedures
that retain good or optimal properties over a range of probability models. Although
there seems to be a relative paucity of results in this direction, this is not a new
theme; for instance, some recent work on estimating a multivariate mean (without
constraints) has dealt with procedures that perform well not only for the normal
model, but also for a range of spherical or elliptical models. As an example, Cellier
and Fourdrinier (1995), gave a class of estimators that dominate the unbiased esti-
mator, for p ≥ 3, simultaneously for all spherically symmetric distributions subject
to (weak) risk finiteness conditions.

In the second part of Section 3, we focus again on multivariate student dis-
tributions with d degrees of freedom and obtain two examples of simultaneous
dominance. In particular, we obtain an explicit estimator δ0 which, for m <

√
p,

dominates δmle simultaneously for all multivariate student distributions with d ≥ p
as well as the normal distribution with identity covariance matrix. This is a par-
ticular interesting result since no theoretical elements that we know of guaranteed
the existence of such a simultaneously dominating δ0. The simultaneous dominat-
ing estimators obtained, although simple, may well fail to be attractive for a given
single distribution, but the result permits us to envisage locally (or globally) more
attractive estimators to enjoy the same simultaneous dominating property.

Before proceeding in Section 3 with these dominance results, we pursue with
by collecting some further notations, definitions and properties for later use.

2 DEFINITIONS AND PRELIMINARIES

Throughout, we shall denote ‖x‖ and ‖θ‖ by r and λ respectively. We consider
distributions with probability density functions

fθ(x) = h(‖x− θ‖) (1)

where h is such that h(t) < h(0) for all t > 0. For such distributions, the maximum

likelihood estimator of θ is uniquely given by δmle(x) =

(
m

‖x‖ ∧ 1

)
x. The function

gh,λ(r) = Eθ[
θ′X
‖X‖ |‖X‖ = r] plays a pivotal role in our dominance results as it

intervenes in both (i) the decomposition of risks (see Theorem 1), and (ii) the
functional form of the Bayes estimator δgh,λ with respect to a uniform prior on the
sphere {θ : ‖θ‖ = λ}, given by (e.g., Marchand, 1993, proof of Theorem 2.3.)

δgh,λ(x) =
1

r
gh,λ(r)x .

Of particular interest is the boundary uniform prior, and the associated Bayes esti-
mator δBU = δgh,m which was shown by Marchand and Perron (2001) to dominate
δmle in the normal case with identity covariance matrix whenever m ≤ √p.
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We further define ḡh,m(r) = sup0≤λ≤m gh,λ(r), and Ah,m = {r > 0 : ḡh,m(r) <
r}.

Remark. ¿From its definition and the Cauchy-Schwarz inequality, it is easy to see
that gh,λ(r) < λ ≤ m. Hence Ah,m always contains the set [m,∞).

Our conditions for dominance in Section 3 below are given first implicitly in
terms of ḡh,m and Ah,m (Theorems 1 and 2), and we proceed by developing more
explicit conditions in the multivariate student case (Theorems 3 and 4). In order
to achieve this, we require two technical lemmas. We begin with an expression for
gh,λ for scale mixture of normals where X admits the representation:

L(X|V = v) = Np(θ, v−1Ip) ; (2)

for some positive random variable V .

Lemma Marchand, 1993 For scale mixture of normals as defined above, we have

gh,λ(r) = λ
E[I p

2
(tV )e−sV V ]

E[I p
2 −1(tV )e−sV V ]

;

where t = λr, s = (λ2 + r2)/2, and Iν(y); ν ≥ −1/2, y ≥ 0; is the modified Bessel

function of order ν given by Iν(y) =
∑

i≥0

(
y
2 )ν+2i

i! Γ (i+ν+1)
.

Remark. When referring to a specific distribution of the mixing parameter in (2) for
which E[V ] <∞, we can assume without loss of generality (and we will hereafter)
that E[V ] = 1. This is so since, whenever E[V ] �= 1 and E[V ] < ∞, we can always

transform the problem to work with: (i) the observation X∗ =
√

E[V ]X, (ii) the

constraint ‖E[X∗]‖ ≤ m∗ with m∗ = m
√

E[V ], and (iii) the representation for

X∗ as in (2) (with mean θ∗ = θ
√

E[V ]) corresponding to the mixing parameter

V ∗ =d V
E[V ]

, for which E[V ∗] = 1.

We now continue with a further representation of gh,λ(r) for the cases in (2)
where L(V ) = Gamma(a, b). As mentioned in Remark 2, there is no loss of general-
ity in limiting ourselves to the cases where E[V ] = 1; i.e., a = b; which corresponds
to the multivariate student cases with degrees of freedom d, d > 0, with a = b = d

2
.

Lemma 1. If the distribution of X follows a multivariate student distribution with
d degrees of freedom and m ≤ √d then

ḡh,m(r) = gh,m(r) (3)

≤ m2r

m2 + r2 + d
[1 + (1 ∨ d

p
)] (4)

for all r > 0.

Proof. See the Appendix.
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3 DOMINANCE RESULTS

We begin this section with a sufficient condition for an estimator δg(x) = 1
r
g(r)x

to dominate δmle. The proof is essentially the same as the one given by Marchand
and Perron (2001) in the normal case, but given here for sake of completeness.

3.1 General dominance results

Theorem 2. For distributions as in (1) and δg(x) = 1
r
g(r)x, the estimator δg

dominates δmle as long as

2ḡh,m(r)− (r ∧m) < g(r) < (r ∧m)

for all r ∈ Ah,m and g(r) = r otherwise.

Proof. We have

R(θ, δg) = Eθ[‖g(‖X‖) X‖X‖ − θ‖
2]

= Eθ[‖θ‖2 + g2(‖X‖)− 2g(‖X‖) θ
′X
‖X‖ ]

= ‖θ‖2 + Eθ[{g(‖X‖)− gh,λ(‖X‖)}2 − g2h,λ(‖X‖) ].

Hence R(θ, δmle) − R(θ, δg) = Eθ[{gmle(‖X‖) − g(‖X‖)}{gmle(‖X‖) + g(‖X‖) −
2gh,λ(‖X‖)}] , which is indeed positive for all θ ∈ Θ(m) under the stated conditions.

�

Remark. Note that δḡh,m satisfies the conditions of Theorem 1 whenever Ah,m =
(0,∞), while its truncated version (i.e., with g(r) = ḡh,m(r) ∧ gmle(r)) always
dominates δmle. In the normal case with identity covariance matrix (i.e., Marchand
and Perron, 2001), it was established that (i) δḡh,m = δBU ; and that (ii) Ah,m =
(0,∞) if and only if m ≤ √

p. Now, by requiring an estimator δg to fulfill the
conditions of Theorem 1 for all h in a family H of distributions, we obtain the
following simultaneous dominance result. General implications of Theorem 2 are
discussed at the beginning of Section 3.3.

Theorem 3. Let δg(x) = 1
r
g(r)x. The estimator δg dominates δmle simultaneously

for all h ∈ H as long as

2 sup
h∈H

ḡh,m(r)− (r ∧m) < g(r) < (r ∧m)

on the set AH,m; and g(r) = r otherwise; with AH,m = {r : 2 suph∈H ḡh,m(r)− (r∧
m) < (r ∧m)}.

3.2 Dominance results for the multivariate student distribution

To pursue, let us recall (i.e., Remark 3) the following conditions for dominance:

(A) the estimator δḡh,m will dominate δmle whenever Ah,m = (0,∞);
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(B) δBU will dominate δmle whenever Ah,m = (0,∞) and ḡh,m = gh,m.

In this section, Theorem 3 gives simple conditions for which (A) and (B) are
satisfied in the multivariate student cases.

Theorem 4. Assume that the distribution of X follows a multivariate student dis-
tribution with d degrees of freedom and δg(x) = 1

r
g(r)x.

a) If m ≤ √p ∧ d, d < {1 + 2[(p/m2 − 1) + 2
√

(p/m2 − 1)2 + p/m2]}p and g is
such that

2
m2r

m2 + r2 + d
[1 + (1 ∨ d

p
)]− (r ∧m) < g(r) < (r ∧m)

for all r > 0 then δg dominates δmle.

b) If m ≤ √p, d ≥ {1 + 2[(p/m2 − 1) + 2
√

(p/m2 − 1)2 + p/m2]}p and g is such

that g(r) = m if {2r −m(1 + d/p)}2 ≤ m2(1 + d/p)2 − 4(m2 + d) and

2
m2r

m2 + r2 + d
[1 +

d

p
]− (r ∧m) < g(r) < (r ∧m)

otherwise then δg dominates δmle.

c) If m ≤ √d and g is such that

2gh,m(r)− (r ∧m) < g(r) < (r ∧m)

for all r ∈ Ah,m and g(r) = r otherwise then δg dominates δmle.

d) If m ≤ √p ∧ d and g is such that

2gh,m(r)− (r ∧m) < g(r) < (r ∧m)

for all r > 0 then δg dominates δmle.

Proof.

a) Here is an application of Theorem 2 and Lemma 2. We need only to verify that
m2r

m2+r2+d
[1+ (1∨ d

p
)] < (r∧m) for all r > 0. It is easy to see that m2r

m2+r2+d
[1+

(1∨ d
p
)] < r for all r > 0 if and only ifm ≤ √p ∧ d and m2r

m2+r2+d
[1+(1∨ d

p
)] < m

for all r > 0 if and only if d < {1 + 2[(p/m2 − 1) + 2
√

(p/m2 − 1)2 + p/m2]}p.
b) This proof is similar to the one of part a) except that here m2r

m2+r2+d
[1+ d

p
] ≥ m

whenever {2r −m(1 + d/p)}2 ≤ m2(1 + d/p)2 − 4(m2 + d).
c) This is a direct application of Theorem 2 and Lemma 2.
d) This is similar to the case b). We need only to verify that Ah,m = (0,∞). From

Lemma 2 we know that ḡh,m(r) ≤ m2r
m2+r2+d

[1 + (1 ∨ d
p
)] and from the proof of

part a) we know that m2r
m2+r2+d

[1 + (1 ∨ d
p
)] < r for all r > 0 if m ≤ √

p ∧ d
therefore ḡh,m(r) < r for all r > 0 and Ah,m = (0,∞).

�
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Example 1. The estimator δBU dominates δmle whenever m ≤ √p ∧ d. In fact, this
is a special case of Theorem 3, part d).

Remark. For d ≥ p, δBU dominates δmle whenever m ≤ √p, duplicating Marchand
and Perron’s (2001) sufficient condition in the normal case. Finally, it also can be
shown that for d ≥ p, the condition m ≤ √p is also necessary for Ah,m to equal

(0,∞). This is established by considering the necessary condition limr→0
ḡh,m(r)

r
≤

1, and using the expression ( 8) in the proof of Lemma 2 ( see the Appendix ) to

infer that limr→0
ḡh,m(r)

r
= m2

m2+d
d+p

p
.

3.3 Simultaneous dominance results for the multivariate student
distribution

We now turn to applications of Theorem 2, that is the specification of estima-
tors that dominate δmle for several distributions simultaneously, and results are
given herein for multivariate student distributions. Note that the choice g(r) =
suph∈H ḡh,m(r) for r ∈ AH,m satisfies the conditions of Theorem 2, while the above
results imply that AH,m = (0,∞) for m ≤ √p with H being the multivariate stu-
dent family with degrees of freedom d ≥ p. However, this estimator is not given
explicitly. The results below pertaining to the family of multivariate student dis-
tributions witd d degrees of freedom, d ≥ p are of particular interest since: (i)
dominance is shown to hold as well for the normal distribution with identity covari-
ance matrix, and (ii) the family includes all univariate student distributions with d
degrees of freedoms, d ≥ 1, whenever p = 1.

Theorem 5. Assume that the distribution of X follows a multivariate student dis-
tribution with d degrees of freedom and δg(x) = 1

r
g(r)x.

a) If m ≤ √d0, d0 ≤ p and g is such that

4
m2r

m2 + r2 + d0
− (r ∧m) < g(r) < (r ∧m)

for all r > 0 then δg dominates δmle for all d, d0 ≤ d ≤ p.
b) If m <

√
p, d0 ≥ p and g is such that

2
m2r

p
(1 ∨ p+ d0

m2 + r2 + d0
)− r ∧m < g(r) < r ∧m

for all 0 < r < p/m, and g(r) = m otherwise then δg dominates δmle for all d,
d ≥ d0 and for the normal distribution case as well.

Proof. The proof is an application of Theorem 3.

a) Since mr2/(m2 + r2 + d) is a decreasing expression in d, our result satisfies the
conditions of Theorem 3, part a), for all d, d0 ≤ d ≤ p.

b) We use the results of Theorem 3, part a) and part b). Since m2r
p

(1∨ p+d0)

m2+r2+d0
) <

r∧m for all 0 < r < p/m and m2r[1+1∨d/p]

m2+r2+d
≤ m2r

p
(1∨ p+d0)

m2+r2+d0
) for all r > 0,

d ≥ d0 we obtain our result. Finally, δg and δmle are both bounded and the
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densities converge to the one of a normal distribution as d→∞ which implies
that the risk functions converge and our result is still valid for the normal
distribution.

�

Example 2. Translating directly the conditions of Theorem 4b to the univariate case
with d0 = 1, we obtain for m < 1 that the estimator

δ0(x) = m{m(1 ∨ 2

m2 + x2 + 1
) ∧ 1

|x| }x

dominates δmle simultaneously for all student distributions with degrees of freedom
d ≥ 1 and the normal distribution as well.

APPENDIX

In the appendix we shall prove that the expressions ( 3) and ( 4) of Lemma 2
are valid whenever X follows a multivariate student distribution with d degrees of
freedom and m ≤ √d.

Proof: expression ( 3) in Lemma 2. Let T = θ′X/λR so gh,λ(r) = λEλ[T |R2 =
r2]. If we can show that Eλ[T |R2 = r2] is nondecreasing in λ for all r, r > 0 then
we shall have ḡh,m = gh,m. Moreover, the expression Eλ[T |R2 = r2] will be nonde-
creasing in λ for all r, r > 0 if the conditional distribution of T given that R2 = r2

has monotone likelihood ratio in T for all r > 0, where λ is the parameter and r is
fixed. Let fθ(x) = h(‖x− θ‖) as in expression (1).

If p = 1 then T is a discrete random variable taking the values -1 and 1, R2 is
an continuous random variable on (0,∞) and their likelihood is given by ϕλ,1 with

ϕλ,1(t, r
2) =

1

2r
h(
√
r2 + λ2 − 2λrt).

Similarly, if p > 1 then T,R2 have a joint density ϕλ,p on (−1, 1)×(0,∞) which
has been obtained by Eaton and Kariya (1977) and it is given by

ϕλ,p(t, r2) = 2
(
√
π)p−1

Γ ((p− 1)/2)
rp−2(1− t2)(p−3)/2h(

√
r2 + λ2 − 2λrt).

In any case, the monotone lilelihood property will hold if we can show that the
derivative, with respect to t, of the expression log(h(

√
r2 + λ2 − 2λrt)) is nonde-

creasing in λ for all t ∈ [−1, 1], λ > 0. We now return to the multivariate student
distribution set up, that is h is given by h(z) = (2π)−p/2E[V p/2 exp(−z2V/2)] with
L(V )=Gamma(d/2, d/2). We obtain

∂

∂t
log(h(

√
r2 + λ2 − 2λrt)) =

∂
∂t

E[V p/2 exp(−{r2 + λ2 − 2λrt}V/2)]

E[V p/2 exp(−{r2 + λ2 − 2λrt}V/2)]

=
∂
∂t
{r2 + λ2 − 2λrt+ d}−(d+p)/2

{r2 + λ2 − 2λrt+ d}−(d+p)/2

=
(p+ d)λr

(r2 + λ2 − 2λrt+ d)
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and the last expression is increasing in λ on [0,
√
d] for all r > 0, t ∈ [−1, 1].

�

Proof: expression ( 4) in Lemma 2. ¿From Lemma 1 we have

gh,λ(r) = λ

∫∞
0
I p

2
(tv)v

d
2 e−( d

2 +s)vdv∫∞
0
I p

2 −1(tv)v
d
2 e−( d

2 +s)vdv

= λ

∫∞
0
I p

2
(x)x

d
2 e−

x
u dx∫∞

0
I p

2 −1(x)x
d
2 e−

x
u dx

; (5)

with the change of variables x = tv and u = 2λr/(λ2 + r2 + d). Now, by expanding
Iν(x) and interchanging sum and integral, we obtain∫ ∞

0

Iν(x)x
d
2 e−

x
u dx =

∑
i≥0

( 1
2
)2i+ν

i!Γ (i+ ν + 1)

∫ ∞

0

xν+ d
2 +2ie−

x
u dx

= (
1

2
)ν
∑
i≥0

( 1
2
)2i

i!Γ (ν + 1)

Γ (ν + d
2

+ 1 + 2i)uν+ d
2 +2i+1

(ν + 1)i

=
( 1
2
)ν uν+ d

2 +1

Γ (ν + 1)

∑
i≥0

u2i

i!

Γ (ν + d
2

+ 1) (
ν+ d

2 +1

2
)i (

ν+ d
2 +2

2
)i

(ν + 1)i

=
Γ (ν + d

2
+ 1)

Γ (ν + 1)
(
1

2
)νuν+ d

2 +1
2F1(

ν + d
2

+ 1

2
,
ν + d

2
+ 2

2
; ν + 1;u2),(6)

with 2F1(a1, a2; a3; z) =
∑

i≥0

(a1)i (a2)i
(a3)i

zi

i!
; and (d)i = Γ (d+i)

Γ (d)
. By using standard

operations on hypergeometric functions, for any a1, a2, a3 with a3 > 0, we obtain
that:

2F1(a1, a2 + 1; a3 + 1; z) =
∑
i≥0

(a1)i (a2 + 1)i

(a3 + 1)i

zi

i!

=
∑
i≥0

(a1)i (a2)i
(a2+i)

a2

(a3)i
(a3+i)

a3

zi

i!

=
a3
a2

∑
i≥0

(a1)i (a2)i

(a3)i

(a3 + i) + (a2 − a3)
a3 + i

zi

i!

=
a3
a2

[2F1(a1, a2; a3; z) +
a2 − a3
a3

2F1(a1, a2; a3 + 1; z)].(7)

Combining the results ( 5), ( 6) and ( 7) with u = 2λr/(λ2 + r2 + d), ν = p/2,
a1 = (p+ d+ 2)/4, a2 = (p+ d)/4 and a3 = p/2 we obtain:

gh,λ(r) =
λ2r

λ2 + r2 + d
{2 +

(d− p)
p

Eu[
p/2

p/2 + Y
]}

where Y is a discrete random variable having probability mass function pu with

pz(y) ∝ (a1)y(a2)y

(a3)y

z2y

y!
; y = 0, 1, ... (8)
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for 0 < z < 1. Since the family of distributions of Y has an increasing monotone
likelihood ratio in Y with u viewed as the parameter, and the expression (p/2+y)−1

is decreasing in y, it follows that Eu[ p/2
p/2+Y

]} is decreasing in u but u is increasing

in λ whenever λ ≤ √d so Eu[ p/2
p/2+Y

]} is decreasing in λ. Since 0 ≤ Eu[ p/2
p/2+Y

]} ≤ 1

we obtain that

gh,λ(r) ≤ λ2r

λ2 + r2 + d
{1 + (1 ∨ d

p
)}

for all λ, 0 ≤ λ ≤ m. Setting λ = m leads to the conclusion.

�
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Marchand, É. & Perron, F. (2001). Improving on the MLE of a bounded normal
mean. Annals of Statistics, 29, 1066-1081.
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An Empirical Bayes Estimator for Weibull Dis-
tribution
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Abstract. In empirical Bayes estimation of the parameter of continuous exponen-
tial family one usually uses estimators of marginal density of observations and its
first derivative to approximate the Bayes estimator. In this paper the spline density
estimation technique is used to estimate the marginal density and its derivative.
Then an empirical Bayes estimator for the scale parameter of Weibull distribution
is derived. Next the accuracy of this estimator is compared in a simulation study
with two other estimators, a Bayes estimator with a Gamma prior distribution and
an approximate Bayes estimator when the prior is a Gamma with unknown param-
eters.

Keywords. Empirical Bayes, Splines, Exponential Family

1 Introduction

Let X be a random variable of the one parameter natural exponential family with
conditional density

f(x|θ) = m(x) exp {T (x)θ −A(θ)}, x ∈ R (1)

where θ ∈ Ω = {θ :
∫

exp{T (x)θ−A(θ)}dx <∞}, A is a real valued function of the
parameter θ and T is a real valued statistic, so that its derivative with respect to x
exists and is not zero. If θ is a realization of a variable Θ with a prior distribution
G, then the marginal density of x is given by fG(x) =

∫
f(x|θ)dG(θ), and the Bayes

estimator of θ, under the squared error loss, is the posterior mean of Θ, given by

δG(x) =
1

T ′(x)

[
f ′G(x)

fG(x)
− m

′(x)
m(x)

]
(2)

Since in empirical Bayes methods, G is assumed to be unknown, δG(x) cannot
be obtained. Suppose however, that we have n previous independent observations
x1, . . . , xn from distribution with densities f(x1|θ1), . . . , f(xn|θn) where θ1, . . . , θn
are independent realizations of the random variable Θ with distribution function G.
These previous observations can be used to estimate fG(x) which in principle can
be used to estimate G and hence to obtain an estimate of δG(x). This procedure can
be complicated in general, but in the special case under consideration, i.e. in the
case f(x|θ) is of the exponential family, δG(x) is of the form (2), it can be directly
estimated from estimates of fG(x) and f ′G(x).

A procedure that attempts to approximate the Bayes estimator (2) based on
the kernel density estimate of the marginal density fG(x) and its derivative f ′G(x)
is used by Mohammadzadeh (2000) to find an empirical Bayes estimator for the un-
known parameter of one parameter exponential family. In this paper, spline function
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will be used to estimate fG and f ′G. Then, using the current observation x together
with these estimators, an empirical Bayes estimator for θ is derived. Next an ap-
proximate Bayes estimator, when the prior is a Gamma with unknown parameters,
is given as another empirical Bayes estimator. Then two empirical Bayes estimators
for the scale parameter of Weibull distribution are derived, and their accuracy is
compared with a Bayes estimator in a simulation study.

The spline density estimators of fG and f ′G are given in section 2. The Bayes
and two empirical Bayes estimators for the scale parameter of Weibull distribution
are derived in section 3. The simulation and results are described in section 4.

2 Spline Density Estimation

Spline density estimators with order r ≥ 2 are introduced by Ciesielski (1991) and
Krzykowski (1992). The spline density estimator for the unknown density function
fG(x) and its derivative can be constructed by using the sample X1, . . . , Xn and
the current observation X = x. Namely, the r-spline density estimate of fG(x) is
given by

fn(x) =

sm∑
s=s0

asFs(x), (3)

and its derivative with respect to x is

f ′n(x) =

sm∑
s=s0

asF
′
s(x), (4)

where

s0 =
[
Xmin

h
− ν
]
− r, sm =

[
Xmax

h
− ν
]

+ 1, (5)

the constant ν is zero or 1
2
depending on r is even or odd, and [y] denotes the integer

part of y,

as =
1

nh

n∑
j=1

Fs(Xj), s = s0, s0 + 1, . . . , sm,

and

Fs(x) =

r∑
k=1

Nk,s(x)IAk,s(x), F ′
s(x) =

r∑
k=1

N ′
k,s(x)IAk,s(x)

where, for k = 1, . . . , r

Ak,s = [(s+ ν + k − 1)h, (s+ ν + k)h]

and

Nk,s(x) =

r∑
i=k

r
(−1)r−i

i!(r − i)! (s+ ν + i− x
n

)r−1,

N ′
k,s(x) =

r∑
i=k

r(r − 1)

n

(−1)r−i+1

i!(r − i)! (s+ ν + i− x
n

)r−2.
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An optimal value for h in (5) introduced by Krzykowski (1992, 1994) is h = S
√

6
rn

,
where S is the standard deviation of X1, · · · , Xn.

3 Estimation of Weibull Distribution Parameter

The Weibull distribution is widely used in reliability and life data analysis due to
its versatility. Depending on the values of the parameters, this distribution can be
used to model a variety of life behaviors. In this section we give three estimators
for its scale parameter.

Suppose X has Weibull distribution with density

f(x; θ) = 2θx exp{−θx2}, x > 0, θ > 0,

where θ is the scale parameter of this distribution. This density function can be
written as an exponential family withm(x) = 2x, T (x) = −x2 and A(θ) = − log(θ).
According to (2), under the squared error loss, the Bayes estimator of θ becomes

δG(x) =
1

2x

[
1

x
− f

′
G(x)

fG(x)

]
. (6)

Based on the past observations of a given sample X1, . . . , Xn and a current obser-
vation X = x obtained from the distribution f(x; θ), the functions fG(x) and f ′G(x)
can be estimated using the spline density estimators (3) and (4). Then an empirical
Bayes estimator of θ is given by

δn(x) =
1

2x

[
1

x
− f

′
n(x)

fn(x)

]
. (7)

Now suppose the prior distribution of Θ is Gamma(a, b). If a and b are known,
the Bayes estimator of θ from (6) is given by

δG(x) =
a+ n

b+
∑n

i=1
x2

i

(8)

If the prior is a Gamma distribution with unknown parameters a and b, we can use
the moment estimators

â =
(n− 1)(

∑n

i=1
1

x2
i

)2

n2
∑n

i=1
( 1

x2
i

− 1
n

∑n

i=1
1

x2
i

)2

b̂ =
(n− 1)

∑n

i=1
1

x2
i

n
∑n

i=1
( 1

x2
i

− 1
n

∑n

i=1
1

x2
i

)2

to define another empirical Bayes estimator for θ as

δ′n(x) =
â+ n

b̂+
∑n

i=1
x2

i

(9)
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δn
n δG δ′n r=2 r=3 r=4 r=5

10 .00402 .00968 .04778 .04583 .03816 .03265
15 .00439 .00464 .04792 .04405 .03727 .03009
30 .00334 .00359 .04779 .04289 .03665 .02704
50 .00254 .00341 .04034 .03908 .02681 .02634
80 .00234 .00239 .03847 .02813 .02541 .02526
100 .00229 .00233 .03601 .02798 .02317 .02241

Table 1. Table of Mean Square Errors .

4 Simulation and Results

In this section a simulation study has been done to compare the accuracies of the
empirical Bayes estimators (7) and (9) and the Bayes estimator (8) in terms of their
mean square errors (MSE). The simulation has been carried out according to the
following scheme:

i) A value for θ is generated from distribution Gamma(a, b) with a = 2 and
b = 3.

ii) A random sample x1, . . . , xn, x with size n + 1 has been generated from
distribution Weibull(θ). The Bayes estimator is computed from relation (6). The
empirical Bayes estimator based on splines is computed from relation (7). Another
empirical Bayes estimator as an approximated Bayes estimator with a Gamma prior
and unknown parameters, using the moment estimators of a and b is computed from
(9).

iii) For each value of n = 10, 15, 30, 50, 80, 100 and r = 2, 3, 4, 5 the above steps
has been repeated 1000 times.

iv) The MSE associated with each estimator has been computed.

The MSE of 3 estimators for different values of n and r are summarized in
table (1). The obtained values of MSE show that: the larger sample sizes give more
accurate estimators and the Bayes estimator has always the smallest MSE, which
are two obvious expected results. The empirical Bayes estimator δ′n(x) has smaller
MSE than δn(x). This is also an expected result, because it imparts from known
form assumption of prior distribution. Increasing r, the degree of spline density
estimator, gives interesting smaller MSE for δ′n(x). But we should note that large
values of r causes long computational times for empirical Bayes estimation. So a
further study is needed for an optimal value of r. Therefore, the empirical Bayes es-
timator based on spline density estimation is well accurate and it can be used when
the prior distribution is completely unknown. Although, for a more detailed study
it is essential to compare this estimator with empirical Bayes estimator derived in
terms of the kernel density estimators.
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Dependent Data, Moderate Deviations, and Den-
sity Estimation

Mojirsheibani, M.
P17006

Carlton University, Canada.

Abstract. In this presentation we consider some new bounds on the moderate
deviations of strongly mixing sequences with applications to density estimation.
Keywords. Alpha-Mixing, Coupling, Convergence.

1 Introduction

Let X1, · · · , Xn be a strongly mixing sequence of zero-mean random variables. When
Xi’s are bounded, Hoeffding-type exponential inequalities are available for the large
deviations of the partial sums Sn =

∑n

i=1
. In the unbounded case, under the

so-called Cramer’s condition (E|Xi|k ≤ CkEX
2
i < ∞, for positive constants Ck,

and k ≥), one can establish Bernstein-type inequalities for the large deviations of
Sn. More specifically, the following results are well-known (see, for example, Bosq
(1998)):

Hoeffding-type exponential inequalities: Let Xt be a zero-mean process. If supt |Xt| ≤
b, then for each q ∈ [1, n/2] and each ε > 0,

P{|Sn| > nε} ≤ 4 exp(
−qε
8b2

) + 22(1 + 4bε−1)1/2qα([n/2q]). (∗)

Here α(·) is the mixing coefficient of the sequence (to be defined later at the begin-
ning of section 2).

Bernstein-type inequalities: Let Xt be a zero-mean process. Under the Cramer’s
condition (see above) one has for each q ∈ [1, n/2], ε > 0, and k ≥ 3

P{|Sn| > nε} ≤ ((2n/q)+a) exp(
−qε2

25m2
2 + 5cε

)+nb(k)α([n/(q+1)])2k/(2k+1), (∗∗)

where a, c, m2
2, and b(k) are positive constant not depending on n.

More recently, Liebscher (1996) used a result of Rio (1995) to establish the following
bound:

Liebscher (1996): Suppose that |Xi| ≤ T (n) < ∞. Then for all n ≥ 1, all integers
N satisfying 1 ≤ N ≤ n, and all ε > 4NT (n),

P{|Sn| > ε} ≤ 4 exp{−ε2(64nN−1D(n,N)+8εNT (n)/3)−1}+4nN−1α(N), (∗∗∗)

where D(n,N) = sup0≤j≤n−1E(
∑(j+N)∧n

i=j+1
)2.

The above bounds are used to study the almost sure behavior of Sn (LIL-type
results). They are also used to study the rates of convergence in density estimation.
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We will briefly give some results for density estimates. Let X1, · · · ,Xn be a strongly
mixing and strictly stationary sequence of �d-valued random vectors. Let f = F ′

be the density of Xi. Let

fn(x) = (nhd
n)−1

n∑
i=1

K((x−Xi)/hn)

be the usual kernel density estimate of f , where K : �d → �, called the kernel
function, is typically required to satisfy certain regularity conditions. Here, the
sequence hn satisfies hn → 0, with nhd

n →∞, as n→∞. When the kernel function
K is uniformly bounded, then the Borel-Cantelli lemma in conjunction with (*)
or (**) or (***) can provide rates of almost convergence of fn to f , under various
regularity conditions on K. Here we give one such result:

[Bosq (1998), Lemma 2.1]. Let {Xt} be strictly stationary and geometrically strongly
mixing (i.e., α(k) ≤ |const|ρk, wher k ≥ 1 and 0 ≤ ρ < 1) sequence of �d-valued
random vectors with density f = F ′. If hn = cn(log n/n)1/(d+4), where cn → c > 0,
then under regularity conditions on f and the kernel, one has for all x ∈ �d and
all integers k

(Logkn)
−1(n/ log n)2/(d+4){fn(x)− f(x)} −→a.s. 0.

Here Logkn is the k-th iterated logarithm of n

In the rest of this article we present nonasymptotic bounds on the moderate devi-
ations of Sn under the minimal assumption of the existence of a 2+c moments, for
some c > 0. The resulting bounds can of course be used to establish rates of almost
sure convergence for kernel density estimates under more relaxed conditions on the
kernel function.

2. Main results. Let {Xt, t ∈ Z} be a strongly mixing process. That is,

α(m) := sup
p≥1

sup
A∈Fp

−∞, B∈F∞
p+m

|P (A ∩B)− P (A)P (B)| −→ 0, as m→∞.

Here, Fk
j = σ(Xi, j ≤ i ≤ k). Suppose that Xi and the mixing coefficient α(·)

satisfy the conditions

E|Xi|2+c <∞, for some c > 0, (1)

and

α(N) ≤ |const|N−m, where m >
2 + c

c
. (2)

Under (2),
∑

i≥1
α(i)1−

2
2+c < ∞, and hence σ2 :=

∑
i∈Z cov(X0, Xi) ≥ 0. We

will also assume that σ2 > 0. For any α ∈ (0, 1), put

nα := E(X1 + · · ·+X[nα/2])
2, (3)

where [ ] is the usual greatest integer function. In what follows, for the ease of
notation, we will take σ2 = 1. (In fact, any σ2 > 0 would be admissible.)
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Theorem 1. Let {Xt, t ∈ Z} be a strongly mixing and strictly stationary sequence
of real-valued zero-mean random variables with a symmetric distribution (at mean)
satisfying conditions (1) and (2). Then for every ε ∈ (0, c/2) and every α ∈
(0, 2εc−1 ∧ 0.5), and every m satisfying (as appears in (2))

m > max{5c+ 12(1− α)

8α
,

2 + c

c
,

1− ε+ c/2

min(α, ε(4(2 + c))−1
−1,

(c+ 2α)(2 + c)

α
−1},

(4)
there are constants b ∈ (0, ε/2) and no = n(c, ε) such that for all n > no and all real
tn, with

t2n ≥ 25(c+ 1)n−1[n1−α]nα log[n1−α], (5)

one has

P{|Sn| ≥
√
n tn} ≤ C1n

− c
2+εt−2(c+2)

n + C2n
− c

2−ν+ε, ∀ν < b.
Here, C1 and C2 are positive constants.

Theorem 2. Let ε and α be as in Theorem 1. Under the conditions of Theorem 1,
there is a no = n(c, ε) such that for all n > no and all real tn, with

t2n < 25(c+ 1)n−1[n1−α]nα log[n1−α], (6)

one has

P{|Sn| ≥
√
n tn} ≤ C3 e

−C(c,α,ε)(t2n∧log n),

where the constant C(c, α, ε) can be taken to be

0 < C(c, α, ε) = min{ (c ∧ 1)(1− α)

2
+

2(c+ 1)− (c ∧ 1)

100(c+ 1)
,
c

2
+ ν − ε, 26−1}.

To prove theorems 1 and 2 we first need to state the following result of Bradley
(1983).

Theorem 3. Let (Y1, · · · , Yd, Y ) be a vector in �d+1. Suppose that E|Y |γ <∞ for
some γ > 1. Let δ ∈ (0, (E|Y |γ)1/γ ]. Then there is a random variable W such that
(a) W =d Y ,
(b) W and (Y1, · · · , Yd) are independent, and

(c) P{|W−Y | > δ} ≤ 18(E|Y |γ
δγ )

1
2γ+1( supA∈σ(Y1,···,Yd), B∈σ(Y ) |P (A∩B)−P (A)P (B)|)

2γ
2γ+1

The above theorem is often used as a coupling device to replace weakly dependent
random variables with independent ones that have the same distribution.

PROOF OF THEOREM 1.
In what follows, C, |const|, Co, C1, · · · denote positive constants. Put p = q = [nα/2]
and k = [n1−α] and define

Wi = X(i−1)(p+q)+1 + · · ·+Xip+(i−1)q, for 1 ≤ i ≤ k,
and

Ui = Xip+(i−1)q+1 + · · ·+Xi(p+q), for 1 ≤ i ≤ k.
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Also, put

R(n) = Xk(p+q)+1 + · · ·+Xn, if k(p+ q) < n; otherwise R(n) = 0. (7)

Now, repeated applications of Theorem 3 produces independent random variables
W ∗

1 , · · · , W ∗
k , where W ∗

i =d Wi, and for any δ ∈ (0, (E|Wi|2)1/2],

P{|Wi −W ∗
i | > δ} ≤ 18(δ−2E|Wi|2)1/5(α(q))4/5. (8)

Similarly, one can construct k random variables U∗
1 , · · · , U∗

k , where U∗
i =d Ui, and

for any δ ∈ (0, (E|Ui|2)1/2],

P{|Ui − U∗
i | > δ} ≤ 18(δ−2E|Ui|2)1/5(α(p))4/5.

Now observe that

Sn =

k∑
i=1

W ∗
i +

k∑
i=1

(Wi −W ∗
i ) +

k∑
i=1

U∗
i +

k∑
i=1

(Ui − U∗
i ) +R(n). (9)

To deal with the first term on the right side of (9), we need to state the following
lemma:

Lemma 1. Let Y1, · · · , Yn be iid random variables with E(Y1) = 0, E(Y 2
1 ) = 1, and

E|Y1|2+c < ∞, for some c > 0. Then there exist positive constants b and r, not
depending on n, such that for all n ≥ 1 and t2n ≥ (c+ 1) logn,

P{
n∑

i=1

Yi >
√
n tn} ≤ bn−c/2t−2(c+2)

n + nP{|Y1| > r
√
n tn}.

In fact, one may take r = (2(c+ 1)(c+ 2))−1.

PROOF OF LEMMA 1.
The proof of this lemma is precisely that of the proof of Theorem 2 of Michel (1976)
and will not be repeated here.

Since E(W ∗
i ) = E(Wi) = 0, and E(W ∗

i )2 = E(W 2
i ) = E(X1 + · · · +Xp)2 =: nα,

where p = [nα/2] and nα is as in (3), one finds

E(W ∗
i /
√
nα) = 0, and Var(W ∗

i /
√
nα) = 1.

Furthermore, for each p,

E|W ∗
i /
√
nα|2+c

= (nα)−1−c/2E|X1+· · ·+Xp|2+c ≤ p2+c(nα)−1−c/2E|X1|2+c <∞.
Therefore for every n ≥ 1 and tn satisfying (22),

P{
k∑

i=1

W ∗
i > 5−1√n tn} = P{

k∑
i=1

W ∗
i√
nα
>
√
k tn(5−1

√
n/(knα))}

≤ C4 k
− c

2 (5−1tn
√
n/(knα) )−2(c+2)

+kP{| W ∗
1√
nα

| > C5

√
k tn
√
n/(knα) }

(by Lemma 1 in conjunction with (22))

:= B1(n) +B2(n). (10)
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Now with k = [n1−α], p = [nα/2], and the fact that p/nα = 1 + o(1) one finds, for
large n,

B1(n) ≤ C6 n
−c(1−α)/2t−2(c+2)

n ( n
kp

)−c−2( p
nα

)−c−2

≤ C7 n
ε−c/2t−2(c+2)

n ( p
nα

)−c−2
n−ε+αc/2

≤ C8 n
ε−c/2t−2(c+2)

n , (since α ≤ 2c−1ε). (11)

As for the term B2(n), since W ∗
1 =d W1 = X1 + · · ·+Xp := Sp,

B2(n) = kP{|Sp| > C5 tn
√
n}. (12)

Truncate Xi according to,

X ′
i = XiI{|Xi| ≤ n

1
2− ε

2(2+c) },
where I{A} denotes the indicator of the set A, and define S′

p := X ′
1 + · · · + X ′

p.
Then, one obtains

P{|Sp| > C5 tn
√
n} ≤ P{|S′

p| > C5 tn
√
n}+ pP{|X1| > n

1
2− ε

2(2+c) }
≤ P{|S′

p| > C5 tn
√
n}+ C9 n

α−1− c
2+ ε

2E|X1|2+c (13)

(Markov’s inequality and the fact that p = [nα/2].)

(14)

To deal with the first term on the right side of (13), we need the following lemma
whose proof will appear at the end of the section.

Lemma 2. Let β = ε(2(2+ c))−1. Also, let S′
p be as above. Then for every constant

d > 0, and every n > (2/d)1/(β−min(α, β/2)),

P{|S′
p| > d tn

√
n} ≤ 4 e−C9nq(α,β)

+ C10 n
α−(1+m) min(α, β/2).

Here, one may take q(α, β) to be

q(α, β) =
1

2
− max (α, 1−min(α, β/2))

2
(> 0).

Now observe tha Lemma 2 in conjunction with (12) and (13) imply that for large
n,

n
c
2−εB2(n) = n

c
2−ε[n1−α]P{|Sp| > C5 tn

√
n}

≤ 4 n
c
2−ε+1−αe−C9nq(α,β)

+ C10 n
c
2−ε+1−(1+m) min(α, β/2) + C11 n

− ε
2 ,

where q(α, β) is as in Lemma 2. Since by (23) m > (1+ c/2− ε) min−1(α, β/2)−1,
one finds that c/2 − ε + 1 − (1 + m) min(α, β/2) < 0. Therefore, for every ν <
(ε/2) ∧ (−c/2 + ε− 1 + (1 +m) min(α, β/2)),

B2(n) ≤ C12 n
− c

2−ν+ε, (15)



Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

for n large enough. Putting together (10), (11), and (15), one concludes that for
large n,

P{
k∑

i=1

W ∗
i > 5−1√n tn} ≤ C8 n

− c
2+εt−2(c+2)

n + C12 n
− c

2−ν+ε. (16)

Similarly, since p = q = [nα/2], one also finds for large n,

P{
k∑

i=1

U∗
i > 5−1√n tn} ≤ C8 n

− c
2+εt−2(c+2)

n + C12 n
− c

2−ν+ε. (17)

To deal with the term
∑k

i=1
(Wi −W ∗

i ) in (9), first note that E|Wi|2 = p + o(p).
Now, put

b2(n) = 25(c+ 1)n−1[n1−α]nα log[n1−α]

and observe that that b2(n) = (25/2)(c+1)(1−α) logn+o(1). Combining this with
the fact that k = [n1−α] > n1−α/2, one obtains, for large n (recall that α < 0.5)

√
n b(n)

5k
≤ |const| nα−1/2

√
logn+ o(1) ∈ (0, (E|W1|2)1/2].

Therefore,

P{|Wi −W ∗
i | >

√
n tn/(5k)} ≤ P{|Wi −W ∗

i | >
√
n b(n)/(5k)}, (by (22))

≤ C12({√n b(n)/(5k)}−2{C13 n
α + o(nα)})

1
5

(α(q))
4
5

(by (8))

≤ C14(n−1+2(1−α){C15 logn+ o(1)}−1{C13 n
α + o(nα)})

1
5

×(α([nα/2]))
4
5

(since b2(n) = (25/2)(c+ 1)(1− α) logn+ o(1))

≤ C16{n1−α + o(n1−α)} 1
5 {log n+ o(1)}−1

5 ([nα/2])
−4m

5

(by (2))

≤ C17{n1−α−4mα + o(n1−α−4mα)} 1
5 {logn+ o(1)}−1

5 .

Therefore

P{
k∑

i=1

|Wi −W ∗
i | >

√
n tn/5} ≤ C17 k{n1−α−4mα + o(n1−α−4mα)} 1

5 {logn+ o(1)}−1
5

≤ C18{n6(1−α)−4mα + o(6(n1−α)−4mα)} 1
5 {logn+ o(1)}−1

5

≤ C18{n−5c/2 + o(n−5c/2)} 1
5 {log n+ o(1)}−1

5

(since m > (5c+ 12(1− α))/(8α), by (23))

< C18 n
− c

2 . (18)
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Similarly, one can show that

P{
k∑

i=1

|Ui − U∗
i | >

√
n tn/5} < C19 n

− c
2 . (19)

Finally, the term R(n) that appears in (7) may be handled as follows. Define the
truncated variables X ′′

i by

X ′′
i = XiI{|Xi| ≤ n 1

2−min(α, 1−α)
2+c }

and put

R′′(n) =

n∑
i=2[n1−α][nα/2]+1

X ′′
i , if 2[n1−α][nα/2] < n; (otherwise R′′(n) = 0).

Let Cα = nα/2− [nα/2] and C1−α = n1−α − [n1−α], and observe that the number
of terms in the sum R′′(n) is at most

n− 2[n1−α][nα/2] = 2Cαn
1−α + C1−αn

α − 2CαC1−α < 3nmax(α, 1−α).

Using Lemma 2, it is not difficult to show that

P{|R′′(n)| > √n tn/5} ≤ 4 e−C20 nφ(α,c)
+C21 n

−ϕ(α,m,c), ∀ n > 10
2(2+c)

min(α, 1−α) ,
(20)

with

2φ(α, c) = 1−max(α, 1−min(α, min(α, 1− α)

2(2 + c)
)) =

α

2(2 + c)
,

and

−ϕ(α, m, c) = α− (1 +m) min(α, min(α, 1− α)

2(2 + c)
) < − c

2
,

where the bound −c/2 in the above expression follows from the fact that m >
(c+2α)(2+c)(min(α, 1−α))−1−1; see (23). Therefore, for n > 102(2+c)/ min(α, 1−α),

P{|R(n)| > √n tn/5}

≤ P{|R′′(n)| > √n tn/5}+ (n− 2[n1−α][nα/2])P{|X ′′
1 | > n

1
2−min(α, 1−α)

2+c }
≤ 4 e−C20 nφ(α,c)

+ C21 n
−ϕ(α,m,c) + 3 nmax(α, 1−α) · n−1− c

2+min(α, 1−α) E|X ′′
1 |2+c

(by (20) and Markov’s inequality)

≤ C22 n
− c

2 . (21)

Now, (16), (17), (18), (19), and (21) imply that for n large enough,

P{Sn >
√
n tn} ≤ C23 n

− c
2+εt−2(c+2)

n + C24 n
− c

2−ν+ε.

Similarly, (recall that E(Sn) = 0), the same bound holds for P{Sn < −√n tn}.
This completes the proof of Theorem 1. �

A more general version of Theorem 1 (without the assumption of a symmetric
distribution) was proved by Mojirsheibani (2002). It may be stated as:
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Theorem 4. Let {Xt, t ∈ Z} be a strongly mixing and stationary sequence of
real-valued zero-mean random variables satisfying conditions (1) and (2). Then for
every ε ∈ (0, c/2] and every α ∈ (0, 2εc−1 ∧ 0.5) there are constants mo = m(c, ε),
b ∈ (0, ε/2), and no = n(c, ε) such that for all n > no, all m > mo, and all real tn,
with

t2n ≥ 8(c+ 1) log[n1−α], (22)

one has

P{|Sn| ≥
√
n tn} ≤ C1n

− c
2+εt−2(c+2)

n + C2n
− c

2−ν+ε, ∀ν < b.
Here, C1 and C2 are positive constants, Sn = X1 + · · ·+Xn, and the constant m0

may be taken to be

mo = max{5c+ 12(1− α)

8α
,

2 + c

c
,

1− ε+ c/2

min(α, ε(4(2 + c))−1)
− 1}. (23)

The proof of Theorem 4 is based a more careful application of Bradley’s (1983)
Theorem that leaves no remainder terms.

PROOF OF LEMMA 2.
Since |X ′

i| is bounded by n
1
2−β , where β = ε(2(2 + c))−1 and has mean zero (the

distribution of X ′
is is symmetric at the mean), Theorem 2.1 of Liebscher (1996)

implies that for every integer N , with 1 ≤ N ≤ p := [nα/2],

P{|S′
p| > d tn

√
n} ≤ 4 exp{ −d2nt2n

64N−1pD(p,N) + 3−1(8dtn
√
n)Nn0.5−β

}+
4p

N
α(N), (24)

provided that
d tn

√
n > 4Nn0.5−β . (25)

Here, D(p,N) = sup0≤j≤p−1E(
∑(j+N)∧p

i=j+1
X ′

i)
2. Put � = 2m/(m−1) and note that

� < 2 + c, (because m > (2 + c)/c, by (23)). Now (2), Lemma 2.1 of Liebscher
(1996), and the fact that E|X ′

i|� ≤ E|Xi|� < (E|Xi|2+c)�/(2+c) < ∞, (E|X ′
i| does

not depend on n), imply that

D(p,N) ≤ |const|N log p(E|X ′
i|�)2/� = |const|N log p (E|X ′

i| does not depend on n)

Furthermore, choosing N = [2−1nmin(α, β/2)], it is not difficult to verify that (25) is
satisfied for n > (2/d)1/(β−min(α, β/2)). Thus, the above choice of N together with
(24) imply that

P{|S′
p| > d tn

√
n} ≤ 4 exp{ −nt2n

C25 p log p+ C26 tn
√
n[2−1nmin(α, β/2)]n0.5−β

}
+

4p

[2−1nmin(α, β/2)]
α([2−1nmin(α, β/2)])

≤ 4 exp{ −nt2n
C27 nα log nα + C28 n1+min(α, β/2)−βtn

}
+C29 n

α−min(α, β/2)([2−1nmin(α, β/2)])−m

(by (2) and the fact that [y] ≥ y/2 for y ≥ 1)
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= 4 exp{ −n1−ψ(α,β)h(n)t2n

n−ψ(α,β)h(n)(C27 nα lognα + C28 n1+min(α, β/2)−βtn)
}

+C30 n
α−(m+1) min(α, β/2),

where

ψ(α, β) = max(α, 1−min(α, β/2)), and h(n) =

{
t−2
n under (22),

(logn)−1 under (6).

Observe that t−2
n log n ≤ C31 (1+o(1)), under (22), where as t2n(log n)−1 < C32 (1+

o(1)) under (6). Since ψ(α, β) ≥ 1− β + min(α, β/2) > 0, it is straightforward to
see that for large n, under (22),

P{|S′
p| > d tn

√
n} ≤ 4 e−C33n1−ψ(α,β)

+ C34 n
α−(1+m) min(α, β/2).

Similarly, under (6), one finds for large n,

P{|S′
p| > d tn

√
n} ≤ 4 e−C34n(1−ψ(α,β))/2

+ C35 n
α−(1+m) min(α, β/2).

This completes the proof of Lemma 2. �

PROOF OF THEOREM 2.
We first need the following lemma, (which is the counterpart of Lemma 1 under
the condition that t2n ≤ (c+ 1) logn.

Lemma 3. Let Y1, · · · , Yn be iid random variables with E(Y1) = 0, E(Y 2
1 ) = 1, and

E|Y1|2+c < ∞, for some c > 0. Then there exist positive constants b and r, not
depending on n, such that for all n ≥ 1 and t2n ≤ (c+ 1) log n,

|P{
n∑

i=1

Yi >
√
n tn} − Φ(−tn)| ≤ bn− c∧1

2 e−(1−σ)t2n/2 + nP{|Y1| > r
√
n tn},

where σ = 2−1(c+ 1)−1(c ∧ 1), and Φ is the standard normal distribution function.

PROOF OF LEMMA 3.
This is simply Theorem 1 of Michel (1976).

First observe that under (6), one has t2n25−1(n/(knα)) < (c + 1) log k, where k =

[n1−α] as before. Combining this with Lemma 3, one can bound the term
∑k

i=1
W ∗

i ,
that appears in the representation (9) of Sn, as follows:

P{
k∑

i=1

W ∗
i > 5−1√n tn} = P{

k∑
i=1

W ∗
i√
nα
>
√
k tn(5−1

√
n/(knα))}

≤ C36 k
− c∧1

2 exp{− 2(c+ 1)− (c ∧ 1)

4(c+ 1)
(t2n(n/(25knα)))}

+kP{|W ∗
i | > C37 tn

√
n }+ Φ{− tn5−1

√
n/(knα) }

:= B3(n) +B4(n) +B5(n) (26)
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The term B4(n) is the same as B2(n) in (10), except for possibly different constants.
Therefore the argument leading to (15) gives the bound B4(n) ≤ C′

12 n
− c

2−ν+ε, for
some positive constant C′

12 and all ν: ν < (ε/2)∧(−c/2+ε−1+(1+m) min(α, β/2)).
Next, since [nα/2]/nα = 1 + o(1), where nα is as in (3), we may write

n

knα
=

n

[n1−α][nα/2]
× [nα/2]

nα
= (2 + o(1))(1 + o(1)) = 2 + o(1) (27)

Consequently, for large n we have

B3(n) ≤ C38 n
−(c∧1)(1−α)/2 exp{− 2(c+ 1)− (c ∧ 1)

100(c+ 1)
t2n}. (28)

Finally, since P{N(0, 1) r.v. > x} < x−1(2π)−1/2 exp(−x2/2), for all x > 0,
(Mill’s ratio), one finds, in conjunction with (27), that for n large enough B5(n) <

C39 t
−1
n e

−t2n/26, where C39 > 0. Putting all the above together, for n large enough
we have the bound:

P{
k∑

i=1

W ∗
i > 5−1√n tn} ≤ C40 e

−C41 (t2n∧log n), (29)

where

C41 = C(c, α, ε) = min{ (c ∧ 1)(1− α)

2
+

2(c+ 1)− (c ∧ 1)

100(c+ 1)
,
c

2
+ ν − ε, 26−1}.

Similarly (since p = q = [nα/2]), one can show that P{∑k

i=1
U∗

i > 5−1√n tn} ≤
C40 exp{−C41 (t2n ∧ logn)}. Also, note that (6) in conjunction with (27) implies
that for large n

√
n tn
5k

<
2nα−1/2

√
|const| logn+ o(1)

5
∈ (0, (E|W1|2)1/2].

Now it is straightforward to show that for n large enough, (8) and the argument
leading to (18) give the bound

P{
k∑

i=1

|Wi −W ∗
i | >

√
n tn/5} ≤ C42 n

−c/2t−2/5
n .

Similarly, by symmetry, the same bound holds for P{∑k

i=1
|Ui−U∗

i | >
√
n tn/5}.

Combining these bounds with (18), which holds under both (22) and (6), we may
conclude that under the conditions of Theorem 2,

P{Sn >
√
n tn} ≤ C43 n

−c/2t−2/5
n ,

for a positive constant C102. Also, the same bound holds for P{Sn < −√n tn},
(recall that E(Sn) = 0). This completes the proof of Theorem 2. �
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Asymptotic Equivalence of the Covariance Ma-
trix of a Multivariate Stationary Time Series
with the Related Circular Symmetric Matrix

A. R. Nematollahi and Z. Shishebor

P11004

Department of Statistics, Shiraz University, Iran

Spectral density function has fundamental role in the spectral domain, so its estima-
tion is of interest. Subba Rao and Gabr have derived an estimation for the spectral
density function of a stationary time series using the properties of the eigevalues of
variance-covariance matrix. Nematollahi and Subba Rao extended this to multivari-
ate case. They conjectured the asymptotic equivalence of the variance-covariance
matrix with the related circular symmetric matrix.

In this paper we prove the asymptotic equivalence of the variance-covariance
matrix of a multivariate stationary time series with the related circular symmetric
matrix. The method is illustrated with simulated time series.

Keywords: spectral density matrix, eigenvalue decomposition, block-Toeplitz ma-
trix.

1 Introduction

Much of the noticeable progress in applied sciences is under the effect of communi-
cation and electronic sciences. For example, in technology of satellite, radar, sonar,
internet and etc. These progress can not be obtained without using time series
analysis and signal processing. In time series analysis, there are two approaches for
analysis, the first is time domain and the second is spectral (or frequency) domain.
Although, there is a one to one corresponding between them, but in applied sciences,
analysis in spectral domain are widely used, for more highlighting the information
that is maybe hidden within the data.

Spectral density function has fundamental role in the spectral domain, so its
estimation is of interest.

some important information about trend, seasonality, hidden periodicity and
delaying time in linear systems can be derived by the spectral density function.

Subba Rao and Gabr (1988) derived an estimation for the spectral density func-
tion of a stationary time series using the properties of the eigenvalues of variance-
covariance matrix. Nematollahi and Subba Rao (2002) extended this to multivari-
ate case. They conjectured the asymptotic equivalence of the variance-covariance
matrix with the related circular symmetric matrix. In this paper we prove this
conjecture.
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2 Preliminaries:

Let Y = {Yt, t ∈ Z} be a T-dimensional stationary real-valued time series with
EYt = 0, E|Yt(l)|2 < ∞, l = 1, . . . , T where Yt(l) is the l-th element of Yt for all

t ∈ Z, and Z stands for all integer numbers. Let R(τ) = EYt+τY
′
t, t, τ ∈ Z be

T × T autocovariance matrix of Yt (the symbol ′ is denoted for transpose). We
assume that Yt has an absolutely continuous spectrum (spectral density)

h(w) =
1

2π

∞∑
τ=−∞

R(τ)e−iwτ , 0 ≤ w ≤ 2π. (2.1)

Let {Y1,Y2, . . . ,Yn} be a random sample of size n from Y, and consider a

nT × 1 vector Yn = (Y
′
n,Y

′
n−1, . . . ,Y

′
1)

′
. The covariance matrix Γn = EYnY ′

n has
the following form

Γn =

⎛⎜⎜⎝
R(0) R(1) . . . R(n− 1)

R(−1) R(0) . . . R(n− 2)
...

...
...

...
R(−(n− 1)) R(−(n− 2)) . . . R(0)

⎞⎟⎟⎠ . (2.2)

Note that Γn is a block-Toeplitz nT × nT matrix. Individual matrix elements

are not ingeneral symmetric, R(τ) �= R
′
(τ), although R(−τ) = R

′
(τ).

These type of matrices have too many applications in the time series analysis
(see Nematollahi and Subba Rao, (2000), Hannan (1970), Hannan and Wahlberg
(1989)).

3 Main Result

In this section we obtain a special matrix that will approximately diagonalize Γn.
Hannan and Wahlberg, 1989, have obtained the following useful eigen-value decom-
position of Γn,

Γn = W̃∗
nDnW̃n, (3.1)

where W̃n is the nT × nT matrix with jth (block) row Wn(wj) given by

Wn(wj) = n−1/2(I, eiwj I, . . . , e(n−1)iwj I) (3.2)

and Dn = diag{Λn(w0), Λn(w1), . . . , Λn(wn−1)}, with Λn(wj) is a T ×T Hermitian
matrix given by

Λn(wj) = Wn(wj)ΓnW∗
n(wj) j = 0, . . . , n− 1, (3.3)

where I is an T×T identity matrix and wj = 2πj
n
, j = 0, . . . , n−1 be the frequencies.

Note that W̃n is an orthogonal matrix. The Λn(wj) is identified as an eigen-value
matrix andWn(wj) is an eigen-vector matrix associated with Λn(wj) (Nematollahi
and Subba Rao, 2000).
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Now consider the following circular block matrix (circulant),

Γ c
n =

⎛⎜⎜⎜⎜⎝
R(0) R(1) . . . R(n− 1)

R(n− 1) R(0) . . . R(n− 2)
R(n− 1) R(n− 1) · · · R(n− 3)

...
...

...
R(1) R(2) . . . R(0)

⎞⎟⎟⎟⎟⎠ .
Setting R(1) = R

′
(n−1), . . . ,R(h) = R

′
(n−h) in Γ c

n, we obtain the circular block
Hermitian (indeed, symmetric) matrix

Γ s
n =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R(0) R(1) R(2) . . . R
′
(2) R

′
(1)

R
′
(1) R(0) R(1) . . . R

′
(3) R

′
(2)

R
′
(2) R

′
(1) R(0) . . . R(4) R(3)

...
...

...
...

...
...

R(2) R(3) R(4) . . . R(0) R(1)

R(1) R(2) R(3) . . . R
′
(1) R(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.4)

Each eigen-value matrix and eigen-vector matrix of Γ s
n are denoted by Λs

n(wj) and
Ws

n(wj), respectively.

Before considering the main theorem, we need to express the following Lemmas:

Lemma 3.1. The eigen-value matrices and eigen-vector matrices of Γ s
n in (3.4)

satisfy

i) Λs
n(wj) = Λ

′s
n (wn−j).

ii) Ws
n(w0) = n−1/2(I, . . . , I),

Ws
n(wj) = n−1/221/2(0, sinwjI, . . . , sin(n− 1)wjI),

Ws
n(wn−j) = n−1/221/2(I, coswjI, . . . , cos(n− 1)wjI),

for j = 0, 1, . . . , n−1
2

.

Proof. The proof of (i) follows from symmetry of Γ s
n and relations (3.3) and

(3.2).
We derive (ii) from (3.3) and part (i). Let hn(w) be the ”truncated spectral density
matrix” ,i.e.,

hn(w) =
1

2πn

n∑
t=1

n∑
s=1

R(t− s)e−i(t−s)w, (3.5)

(See Subba Rao and Gabr, 1989).

Lemma 3.2. The eigen-value matrices of Γ s
n are approximately equal to the

spectral density matrix of Y at n frequency points wj , j = 0, . . . , n− 1. More pre-
cisely, Λs

n(wj) converges to 2πh(wj) element by element.

Proof. The truncated spectral density matrix hn(w) in (3.5) is asymptotically
equivalent to h(w), under some regularity condition, (Priestley, 1981, P. 418). On
the other hand, using (3.2) and (3.3) one can easily show that Λs

n(wj) = 2πhn(wj).
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Now define the orthogonal matrix Q = n−1/221/2B
′

where

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2−1/2I 2−1/2I 2−1/2I · · · 2−1/2I
I cos 2π 1

n
I cos 2π 2

n
I · · · cos 2π n−1

n
I

0 sin 2π 1
n
I sin 2π 2

n
I · · · sin 2π n−1

n
I

I cos 4π 1
n
I cos 4π 2

n
I · · · cos 4π n−1

n
I

0 sin 4π 1
n
I sin 4π 2

n
I · · · sin 4π n−1

n
I

...
...

... · · ·
...

0 sin n−1
2

2π 1
n
I sin n−1

2
2π 2

n
I · · · sin n−1

2
2π n−1

n
I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
The following theorem is the main result of this paper.

Theorem 3.1. Let Y = {Yt, t ∈ Z} be a T-dimensional stationary real time
series such that EYt = 0 and E|Yt(l)|2 < ∞, l = 0, . . . , T − 1, and R(t) and h(w)
be its autocovariance matrix and spectral matrix of Y, respectively. Then, for large
n and under regularity condition, Λn(wj) is approximately equal to 2πh(wj), where
Λn(wj) is the eigen-value matrix of Γn, for wj = 2πj

n
, j = 0, . . . , n− 1.

Proof. Let q.,i = [q1,iI, q2,iI, . . . , qn,iI] be the ith (block) column of Q. We have

q
′
.,iIΓ

s
nq.,jI− q

′
.,iIΓnq.,jI =

M∑
m=1

[R(m)−R(n−m)]

×
M∑

m=1

[qk,iIqn−m+k,j + qn−m+k,iIqk,j ]

=

M∑
m=1

am[R(m)−R(n−m)],

where am =
m∑

k=1

[qk,iqn−m+k,j + qn−m+k,iqk,j ]. Now consider the (l, k)th element of

the matrix q
′
.,iIΓ

s
nq.,jI− q

′
.,iIΓnq.,jI,since qs,iqr,j ≤ 2

n
for all s, i, r, j ∈ {1, 2, . . . , n},

then we have∣∣∣∣(q′.,iIΓ s
nq.,jI − q

′
.,iIΓnq.,jI

)
l,k

∣∣∣∣ =

∣∣∣∣∣
M∑

m=1

am (R(m)−R(n−m))l,k

∣∣∣∣∣
=

∣∣∣∣∣
M∑

m=1

amE [(Yt+m(l)− Yt+n−m(l)) (Yt(k)]

∣∣∣∣∣
≤ 4

n

M∑
m=1

m |γlk(m)− γlk(n−m)|

≤ 4

n

{
M∑

m=1

m

∣∣∣∣∣γlk(m)

∣∣∣∣∣+
n∑

h=M+1

M

∣∣∣∣∣ γlk(h)

∣∣∣∣∣
}
,

(1)
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where γlk(m) = EYt+m(l)Yt(k).

As n increases, the limit of the first term in (3.6) is zero by lemma 3.1.4, in Fuller
book, and the limit of the second term is zero by the absolute summability of Γ (h).

Thus q
′
.,iIΓ

s
nq.,jI− q

′
.,iIΓnq.,jI converges to zero matrix element by element, and so

Q
′
Γ s

nQ −Q
′
ΓnQ converges to zero matrix. This means Q

′
Γ s

nQ is approximately

equals to Q
′
ΓnQ. So, Q

′
ΓnQ− 2πDn goes to zero using this fact and lemma 3.2.

We have proved the theorem.

4 Numerical example

Let {Y1,Y2, ...,Yn} be a sample of size n from {Yt}. We assume that EYt = 0.
Let n =Mm, where M and m are integers. Divide the data into M groups, where
each group consists of m observations, and let the observation in the l-th group

(l = 1, ...,M) be denoted by the mT × 1 vector Ỹl, where

Ỹl = (Y′
lm,Y

′
lm−1, ...,Y

′
(l−1)m+1)

′ , l = 1, ...,M. (2)

We estimate the mT ×mT block-Toeplitz covariance matrix Γm of order m by

Γ̂m =
1

M

M∑
j=1

ỸjỸ
′
j . (3)

Let Λ̂m(ωj), j = 0, ...,m− 1 be the eigenvalue-matrices of Γ̂m and assume that
m is odd. We consider

ĥm(ωl) =
1

4π

m−1∑
j=0

Âm(ωj , ωl), (4)

as estimators of hm(ωl) , where

Âm(ωj , ωl) =
2

m

m∑
t=1

m∑
s=1

W
t∗
m (ωj)Λ̂m(ωj)W

s
m(ωj) cos(t− s)ωl.

(Refer to Nematollahi and Subba Rao (2002), for more details.)

As an example, let {Yt} be a bivariate stationary series generated from the
model

Yt + AYt−1 = et (5)
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where A =

[
−0.16 0.15
−0.14 −0.15

]
and et is a bivariate Gaussian white noise with mean

zero and variance covariance matrix Σ =

[
1.19 0
0 2.15

]
. The spectral density matrix

of Yt is given by (See, Brockwell and Davis, 1991)

h(ω) = [I + Ae−iω]−1Σ[I + Aeiω]
′−1, 0 ≤ ω ≤ 2π. (6)

Let h(ω) = [hjk(ω)]j,k=0,1.We note h00(ω) and h11(ω) are real valued functions

and h01(ω) = h10(ω), is a complex valued function as the cross spectral density
function.

First we generated 500 observations Yt, t = 1, 2, ..., 500 from model (4.4) and
collected them in 100 groups, with 5 elements in each group, i.e., M = 100, m =

5. The estimate ĥm(ωl) is calculated using the formulae (4.3) with ωj = 2πj
5
,

j = 0, ..., 4. The above estimate is computed at the frequencies ωl = lπ, l =
0(0.1)1. Figure 1 show the logarithm of theoretical density and truncated estimate
of h00(ωl), respectively. The graph related to h11(ω) is similar.
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Fig. 1.

Nontrivial Application of Jacknife to Problems
in Ratio Estimation

Niroumand, H. A.
A11061

Faculty of mathematical sciences, Ferdowsi University of Mashhad, Mashhad, Iran.

Abstract. Let θ̂1 and θ̂2 be estimators for θ. Then for any real number R �= 1 we
define,

G(θ̂1, θ̂2) =
θ̂1 −Rθ̂2

1−R

as generalized Jackknife. In considering G(θ̂1, θ̂2) as an estimator for θ when R

is known, the question which immediately arises is the manner in which θ̂1 and θ̂2
should be selected.

Within the class of estimators for which R is positive and fixed we would desire
that θ̂1 and θ̂2 have a high positive correlation. On the other hand it would appear
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that in the set of all G(θ̂1, θ̂2) one would prefer to have R < 0 and θ̂1 and θ̂2
negatively correlated.

In this article we shall examine some nontrivial application of Jackknife where
additional information is incorporated in the G estimator through the parameter R.

Keywords. Jackknife, Ratio, Estimator.

1 Introduction

In the theory of sampling there is a strong emphasis placed upon the use of aux-
iliary information. An example of this fact which is of interest here is the use of
auxiliary information to improve the precision of estimates through consideration
of a population ratio, say ρ. More specification often a situation exists where the
ratio of a variable Y to another variable X is believed to have a smaller variance
than the Y variable alone. Suppose, for example, one were interested in the value
of a population total T (Y ). Rather than estimate this total directly from the sam-

ple it may be better to estimate ρ =
T (Y )
T (X)

from the sample and then multiply

it by the known total, T (X) to estimate the total T (Y ). This is called ratio esti-
matetion. The ratio estimators are usually biased, though in many situation only
negligibly so. On the other hand the bias may be considering in surveys with many
strata of small or moderate samples within strata if it is deemed appropriate to use
separate ratio estimators for each stratum. When it is considered to be important
that proper confidence statements be made it is of necessary that the bias of an
estimator be negligibly small. Consequently we must give considerable attention to
the development of unbiased or approximately unblased ratio estimators.

In simple random sampling the bias of the ratio estimator r is

E(r)− P = −[E(X̄)]−1Cov(r, X̄)

Note that the bias associated with the estimator for the total of Y , T̂ (Y ) =

T (X)( Ȳ
X̄

) is given by Bias[T̂ (Y )] = T (X)Bias(r).

Also note that practically speaking r is never unblased since this occurs only if
r and X̄ are uncorrelated, a situation which seldom occurs in practice.
The decision to use a ratio estimator in hopes of improving the precision is ordinarily
based on consideration of the coefficients of variation for the variables X and Y
upon the correlation believed to be present between the two. In general the ratio
estimators is useful if the characters X and Y have a correlation coefficient which
exceeds 1/2.

After the decision T use a ratio estimators has been made the evaluations of
various modifications to the classical estimator which exist will, of necessity, opened
upon the assumed model for the relationship between Y and X belongs.

Durbin [1] examined ratio estimators of from r = Ȳ
X̄

, where the regression of Y onX

is linerar and X is normally distributed. He considers an application of Quenouille’s
method which splits the sample into two equal size sets to yield,

r1 =
Ȳ1

X̄1

and r2 =
Ȳ2

X̄2
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where

Ȳ =
1

2
(Ȳ1 + Ȳ2) , X̄ =

1

2
(X̄1 + X̄2)

Then the new estimate, ρ̂2, of ρ =
E(X)
E(Y )

is

ρ̂2 = 2r − 1

2
(r1 + r2)

Suppose

Ȳ = a+ bX̄ + U

where the V ar(U) = σ, a nonrandom quality of O(n−1) and E[U |X̄] = 0

Hence, ρ =
E(X)
E(Y )

= b+ a
E(X̄)

and since E[U |X̄] = 0,

E(r) = aE(X̄−1) + b (1)

Consequently the bias in r is determined by the degree to which E[X̄−1] differs
from (E[X̄])−1.

1.1 Normal auxiliary

Suppose that X̄ is a normal variable with variance h, which is O(n−1), and units
of measurement R chosen so that E(X̄) = 1. Then let X̄ = 1 − ξ and hence for
sufficiently large n we have

E[X̄−1] = E(1 + ξ + ξ2 + ξ3 + . . .)

Taking the first four nonvanishing terms we find

E[X̄−1] = 1 + h+ 3h2 + 15h3 +O(n−4) (2)

Similarly

E[X̄−2] = E(1 + 2ξ + 3ξ2 + 4ξ3 + . . .) = 1 + 3h+ 15h2 + 105h3 +O(n−4) (3)

If we put (1) in (1-1) the bias in r may be determined as

E(r)− ρ = aE(X̄−1) + b− (a+ b) = a(h+ 3h2 + 15h3)

Neglecting terms of O(n−4).
Further, since V ar(X̄1) = V ar(X̄2) = 2h, We may replace h by 2h in (2) and (3)
and obtain

E[X̄−1
i ] = 1 + 2h+ 12h2 + 120h3

and

E[X̄−2
i ] = 1 + 6h+ 60h2 + 840h3 , i = 1, 2

Thus if θ̂2 = r1 + r − 2
2 , Then its bias is given by E(θ̂2)−ρ = a(2h+12h2 +120h3).

Hence if we employ

θ̂1 = r

and

θ̂2 =
r1 + r2

2
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of the from
θ̂1 −Rθ̂2

1−R
Then to eleminate the to terms of order O(n−4) the appropriate choice of R is

R =
1 + 3h+ 15h2

2(1 + 6h+ 60h2)
(4)

Selecting R = 1
2 leads to the estimator ρ̂2 Studied by Durbin [1]. For small h the

above expression for R is quite near 1
2 .

Using (3) Durbin (1959) has shown that, not only is the bias of ρ̂2 smaller than of
r, but V ar(ρ̂2) < V ar(r).

The estimator ρ̂3 combines the same two quantities θ̂1 and θ̂2, in the same fashion
with a further improvement in the bias let the sample of pairs (Yi, Xi) (i =
1, 2, . . . , n) be split at random into N groups each of size M .
Then we get the estimator

ρ̂j =
Ȳ j

X̄j

from the sample after omitting the jth group, where

Ȳ j = (nȲ −MȲj)/(n−M)

X̄j = (nX̄ −MX̄j)/(n−M)

and Ȳ j and X̄j are the sample means for the jth group. Then Quenouille’s [2]
estimator is

ρ̂Q = Nr − N − 1

N

N∑
1

ρ̂j (5)

and Bias(ρ̂Q) and V ar(ρ̂Q) are both decreasing function of N . For N = 2, ρ̂Q

Become ρ̂2, The estimator given and student by Durbin [1]. Consequently the in-

dicated optimal choice of θ̂2 is (corresponding to N = n)

θ̂2 =
1

n

n∑
j=1

ρ̂j

Since the value of h is assumed to be known and h is O(n−1), we shall consider the
case in which h = c

n for a known constant c. This requires us to choose

R =
a[h+ 3h2 + 15h3]

a[c/(n− 1) + 3c2/(n− 1)2 + 15c3/(n− 1)3]

as the proper parameter in the estimator G(θ̂1, θ̂2) This yields

G(θ̂1, θ̂2) = ρ4 =
θ̂1 −Rθ̂2

1−R
Thus ρ4 would appear to be the best of the estimators which we are considering
here.
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1.2 Comparison of ρ3 and ρ4

The following result will be useful for this comparison,

Bias(r) = a(h+ 3h2 + 15h3)
�
= aB(r)

V ar(r) = a2(h+ 8h2 + 69h3) + σ(1 + 3h+ 15h3 + 105h4)

�
= aS1(r) + σS2(r)

Bias(ρ̂2) = a(6h2 + 90h3)
�
= aB(ρ̂2)

V ar(ρ̂2) = a2(h+ 4h2 + 12h3) + σ(1 + 2h+ 8h2 + 108h3)

�
= a2S1(ρ̂2) + σS2(ρ̂2)

The estimator ρ̂2 is unbiased to O(n−4). In the variance of ρ̂3 let

ρ̂3 = cr − dr1 + r2
2

,

where c = 1
1−R, d = R

1−R, c−d = 1 (Note that for we have R = 1
2 , c = 2, d = 1).

Using the linear model introduced previousely and splitting the sample as before
we have

U =
1

2
(u1 + u2) , Ȳi = a+ hXi + ui , and ri =

Ȳi

X̄i

, i = 1, 2

and further that E(Ui|X̄i) = 0 and E(U2
i |X̄i) = 2σ

Now we may write

ρ̂3 = cb+
c

X̄
(a+ u)− db− d

2X̄1

(a+ u1)− d

2X̄2

(a+ u2)

= b+ a{ c
X̄
− d

2
(

1

X̄1

+
1

X̄2

)}+
cU

X̄
− d

2
(
U1

X̄1

+
U2

X̄2

)

Hence

E(ρ̂3 − b) = aE[
c

X̄
− d

2
(

1

X̄1

+
1

X̄2

)], (6)

and when R is known

c =
2(1 + 6h+ 60h2)

1 + 9h+ 105h2
d =

2(1 + 3h+ 15h2)

1 + 9h+ 105h2

and therefore E(ρ̂3 − b) = a+O(n−4). Next consider

E{ c
X̄
− d

2
(

1

X̄1

+
1

X̄2

)}2 (7)

= E{ c
2

X̄2
− d

2

4
(

1

X̄2
1

+
1

X̄2
2

) + (
d2

2
)(

1

X̄1X̄2

)} (8)

= c2(1 + 3h+ 15h2 + 105h3) +
d2

2
(1 + 6h+ 60h2 + 840h3) (9)

+ (
d2

2
− 2cd)(1 + 2h+ 12h2 + 120h3)2, (10)
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and

EX̄EU|X̄ [{c(U1 + U2)

2X̄
− d

2
(

1

X̄1

+
1

X̄2

)}2|X̄1X̄2] (11)

= EX̄2σ[(
c

2x̄
− d

2X̄
)2 + (

c

2X̄
− d

2X̄2

)2] (12)

= E[
2c2

x̄2
+ d2

1

X̄2
1

+
1

X̄2
2

)− 4cd(
1

X̄1X̄2

)] (13)

= σ[c2(1 + 3h+ 15h2 + 105h3) + d2(1 + 6h+ 60h2 + 840h3) (14)

− 2cd(1 + 2h = 12h2 + 120h3)] , (15)

Hence, substituting approximate expressions for C2, D2, and cd, we obtain

E(ρ̂3 − b) = a2[
1 + 26h+ 435h2 + 409h3

1 + 18h+ 291h2 + 1890h3
] + σ[

1 + 28h+ 471h2 + 4680h3

1 + 18h+ 291h2 + 1890h3
]

Consequently

V ar(ρ̂3) = V ar(ρ̂3−b) = a2[
1 + 8h+ 117h2 + 2046h3

1 + 18h+ 291h2 + 1890h3
]+σ[

1 + 28h+ 471h2 + 4680h3

1 + 18h+ 291h2 + 189h3
].

The values of the coefficients, S1, S2 of a2 and σ respectively, have been tabulated
for several values of h. The coefficients of a in the expression for the bias are also
given here in table (1). On bias was calculated for ρ3 since all terms containing the
fourth power and higher in h have been neglected in the orginal approximation and
ρ3 is corrected for bias to this degree. Because of the entries in the lower half of the
table are subject to considerable error.
For instance the error in B(r) for h = 0.050 is greather than 6. In spite of this,
the large values of h have been included for two reasons. First of all these larger
values are not unusual in ordinary practical applications. Second, note from table
(1) that even at h = 0.1 the bias in ρ̂2 is greather than that of r; a disturbing result
since ρ̂2 was proposed from a bias reduction standpoint. However, recalling that
the approximation made at the outset valid only for small h, this later observation
is a commentary on the range of validity of these approxiamtions rather than the
Jackknife method.
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Table (1): Variance comparisons for normal model

r ρ2 ρ3
h B S1 S2 B S1 S2 B S1 S2

0.01 0.010 0.011 1.032 0.001 0.010 1.021 0.0 0.077 1.100
0.05 0.058 0.079 1.201 0.016 0.061 1.133 0.0 0.331 1.454
0.10 0.145 0.249 1.555 0.150 0.152 1.388 0.0 0.528 1.736
0.15 0.268 0.563 2.142 0.439 0.280 1.844 0.0 0.646 1.900
0.20 0.440 1.072 3.040 0.960 0.456 2.584 0.0 0.722 2.005
0.25 0.672 1.828 4.328 1.781 0.687 3.687 0.0 0.776 2.078
0.30 0.945 2.883 6.085 2.97 0.984 5.236 0.0 0.815 2.130
0.40 1.84 6.096 11.320 6.72 1.808 9.992 0.0 0.870 2.203
0.50 3.125 11.125 19.375 12.75 3.000 12.500 0.0 0.906 2.250
0.75 8.765 34.359 55.584 41.34 8.062 52.562 0.0 0.958 2.318
1.000 19.0 78.0 124.0 96.0 17.0 119.0 0.0 0.987 2.355

bIaS(0)=a.b(0) Variance(0)=a2S1(0) + σS2(0)

Conclusions

In each expression the terms of the fourth and higher power in h have been ne-
glected. The breakdown of the necessary approximation for the normal model for
the realistically large coefficients of variation is inducement to examine a different
model. Furthermore, since practically all auxiliary random variables, X, which are
used in real problems are positive, the normal model is not realistic when h is near.
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Abstract. An important question in the planning of trials is how large to make
the trial. The problem may be formulated formally in statistical terms. There have
been a number of papers, from both the frequentist and Bayesian points of view,
on this subject (listed, for example, by Adcock (1997)).

Several authors have recognized the value of using prior distributions rather
than point estimates in sample size calculations. Bayesian methods, which use a
prior distribution for the unknown parameters, may be divided into two groups of
procedures: methods which are inferential (see, for example, Joseph et al (1997)),
and fully Bayesian (or decision theoretic) methods which treat the problem as a
decision problem and employ a loss or utility function (see, for example, Lindley
(1997), Pezeshk et al (2001), and Gittins and Pezeshk (2000)).

In this paper we discuss the convergence of the objective function and hence
also the convergence of the size of a trial for which the data are assumed to come
from a normal distribution for which the mean and the variance are both unknown.
The objective function is the expected benefit of conducting the trial under consid-
eration minus the cost of it.

Keywords. Sample Size Determination, Fully Baysian Approach, Normal Distri-
bution, Expected Net Benefit.

1 Introduction

An important question in the planning of trials is how large to make the trial. The
problem may be formulated formally in statistical terms. There have been a number
of papers, from both the frequentist and Bayesian points of view, on this subject
(listed, for example, by Adcock (1997)).

Several authors have recognized the value of using prior distributions rather than
point estimates in sample size calculations. Bayesian methods, which use a prior
distribution for the unknown parameters, may be divided into two groups of proce-
dures: methods which are inferential (see, for example, Joseph et al (1997), Spiegel-
halter and Freedman (1986)), and fully Bayesian (or decision theoretic) methods
which treat the problem as a decision problem and employ a loss or utility function
(see, for example, Lindley (1997), Stallard (1998), Pezeshk and Gittins (1999), and
Gittins and Pezeshk (2000b)).

In section 2 we state the sample size problem and introduce the notation. In section
3 we establish our objective function, which is the expected net benefit of conduct-
ing the trial. Section 4 shows the consistency of the sample size calculation in the
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unknown variance case by illustrating the convergence of the reward function for
a sequence of unknown variance cases to the reward function for the limiting case
in which σ2 is known. These calculations also show that convergence to the known
variance case is not particularly fast, thus demonstrating the practical importance
of the unknown variance methodology.

2 The Sample Size Problem

Consider paired observations (X1, Y1), (X2, Y2), ... and assume that Zi = Xi − Yi

(i = 1, 2, ...) has a normal density which is N(δ, σ2), where both δ and σ2 are un-
known. (Note that the assumption of paired observations is for illustration only.
The methodology applies equally well with an unpaired observations.)

Let m be the number of subsequent users of the new service or the new treatment
for which the trial is being carried out. This depends on the posterior distribution
of δ and σ2 as discussed at the end of this section.

For every user who goes on to use the new service as a result of the trial there
is a benefit. The objective (or expected net benefit) function r(n), for a trial with n
pairs of users, is the total expected benefit from the resulting change in the number
of users of the new service minus the cost of the trial. The benefit per user may
simply be a constant b independent of δ. The question is, how many observations
may maximize the total expected benefit?

Let the cost of carrying out a trial with n pairs of observations be cn+ d if n > 0,
and 0 if n = 0. Thus d is a set-up cost. We can proceed to calculate the optimal trial
size n∗ as though d = 0. The trial should be carried out only if r(n∗) > 0, where
r(n∗) now includes the set-up cost. To simplify our discussion we shall assume from
now on that d = 0.

Following O’Hagan (1994), let us assume that the prior density functions for δ
and σ2 are of the form shown below

π(δ) =
1

B(1/2, g/2)
(aw)−1/2{1 +

(δ − μ)2
aw

}− g+1
2 ,

where B(α, β) = Γ (α)Γ (β)/Γ (α+ β), and

π(σ2) = (
a

2
)

g
2

1

Γ (g/2)
(σ2)−

g+2
2 exp(− a

2σ2
). (1)

The latter is a kind of inverse chi-squared distribution, because the distribution of
a/σ2 is chi-squared with g degrees of freedom.

Applying Bayes’ theorem the posterior densities turn out to be

πn(δ|z) = (w′a′)−1/2 1

B(1/2, g′/2)
{1 + (δ − μ′)2/w′a′}− g′+1

2 .

and

πn(σ2|z) =
(a′

2
)g′/2

Γ (g′/2)
(σ2)−

g′+2
2 exp(− a′

2σ2
), (2)
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where zi = xi − yi (i = 1, ..., n), z is the vector of observations, zn =
∑

i
zi/n,

s2 =
∑

i
(zi − zn)2, and

w′ =
w

1 + nw
, μ′ =

μ+ nwzn

1 + nw

g′ = g + n, a′ = a+ s2 +
n(zn − μ)2

1 + nw
.

Therefore (δ − μ′)/(w′a′/g′)−1/2 has a Student t-distribution with g′ degrees of
freedom. So the posterior mean and variance of δ (provided g′ > 2) are

μ′(zn) =
μ+ nwzn

1 + nw
, τ ′2(zn, s

2) =
w′a′

g′ − 2
.

Let us suppose that m, the number of subsequent users, depends on the mean μ′

and the standard deviation τ ′ of the posterior distribution for δ as shown below.

�

�

M

�
�

�
��

A′ B′

m

μ′

Figure 1: Number of subsequent users,

where A′ = A+ 1.5τ ′(zn, s
2) and B′ = B + 1.5τ ′(zn, s

2).

Here M is the expected total number of users, given a substantial improvement
in performance. A and B are two parameters which must be estimated. Their val-
ues depend on the difference between the expected cost of the new service and that
of the current service.

This function corresponds to assuming that each individual has a personal thresh-
old difference between A and B, and is prepared to switch to the new service or
the new treatment provided that the apparent difference between the two services
exceeds this threshold by at least 1.5 standard deviations of the posterior distribu-
tion for the difference.
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Using some algebra, we see that

f(zn, s
2) =

Γ ((g + n)/2)

Γ (g/2)Γ (1/2)
(
ag/2

Γ (n−1
2

)
)(

n

1 + nw
)

1
2

× (s2)
n−1

2 −1(a+ s2 +
n(zn − μ)2

1 + nw
)−

g+n
2 . (3)

Let the number of subsequent users of the new service be of the form shown in
figure 1, so that

m =

{
0 μ′ < A′

M
B′−A′ (μ

′ −A′) A′ < μ′ < B′

M B′ < μ′.

Pezeshk et al (2001) showed that the objective (or expected net benefit) function
is

R(n) =
1

(B −A)

Γ ((g + n)/2)

Γ (g/2)Γ (1/2)
(
ag/2

Γ (n−1
2

)
)(

n

1 + nw
)

1
2

∫ ∞

0

∫ H2

H1

(μ′

− A− 1.5τ ′)(s2)
n−1

2 −1 × (a+ s2 +
n(zn − μ)2

1 + nw
)−

g+n
2 dznds

2

+
Γ ((g + n)/2)

Γ (g/2)Γ (1/2)
(
ag/2

Γ (n−1
2

)
)(

n

1 + nw
)

1
2

∫ ∞

0

∫ ∞

H2

(s2)
n−1

2 −1

× (a+ s2 +
n(zn − μ)2

1 + nw
)−

g+n
2 dznds

2

− Cn. (4)

where R(n) = r(n)/(Mb), C = c/(Mb), and H1 and H2 are the values of zn for
which, respectively,

zn =
(A+ 1.5( w′a′

g′−2
)

1
2 )(1 + nw)− μ
nw

,

and

zn =
(B + 1.5( w′a′

g′−2
)

1
2 )(1 + nw)− μ
nw

.

Note that a′ depends on zn and s2. Solving for zn in the first equation produces
a quadratic equation with two real roots, the larger of which may be shown to be
H1. H2 may be found in similar fashion. Note also that for sufficiently small values
of n the set of values of zn for which μ′ > A+ 1.5τ ′ is the interval bounded by the
two roots of the quadratic.

Figure 2 illustrates the variation of R(n) as a function of n. The optimal sample size
n∗ for this case is 48.
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100 200 300 400 500
 n

Expected Net Benefit Function

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0.005

R(n)

Fig. 1. Expected net benefit when a = w = 1, μ = 1, g = 5, c/(Mb) = 0.0001, and
(A,B) = (2, 2.5); commercial benefit function.

3 Convergence to the Known Variance Case

Gittins and Pezeshk (2000b) show that the objective function for normally dis-
tributed data with known variance, is

R(n) =
1

B −A
∫ h2(B,n)

h1(A,n)

{μ+ n
1
2 τ(σ2/τ2 + n)−1/2u}( 1

2π
)

1
2 e−

1
2 u2
du

− A

B −A
∫ h2(B,n)

h1(A,n)

(
1

2π
)

1
2 e−

1
2 u2
du

− 1

B −A1.5(σ2/τ2 + n)−1/2

∫ h2(B,n)

h1(A,n)

(
1

2π
)

1
2 e−

1
2 u2
du

+

∫ ∞

h2(B,n)

(
1

2π
)

1
2 e−

1
2 u2
du− Cn,

where

h1(A,n) =
{A+ 1.5σ(σ2/τ2 + n)−1/2 − μ}(σ2/τ2 + n)1/2

τn
1
2

,

h2(B,n) =
{B + 1.5σ(σ2/τ2 + n)−1/2 − μ}(σ2/τ2 + n)1/2

τn
1
2

.

Here we show that for a sequence of unknown variance cases for which the mean
and variance of the prior distribution for δ and the mean of the prior distribution
for σ2 are held fixed, the variance of the prior distribution for σ2 is decreasing, and
the prior distribution for δ tends to normal, n∗ is decreasing and tends to the value
for the known σ2 limit.

Recall that the prior density function for δ is such that

δ − μ√
wa
g

∼ tg, (5)
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which converges in distribution to N(0, 1) as g →∞.

From (3) one can derive the (predictive) density function for Zn. This is

f(zn) =
1

B(1/2, g/2)

(a(1 + nw)

n

)−1/2
[1 +

(zn − μ)2
a(1+nw)

n

]−
g+1
2 . (6)

Putting T = Zn−μ√
a(1+nw)

ng

it follows that the density function for T is

1

B(1/2, g/2)

1√
g

[1 +
t2

g
]−

g+1
2 , (7)

so that T ∼ tg.

Now note that it follows from equation (1) that the mean and variance of the
prior distribution for σ2 are a/(g − 2) and 2a2/[(g − 2)2(g − 4)].

With a tight prior distribution for σ2 we are close to the situation where σ2 is
known to be equal to the mean of this distribution. Thus the optimal sample size
calculated with a tight prior distribution for σ2 should result in a value close to the
one for the known variance case. We can use this fact to check the consistency of
our sample size calculations for the case where the variance of the observations is
unknown.

Let a and g tend to infinity, subject to a
g−2

= ρ2 and wa
g−2

= τ2, where ρ and
τ are fixed. The following observations up to and including the theorem are all
based on this assumption.

We have

T
D−→ N(0, 1), Zn

D−→ N(μ, τ2 +
ρ2

n
), σ2 P−→ ρ2. (8)

It follows that the predictive distribution of Zn in the unknown variance case tends
to the one for the known variance case.

Since both the prior distribution of δ and the predictive distribution of Zn in the
unknown variance case tend to those for the known variance case, it is not difficult
to show thatmμ′ converges in distribution to its distribution for the known variance
case and the expected net benefit function tends to the one for known variance. It
follows that the optimal sample size tends to its value for the known σ2 limit. We
shall prove this through the following lemmas and theorem. We use the subscript
u to indicate that the parameter belongs to the case of unknown variance and the
subscript k to indicate the known variance case.

Lemma: The posterior mean of δ for unknown variance converges in distribution to
its value for known variance. In symbols

μ+ nwZu

1 + nw

D−→ ρ2μ+ nτ2Zk

ρ2 + nτ2
. (9)
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Proof: From (8) we have Zu
D−→ Zk. It follows that

a
g−2

μ+ n wa
g−2

Zu

a
g−2

+ n wa
g−2

D−→ ρ2μ+ nτ2Zk

ρ2 + nτ2
.

Thus

μ+ nwZu

1 + nw

D−→ ρ2μ+ nτ2Zk

ρ2 + nτ2
, (10)

and (9) follows.

Lemma: The posterior variance of δ for the unknown variance case converges in
probability to its value for known variance. In symbols

w
1+nw

(a+ s2 + n(Zu−μ)2

1+nw
)

n+ g − 2

P−→ ρ2τ2

ρ2 + nτ2
. (11)

Proof: First note that as g tends to infinity Zu
P−→ μ. So (Zu − μ)2 P−→ 0. Also

note that s2

n−1

P−→ ρ2 as g −→∞. So

a+ s2 +
n(Zu − μ)2

1 + nw

P−→ a+ (n− 1)ρ2. (12)

Now note that

w(a+ (n− 1)ρ2)

(1 + nw)(n+ g − 2)
−→ wa/(g − 2)

1 + nw
=

ρ2τ2

ρ2 + nτ2
, (13)

and the lemma follows.

Now we are in a position to state the following theorem.

Theorem: If a and g tend to infinity, subject to a
g−2

= ρ2 and wa
g−2

= τ2, where ρ2

and τ2 are fixed, then E(mu) −→ E(mk).

Proof: The number of subsequent users of the new treatment, m, is a bounded

continuous function of μ′u and τ ′u, and we have μ′u
D−→ μ′k and τ ′u

P−→ τ ′k as a and
g tend to infinity. The results follow, using the continuous mapping theorem (see,
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for example, theorem 2.3, of Durret (1996), p.87).

The above theorem states that the reward functions for unknown variance con-
verge to the corresponding reward functions for known variance.

As an example, let us consider the objective function, with known variance and
with the following parameter values.

σ2 = 4, τ = 1.045, μ = 2.09,
c

Mb
=

4000

5000000
, (A,B) = (1.67, 2.51).

Calculations show that the optimal sample size is n∗ = 51.53 and that r(n∗) =
1.897× 106. (Of course n is in practice restricted to integer values, but the conver-
gence of the calculated values is clearer if we relax that condition.)

A sequence of sets of parameter values for unknown variance which converge to
this case is shown below.

1)
g = 5, a = 12, w = 0.273, μ = 2.09, (A,B) = (1.67, 2.51);

n∗ = 88.31, r(n∗) = 1.595× 106,

2)
g = 12, a = 40, w = 0.273, μ = 2.09, (A,B) = (1.67, 2.51);

n∗ = 79.23, r(n∗) = 1.639× 106,

3)
g = 32, a = 120, w = 0.273, μ = 2.09, (A,B) = (1.67, 2.51);

n∗ = 75.78, r(n∗) = 1.674× 106.

4)
g = 102, a = 400, w = 0.273, μ = 2.09, (A,B) = (1.67, 2.51);

n∗ = 61.31, r(n∗) = 1.751× 106.

5)
g = 127, a = 500, w = 0.273, μ = 2.09, (A,B) = (1.67, 2.51);

n∗ = 53.45, r(n∗) = 1.882× 106.

As expected n∗ and r(n∗) approach their value for known σ2 as a and g tend
to infinity.

As an another example, let us consider the objective function, with known vari-
ance and with the following parameter values.

σ2 = 18.66, τ = 0.55, μ = 1.1,
c

Mb
=

600

25000000
, (A,B) = (0.9, 1.3).

Calculations show that the optimal sample size is n∗ = 956.71 and that r(n∗) =
10.960× 106.
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A sequence of sets of parameter values for unknown variance which converge to
this case is shown in table 1.

Table 1: Parameter values for the corresponding unknown variance case

a g n∗ r(n∗)

56 5 2159.62 8.995× 106

223.92 12 1859.00 9.134× 106

373.20 20 1635.76 9.545× 106

w = 0.016, μ = 1.1, and (A,B) = (0.9, 1.3).

As before, here n∗ decreases to the known variance value as a and g tend to infinity.
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Distance Sampling: Line Transect
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School of Mathematical Science, Isfahan University of Technology, Isfahan, Iran.

Abstract. Distance sampling is a widely-used group of closely related methods
for estimating the density and/or abundance of biological populations. The main
methods are line transects and point transects. These have been used successfully
in trees, shrubs and herbs, insects, amphibians, reptiles, birds, fish, marine and
land mammals etc. In both cases, the basic idea is the same. The observer(s) per-
form a standardized survey along a series of lines or points, searching for objects of
interest. For each object detected, they record the distance from the line or point
to the object. Not all the objects that the observers pass will be detected, but a
fundamental assumption of the basic methods is that all objects that are actually
on the line or point are detected. In this article, we focus on line transect.

Keywords. Adaptive Sampling, Detectability, Key Function.

Line transect sampling is described as follows. A line of length L is chosen at
random in an area of size A containing N objects. (How would you do this!). An
observer(B) moves down the line and looks out for any objects out to distance w
from the line on either side and records(estimates) the perpendicular distance y out
to each object (C) observed. The aim is to estimate D = N/A, or N.

The line transect method was introduced in the 1930’s using the radial distance
r, but little happened until 1968 when Eberhardt (1968) and Gates et. al. (1968)
developed some rigorous models. From 1976 onwards there was a whole string of
new developments culminating in the first full length book on the subject “Distance
sampling : estimating abundance of biological populations” by Buckland, Anderson,
Burnham and Laake (1993), published by Chapman & Hall. The second edition of
this book is now out (2001). There is also a computer package available, called
Distance.

1 Theory

Suppose that each object has the same probability P of being detected from the
random transect. (We are not assuming independence of the objects). Let n be the
number of objects detected. Then

n =

N∑
i=1

Ii ,

where Ii = 1, with probability P , if object i is detected, and 0 otherwise. Since
E[Ii] = P ,

E[n] =

N∑
i=1

P = NP, and N =
E[n]

P
. (1)



140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Sixth International Statistics Conference

(Note that the Ii do not need to be independent). If an estimate P̂ of P is available,
then N̂ = n/P̂ .

Now

P = pr(object detected | in observation area)pr(in observation area)

= PWPL , say.

For any individual object, placing a line at random and seeing if the object is in
the observation area, a rectangle 2w×L, is equivalent to fixing the line and dropping
the object at random. ( Again we are not implying that objects are independent).
Then the probability that the object falls in the rectangle is

PL =
2Lw

A
.

To find Pw we first introduce a key concept called the “detection” function, g(y).
We show below that, for 0 ≤ y ≤ w, g(y) = pr(detected | object at distance y).
Note that 0 ≤ g(y) ≤ 1. We now consider objects in the L × 2w rectangle. For
any such object, let X = 1 if it is detected, and X = 0 if it is not detected. Let
fX,Y (x, y) be the joint distribution of X and Y . (Note that X is discrete but Y is
continuous, with 0 ≤ y ≤ w). The next step is to prove that

g(y) = fX|Y (1|y) .
Now

g(y) = lim
h→0

pr(X = 1|distance in (y − b, y + b))

= lim
h→0

pr(X = 1 and y − h ≤ Y ≤ y + h)

pr(y − h ≤ Y ≤ y + h)

= lim
h→∞

{∫ y+h

y−h
fX,Y (1, t)dt∫ y+h

y−h
fY (t)dt

}

= lim
h→∞

{
fX,Y (1, y)2h

fY (y)2h
+O(h)

}
=
fX,Y (1, y)

fY (y)
= fX|Y (1|y) .

Since the transect is randomly located,

fY (y) =
1

w
, 0 ≤ y ≤ w.

Now

fX(x) =

∫ w

0

fX,Y (x, y)dy

=

∫ w

0

fX|Y (x|y)fY (y)dy

=
1

w

∫ w

0

fX|Y (x|y)dy
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and

Pw = fX(1) =
1

w

∫ w

0

fX|Y (1|y)dy =
1

w

∫ w

0

g(y)dy .

Hence

P = PwPL =
2Lw

A
· 1

w

∫ w

0

g(y)dy =
2L

A
λ , (2)

where λ =
∫ w

0
g(y)dy. We shall also be interested in

f(y) = fY |X(y|1)

=
fX,Y (1, y)

fX(1)

=
fX|Y (1|y)fY (y)

fX(1)

=
g(y)

wPw
=
g(y)

λ
.

This is the density function for Y given the object is detected. We see that
f(y) = g(y)/λ has the same shape as g(y); the former can be obtained simply by
rescaling g(y) so as to integrate to 1.

[Note that λ = wPw =
∫ w

0
g(y)dy, so we can let w → ∞; λ is still well defined as∫∞

0
g(y)dy. Truncation to w is often done afterwards to remove possible outliers.]

Using (1) and (2) gives us

D =
N

A
=
E[n]

PA
=
E[n]

2Lλ
. (3)

To estimate D we need to estimate λ. Assumption : g(0) = 1 If g(0) = 1, λ =
1

f(0)
and

D̂ =
nf̂(0)

2L

=
n

2Lλ̂
. (4)

In practice f(0) (and λ) are estimated conditionally on n, so that f̂(0) is a

function of y1, y2, · · · , yn. This usually means that E[f̂(0)|n] ≈ E[f̂(0)] and, by the

following lemma, cov[f̂(0), n] ≈ 0.

Lemma : If E[X|Y ] = E[X], then cov[X,Y ] = 0.

Proof :
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cov[X,Y ] = E[XY ]− μXμY

= EY {E[XY |Y ]} − μXμY

= EY {Y E[X|Y ]} − μXμY

= EY {Y E[X]} − μXμY

= E[Y ]E[X]− μXμY = 0 .

If E[f̂(0)] ≈ f(0) we can use our short-cut delta method= for finding an ap-
proximate expression for var[D̂], namely

var[D̂]

D2
≈ var[f̂(0)]

{f(0)}2 +
var[n]

{E[n]}2 . (5)

We need further assumptions to find the above expressions (see later). Assump-
tions

(a) D is constant (More generally, ifD is a spatial stochastic Process, we must have
E[D] is constant). We don’t need the assumption of a random distribution.

(b) The detection function, g(y), is the same for all objects.
(c) Objects are detected at their initial location (i.e. no movement away from the

observer if the objects are animals)
(d) Measurements are exact.

Also, the above theory assumes g(0) = 1. In the above assumptions, (b) is not
so critical as we are only interested in f(0). As far as (b) is concerned, we can allow
for the size of the object using g(y, s), where s is the size. For (d), the data can be
grouped into class intervals. Clustering

Suppose out “object” is now a cluster at distance y. Let

nc be the number of clusters and let c = average cluster

size. Then, since we usually have E[nc|c] = E[nc],

E[n] = E[ncc]

= EcE[ncc|c] = Ec[cE[nc|c]]
= Ec[cE[nc]]

= E[c]E[nc]

= E[c]E[nc] .

We then apply the above theory to the clusters.

2 Some models

There are two types of models for the detection function
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g(y), namely parametric and nonparametric. What would be a

reasonable shape of g(y)? (Discuss - see handout).

2.1 Parametric models

We assume for the moment, that the detections are

independent. (When does this break down?). Consider the half-normal

model,

g(y) = e
− 1

2σ2 y2
, 0 ≤ y <∞ .

Assuming no truncation (w = ∞),

λ =

∫ ∞

0

g(y)dy =

∫ ∞

0

e
− 1

2σ2 y2
dy

=
√

2πσ · 1

2

∫ ∞

−∞

1√
2πσ

e
− 1

2σ2 y2
dy

= σ

√
π

2
.

[Usually w is large enough to be able to assume that∫ w

0

g(y)dy ≈
∫ ∞

0

g(y)dy .

This is certainly the case in the half-normal model with w ≥ 4.] We need to estimate
σ. Now we have the joint distribution of all the random variables, namely

h(y1, y2, . . . , yn, n) = h1(y1, y2, . . . , yn|n)h2(n) .

In general, as we shall see below, h2(n) provides no information about σ. We
therefore consider

L(σ) = h1(y1, y2, · · · , yn|n)

=

n∏
i=1

f(yi)

=

n∏
i=1

g(yi)

λ

= λ−ne
− 1

2σ2

∑
i

y2
i ,

logL(σ) = − 1

2σ2

∑
i

y2i − n log σ − n log

√
π

2
,
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and

d logL(σ)

dσ
=

∑
i
y2i

σ3
− n
σ

= 0

implies that

σ =

(
1

n

∑
i

y2i

)1/2

.

Thus

f̂(0) =
1

λ̂
=

√
2

π
· 1

σ̂
=

√
2

πσ̂2
.

We now show that h2(n) provides no further information on σ. Since we are
assuming that the animals are independent of one another, n ∼ Binomial(N,P ),
where from (2) P = 2Lλ/A. Then

h(y1, y2, · · · , yn, n) = h1(y1, y2, · · · , yn|n)h2(n)

=

n∏
i=1

f(yi)
(
N
n

)
Pn(1− P )N−n ,

∂ log h

∂λ
=

n∑
i=1

∂ log f(yi)

∂λ
+
(
n

P
− N − n

1− P
)
∂P

∂λ
= 0 ,

and

ΔN log h = logN − log(N − n) + log(1− P ) = 0 .

This last equation implies that

N − n
N

= 1− P, or P =
n

N
,

namely (
n

P
− N − n

1− P
)

= 0 .

Hence
∂ log h

∂λ
=

n∑
i=1

∂ log f(yi)

∂λ
,

so that h2(n) provides no information about λ. It uses the information about λ
from h(y1, y2, · · · , yn|n) to estimate N . The half-normal model is not a very flexible
model as it contains only one parameter σ. However it is useful as a possible starting
point.
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2.2 Robust parametric (semiparametric) models.

These models take the form

g(y) = a(y)(1 + b(ys)),

where ys is y scaled. Here a(y) is called the “key” function. Useful key func-
tions are (i) uniform (g(y) = 1) (ii) half-normal (above) and (iii) hazard-rate model
(g(y) = 1 − exp(−(y/σ)−b)). The function b(y) is the “series” function with, gen-
erally, 1 to 3 terms in the series. Useful series functions are:

(i) Cosine :
∑m

j=1
aj cos(jπys) .

(ii) Hermite polynomial :
∑m

j=1
ajHj(ys) .

(iii) Polynomial :
∑m

j=1
ajy

j
s ,

where ys = y
w

or y
σ
; m has to be determined empirically. Non-parametric models

One such method is the kernel method for estimating a probability density function

3 Variance estimation and confidence intervals

Lemma 2 Let X1, X2, · · · , Xn be independent random variables with a common

mean θ and variances σ2
1 , σ

2
2 , · · · , σ2

n. Then E[S2

n
] = E[

∑
(Xi−X)2

n(n−1)
] = var[X]

Proof : var[X] = var[ 1
n

∑
i
Xi] = 1

n2

∑
i
σ2

i and

E[
∑

(Xi −X)2] = E[
∑

(Xi − θ − (X − θ))2] (E(X) = θ)

= E[
∑

(Xi − θ)2 − 2(X − θ)
∑

(Xi − θ) + n(X − θ)2]

= E[
∑

(Xi − θ)2 − n(X − θ)2]

=
∑

i

σ2
i − nV ar[X]

= n2V ar[X]− nV ar[X]

= n(n− 1)V ar[X].

Lemma 3 Suppose in Lemma 2 the variance

σ2
i are known. Let Xw =

∑n

i=1
wiXi be an unbiased estimate of θ. Then

var[Xw] is minimized when wi ∝ 1/σ2
i .

Proof : Now

θ = E[Xw] =
∑

i

wiE[Xi] = θ
∑

i

wi



146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Sixth International Statistics Conference

so that
∑

i
wi = 1. We need to minimize

var[Xw] =
∑

i

w2
i var[Xi] =

∑
i

w2
i σ

2
i

subject to
∑
wi = 1.

The neatest way is to use a Lagrange multiplier, or else substituting wn = 1 −∑n−1

i=1
wi we minimize

v =

n−1∑
i=1

w2
i σ

2
i + (1−

n−1∑
i=1

wi)
2σ2

n .

Now

∂v

∂wi
= 0 ⇒ 2wiσ

2
i − 2(1−

n−1∑
i=1

wi)
2σ2

n = 0

so that

2wiσ
2
i = 2wnσ

2
n for i = 1, 2, · · · , n− 1.

Since wiσ
2
i = a, say, wi = a/σ2

i .

We now apply the above theory to our line transect theory. From (5), we have the
estimate

v̂ar[D̂] � D̂2

{
v̂ar[f̂(0)]

{f̂(0)}2} +
v̂ar[n]

n2

}
= vD̂ , say.

We can use a model-based estimate of var(n) (e.g assume n is Poisson) or
better, use replication. Suppose we have k line transects each of length l, and let
nj be the number observed from the jth transect.

Method 1: We combine all the data so that we effectively have a single transect of
length L = kl. We proceed as before except that we now have an empirical estimate
of var[n], where n =

∑
j
nj . Thus

V ar[n] = V ar[
∑

j

nj ] = k2var[n], n =

∑
nj

k
.

By Lemma 2, an unbiased estimate of var[n] is therefore

vn =
k2
∑k

j=1
(nj − n)2

k(k − 1)
=

k

k − 1

k∑
j=1

(nj − n)2 .

The rest of vD̂ is obtained from the Distance computer package.

Method 2: Let

D̂j =
nj f̂j(0)

2l
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be the estimate of D obtained from just the jth transect. We can now define

D =
1

k

k∑
j=1

D̂j

and estimate var[D] by the unbiased estimate

vD =
∑

j

(D̂j −D)2

k(k − 1)
.

Which is better, method 1 or method 2 ? Method 1 makes more use of the
model structure : vD̂ will generally be smaller than vD. Method 2 may be more
robust.

What happens if the transects are of different lengths, e.g. the jth has length
lj?

Method 1: Let L =
∑k

j=1
lj . Now from equation (3) (Section 2)

E[nj ] = 2Dljλ and E

[
nj

lj

]
= 2Dλ .

Let zj = nj/lj , then E[zj ] = θ, i.e. a common mean. Assuming the Poisson approx-
imation, namely var[nj ] = E[nj ], we have

var[zj ] =
1

l2j
V ar[nj ] =

2Dλ

lj
.

The weighted average
∑
wjzj will have minimum variance when wj ∝ lj ; in fact

when wj = lj/L. This weighted average is

zw =
∑

j

lj
L

nj

lj
=
n

L
,

which is just what we want! Since var[ n
L

] = 1
L2 var[n], we can use Lemma 3 and

obtain the following unbiased variance estimate :

v̂ar[n] = L2
∑

j

wj(zj − zw)2

(k − 1)

=
L
∑

j
lj

(
nj

lj
− n

L

)2

k − 1
.

Method 2:

var[D̂j ] = D2

[
var[f̂j(0)]

{f(0)}2 +
var[nj ]

E[nj ]2

]
.

We make the rough assumption that

var[f̂j(0)] ≈ σ2
j

E[nj ]
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for some σ2
j , and assume the Poisson model. Then

var[D̂j ] ≈ D2

[
σ2

f2(0)E[nj ]
+

1

E[nj ]

]
=

D2

2Dljλ

[
σ2

j

f2(0)
+ 1

]
∝ 1

lj
.

Thus we have
Dw =

∑
j

ljD̂j/L (with E[D̂j ] = D)

and

vDw
=

∑
j
lj(D̂j −Dw)2

L(k − 1)
.

The above theory is only approximate. Alternative methods such as bootstrap-
ping are available, especially when k is small. There is also a theory based on the
radial distance r.

4 Adaptive Line Transect

Adaptive sampling (see, Seber and Salehi(2002)) offers a means of increasing sample
size, and hence increasing precision, by concentrating survey effort where most
observations occur. Standard adaptive sampling methods can readily be extended to
distance sampling surveys. For example, for point transect sampling we can define
a grid of points, randomly superimposed on the study region, and randomly or
systematically sample from the grid to form the primary sample. When a detection
is made at a primary sample point, points from the grid that surround the primary
sample point are sampled. If detections are made at these extra points, then further
sampling is triggered. A major practical problem of adaptive sampling is that the
required survey effort is not known in advance. This is particularly problematic for
shipboard surveys, in which the ship is available for a predetermined number of
days. Pollard and Buckland (1997) developed an adaptive sampling in shipboard
line transect survey. The survey afford is increased when the number of observation
exceeds some limit. The increased effort is achieved by zigzagging for a period, after
which the ship returns to the nominal (straight line) cruse track. Unlike standard
adaptive sampling, the method is not design-unbiased, but simulations indicate
that the bias is small. An experimental trial on a survey of harbor porpoise in the
Gulf of Maine yielded substantially more detections and better precision than did
conventional line transect sampling.
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Admissible Estimation in an One Parameter Nonregular
Family of Absolutely Continuous Distributions

Sanjari Farsipour, N.
P11080

Department of Statistics, Shiraz University, Iran.

Abstract. Consider the problem of estimating under entropy loss an arbitrarily
positive, strictly increasing or decreasing parametric function based on a sample of
size n in an one parameter noregular family of absolutly continuous distributions
with both endpoints of the support depending on a single parameter. We first pro-
vide sufficient conditions for the admissibility of generalized Bayes estimtor with
respect to some specific priors and then treat several examples which illustrate the
admissibility of best invariant estimators is some location or scale parameter prob-
lems.

Keywords. One Parameter Nonregular Family, Generalized Bayes Estimator, Ad-
missibility, Entropy Loss, Best Invariant Estimator.

1 Introduction

Karlin (1958) developed a method for proving the admissibility of estimators under
squared error loss in the one parameter exponential family. Pulskamp and Ralescu
(1991) gave sufficient conditions for the admissibility of nonlinear estimators in
estimating an arbitrary parametric function using Zidek’s (1970) formal Bayes
approach as well as Karlin’s method. In this paper we consider, using Karlins’s
method, the admissible estimation in an one parameter nonregular family of abso-
lutely continuous distributions, when the loss is entropy loss function of the form

L(θ, δ) =
δ

θ
− ln δ

θ
− 1. (1.1)

Let X have the density of the form

p(x; θ) =

{
r(x)q(θ) , a(θ) < x < b(θ); θ ∈ (θ, θ̄)
0 otherwise,

(1.2)

with respect to lebesgue measure where (θ, θ̄) is a nondegenerate interval in the
real line which may be an infinite interval, r(x) is a positive lebesgue measurable
function of x,

q−1(θ) =

∫ b(θ)

a(θ)

r(x)dx <∞ for all θ ∈ (θ, θ̄),

and both a(θ) and b(θ) are functions of θ such that a(θ) < b(θ) for all θ ∈
(θ, θ̄). For a(θ) = θ and b(θ) = θ, Karlin (1958) gave a single admissible estimator
δ(X) = [(2α+ 1)/(α+ 1)]q−α(X) of q−α(θ), α > 0, under squared error loss when
lim
θ→θ̄

q(θ) = 0. For more general results in this problem see Sinha and Das Gupta

(1984). Also, for a(θ) = θ and b(θ) = θ̄, Karlin (1958) provided a single admissible
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estimator δ(X) = [(2α+ 1)/(α+ 1)]q−α(X) of q−α(θ), α > 0, under squared error
loss when lim

θ→θ
q(θ) = 0.

In this paper we treat the case when both a(θ) and b(θ) are strictly increasing
functions of θ, and the loss is entropy loss (1.1). Suppose on the basis of random
sample X1, X2, . . . , Xn of size n(≥ 2) from the density (1.2) it is desired to estimate
an arbitrarily positive, strictly increasing or decreasing function h(θ) under entropy
loss (1.1). Let X(1) and X(n) be respectively the smallest and the largest members
in a sample X1, X2, . . . , Xn. Then the joint density of a sample X1, X2, . . . , Xn is
given by

p(x1, . . . , xn; θ) = qn(θ)U(x(1) − a(θ))U(b(θ)− x(n))Π
n
i=1r(xi),

where U(y) = 1 if y ≥ 0 and U(y) = 0 otherwise. It follows from the factorization
theorem that X(1) and X(n) are a pair of sufficient statistics of θ. Furthermore,
it is well known (Kendall and Stuart (1979)) that there exists no single sufficient
statistic, but X(1) and X(n) are jointly minimal suffieient for θ. Moreover, the strict
convexity of the loss function guarantees that (from the viewpoint of risk) only
nonrandomized estimators based on a (possibly minimal) sufficient statistic need
be considered (see Berger (1985), p 40 -41). Consider the (possibly improper) prior
of the form

Πf (θ) =
|h′

(θ)|f(h(θ))
qn(θ)

(1.3)

for almost all θ ∈ (θ, θ̄) where f is a nonnegative function defined on the range of h.
The prior under consideration is assumed to be absolutely continuous with respect
to lebesgue measure with the density (1.3).

In Section 2 we provide, using Karlin’s (1958) method, we prove the admissibil-
ity of the (nonrandomized) generalized Bayes estimator, of an arbitrarily positive,
strictly increasing or decreasing function h(θ) with respect to the prior (1.3). Fi-
nally, Section 3 contains some examples for the results of Section 2.

2 Admissibility of the Generalized Bayes Estimator

Let X1, X2, . . . , Xn be a random sample from the density (1.2) where both a(θ)
and b(θ) are strictly increasing functions of θ. It is understood that θ ≥ η where η
is a unique value of θ such that a(η) = b(η). Note that η may be −∞. Also it is
assumed that the range (θ, θ̄) of the parameter θ is wide enough so that a(θ̄) > b(θ).

First, consider the problem of estimating a positive, strictly increasing function
h(θ) of θ. Then, the (nonrandomized) generalized Bayes estimator δf of h(θ) with
respect to the prior (1.3) is given by

δf (X(1), X(n)) =

∫ min{h(a−1(X(1))),h(θ)}
max{h(b−1(X(n))),h(θ)} f(u)du∫ min{h(a−1(X(1))),h(θ)}

max{h(b−1(X(n))),h(θ)}
1
u
f(u)du

(2.1)
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under certain integrability conditios imposed on f for δf to be well-defined. Next,
in the problem of estimating any positive, strictly decreasing function h(θ) of θ,
the(nonrandomized) generalized Bayes estimator δf of h(θ) with respect to the
prior (1.3) is given by

δf (X(1), X(n)) =

∫ {min{h(b−1(X(n))),h(θ)}
max{h(a−1(X(1))),h(θ)} f(u)du∫ min{h(b−1(X(n))),h(θ)}
max{h(a−1(X(1))),h(θ̄)}

1
u
f(u)du

(2.2)

under certain integrability conditions imposed on f for δf to be well-defined. The fol-
lowing theorem provides the admissibility of the generalized Bayes estimator (2.1)
of any positive, strictly increasing function h(θ) with respect to the prior (1.3) un-
der the entropy loss (1.1).

Theorem 2.1. Let f ≥ 0 defined on (0,∞) be such that∫ b

a

f(u)du <∞ and

∫ b

a

1

u
f(u)du <∞ (2.3)

for every 0 < a < b <∞. Then, the generalized Bayes estimator (2.1) of h(θ) with
respect to the prior (1.3) under entropy loss (1.1) is admissible.

Proof. If δf is not admissible, then there exists another estimator δ
′

such that

Eθ

[
δ
′
(X(1),X(n))

h(θ)
− ln δ

′
(X(1),X(n))

h(θ)
− 1

]
≥ Eθ

[
δf (X(1),X(n))

h(θ)
− ln δf (X(1),X(n))

h(θ)
− 1
] (2.4)

for all θ ∈ (θ, θ̄) with strict inequality for at least one θ. Note that the expectations
in (2.4) operates through the joint density of X(1) and X(n) which is given by

pX(1),X(n)(x(1), x(n); θ)

= n(n− 1)qn(θ)[
∫ x(n)

x(1)
r(x)dx]n−2r(x(1))r(x(n))

for a(θ) < x(1) ≤ x(n) < b(θ); θ < θ < θ̄. Now (2.4) implies

∫ ∫
a(θ)<x(1)≤x(n)<b(θ)

(
δ
′
(x(1),x(n))

δf (x(1),x(n))
− ln δ

′
(x(1),x(n))

δf (x(1),x(n))
− 1

)
qn(θ)

[∫ x(n)
x(1)

r(x)dx
]n−2

r(x(1))r(x(n))dx(1)dx(n)

≤ ∫ ∫
a(θ)<x(1)≤x(n)<b(θ)

(
δ
′
(x(1),x(n))

δf (x(1),x(n))
− δ

′
(x(1),x(n))

h(θ)
+

δf (x(1),x(n))

h(θ)
− 1

)
qn(θ)

[∫ x(n)
x(1)

r(x)dx
]n−2

r(x(1))r(x(n))dx(1)dx(n),

(2.5)

for all θ < θ < θ̄. Let θ1 and θ2 be such that θ < θ1 < θ2 < θ and b(θ1) < a(θ2) (Note
that, without loss of generality, we can assume b(θ1) < a(θ2) since if b(θ1) ≥ a(θ2),
and θ1 → θ, θ2 → θ, then we have b(θ) ≥ a(θ) which contradicts our assumption
a(θ̄) > b(θ). Integrating both sides of (2.5) over (θ1, θ2) with respect to πf (θ) in
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(1.3) and then applying Fubini’s theorem yield, after some calculations, the RHS
of (2.5) as ∫ ∫

a(θ1)<x(1)≤x(n)<b(θ1)[∫ a−1(x(1))

θ1

(
δ
′

δf
− δ

′

h(θ)
+

δf

h(θ)
− 1
)
qn(θ)Πf (θ)dθ

]
[∫ x(n)

x(1)
r(x)dx

]n−2

r(x(1))r(x(n))dx(1)dx(n)

+
∫ ∫

a(θ2)<x(1)≤x(n)<b(θ2)[∫ θ2

b−1
(x(n))

(
δ
′

δf
− δ

′

h(θ)
+

δf

h(θ)
− 1
)
qn(θ)Πf (θ)dθ

]
[∫ x(n)

x(1)
r(x)dx

]n−2

r(x(1))r(x(n))dx(1)dx(n)

(2.6)

where δf ≡ δf (x(1), x(n)) and δ
′ ≡ δ′(x(1), x(n)). Substituting for Πf (θ), and

simplifying, (2.6) becoms∫ b(θ1)

a(θ1)

∫ x(n)

a(θ1)

(
δ
′

δf
− 1
)∫ a−1(x(1))

θ1
f(x)dx

[∫ x(n)
x(1)

r(x)dx
]n−2

r(x(1))r(x(n))dx(1)dx(n)

+
∫ b(θ1)

a(θ1)

∫ x(n)

a(θ1)

(
δf − δ′

)∫ a−1(x(1))

θ1

1
x
f(x)dx

[∫ x(n)
x(1)

r(x)dx
]n−2

r(x(1))r(x(n))dx(1)dx(n)

+
∫ b(θ2)

a(θ2)

∫ x(n)
a(θ2)

( δ
′

δf
− 1)

∫ θ2

b−1(x(n))
f(x)dx

[∫ x(n)
x(1)

r(x)dx
]n−2

r(x(1))r(x(n))dx(1)dx(n)

+
∫ b(θ2)

a(θ2)

∫ x(n))

a(θ2)
(δf − δ′)

∫ θ2

b−1(x(n))
1
x
f(x)dx

[∫ x(n)
x(1)

r(x)dx
]n−2

r(x(1))r(x(n))dx(1)dx(n)

(2.7)

Now, letting θ1 → θ and θ2 → θ and using the assumption (2.3), we can see that
(2.7) tends to zero, which shows that δf is admissible. The following theorem gives
the admissibility of the generalized Bayes estimator (2.2) of any positive, strictly
decreasing function h(θ) with respect to the prior (1.3). The proof is omitted be-
cause it parallels that of Theorem 2.1.

Theorem 2.2. Let f ≥ 0 defined on (0,∞) be such that

∫ b

a

f(u)du <∞ and

∫ b

a

1

u
f(u)du <∞ (2.8)

for every 0 < a < b < ∞. Then the generalized Bayes estimator (2.2) of h(θ)
with respect to the prior (1.3) under entropy loss (1.1) is admissible.

3 Examples

In this Section we present several examples for Theorem 2.1 and Theorem 2.2. In
the following examples we consider f(u) = u−α;u > 0, α > 1 in Theorem 2.1 and
f(u) = uα+1;u > 0, α < −1 in Theorem 2.2, where they satisfy conditions (2.3)
and (2.8) of Theorems 2.1 and 2.2 respectively.

Example 3.1. Let X1, X2, . . . , Xn be a random sample from the density



154 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Sixth International Statistics Conference

p(x; θ) =

{
1/θ sθ < x < (s+ 1)θ, s > 0(known), 0 < θ <∞
0 otherwise.

Here, a(θ) = sθ, b(θ) = (s + 1)θ, η = θ = 0, θ̄ = ∞, r(x) ≡ 1, and q(θ) = 1
θ
.

Note that a(θ̄) > b(θ). Now, we want to estimate h(θ) = θk, k > 0 under entropy
loss (1.1). With f(u) = u−α, u > 0, α > 1, in Theorem 2.1 the prior in (1.3) is
Πf (θ) ≡ Πα(θ) = kθn−k(α−1)−1; θ > 0, α > 1, and for this prior, the generalized
Bayes estimator δf ≡ δα in (2.1) is

δα(X(1), X(n)) =
α

α− 1

[
(

X(n)
s+1

)−k(α−1) − (
X(1)

s
)−k(α−1)

(
X(n)
s+1

)−αk − (
X(1)

s
)−αk

]
,

which is admissible by Theorem 2.1.
Remark 3.1. Note that all moments are multiples of θk for appropriate k’s,
e.g., mean

(
= s+1

2
θ
)

and the variance (= (1/12)θ2) are multiples of θ and θ2, re-
spectively. Also, the quantiles ξp = θ(s + p), 0 < p < 1, are multiples of θ. It can
be shown that δn+1(X(1), X(n)) for k=1, s=1 in Example 3.1 is the best invariant
estimator (Pitman’s estimator) of the scale parameter θ under the entropy loss
function (1.1), and is admissible by Example 3.1, under loss (1.1).

Example 3.2. Let X1, X2, . . . , Xn be as in Example 3.1. Suppose it is desired to

estimate h(θ) = θk, k < 0, under entropy loss (1.1). With f(u) = uα+1;u > 0, α <
−1, in Theorem 2.2, the prior (1.3) becomes Πf (θ) ≡ Πα(θ) = |k|θn+k(α+2)−1; θ >
0, and the generalized Bayes estimator δf ≡ δα in (2.2) with respect to this prior is

δα(X(1), X(n)) =
α− 1

α

[
(

X(n)
s+1

)kα − (
X(1)

s
)kα

(
X(n)
s+1

)k(α−1) − (
X(1)

s
)k(α−1)

]
which is admissible under entropy loss (1.1) by Theorem 2.2.

Example 3.3. Let X1, X2, . . . , Xn be a random sample from the density

p(x; θ) =

{
1 , θ < x < θ + 1,−∞ < θ <∞
0 otherwise

In this case, a(θ) = θ, b(θ) = θ+ 1, q(θ) ≡ 1, r(x) ≡ 1, θ = −∞, θ̄ = ∞, and η is
taken to be −∞. Note that a(θ̄) > b(θ). Now, we want to estimate h(θ) = etθ under
entropy loss (1.1), where t �= 0 is a real number. Note that the moment generating
function {(et − 1)/t}etθ of X1 is a multiple of h(θ) = etθ. With t > 0 and f(u) =
u−2;u > 0, in Theorem 2.1, the prior (1.3) becomes Πf (θ) = te−tθ,−∞ < θ <∞,
and the generalized Bayes estimator δf ≡ δ in (2.1) with respect to this prior is
given by;

δ(X(1), X(n)) =
1

2

[
e−tX(1) − e−t(X(n)−1)

e−2tX(1) − e−2t(X(n)−1)

]
which is admissible for estimating etθ, t > 0 under entropy loss (1.1) by theorem
(2.1).
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Remark 3.2. As a special case of Example 3.3 consider the case when t = 1.
Then we have admissibility of

δ(X(1), X(n)) =
1

2

[
e−X(1) − e−(X(n)−1)

e−2X(1) − e−2(X(n)−1)

]
for estimating h(θ) = eθ under entropy loss (1.1). In fact, this estimator is the

best invariant estimator of eθ under Linex loss of the form

L(δ, θ) = e(δ−θ) − (δ − θ)− 1

Example 3.4. Let X1, X2, . . . , Xn be as in Example 3.3. We want to es-

timate h(θ) = etθ, t < 0. With f(u) = u−2;u > 0 in Theorem 2.2 the prior
Πf = |t|e−tθ;−∞ < θ <∞, and the generalized Bayes estimator δf ≡ δ in (2.2) is
given by

δ(X(1), X(n)) =
1

2

[
e−tX(1) − e−t(X(n)−1)

e−2tX(1) − e−2t(X(n)−1)

]
and is admissible for estimating etθ; t < 0 under entropy loss (1.1). Combining this
result with that of Example 3.3 yields that the generalized Bayes estimator

δ(X(1), X(n)) =
1

2

[
e−tX(1) − e−t(X(n)−1)

e−2tX(1) − e−2t(X(n)−1)

]
is admissible for estimating etθ; t ∈ R(t �= 0).
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Estimation of the Scale Parameters in Continuous Popu-
lations
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Department of Statistics, Shiraz University, Iran.

Abstract. Estimation of Scale Parameter with restrictions to the Principle of in-
variance under several loss function is considered. The minimum risk scale equiv-
ariant estimator is obtained, and the admissibility and inadmissibility classes are
studied. The application to the multivariate case is considered.

Keywords. Admissibility, Asymmetric Loss, Bayes Estimator, Best Scale - Equiv-
ariant Estimator, Scale Parameter.

1 Introduction

Estimation of scale parameters was first studied by Pitman (1939). For a random
sample X1, . . ., Xn from a density 1

τ
f
(

x
τ

)
, the estimate for τ

δ (x) =

∫∞
0
υn
∏

limn
i=1 f (υxi) dυ∫∞

0
υn+1

∏
limn

i=1 f (υxi) dυ
(1.1)

was shown to have a negative bias, although it possesses optimal properties
among the class of estimators with the multiplicative property. The estimator δ (x)
in the form (1.1) is known as the pitman estimator of τ when the loss is

L (τ, δ) =
(
δ

τ
− 1
)2

(1.2)

Pitman’s work has been extended by Girshick and Savage (1951) and others in
the direction of minimax estimation.

The admissibility of the best invariant estimator (1.1) for the variance of a
normal distribution with known mean μ under the loss (1.2), was proved by Hodges
and Lehmann (1951) and Girshick and Savage (1951). Also the inadmissibility of
the best invariant estimator for the Normal variance when the mean μ is unknown
was proved by Stein (1964) under the loss (1.2). See also Matta and Casella (1990).

Form decision theoretic approach when symmetrics are present in a problem,
it is natural to require a corresponding symmetry to hold for the estimators. This
strongly suggests that the statistician should use an estimation procedure which
also has the property of being invariant.

Dealing with Scale parameters, with group

G = {gc; gc (x1, . . . , xn) = (cx1, . . . , cxn) ; c > 0}
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and any loss L (τ, δ) of the form ρ(δ, τ), the class of all scale - invariant estimators
of τ is of the form δ (x) = δ0 (x) /w (z), where δ0 is any scale - invariant estimator,
X = (x1, . . . , xn) and z = (z1, . . . , zn) with zi = Xi

Xn
, i = 1, ...., n − 1 zn = Xn

|Xn| .

The best scale-invariant estimator δ∗of τ is given by δ∗(X) = δ0(X)
w∗(Z)

where w∗ (z)

is a number which minimizes Eτ=1 {ρ (δ0 (X) /w (z)) |Z = z}. In the presence of
a location parameter as a nuisance parameter, the best scale invariant estimator
of τ , is of the form δ∗ (X) = δ0 (Y ) /w∗ (z), where δ0 (Y ) is any finite risk scale-
invariant estimator of τ , based on Y = (Y1, . . . , Yn−1), where Yi = Xi −Xn i =
1, . . . , n − 1 z = (z1, . . . , zn−1) with zi = Yi

Yn−1
, i = 1, ...., n − 2 zn−1 = Y n−1

|Yn−1|
and w∗ (z) is any number minimizing Eτ=1 {ρ (δ0 (Y ) /w (z)) |Z = z}, see Lehmann
(1983). A loss function L (δ, τ) represents the amount by which a statistician is
penalized when τ is the true state of nature and δ is the statistician’s action. In the
literature, L(δ, τ) is usually taken to be convex in δ and even in δ−τ , such as (1.2).
This loss function has been criticized by some researchers (e.g Rukhin and Ananda
(1992), Dey, Ghosh and Sirinivasan (1987), Akaike (1977, 1978)). They motivated
the entropy loss as an asymmetric loss function for estimating on unknown scale
parameter τ which is of the form

L (δ, τ) =
δ

τ
− ln

δ

τ
− 1 (1.3)

The loss (1.3) was first introduced in James and Stein (1961) for estimation of
the multinormal variance - covariance matrix. Later the same loss was considered
in Brown (1968), Haff (1982), for estimating either the multinormal variance -
covariance matrix or its inverse. This loss is also known as Stein loss.

In practice the real loss function is often not symmetric, overestimation of a
parameter can lead to more or less sever consequences than underestimation. Ex-
amples of such cases are: In food-processing industries it is undesirable to over-
fill Containers, since there is no cost recovery for the overfile. If the containers
are underfilled, however, it is possible to incur a much more severe penalty aris-
ing from misrepresentation of the product’s actual weight or volume. (see Harris
(1992)). Other examples may be found in Kuo and Dey (1990), Schäbe (1992),
Zellner (1986). Varian (1975) employed the asymmetric loss function in real estate
assessment, which is given by

L (Δ) = b
{
eaΔ − aΔ− 1

}
, (1.4)

where a �= 0 determine the shape of the loss function and b > 0 serves to scale
the loss function. It is suitable for scale parameter estimation if Δ =

(
δ
τ
− 1
)
.

These losses have infinite maximum value, and in discribing for example the loss
associated with a product, we can use a loss function of the form

L (δ, τ) = b
{

1− ea(2− δ
τ
− τ

δ )
}
, (1.5)

where a > 0 is a shape parameter and b > 0 is the maximum loss parameter.
This is obviously a bounded loss function, which is appropriate for scale parameter
estimation. Another proposed loss function, which a bounded asymmetric loss for
the scale parameter estimation is of the form
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L (δ, τ) = k

⎧⎨⎩1− e
b

{
1+a( δ

τ
−1)−e

a( δ
τ

−1)
}⎫⎬⎭ , (1.6)

where a �= 0, b, k > 0. The loss (1.6) is scale invariant and bounded. a �= 0
determine the shape of the loss function, b > 0 serves to scale the loss and k > 0 is
the maximum loss parameter.

2 Best scale Invariant Estimator

Let X1, . . . , Xnbe a random sample of size n from 1
τ
f(x

τ
), where f is known and τ

is unknown scale parameter. The joint density is denoted by

fτ (x) =
∏ n

lim
i=1

1

τ
f(
xi

τ
) (2.1)

In many cases the model (2.1) reduces to C (x, n) η−νe−T (x)/η, where c (x, n)
is a function of x and n, η = τr, for some r, υ is a function of n and T (X) is
a complete sufficient statistic for η with Γ (ν, η)-distribution. Examples of such
models are: Γ (α, β) with α known and η = β ; E (0, β) with η = β;N

(
0, σ2

)
with

η = σ2; inverse Gaussian with zero drift and η = 1
λ
. Now, if Z = (z1, . . . , zn) with

zi = Xi
Xn
, i = 1, . . . , n − 1, zn = Xn

|Xn| and the loss is (1.3), and there exists a scale-

equivariant estimator δ0 of τr with finite risk, then a MRE estimator of τr is given

by δ∗ (X) = δ0(X)
w∗(Z)

, where ω∗ (z) =
{
Eτ=1

[
1

δ0(X)

∣∣∣Z = z
]}−1

, and it can be shown

that the MRE becomes δ∗ (x) =

∫∞
0

υn−r−1f(νx)dν∫∞
0

υn−1f(νx)dν
, which is the generalized Bayes

estimator of τr with respect to noninformative prior π (τ) = 1
τ

under loss (1.3),
which we refer to it as Pitman type estimator of τr. On the other hand suppose
the loss is (1.4) with Δ = δ

τ
− 1, and δ0 is a scale-equivariant estimator of τ with

finite risk, then the MRE estimator of τ is given by δ∗ (x) = δ0 (x) /w∗ (z), where
w∗ (z) is a solution of

Eτ=1

{
δ0 (X) eδ0(x)/w∗(z)

∣∣∣Z = z
}

= eaEτ=1 {δ0 (X)|Z = z} . (2.2)

In the case where the loss is (1.5) , with a = b = 1, and under τ = 1, we
can find (as mentioned) an equivariant estimator δ0 (X) or δ0 (Y ) which has the
gamma-distribution with known parameter υ, η and is independent of z. It follows
that δ∗ = δ0

w∗ is the MRE estimator of τ where w∗ is a number which maximizes

g(w) =
∫∞
0
e2−

x
w

− w
x

{
ην

Γ (ν)
xν−1e−ηx

}
dx

= 2e2ηνwν

Γ (υ)(1+ηw)v/2 kυ

(
2
√

1 + wη
)

= C (η, ν) wv

(1+ηw)v/2 kv

(
2
√

1 + wη
)
,

(2.3)
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where C is a function of η and ν, and kf (.) is the modified Bessel function
of order f (Gradshteyn and Ryzhik (1980)). So by using the relation kv−1 (z) −
kv+1 (z) = − 2v

z
kν (z), the minimizing w i.e w∗ must satisfy the follwoing equation

w∗2

1 + w∗η
kv+1

(
2
√

1 + w∗η
)

= kv−1

(
2
√

1 + w∗η
)

(2.4)

under the loss function (1.6) with k = b = 1, when τ = 1 and we can find
an equivariant estimator δ0 (X) or δ0 (Y ) which has the gamma distribution with
known parameters ν, η and is independent of Z, It follwos that δ∗ = δ0

w∗ is the
MRE estimator of τ where w∗ is a number which satisfying the following equation∫ ∞

0

xv−1e
( 2a

w∗ −η)x−e
ax
w∗ −a

dx = ea
∫ ∞

0

xve(
2a
w∗ −η)x−e

ax
w∗ −a

dx (2.5)

3 Bayes Estimation of Scale Parameter

The conjugate family of prior distributions for λ = η−1 is the family of gamma
distributions Γ (α, β), with density π (λ|α, β) = βαλα−1e−βλ/Γ (α) ;λ > 0, where
α > 0, β > 0. Note that the usual noninformative prior for λ is π (λ) ∝ λ−1;λ > 0,
and corresponds to the limiting case α, β −→ 0. Then the posterior distribution of λ
is Γ (ν + α, 1/ (β + T (x))), and the Bayes estimator of η under (1.3) is δBayes (X) =

E (η|X) = E
(

1
λ
|X
)

= T (X)+β
α+ν−1

, which can be written as

δBayes (X) =
1

v + α− 1
T (X) +

β

v + α− 1
= CT (X) + d (3.1)

under the loss function (1.4) the unique Bayes estimator is of the form

δBayes (X) = c (α)T (X) + d (α, β) (3.2)

where

c (α) =
1

α

(
1− e− a

n+α+1
)
, d (α, β) = c (α)β,

provided β + T (X) + aδBayes (X) > 0 with considering (1.5) as a loss func-
tion, and letting δ0 (X) has Γ

(
v, η

τ

)
-distribution, where υ > 0, η > 0, with con-

jugate family of prior distribution for β = 1
τ

as a Γ (α, ξ), the posterior becomes
Γ (v + α, ξ + ηδ0 (x)), hence the Bayes estimator δBayes = δB must satisfies

kv+α−1

(
2

√
1

δB
(δB + ξ + ηδ0 (x))

)
=

δB
δB + ξ + ηδ0 (x)

kv+α+1

(
2

√
1

δB
(δB + ξ + ηδ0 (x))

)
,

(3.3)

and the Bayes estimator for (1.6) must satisfies∫ ∞

0

βv+αe(2aδB−ξ−ηδ0(x))β−ea(βδB−1)
dβ = ea

∫ ∞

0

βv+αe(2aδB−ξ−ηδ0(x))β−ea(βδB−1)
dβ

(3.4)
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4 Admissibility and Inadmissibility Results

The estimator (3.1) is admissible, provided 0 ≤ c < c∗, d > 0 and v > 1. Where
c∗ = 1/ (v − 1), and c = c∗, d > 0 and v > 1, and is inadmissible whenever one of

the following conditions hold

(i) c < 0 or d < 0

(ii) c = 0 and d = 0

(iii) 0 < c �= c∗or d = 0

(iv) c > c∗ and d = 0.

The estimator (3.2) is admissible provided 0 ≤ c < c∗, d > 0, where c∗ =
1
a

(
1− e− a

n+1
)
, and is inamissible whenever one of the following conditions hold

(i) c < 0 or d < 0

(ii) c > c∗ and d ≥ 0,

(iii) 0 ≤ c < c∗, d = 0.

Now if the loss is (1.3) with τ = λr, where X belonges to the density

f (x, s, λ) =
λs

Γ (s)
xs−1e−λx;x > 0, s > 0, λ ∈ Λ (4.1)

and Λ = (0, λ0) or Λ = (λ0,∞) , λ0 is a given constant. λ0ε�+U {∞}. Admis-
sible estimators of λr where obtained by Ghosh and Singh (1972). Using Karlin’s
method (cf. Karlin 1958) Ghosh and Singh (1970), proved admissibility of the esti-
mator (s− 2)X−1 of the parameter λ. This result was generalized by Singh (1972)

who showed that Γ (s−r)
Γ (s−2r)

X−1 is admissible estimator of λr under squared error

loss, where r is an integer, r < s
2
. Ghosh and Meeden (1977) and Ralescu and

Ralescu(1981) hvae found admissible estimator of λ and λ−1 in the gamma distri-
bution in the truncated parameter space under SEL. Let us denote γ (., .), Γ (., .)
the incomplete gamma functions i.e.

γ (x, y) =

∫ y

0

tx−1e−tdt

and

Γ (x, y) =

∫ ∞

y

tx−1e−tdt x, y > 0

we now give an admissible estimator of λr under (1.3), where r is an integer
r < s

2
, and X is distributed according to (4.1).

Theorem 4.1: Suppose that the estimator
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(i) û (X) = γ(s−r,λ0(k+x))
γ(s−2r,λ0(k+x))

(x+ k)−r 0 < λ < λ0

(ii) û (X) = Γ (s−r,λ0(k+x))
Γ (s−2r,λ0(k+x))

(x+ k)−r λ0 < λ <∞

where k ≥ 0 is an arbitary constant. Then û is admissible for λr under entropy
loss function (1.3).

Proof : Using Karlin’s method we shall first prove case (i). Suppose that there
exists an estimator ũ which is better that û. This implies that the inequality

∫ ∞

0

(
ũ

λr
− ln

ũ

λr
− 1

)
f (x, λ) dx

≤
∫ ∞

0

(
û

λr
− ln

û

λr
− 1

)
f (x, λ) dx

holds for all λ ∈ Λ with strict inequality for some λ. After some calculations
we get

∫∞
0

(
ũ

û
− ln ũ

û
− 1
)
f (x, λ) dx

≤
∫∞
0

(
ũ

û
− ũ

λr + û
λr − 1

)
f (x, λ) dx

(4.2)

Integrating both sides of (4.2) with respect to the improper prior

ξ (λ) = λ−2r−1 exp (−kλ) ;λ ∈ (0, λ0) ,

we have

∫ λ0

b

∫∞
0

(
ũ

û
− ln ũ

û
− 1
)
f (x, λ) ξ (λ) dxdλ

≤ ∫ λ0

b

∫∞
0

(
ũ

û
− û

λr + û
λr − 1

)
f (x, λ) ξ (λ) dxdλ

(4.3)

Now interchanging the order of integration in the right hand side of (4.3) we
have

∫∞
0

ũ

ûΓ (s)
xs−1

∫ λ0

b
λs−r−1e−(x+k)λdλdx

− ∫∞
0

ũ
Γ (s)

xs−1
∫ λ0

b
λs−2r−1e−(x+k)λdλdx

+
∫∞
0

ũ
Γ (s)

xs−1
∫ λ0

b
λs−2r−1e−(x+k)λdλdx

− ∫∞
0

1
Γ (s)

xs−1
∫ λ0

b
λs−r−1e−(x+k)λdλdx.

(4.4)

Now substituting for û in (4.4) we have
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∫∞
0

ûγ(s−2r,λ0(k+x))
γ(s−r,λ0(k+x))Γ (s)

(x+ k)r xs−1
∫ λ0

b
λs−r−1e−(x+k)λdλdx

− ∫∞
0

ũ
Γ (s)

xs−1
∫ λ0

b
λs−2r−1e−(x+k)λdλdx

+
∫∞
0

γ(s−r,λ0(k+x))
γ(s−2r,λ0(k+x))Γ (s)

(x+ k)−rxs−1
∫ λ0

b
λs−2r−1e−(x+k)λdλdx

− ∫∞
0

xs−1

Γ (s)

∫ λ0

b
λs−r−1e−(x+k)λdλdx.

(4.5)

Now, as b −→ 0,
∫ λ0

b
λs−r−1e−(x+k)λdλ −→ (k + x)r−s γ (s− r, λ0 (k + x)) and∫ λ0

b
λs−2r−1e−(x+k)λdλ −→ (k + x)2r−s γ (s− 2r, λ0 (k + x)), and hence (4.5) tends

to zero for λ ∈ (0, λ0). For the case (ii) when λ ∈ (λ0,∞) after intergrating both
sides of (4.2) with respect to the inproper ξ (λ) = λ−2r−1 exp (−kλ) ;λ ∈ (λ0,∞),
we have

∫ b

λ0

∫∞
0

((
ũ

û
− ln ũ

û
− 1
)
f (x, λ) ξ (λ) dxdλ

≤ ∫ b

λ0

∫∞
0

(
ũ

û
− ũ

λr + û
λr − 1

)
f (x, λ) ξ (λ) dxdλ

(4.6)

After interchanging the order of integration and substituting for û, the right
hand side of (4.6) becomes

∫∞
0

ũΓ (s−2r,λ0(k+x))
Γ (s−r,λ0(k+x))Γ (s)

(x+ k)r xs−1
∫ b

λ0
λs−r−1e−(x+k)λdλdx

− ∫∞
0

ũxs−1

Γ (s)

∫ b

λ0
λs−2r−1e−(x+k)λdλdx

+
∫∞
0

Γ (s−r,λ0(k+x))
Γ (s−2r,λ0(k+x))Γ (s)

(x+ k)−rxs−1
∫ b

λ0
λs−2r−1e−(x+k)λdλdx

− ∫∞
0
xs−1

∫ b

λ0
λs−r−1e−(x+k)λdλdx.

(4.7)

Now, as b −→ ∞, ∫ b

λ0
λs−r−1e−(x+k)λdλ −→ (k + x)r−s Γ (s− r, λ0 (k + x))

and
∫ b

λ0
λs−2r−1e−(x+k)λdλ −→ (k + x)2r−s Γ (s− 2r, λ0 (k + x)), and hence (4.7)

goes to zero for λ ∈ (λ0,∞) . So in each cases

0 ≤
∫ ∞

0

(
ũ

û
− ln

ũ

û
− 1

)
f (x, λ) dx ≤ 0

and this implies that

∫ ∞

0

(
ũ

û
− ln

ũ

û
− 1

)
f (x, λ) dx = 0

i.e., ũ = û a.e., proving admissibility of û (x).

The theorem can also be applied to the pareto distribution with density

f (y, λ, a) = λaλy−λ−1 a < y <∞, a, λ > 0



Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163

and

Y =
∑ n

lim
i=1

lnYi,s = n, û =
Γ (n− r)
Γ (n− 2r)

(
−n ln a+

∑ n

lim
i=1

lnYi

)−r

; r <
n

2
,

the generalized Laplace distribution with density

f (y, b, k) =
k

2bΓ
(

1
k

)e− |y|k
bk y ∈ �, b, k > 0

and û =
Γ( n+r

k )
Γ( n+2r

k )

(∑
limn

i=1 |Yi|k
)r/k

, where r > −n
2
, the generalized gamma dis-

tribution with density

f (y, p, λ, a) =
|α|
Γ
(

p
α

)λ p
α yp−1e−λyα

0 < y <∞, pα > 0

where p, α are given parameters, Y =
∑

limn
i=1 Y

α
i , S = np

α
.

We now consider the admissibility of the MRE estimators in the problem of
Nile. The classical example of an ancillary statistic is known as the problem of Nile,
originally formulated by Fisher (1959). Assume that X and Y are two positive
valued random variable with joint density function

f (x, y, τ) = e−(τx+ 1
τ

y) ;x > 0, y > 0, τ > 0 (4.8)

and that (Xi, Yi) , i = 1, . . . , n is a random sample of n paired observations on

(X,Y ). Let T =

√
Y

X
, U =

√
XY , then (T,U) is a jointly sufficient, but not

complete statistic for τ and U is ancillary. We use the loss (1.3) for constructing
the minimum risk scale equivariant estimator of τ . Consider a nonrandomized rule
δ (T, U) based on the sufficient statistic

(
X,Y

)
which is equivariant under the

transformation

(
R

S

)
=

(
c 0
0 1

c

)(
X

Y

)
; c > 0.

We can see that all the scale equivariant estimator δ (T, U) must have the form
δ (T, U) = Tφ (U), and so

δMRE =
k0 (2u)

k1 (2u)
T (4.9)

is the MRE estimator of τ , where kr (z) denotes the modified Bessel function of
order r (Gradshteyn, I. S., and Ryzhik, I. M. (1980)) Since τ is a scale parameter, we

consider the inverted Gamma as a prior, with density π limα,λ (τ) = λαe−λ/τ

τα+1Γ (α)
; τ >

0, λ > 0, and the Bayes estimator of τ becomes
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δBayes (α, λ) = t

∫∞
0
τα−1e−

λτ
t e−u(τ+ 1

τ )dτ∫∞
0
ταe−λ τ

t e−u(τ+ 1
τ )dτ

. (4.10)

We can see that δMRE = δBayes (0, 0), so δMRE is a generalized Bayes rule
against the scale invariant improper priori π (τ) = 1

τ
; τ > 0 and is therefore mini-

max. In the following theorem we show that it is admissible.

Theorem 4.2 : Let (X,Y ) be distributed according to (4.8), and the minimum
risk scal equivariant estimator δMRE is given by (4.9). Then δMRE is admissible for
entropy loss function (1.3).

Proof : We use the method of Karlin (1985). Suppose that δMRE is not admis-
sible, then there exists an estimator δ such tht the inequality

∫∞
0

∫∞
0

(
δ(t,u)

τ
− ln δ(t,u)

τ
− 1
)
g (t, u|τ) dtdu
≤ ∫∞

0

∫∞
0

(
δMRE

τ
− ln δMRE

τ
− 1
)
g (t, u|τ) dtdu

must be true for all τ and strict for at least one τ . The above inequality simplifies
to

∫∞
0

∫∞
0

(
δ(t,u)
δMRE

− ln δ(t,u)
δMRE

− 1
)
g (t, u|τ) dtdu
≤ ∫∞

0

∫∞
0

(
δ(t,u)
δMRE

− δMRE
τ

+ δMRE
τ

− 1
)
g (t, u|τ) dtdu

(4.11)

Now, let π (τ) = 1
τ

and 0 < a < b <∞ . Intergrating both sides of (4.11) with
respect to π we get

∫ b

a

∫∞
0

∫∞
0

(
δ(t,u)
δMRE

− ln δ(t,u)
δMRE

− 1
)
g (t, u|τ)π (τ) dtdudτ

≤ ∫ b

a

∫∞
0

∫∞
0

(
δ(t,u)
δMRE

− δ(t,u)
τ

+ δMRE
τ

− 1
)
g (t, u|τ)π (τ) dtdudτ

(4.12)

Then, we simplinfying the right hand side of (4.12) , we have

∫ b

a

∫∞
0

∫∞
0

2δ(t,u)k1(2u)u2n−1

k0(2u)n−2n[(n−1)!]2t2
1
τ
e−nu( t

τ
+ τ

t )dtdudτ

− ∫ b

a

∫∞
0

∫∞
0

2δ(t,u)u2n−1

n−2n[(n−1)!]2τt
1
τ
e−nu( t

τ
+ τ

t )dtdudτ

+
∫ b

a

∫∞
0

∫∞
0

2k0(2u)u2n−1

k1(2u)n−2n[(n−1)!]2τ
1
τ
e−nu( t

τ
+ τ

t )dtdudτ

− ∫ b

a

∫∞
0

∫∞
0

2u2n−1

n−2n[(n−1)!]2t
1
τ
e−nu( t

τ
+ τ

t )dtdudτ.

(4.13)

Now, interchanging the order of integration, (4.13) bocomes
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∫∞
0

∫∞
0

2δ(t,u)k1(2u)u2n−1

k0(2u)n−2n[(n−1)!]2t2

∫ b

a
τ−1e−nu( t

τ
+ τ

t )dtdudτ

− ∫∞
0

∫∞
0

2δ(t,u)u2n−1

n−2n[(n−1)!]2t

∫ b

a
τ−2e−nu( t

τ
+ τ

t )dtdudτ

+
∫∞
0

∫∞
0

2k0(2u)u2n−1

k1(2u)n−2n[(n−1)!]2

∫ b

a
τ−2e−nu( t

τ
+ τ

t )dtdudτ

− ∫∞
0

∫∞
0

2u2n−1

n−2n[(n−1)!]2t

∫ b

a
τ−1e−nu( t

τ
+ τ

t )dtdudτ.

(4.14)

using the transformation τ
t

= v and nu −→ u, (4.14) simplifies to

∫∞
0

∫∞
0

2δ(t,u)k1(2u)u2n−1

k0(2u)[(n−1)!]2t2

∫ b
t

a
t

v−1e−u( 1
ν

+ν)dνdtdu

− ∫∞
0

∫∞
0

2δ(t,u)u2n−1

[(n−1)!]2t2

∫ b
t

a
t

v−2e−u( 1
ν

+ν)dνdtdu

+
∫∞
0

∫∞
0

2k0(2u)u2n−1

k1(2u)[(n−1)!]2t

∫ b
t

a
t

v−2e−u( 1
ν

+ν)dνdtdu

− ∫∞
0

∫∞
0

2u2n−1

[(n−1)!]2t

∫ b
t

a
t

v−1e−u( 1
ν

+ν)dνdtdu.

(4.15)

Now, letting a −→ 0 and b −→ ∞ , we can see that
∫ b

t
a
t

v−1e−u( 1
v

+v)dv −→

2k0 (2u), and
∫ b

t
a
t

v−2e−u( 1
v

+v)dv −→ 2k−1 (2u), and so (4.15) reduces to

∫∞
0

∫∞
0

δ(t,u)4u2n−1

t2[(n−1)!]2
(k1 (2u)− k−1 (2u)) dtdu

+
∫∞
0

∫∞
0

4u2n−1

[(n−1)!]2

(
k0(2u)k−1(2u)

k1(2u)
− k0 (2u)

)
− dtdu (4.16)

using the recurrence relation kv−1 (z)− kv+1 (z) = − 2v
z
kv(z), (4.16) rdeuces to

to zero, and hence

0 ≤ lim
a→0,b→∞

∫ b

a

∫ ∞

0

∫ ∞

0

(
δ (t, u)

δMRE
− ln

δ (t, u)

δMRE
− 1

)
g (t, u|τ)π (τ) dtdudτ ≤ 0,

(4.17)

Note that range of integrations are Positive side of the real line. Also the in-
tegrand is strictly non-negative since (y − ln y − 1) ≥ 0∀y ≥ 0. Then for (4.17)
implies that

δ (t, u)

δMRE
− ln

δ (t, u)

δMRE
− 1 = 0 ∀t, u

and this happens if and olny if δ (t, u) = δMRE since y− ln y− 1 ≥ 0∀y ≥ 0 and
minimum occures at y = 1, contradicting the earlier assumption that δ (T, U) �=
δMRE .
Note that when the loss is (1.5), the MRE estimator of τ is τ̂MRE = Tφ∗ (U), where
φ∗ (U) must satisfy the following equation
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φ2
∗ (u)

(
u+φ−1

∗ (u)

u+φ∗(u)

) 3
2
k1

(
2

√(
u+ φ−1

∗ (u)
)
(u+ φ∗ (u))

)
= k−1

(
2

√(
u+ φ−1

∗ (u)
)
(u+ φ∗ (u))

) (4.18)

and the unique Bayes estimator δBayes (α, λ) = δB must satisfy the following
equation

k−α−1

(
2

√
(δB − ut−1)

(
δ−1

B − λ− ut
))

= δ2B

(
δ−1

B
−λ−ut

δB−ut−1

)
k−α−1

(
2

√
(δB − ut−1)

(
δ−1

B − λ− ut
))
.

(4.19)

Note that τ̂MRE = τ̂Bayes (0, 0), that is τ̂MRE is a generalized Bayes rule against
the scale invariant improper priori π (τ) = 1

τ
; τ > 0, and is minimax. We conjecture

that it is also admissible, but because of its complicated forms we don’t have any
proof.

Under the loss (1.6), the MRE estimator of τ is τ̂MRE = Tφ∗ (U) , where φ∗ (U)
must satisfy the following integral equation

∫ ∞

0

e(2aφ∗(u)−u)t− u
t
−ea(tφ∗(u)−1)

dt = ea
∫ ∞

0

e(aφ∗(u)−u)t− u
t
−ea(tφ∗(u)−1)

dt

(4.20)

and the unique Bayes estimator δB under (1.6) must satisfies the following
integral equation

∫ ∞

0

τ−αe(2aδB− u
t
)τ−(λ+ut) 1

τ
−ea(τδB−1)

dτ = ea
∫ ∞

0

τ−αe(aδB− u
t
)τ−(λ+ut) 1

τ
−ea(τδB−1)

dτ.

(4.21)

Note that τ̂MRE = τ̂B , whenever α −→ 0, λ −→ 0, i.e.τ̂MRE is a generalized
Bayes rule with respect to scale invariant improper priori π (τ) = 1

τ
, τ > 0, and

therefore minimax, once again we cojectured that it is admissible, but becomes of
its complicated form we don’t have any proof.

5 Application to the Multivariate Case

Let X1, . . . , Xn be i.i.d Nρ

(
θ,
∑)

, where θp×1 and
∑

limp×p are both unknown

(θ ∈ �p, and
∑

p.d.) It is well known that
(
X,S

)
is a complete sufficient statistic

for
(
θ,
∑)

, where X = 1
N

∑
limN

i=1Xi, S =
∑N

i=1

(
Xi −X

) (
Xi −X

)′
. Let X =√

NX,μ =
√
Nθ and n = N−1, thenX ∼ Np

(
μ,
∑)

, S ∼Wp

(∑
;n
)

and they are

independentely distributed. We consider point estimation of covariance matrix
∑
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and the precision matrix
∑

lim−1, where n > p+1, when the loss is of the form (1.4),

with Δ∗ = tr
(∑̂∑

lim−1−I
)

for estimating
∑

and Δ∗ = tr
(∑̂∑

lim−1−I
)

for estimating
∑

lim−1, which is invariant and strictly Convex.

The tranformation
(
X,S

)
−→
(
AX + b, ASA

′
)

for Ap×p nonsingular and b ∈
�p is called an affine transformation, so as the loss is invariant under this group,
an affine equivariant estimator turns out to be of the form cS for

∑
and dS−1 for∑−1

, where c and d are positive constants.

It can be shown that the MRE of
∑

is c∗S, where c∗ = 1
2a

(
1− e−2ap

np+2

)
. For

example for
∑

= diag (σ11, . . . , σpp) , the MRE of
∑

under (1.4) with Δ = Δ∗ is
c∗S∗, where S∗ = diag (S11, . . . , Spp), and if

∑
= σ2I, considering the estimators

of the form
∑̂

s
= ctr (S) I, then the best value of c uncdr (1.4) is c0 = c∗

p
. Since

its riks is equal to the risk is equal to the risk c∗S, they are equivalent.

For estimating
∑

lim−1 we look at the estimators of the form dS−1. The fol-
lowing theorem shows that the optimum value of d doesn’t have a closed form.

Theorem 5.1 : The optimal value of d, for estimators of the form dS−1 in
estimation of

∑
lim−1 under the loss (1.4) with Δ = Δ∗ must satisfy the following

equation

e−ap (ad)2np 2
−np

2

Γp

(
n
2

) ∂B2n

(−ap
2
I
)

∂d
− a p

n− 2
= 0 (5.1)

where

Bλ (AZ) =

∫
lim
u>0

etr(−AU)etr(−ZU−1)|A|−λ|U |−λ− 1
2 (p+1)dU

(A > 0, Z > 0, U > 0)

and B−λ (D) = Bλ (D) |D|λ, is the Bessel function of the secnod kind with
matrix argument (see Herz 1955).
The MRE estimators obtained above are inadmissible and there are various way to
improve over them.

(I) Improved Estimators Using S only: In this case we discuss L & U decom-
position method, spectral decomposition method and Haff type estimators. James
and Stein (1961) considered a somewhat smaller group of transtation, which result

on the estimators of the form
∑̂

= L�L′
, where S = LL

′
, L is a lower triangular

matrix, and ∇ is a diagonal matrix with positive diagonal elements. It can be shown

using S = LL
′ ∼ Wp

(∑
, n
)
, L2

ii ∼ χ2
(n−i+1), L

2
ij ∼ χ2

(1); i > j that the best choice

of the diagonal elements δi of � is δ∗i = 1
2a

(
1− e− 2ap

np+2

)
; i = 1, . . . , p and hence
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∑̂
L

= L �∗ L
′
,is the MRE of

∑
. If we consider the group of upper triangular

matrices, with positive diagonal elements, then the best equivariant estimator of∑
is
∑̂

u
= U�U ′

, which is again the best multiple of S under (1.4) with Δ = Δ∗.

For estimating
∑

lim−1, using the above method on S, the best upper triangular

equivariant estimator ̂∑ lim−1
u = U−1∇∗∗U

′−1, where ∇∗∗ = diag
(
δ∗1 , . . . , δ

∗
p

)
.

Unfortunately the calculations of δ∗i ’s are very complicated and in this case ̂∑ lim−1
u

is not a multimple of S−1.

Another method is spctral decomposition, motivated by Stein (1977b). He

Considered the class of invariant orthogonally estimators
∑

of the form
∑̂

=

RΦ (L)R
′
, where S = RLR

′
, R is the matrix of normalized eigenvectors

(
RR

′
= I = R

′
R
)
, L =

diag (L1, . . . , Lp) is the diagonal matrix of eigenvalues of S with L1 ≥ L2 ≥ . . . ≥
Lp > 0 and Φ(L) = diag (Φ1 (L) , . . . , Φp (L)), φi (L) ≥ 0 are real valued functions
i = 1, . . . , p.

For estimating
∑

under (1.4) with Δ = Δ∗, we must choose φi (L)’s such

that to minimize the unbiased estimator of the risk function. We can show that
∑̂

dominates c∗S under (1.4) with Δ = Δ∗ if p > 1, and a < 0 where φi (L) is given by

φi (L) = c∗Li − Li log(Li)τ(u)
b+u

;u =
∑

limp
i=1 log2 (Li), and b is a positive constant,

τ (u) is a strictly increasing in u and E
(
τ

′
(u)
)
< ∞. Haff (1980) introduced

the following type of estimators for estimating
∑
,
∑̂

g
= c∗S + g (S) I, where

g (S) = g (u) = cut (u) and u = 1

tr(S−1)
.

Now, we must find an appropriate form of g (S) under the loss (1.4) with

Δ = Δ∗ such that it dominates c∗S. We can show that for a < 0,
∑̂

g
dominates

the MRE estimator of
∑

if

(i) c > 0

(ii) t
′
(u) < −M

u
;M > 0

(iii) 0 < t (u) < 2M
p(n−p+1)

(5.2)

and for a > 0 the domintion conditions are

(i)
′
c < 0

(ii)
′
t
′
(u) > −M

u
;M > 0

(iii)
′
0 < t (u) < 2M

p(n−p+1)

(5.3)

As an example we consider estimation of eigenvalues of
∑

i.e. λ1 ≥ . . . ≥ λp >

0. The usual estimator of Λ = diag (λ1, . . . , λp) is Λ̂ = cL = cdiag (L1, . . . , Lp),
where L1 ≥ . . . ≥ Lp > 0 are the eigenvalues of S, and c a suitable constant.

Another class of estimators is Λ̂g = cL + g (u) I, where g (u) satisfies conditions

(4.2) and (4.3). Then Λ̂g dominates Λ̂ with sii replaced by Li. If
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∑
= σ2

[
ρ11

′ − (ρ− 1) I
]

= σ2

⎛⎜⎜⎝
1 ρ . . . ρ
ρ 1 . . . ρ
...
ρ ρ . . . 1

⎞⎟⎟⎠ ,where − 1

p− 1
< ρ < 1.

Λ = σ2

⎛⎜⎜⎝
1 + (p− 1) ρ 0 . . . 0

0 1− ρ . . . 0
...

...
. . .

...
0 0 . . . 1− ρ

⎞⎟⎟⎠ and S∗ =
[
S∗

ij

]
p×p

= A
′
SA ,where

S∗
11 = tr(s)

p
(1 + (p− 1) r) ,

∑
limp

j=2 S
∗
jj = tr(s)

p
(1− r) (1− p) and r =

2
∑

limu<u Suv

(p−1)tr(S)
.

Notice that A is an orthogonal p × p matrix with first column constant and equal
to 1√

p
. Therefore

Λ̂ = c∗

⎡⎢⎢⎣
S∗

11 0 · · · · · · 0
0 1

p−1

∑
limp

j=2 S
∗
jj · · · · · · 0

...
...

. . .
. . .

...
0 0 . . . 1

p−1

∑
limp

j=2 S
∗
jj

⎤⎥⎥⎦ = c∗diag (m1, . . . ,mp)

is a risk equivalent estimator of c∗S∗, wherem1 = S∗
11,mi = 1

p−1

∑
limp

j=2 S
∗
ii, i =

1, . . . , p.
(II) Improved Estimators Using S and X: In this case instead of X we use the

James-Stein estimator θ̂Js =
(
1− c∗0

T

)
X, where T = X

′
S−1X and c∗0 = p−2

n(n−p+2)
.

So S becomes S∗ =
∑

limN
1

(
Xi − θ̂c

) (
Xi − θ̂c

)′

in the bivariate case, where

θ̂c =
(
1− c

T

)
X . We can see that S∗ = S + constant

T2

(
XX

′)
. A new esti-

mator of
∑

is a constant multiple of S∗. Another proposed esttimator of
∑

iŝ∑ limc,α =
∑̂

+ C

(X
′
S−1X)

α
XX

′
, where

∑̂
is the best affine equivariant estimator

of
∑

.

Pal and Elfessi (1995) use this estimator, which is scale equivariant and uses
both X and S. We can show that this estimator dominates c∗S only if

c ≥ e
ap − 1

aNα−1
.
Γ
(

p
2

+ j + 1− α
)

Γ
(

p
2

+ j + 2 (1− α)
) j = 0, 1, . . . .

or

c ≥ e
ap − 1

aNα−1
τ(p, α)
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where

τ (p, α) = max
j

Γ
(

p
2

+ j + 1− α
)

Γ
(

p
2

+ j + 2 (1− α)
)

where α ≤ 1, the above maximum is τ (p, α) =
Γ( p

2 +1−α)
Γ( p

2 +2(1−α))
. The range of c in

the case α = 1 is c ≥ eap−1
aNα−1 , when a > 0 and c > 0. If a > 0 and c < 0

then c ≤ −e
−2ap
np+2

aE

{
X

′
t

∑
lim−1 X

′

T α

} , when α = 1, c ≤ −e
−2ap
np+2

a(N−p)
if a < 0 and c > 0

for α = 1, c ≥ −e
−2ap

np

a(N−p)
, and for other values of α, ̂∑ limc,α is better than c∗S. A

comparison of ̂∑ limc,α and
∑̂

limg leads to the following theorem.

Theorem 5.2 : Under the loss function (1.4) with Δ = Δ∗, if t (u) is an
absolutely continuous and nonincreasing function, and

0 < t (u) ≤
ac (N − p) + (1− 2ac∗)

(
1− (1− 2ac)−

N−p
2

)
a (N − p) c∗

then for a > 0 the estimator ̂∑ limc,1 dominates
∑̂

limg, and for a < 0, the
domination is reversed.

Remark 5.1: We can also estimate tr
(∑)

and det
(∑)

under (1.4). Consider

Bayesian and Empirical Bayesian estimation of
∑

and
∑

lim−1, and find some
improved estimators over |∑ | , along the methods of Brewster’s sequential (1973)
version.
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Schäbe, H. (1991). Bayes estimates under asymmetric loss. IEEE Transaction on
Reliability, 19, 13-16.

Singh, R. (1972). Admissible estimators of λr in gamma distribution with quadatic



172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Sixth International Statistics Conference

loss. Trabajos De Estadistica, 23, 129-134.

Stein, C. (1964). Inadmissibility of the usual estimator for the variance of a normal
distribution with unkown mean, Ann. Inst. Statist. Math., 16, 155-160.

Varian. H. R. (1975) A Bayesian approach to real assessment. In: studies in
Bayesian Econometric and statistics in Honor of Leonard J. Savage, eds. S.
E. Fienberg and A. Zellner. North Holland, Amesterdam, 195-208.

Zellner, A. (1986) . Bayesian estimation and prediction using asymmetric loss
function. J. Amer. Statist. Assoc. 81, 446-451.



Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173

Estimation of a Normal Mean Relative to Bal-
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Abstract. Let X1, · · · , Xn be a random sample from a normal distribution with
mean θ and variance σ2. The problem is to estimate θ with Zellner’s (1994) bal-

anced loss function, LB(θ̂, θ) = ω
n

∑n

1
(Xi− θ̂)2+(1−ω)(θ− θ̂)2, where 0 < ω < 1. It

is shown that the sample mean X, is admissible. More generally, we investigate the
admissibility of estimators of the form aX + b under LB(θ̂, θ). We also consider the

weighted balanced loss function, LW (θ̂, θ) = ωq(θ)

∑n

1
(Xi−θ̂)2

n
+(1−ω)q(θ)(θ− θ̂)2 ,

where q(θ) is any positive function of θ, and the class of admissible linear estimators
is obtained under such loss with q(θ) = eθ .

Keywords. Admissibility, Balanced Loss Function, Bayes Estimtor, Inadmissibil-
ity, Weighted Balanced Loss Function.

1 Introduction

Let X1, · · · , Xn be a random sample from a N(θ, σ2), with σ2 known. This paper
considers estimation of θ under the balanced loss function (BLF)

LB(θ̂, θ) =
ω

n

n∑
1

(Xi − Eθ̂(X))2 + (1− ω)(θ − Eθ̂(X))2

=
ω

n

n∑
1

(Xi − θ̂)2 + (1− ω)(θ − θ̂)2, (1.1)

where 0 < ω < 1 and θ̂ is an estimator of θ. This loss function, introduced by Zellner
(1994), is formulated to reflect two criteria, namely goodness of fit and precision
of estimation. In the past, loss functions reflecting one or the other of these crete-
ria, but not both, have been employed in analyses of means, regression and other
estimation problems. For example, least squares estimation reflects goodness of fit
considerations whereas use of quadratic loss functions involves a sole emphasis on
precision of estimation. As is well known, sole emphasis on a precision of estimation
criterion, for example mean squared error can often lead to biased estimators. In
some circumstances bias is not important but in others, it is critical. On the other
hand, use of a goodness of fit criterion leads to an estimate which gives good fit and
is an unbiased estimator; however it may not be as precise as an estimator which
is biased. Thus there is a need to provide a framework which combines goodness of
fit, or lack of bias, and precision of estimation formally. The BLF framework meets
this need. As mentioned above, first term of the r.h.s of (1.1) represents goodness
of fit while the second term represents the precision of estimation. For a full dis-
cussion of properties of the BLF see Zellner (1994). For estimation under the BLF
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and also for some references in this regard see Chung and Kim (1997), Chung, Kim
and Song (1998) and Dey, Ghosh and Strawderman (1999) .

A generalization of the BLF (1.1), which is of interest, is

LW (θ̂, θ) = ωq(θ)

∑n

1
(Xi − θ̂)2
n

+ (1− ω)q(θ)(θ − θ̂)2, (1.2)

where 0 < ω < 1 and q(θ) is any positive function of θ, which is called the weight
function. This loss is called weighted balanced loss function (WBLF). It generalizes
the BLF in sense that taking q(θ) = 1.

The problem of admissibility of a class of linear estimators of the form aX + b
in estimating a normal mean under a squared error loss has been studied by Karlin
(1958) and Gupta (1966).
In this paper, we consider estimation of θ under the loss (1.1) and (1.2). In Section
2, we obtain a Bayes estimator of θ relative to the loss (1.1) and study the inad-
missibility and admissibility of the estimators of the form aX + b. In Section 3, the
Bayes estimators relative to the WBLF (1.2) are discussed and the region of the
inadmissibility and admissibility of the class of estimators of the form aX + b are
derived under the WBLF (1.2) with q(θ) = eθ.

2 Estimation of Mean under BLF

2.1 Bayes Estimators

Consider the Bayes estimator when the prior distribution on θ is normal with mean
μ and variance τ2. The posterior distribution is then normal with mean and variance
given by

m =
nX
σ2 + μ

τ2

n
σ2 + 1

τ2

and ν =
1

n
σ2 + 1

τ2

,

respectively. The posterior risk of an estimator of θ̂ under the BLF is

E[ LB(θ̂, θ)|X] =
ω

n

n∑
1

(Xi − θ̂)2 + (1− ω)E[(θ − θ̂)2|X]

=
ω

n

n∑
1

(Xi − θ̂)2 + (1− ω)[(m− θ̂)2 + ν]

where X = (X1, ..., Xn).

To obtain the Bayes estimator of θ, it is enough to find an estimator θ̂ which

minimizes E[ LB(θ̂, θ)|X]. Solving the equation ∂E[ LB(θ̂,θ)|X]

∂θ̂
= 0, we conclude

that the Bayes estimator of θ under the loss (1.1) is

θ̂B = ωX + (1− ω)m

=
nτ2 + σ2ω

nτ2 + σ2
X + (1− ω)

μσ2

nτ2 + σ2
. (2.1)

The risk of θ̂B may be derived directly or deduced from Proposition 2.1.1 below
where, for later use, we also give the risk function and Bayes risk of the linear
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estimator aX + b. The derivation is straightforward and is omitted.

Proposition 2.1.1. The risk function of the estimator aX + b, relative to the
BLF (1.1) is

R(θ, aX + b) = [(a− 1)θ + b]2 +
σ2

n
[(a− ω)2 + ω(n− ω)], (2.2)

and the Bayes risk of aX + b, relative to the normal prior is

r(π, aX + b) = {(a− 1)2τ2 + [(a− 1)μ+ b]2}+
σ2

n
[(a− ω)2 + ω(n− ω)].

(2.3)

2.2 Inadmissibility

In this section, the class of inadmissible linear estimators of the form aX + b is
obtained. We shall now prove an inadmissibility result for linear estimators aX+ b,
which is quite general and in particular does not require the assumption of normal-
ity.

Theorem 2.2.1. The estimator aX + b is inadmissible under the loss function
(1.1) whenever one of the following conditions hold:
(i) a > 1,
(ii) a < ω,
(iii) a = 1 and b �= 0.

Proof:(i) If a > 1, then (a− ω)2 > (1− ω)2 and hence from (2.2)

R(θ, aX + b) ≥ σ
2

n
[(a− ω)2 + ω(n− ω)]

>
σ2

n
[(1− ω)2 + ω(n− ω)]

= R(θ,X).

Thus, aX + b is dominated by X .
(ii) If a < ω, then (a− 1)2 > (ω − 1)2 and hence

R(θ, aX + b) = [(a− 1)θ + b]2 +
σ2

n
[(a− ω)2 + ω(n− ω)]

= (a− 1)2[θ +
b

a− 1
]2 +

σ2

n
[(a− ω)2 + ω(n− ω)]

> (ω − 1)2[θ +
b

a− 1
]2 +

σ2

n
[(a− ω)2 + ω(n− ω)]

≥ (ω − 1)2[θ +
b

a− 1
]2 +

σ2

n
ω(n− ω)]

= [(ω − 1)θ +
b(ω − 1)

a− 1
]2 +

σ2

n
ω(n− ω)]

= R(θ, ωX +
b(ω − 1)

a− 1
) .
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Thus in this case, aX + b is dominated by ωX + b(ω−1)
a−1

.

(iii) When a = 1, the risk function of X + b is

R(θ,X + b) =
σ2

n
[(1− ω)2 + ω(n− ω)] + b2, (2.4)

and the derivation of the risk in (2.4) with respect to b is ∂
∂b
R(θ,X + b) = 2b > 0,

when b > 0. Therefore, the risk in (2.4) is minimized at b0 = 0. So, R(θ,X + b) −
R(θ,X) = b2 > 0 for any real number b �= 0. Thus X + b is dominated by X when
condition (iii) holds.

Remark 2.2.1: Thus we see that in every case we are to look for admissible
estimators of the form aX + b with (a, b) lying in the following strip of the a − b
plane:

{(a, b) : ω ≤ a < 1, all b} ∪ {(1, 0)} .

2.3 Admissibility

In this section, admissible linear estimators are obtained. They are either proper
Bayes estimators or generalized Bayes estimators relative to an appropriate limiting
normal prior.

Theorem 2.3.1. The estimator aX + b is admissible under the BLF (1.1), when-
ever ω < a < 1 .

Proof: From (2.1), we see that the coefficient nτ2+σ2ω
nτ2+σ2 of X is strictly between

ω and 1. Also since the loss (1.1) is strictly convex, (2.1) is the unique Bayes esti-
mator and hence admissible. It follows that aX+b is admissible when ω < a < 1. �

It is seen that X is the limit of Bayes estimators (2.1) relative to the normal prior,
when τ2 −→ ∞, We proved the admissibility of X by the limiting Bayes method
(due to Blyth (1951) ).

Theorem 2.3.2. Under the BLF (1.1), X is admissible.
Proof: Suppose that X is not admissible, and without loss of generality, assume
that σ = 1. Then, there is an estimator δ∗ such that

R(θ, δ∗) ≤ R(θ,X) =
(1− ω)2 + ω(n− ω)

n

for all θ , and with strict inequality for at least some θ. Now , R(θ, δ) is a continuous
function of θ for every δ so that there exists ε > 0 and θ0 < θ1 such that

R(θ, δ∗) <
(1− ω)2 + ω(n− ω)

n
− ε

for all θ0 < θ < θ1. Let r∗τ be the average risk of δ∗ with respect to the prior
distribution N(0, τ2), and let rτ be the Bayes risk of the Bayes estimator (2.1) with
respect to N(0, τ2). Then, by (2.3) it follows that

rτ =
τ2(1− ω)2

1 + nτ2
+
ω(n− ω)

n
.
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Hence

(1−ω)2+ω(n−ω)
n

− r∗τ
(1−ω)2+ω(n−ω)

n
− rτ

=

1√
2πτ

∫ +∞
−∞ [ (1−ω)2+ω(1−ω)

n
−R(θ, δ∗)]e−θ2/2τ2

dθ

(1−ω)2

n
− τ2(1−ω)2

1+nτ2

≥ n(1 + nτ2)ε

τ(1− ω)2
√

2π

∫ θ1

θ0

e−θ2/2τ2
dθ .

The integrand converges monotonically to 1 as τ −→∞ and hence by the Lebesgue
monotone convergence theorem , the integral converges to θ1 − θ0 and hence the
ratio converges to infinity. Thus , there exists τ0 < ∞ such that rτ∗

0
< rτ0 , which

contradicts the fact that rτ0 is the Bayes risk for N(0, τ2
0 ). It follows that X is

admissible.

Remark 2.3.1 : X is minimax since it is admissible and it’s risk is constant.

Remark 2.3.2: The case not covered yet is when a = ω and b = 0. It is seen
that ωX̄ is the limit of Bayes estimators relative to the normal prior N(0, τ2),
when τ2 → 0, and it is conjectured that it is admissible, but we do not have a
proof. The problem is that the limiting Bayes argument does not work in this case.

3 Estimation of Mean under WBLF

In this section, we consider the Bayes estimator of θ under the weighted balanced
loss function (1.2). The following proposition gives the general form of the Bayes
estimator under the weighted balanced loss function.

Proposition 3.1. The Bayes estimator of θ, relative to the WBLF (1.2), is

θ̂WB = ωθ̂1 + (1− ω)θ̂2 ,

where θ̂1 = X and θ̂2 = E[θq(θ)|X]/E[q(θ)|X].

Remark 3.1: Note that θ̂WB is the value of θ that minimizes posterior expected
loss. It is an average of X̄, which minimizes the first term on the r.h.s. of (1.2) and

θ̂2, which minimizes the posterior expectation of the second term on the r.h.s. of
(1.2). Accordingly, the Bayes estimator of θ can be expressed as linear combination

of θ̂1 and θ̂2 by Proposition 3.1. �

Now, we consider the conjugate prior and calculate the Bayes estimators under
several weight functions q(θ). To avoid complication in getting the Bayes estima-
tors, we consider only two cases, q(θ) = θ2 and q(θ) = eθ. Suppose that prior of θ is
N(μ, τ2). Then the posterior distribution π(θ|X) is N(m, ν), where m and ν given
in section 2.1.
Case 1. q(θ) = θ2:
Proposition 3.1 gives

θ̂2 =
m3 + 3mν

m2 + ν
and θ̂WB = ωX̄ +

(1− ω)(m3 + 3mν)

m2 + ν
.
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Case 2. q(θ) = eθ:
In this case, we obtain,

θ̂2 = m+ ν and θ̂WB =
nτ2 + σ2ω

nτ2 + σ2
X̄ +

(1− ω)(σ2τ2 + μσ2)

nτ2 + σ2
.

Note that, we have the above results replacing E[θ3|X], E[eθ|X] and E[θeθ|X] with
m3 + 3mν, em+ν/2 and (m+ ν)em+ν/2 respectively.
Theorem 3.1. The estimator aX̄ + b is admissible under the WBLF (1.2) with
q(θ) = eθ, whenever ω < a < 1.

Proof. Suppose that the prior for θ is N(μ, τ2). Then the Bayes estimator of θ
is

θ̂WB =
nτ2 + σ2ω

nτ2 + σ2
X̄ +

(1− ω)(σ2τ2 + μσ2)

nτ2 + σ2
. (3.1)

Since the coefficient nτ2+σ2ω
nτ2+σ2 of X̄ is strictly between ω and 1. By the convexity

of the WBLF (1.2), θ̂WB is the unique Bayes estimator and hence admissible. It
follows that aX̄ + b is admissible when ω < a < 1. �

Remark 3.2: The estimator aX + b is inadmissible under the loss function (1.2),
whenever one of the following conditions hold:
(i) a > 1,
(ii) a < ω,
(iii) a = 1 and b �= 0.

Proof: To see this, note that the risk function of aX̄ + b, relative to the WBLF is

R(θ, aX + b) = {[(a− 1)θ + b]2 +
σ2

n
[(a− ω)2 + ω(n− ω)]}q(θ).

Now, since q(θ) is any positive function of θ, we can obtain the sufficient conditions
for inadmissibility of aX̄ + b, exactly similar to Theorem 2.2.1.
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Minimax Estimation of Bounded Scale Param-
eter Under Entropy Loss Function
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Abstract. This paper is concerned with minimax estimation of a scale paramete θ
when θ is restricted to the interval [a, b] for some known 0 < a < b < ∞. The loss
function is entropy loss. It is shown, under some regularity conditions on density
of the observation, that there exists an m∗ > 0 such that, when (a/b)− 1 < m∗, a
unique minimax estimator of θ exists. This minimax estimator is Bayes with respect
to a two-point prior concentrated on a, b and this prior is least favorable.

Keywords. Bayes Estimation, Bounded Scale Parameter, Least Favorable Prior
Distribution.

1. Introduction

For the problem of estimating a bounded real parameter θ, several authors have
obtained minimax estimators of θ for the case where θ is restricted to an interval
[a,b]. The normal mean case was considered by Casella and Strawderman [5], as
well as by Zinzius [10], for squared-error loss; by Bischoff and Fieger[2] for the loss
function |d−θ|p with p ≥ 2 and by Bischoff, Fieger and Wulfert[4] for linex loss. The
case of the location parameter of an exponential distribution with squared-error loss
was treated by Eichenauer[6]. Further, Eichenauer-Herrmann and Fieger[8] consider
the case of distribution with support [θ, θ+1]; they use a convex loss function. The
case of a general location parameter with the loss function |d − θ|p, p ≥ 1 can be
found in Eichenauer-Herrmann and Ickstadt[9]; Bischoff and Fieger [3] consider a
general parameter with absolute error loss. Results for the scale parameter case
were obtained by Eichenauer-Hermann and Fieger [7] for squared-error loss and by
Bischoff [1] for |d− θ|p, p ≥ 2.
In this paper the case of restriction of the parameter, to the interval [θ0, (1+m)θ0],
with the loss L(δ, θ) = θ

δm
− ln θ

δm
− 1, δ ∈ Im, for θ is treated. It is shown under

regularity conditions on the distribution of observations, that, when m is small,
there exits a unique minimax estimator, which is Bayes with respect to a prior that
is cocentrated on the set {θ0, (1 +m)θ0} and this prior is least favorable.

2. Main Results

In this section, we present our main result, a minimax estimator for the scale
parameter of a scale-invariant distribution under the entropy loss function. Our
result derives from another one which we first state in the following much more
general setting than that of this paper. Suppose χ denotes the sample space with
an associated σ -algebra, β of subsets. The underlying experiment will lead to the
measurement of random observable, X, taking values in χ. we take the sampling
distribution of X to be an element of a space,P = {pθ}, θ ∈ Θ, indexed by the
parameter space Θ, a compact convex subset of a linear space; Θ has a Borel
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σ− algebra of subsets denoted by τ . we denote the boundary of Θ by ∂Θ. Assume
p � μ so that, for each Θ , pθ has a derivative f(.|θ) with respect to μ, a sigma-
finite measure on the measurable space (χ, β) .We deem the decision space D in
our estimation to be identical to the parameter space.
A nonrandomized decision rule δ : χ → θ will be called feasible if pθ(δ ∈ Θ) = 1
for all θ ∈ Θ. Under the assumptions of the next theorem we restrict our attention
to nonrandomized decision rules. Assume that the loss L(d, θ) is bounded below,
and without essential loss of generality it is nonnegative, so that the risk function
associated with feasible δ , R(δ, θ) =

∫
L(δ(x), θ)f(x|θ)dμ(x) exist. Our analysis

relies on the following general result.

Theorem 2.1: Suppose

i) δλ is a Bayes rule with respect to a distribution λ on (Θ, τ) for which λ(∂Θ) = 1;
ii) R(δ, θ) = K , a constant for all θ ∈ ∂Θ;
iii θ → R(δλ, θ) is strictly convex on Θ.
Then δλ is minimax rule and λ a least favorable distribution. Furthermore, if δλ is
the unique Bayes rule, then δλ is the unique minimax rule.

Proof 2.1: The hypotheses imply that

sup{R(δλ, θ)|θ ∈ Θ} = K. (2.1)

From (2.1) it follows that (see e.g. Lehmann [12,p. 249]) δλ is minimax (and
unique minimax when it is unique Bayes) and prior λ is least favorable. Now let
us turn to the problem of central interest in this paper for which χ = Rn and
μ represents lebesgue measure on Rn. The observable, X , has probability den-
sity function f(x|θ) = θ−nf(θ−1x) with respect to μ. We take f to be known and
θ ∈ Θ = Im = [θ0, (1 +m)θ0] for some known θ0 > 0,m > 0. The loss function is

L(δ, θ) =
θ

δm
− ln(

θ

δm
)− 1 ∀θ, δ ∈ Im (2.2)

Feasible estimators δ must now satisfy

pθ(δ(x) ∈ Im) = 1, ∀θ ∈ Im (2.3)

concerning the support , S(θ),of Pθ we consider two cases, namely:
1)the case where S(θ) is independent of θ;
2)the case where S(θ) = [βθ, θ]n for some known β ≤ 0.
Note that, in case 2 and for all θ1 < θ2 with θi ∈ Im, i = 1, 2

S(θ0) ⊂ S(θ1) ⊂ S(θ2) ⊂ S((1 +m)θ0) (2.4)

so that,for all θ ∈ Im, x ∈ S(θ0), then x ∈ S(θ1) and then x ∈ S(θ2) and then
x ∈ S((1 +m)θ0). To simplify the notation, we let S1 = S(θ0), S2 = S((1 +m)θ0).
Furthermore, for any Borel measurable set A, for all x ∈ A will mean for almost
all x ∈ A with respect to Lebesgue measure on A. Throughout the paper we work
under the following basic condition.

Condition A
i) f(θ−1x) has, for all x ∈ S1, two continuous derivatives with respect to θ for each
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θ ≥ θ0;
ii) for each m > 0 there exist three measurable and μ − integrable functions
ki(x) = ki,m(x), i = 0, 1, 2 , such that for i = 0, 1, 2

| ∂
i

∂θi
f(
x

θ
)| ≤ ki(x)

for all x ∈ S1 and all θ ∈ Im. To state our main result with a slight variation
in earlier notation, let δm,λ denote the Bayes estimator of θ with respect to the
two-point prior

λ(θ) =

{
λ if θ = θ0
1− λ if θ = (1 +m)θ0

(2.5)

where λ ∈ [0, 1].The following result can now be stated.

Theorem 2.2: There exist anm∗ ∈ (0,∞), and for eachm ∈ (0,m∗) a λm ∈ (0, 1)
such that δm = δm,λ is the unique minimax estimator of θ. Further, the prior (2.5)
with λ = λm is least favorable.

Remark 2.1: Note that each non-feasible estimator is on Θ, dominated by a
feasible one. This implies that a feasible estimator which is minimax among the
feasible ones is minimax among all estimators.

Proof of Theorem 2.2: First note that, if condition A is satisfied, then it
is satisfied with f(θ−1x) replaced by f(x|θ) = f(θ−1x)θ−n.
Our proof of Theorem 2.2 uses the following lemmas to show that the conditions
hypothesized in Theorem 2.1 obtain.�

Lemma 2.1: For all x ∈ S2, the Bayes estimator δm,λ(x) is, for λ < 1, given
by

δm,λ(x) = (1 +m)θ0I(x �∈ S1)

+ θ0
λf(θ−1x) + 1−λ

(1+m)n−1 f(((1 +m)θ0)
−1x)

λf(θ−1x) + 1−λ
(1+m)n f(((1 +m)θ0)−1x)

I(x ∈ S1) (2.6)

Proof: Using (2.4) it can easily be seen that, for all x ∈ S2, the posterior, given
X=x distribution of θ is given by

P (θ = θ0|X = x) =

{λf(θ0
−1x)

θn
0

I(θ = θ0) + (1− λ)f(((1 +m)θ0)
−1x)

[(1 +m)θ0]n
I(θ = (1 +m)θ0)}C(x)

Then C(x) =
θn
0

λf(θ0−1x)+ 1−λ
(1+m)n f(((1+m)θ0)−1x){

P (θ = θ0|X = x) = λf(θ0
−1x)

λf(θ0−1x)+ 1−λ
(1+m)n f(((1+m)θ0)−1x)

I(x ∈ S1)

P (θ = (1 +m)θ0|X = x) = 1− P (θ = θ0|X = x)
(2.7)
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Suppose I1 = I(x ∈ S1) and I2 = I(x �∈ S1) further δm,λ(x) minimizes

R(θ) = E{ θ

δm,λ
− ln(

θ

δm,λ
)− 1|X = x}

and

∂R(θ)

∂δ
= − E(θ|x)

δ2m,λ(x)
+

1

δm,λ(x)
= 0

implies that

E(θ|x) = δm,λ(x).� (2.8)

Remark 2.2: Although δm,1 is not unique, for simplicity we choose it to be con-
sistent with equation (2.6) as

δm,1(x) = θ0I(x ∈ S1) + (1 +m)θ0I(x �∈ S1).

Any other choice would work equally well in the proof of Theorem 2.2,but the ar-
gument would be much less elegant.

Lemma 2.2: For all x ∈ S2, δm,λ(x) satisfies:

i) δm,0(x) = (1+m)θ0I1 +(1+m)θ0I2, δm,1(x) = θ0I(x ∈ S1)+(1+m)θ0I(x �∈ S1)
for all m ≥ 0 ;
ii) δm,λ(x) is continues in λ for each m > 0 (2.9)
iii) δm,λ(x) is, for x ∈ S1, strictly decreasing in λ for each m > 0

Proof: From (2.6) one easily obtaines (i) and (ii). For (iii) note that

δm,λ(x) = (1 +m)θ0I(x �∈ S1) + θ0
λA+ 1−λ

(1+m)n−1B

λA+ 1−λ
(1+m)nB

I(x ∈ S1)

where, A = f(θ0
−1x) and B = f(((1 +m)θ0)

−1x)

∂(δm,λ(x))

∂λ

= θ0
λA2 + (1−λ)AB

(1+m)n − (1−λ)B2

(1+m)2n−1 − (λA2 + (1−λ)AB

(1+m)n−1 − λAB
(1+m)n − (1−λ)B2

(1+m)2n−1 )

{λA+ 1−λ
(1+m)nB}2

= − m

m+ 1
.

AB

{λA+ 1−λ
(1+m)nB}2

< 0

for m.AB > 0. �

Lemma 2.3: For each m > 0 there exists a unique λm ∈ (0, 1) such that

R(δm, θ0) = R(δm, (1 +m)θ0),
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where δm = δm,λm and

R(δ, θ) = Eθ(
θ

δm
− ln(

θ

δm
)− 1)

Proof: Consider

R(δm,λ, θ0) =

∫
S1

(
θ

δm,λ
− ln(

θ

δm,λ
)− 1).

1

θn
0

f(θ0
−1x)dx

where ( see Lemma 2.2)
δm,λ

θ0
− 1 is , for x ∈ S1

i) non-negative,
ii) continuous and strictly decreasing in λ for each m > 0
iii) upperbounded by m
So, R(δm,λ, θ0) is , for each m > 0, continues and strictly decreasing in λ

R(δm,0, θ0) =
1

(1 +m)
− ln( 1

(1 +m)
)− 1 > 0

δm,0 = (1 +m)θ0

R(δm,0, θ0) = Eθ(
θ0

(1 +m)θ0
− ln( θ0

(1 +m)θ0
)− 1)

=
1

(1 +m)
− ln( 1

(1 +m)
)− 1 > 0

R(δm,1, θ0) = Eθ[
θ0

θ0I1 + (1 +m)θ0I2
− ln( θ0

θ0I1 + (1 +m)θ0I2
)− 1]

= [
1

I1 + (1 +m)I2
− ln( 1

I1 + (1 +m)I2
)− 1]pθ0(x ∈ s1)

= [
1

I1
− ln( 1

I1
)− 1]pθ0(x ∈ s1) = 0

R(δm,0, (1 +m)θ0) = Eθ[
(1 +m)θ0
(1 +m)θ0

− ln( (1 +m)θ0
(1 +m)θ0

)− 1] = 0.

In the same way it can be shown that R(δm,λ, (1 + m)θ0), is for each m > 0,
continuous and strictly increasing in λ with

R(δm,1, (1 +m)θ0) = Eθ[
(1 +m)θ0

θ0I1 + (1 +m)I2θ0
− ln( (1 +m)θ0

θ0I1 + (1 +m)I2θ0
)− 1]

= Eθ[
(1 +m)

I1 + (1 +m)I2
− ln( (1 +m)

I1 + (1 +m)I2
)− 1]

= [
(1 +m)

I1 + (1 +m)I2
− ln( (1 +m)

I1 + (1 +m)I2
)− 1].P(1+m)θ0(x ∈ s1)

= [(1 +m)− ln(1 +m)− 1].P(1+m)θ0(x ∈ s1) > 0.



Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

Thus there exists, for eachm > 0, a unique λm ∈ (0, 1) with R(δm, θ0) = R(δm, (1+
m)θ0)

Lemma 2.4: For each m ≥ 0 and each λ ∈ [0, 1], ∂2

∂θ2R(δm,λ, θ) is continuous
in θ for each θ ≥ θ0.

Proof: Fix a λ ∈ [0, 1]. Note that the risk function of δm,λ is given by

R(δm,λ, θ) =

∫
S1

[
θ

δm,λ
− ln(

θ

δm,λ
)− 1].f(x|θ)dx

= R∗(m,λ, θ) + {[ (1 +m)θ0
θ

− ln(
(1 +m)θ0

θ
− 1]} (2.10)

where

R∗ =

∫
S1

{[ θ

δm,λ
−ln(

θ

δm,λ
)−1]−[

(1 +m)θ0
θ

−ln(
(1 +m)θ0

θ
)−1]}.f(x|θ)dx. (2.11)

So it is sufficient to show that the second derivative of R∗(m,λ, θ) is continuous in θ
for each m ≥ 0 and θ ≥ θ0. For this proof, note that, by condition A, the integrand

T (x, θ) = {[ θ

δm,λ
− ln(

θ

δm,λ
)−1]− [

(1 +m)θ0
θ

− ln(
(1 +m)θ0

θ
)−1]}.f(x|θ) (2.12)

has, for all x ∈ S1 and each θ ≥ θ0,two continuous derivatives with respect to θ.
Further, for all x ∈ S1 and each θ ≥ θ0

δm,λ

θ
≤ 1 +m and θ

δm,λ
≥ 1

1+m
= 1− m

1+m
and 1− θ

δm,λ
< m

1+m
and

|1− θ

δm,λ
| ≤ max( m

m+ 1
, 1) (2.13)

we know that L(δm,λ, θ) = θ
δm,λ

− ln θ
δm,λ

− 1, δ ∈ Im, for θ is decreasing and

0 ≤ L ≤ 1
1+m

− ln 1
1+m

− 1, then

|L| ≤ max(0, 1

1 +m
− ln 1

1 +m
− 1).

Now fix an m ≥ 0. Then, for any m′m and θ ∈ Im′ , condition A and (2.13) imply

that each of the derivatives ∂i

∂θi T (x, θ), i = 0, 1, 2, is , for x ∈ S1, bounded by a
μ-integrable function which dose not depend upon θ. This implies that, for θ ∈ Im′ ,

∂2

∂θ2
R∗(m,λ, θ) =

∫
S1

∂2

∂θ2
T (x, θ)dμ(x) (2.14)

and that ∂2

∂θ2R
∗(m,λ, θ) is continues in θ.

Lemma 2.5: For all x ∈ S2, δm(x) is continuous in m for each m ≥ 0.
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Proof 2.5: First consider the case when m=0 and note that limm→0 λm dose
not exist. In fact, for m=0 any λ ∈ [0, 1] satisfies (see Lemma 2.3)

R(δm,λ, θ0) = R(δm,λ, (1 +m)θ0).

However, δ0 is well-defined because for x ∈ S2, δ0,λ(x) = θ0 for all λ ∈ [0, 1].
Further, for x ∈ S2

θ0 ≤ δm(x) ≤ (1 +m)θ0

so
lim

m→0
δm(x) = θ0,

which shows that δm is continuous in m at m=0. Now consider the case where
m > 0. From (2.6) and condition A(i) it follows that δm(x) is continuous in m for
all x ∈ S2 if λm is continuous in m. This continuity of λm can be proved as follows.
By the proof of Lemma 2.3, λm is the unique solution (in λ) to

Gm(λ) = R(δm,λ, θ0)−R(δm,λ, (1 +m)θ0) = 0,

where Gm(λ) is, for eachm > 0, continuous and strictly decreasing in λ for λ ∈ [0, 1]
and

Gm(0) = R(δm,0, θ0)−R(δm,0, (1 +m)θ0)

=
1

1 +m
− ln 1

1 +m
− 1− 0 =

1

1 +m
− ln 1

1 +m
− 1 > 0

Since 0 ≤ 1
1+m

≤ 1 and m > 0 , Gm(0) is decreasing .

Gm(1) = R(δm,1, θ0)−R(δm,1, (1 +m)θ0)

= 0− [(1 +m)− ln(1 +m)− 1]P(1+m)θ(x ∈ S1) < 0.

Further, for each λ ∈ [0, 1] , Gm(λ) is continuous in m for each m > 0. To see
this,first note that, by the proof of lemma 2.4,

Gm(λ) = R∗(δm,λ, θ0)−R∗(δm,λ, (1 +m)θ0) +m
θ0
θ
− ln(1 +m),

where R∗(δm,λ, θ) is defined in (2.11). The result then follows from condition A(ii)
and the fact that, for all x ∈ S1 and each λ ∈ [0, 1]
i) δm,λ(x) is continuous in m by condition A(i).

ii) δm,λ(x) is, for each m0 > 0 and uniformly in x, bounded in m in a neighborhood
of m0. Now take an ε > 0 and let (λ, λ′) be such that 0 ≤ λ < λm < λ′ ≤ 1 ,
|λ− λ′| ≤ ε.
Then Gm(λ′) < 0 < Gm(λ). Now find, by the continuity of Gm in m, η > 0 such
that, for all η∗ ∈ (0, η),

|Gm+η∗(λ)−Gm(λ)| < 1

2
Gm(λ)

|Gm+η∗(λ′)−Gm(λ′)| < 1

2
|Gm(λ′)|.
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ThenGm+η∗(λ′) < 0 < Gm+η∗(λ) for all η∗ ∈ (0, η). Which implies λ < λm+η∗ < λ′

for all η∗ ∈ (0, η) and thus |λm+η∗ − λm| < ε for all η∗ ∈ (0, η). This prove that,for
each m > 0, λ is continuous in m.

Lemma 2.6: For each m ≥ 0 and each θ ≥ θ0,
∂2

∂θ2R(δm, θ) is continuous in
m and this continuity is, for each M > 0,uniform in θ for θ ∈ IM .

Proof: It needs to be shown (see (2.10)) that, for every m ≥ 0, ε > 0 suffices
to

H(m, θ) = | ∂
2

∂θ2
R∗(m,λm, θ)− ∂2

∂θ2
R∗(m′, λm, θ)| < ε,

for |m − m′| < η, θ ∈ IM . In order to prove this, first note that, by (2.14) and
condition A, H(m, θ) is, for θ ∈ IM , upperbounded by a finite sum of term of the
form

1

θl
0

∫
S1

|δj
m(x)− δj

m′(x)|Ki,M (x)dx.

Plus a finite sum of terms of the form

|(1 +m)i − (1 +m′)j |
∫

S1

Kj,M (x)dx,

where i ∈ {0, 1, 2} , j ∈ {1, 2}, l ∈ {1, 2, 3, 4}. This implies that it is suffi-
cient to show that for i ∈ {0, 1, 2}, j ∈ {1, 2}, each m > 0 and each M > 0,∫

S1
δj

MKj,M (x)dx is continuous in m. But this continuity follows from lemma 2.5,

the fact that, for each m0 ≥ 0, δm(x) is (uniformly in x for x ∈ S1 ) bounded in a
neighborhood of m0 and the fact that the ki,M are integrable.

Lemma 2.7: There exists m∗∗ > 0 such that, for each m ∈ (0,m∗∗),

∂2

∂θ2
R(δm, θ) > 0

for each θ ∈ Im.

Proof: Start with (2.10) and note that for θ ≥ θ0

B =
∂2

∂θ2
{[ (1 +m)θ0

θ
− ln(

(1 +m)θ0
θ

)− 1]}

=
∂

∂θ
{−[

(1 +m)θ0
θ2

+
1

θ
]}

=
2(1 +m)θ0

θ3
− 1

θ2

for m = 0 and θ ≥ θ0

∂2

∂θ2
{[ (1 +m)θ0

θ
− ln(

(1 +m)θ0
θ

)− 1]} =
−θ0
θ2

+
1

θ
=

1

θ2
(
2θ0 − θ
θ

).
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For the second derivative of R∗(m,λm, θ), note that, by the proof of Lemma 2.4,
this derivative can be taken under the integral sign. But the second derivative of
the integrand, evaluated at m = 0 ,δm = θ0 and (1 +m)θ0 is

∂2

∂θ2
R∗(δm, θ) =

∂2

∂θ2

∫
S1

{[ θ

δm,λ
− ln(

θ

δm,λ
)− 1]

− [
(1 +m)θ0

θ
− ln(

(1 +m)θ0
θ

)− 1]}.f(x|θ)dx

=
∂

∂θ
{[ θ

δm,λ
− ln(

θ

δm,λ
)− 1]− [

(1 +m)θ0
θ

− ln(
(1 +m)θ0

θ
)− 1]}.

=
1

δm,λ
− 1

θ
+

(1 +m)θ0
θ2

+
1

θ

=
1

δm,λ
+

(1 +m)θ0
θ2

for m = 0 we know that δm,λ = θ0 and (1 +m)θ0 = θ0 then we have 1
θ0

+ θ0
θ2 > 0

∂2

∂θ2
R(δm, θ)|m=0 =

∂2

∂θ2
R∗(δm, θ) +B > 0 for all θ ∈ [θ0, 2θ0]. (2.15)

Now let θ∗ ∈ [θ0, 2θ0]. Then, by Lemma 2.4 and (2.15),

C = min{ ∂
2

∂θ2
R(δm, θ)|m=0|θ ∈ [θ0, θ

∗]} > 0

Using Lemma 2.6 it then follows that, for ε ∈ (0, C), there exits η > 0, independent
of θ ∈ [θ0, θ

∗], such that

| ∂
2

∂θ2
R(δm, θ)− ∂2

∂θ2
R(δm, θ)|m=0| < ε , 0 ≤ m < η and θ ∈ [θ0, θ

∗]

or, equivalently, such that

∂2

∂θ2
R(δm, θ) >

∂2

∂θ2
R(δm, θ)|m=0 − ε ≥ C − ε > 0 , 0 ≤ m < η and θ ∈ [θ0, θ

∗]

Taking m∗∗ = min(η, ( θ∗
θ
− 1)) then gives the desired result.

Proof of theorem 2.2: By Lemma 2.1 and remark after it, the Bayes esti-
mator of δm is achieved so that give us the condition hypothesized in the part (i) of
theorem 2.1 and by applying theorem 2.3 which state R(δm, θ0) = R(δm, (1+m)θ0)
shows that the risk function for various values of m is constant. By Lemma 2.7,
the convexity of R(δλ, θ) is provided, finally the Bayes estimator δm is the unique
minimax estimator because δm is the unique Bayes estimator for λ = λm. �
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Bilateral Laplace Transforms Application in Lo-
cation Family

Shams, S.
P11064

Department of Mathematics, Alzahra University, Iran.

Abstract. It is well known that if a distribution function H, belongs to a location
family, with location parameter θ, then Hθ(x) = H∗(x− θ).

In many problems there has been interest in characterization of H∗, and the
question of this kind arises when some information about the marginal distribution
of the random variable X exists.

Suppose X and Θ, are two univariate random variables with distribution func-
tions F and G, respectively, and the conditional distribution function X given θ,
H(x|θ), belongs to a location family. In this paper , for any pairs of distribution
functions F and G , the necessary and sufficient conditions for existence of a distri-
bution function H, such that it can be the conditional distribution function belongs
to a location family, are given. Also for given F and G, satisfying the above sufficient
conditions, by bilateral Laplace transform the exact form of H is obtained.

1 Introduction

Suppose X and Θ are two random variables and the conditional distribution of
X given Θ = θ is unknown. In many problems there has been interest in char-
acterization of the conditional distribution, because the distribution of X which
we can observe is unconditional on Θ and we are sampling from a mixture distri-
bution. The mixture models are useful because they make some properties of the
derived distribution more transparent . Marshal and Olkin (1988) showed that in
proportional hazard models the conditional distribution can be derived by a unified
method, with a somewhat different Shams and Noorbalochi (2001) showed that in
accelerated models it can be derived by using mellin transforms.

In this paper, in location models, after considering the necessary and sufficient
conditions for existing such conditional distribution , by using bilateral Laplace
transforms the conditional distribution can be derived.

2 Mixture of Location Distributions

In this section bilateral Laplace transforms are used to construct multivariate dis-
tributions with given marginals.

Let H and G be two univariate distribution functions and assume H belongs
to a location family and θ is the location parameter.

Since H(x− θ) is a distribution function, it follows that the mixture

F (x) =

∫
H(x− θ)dG(θ) (1)
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is a distribution function .

For any specified pair of distribution functions G and F , the necessary and
sufficient condition for existing a distribution function H satisfying (1), is given
below.

Definition 1. A function f is called completely monotonic (CM) in an interval
(finite or infinite, of any kind) iff it has derivatives of all orders there satisfying the
condition:

(−1)nf (n)(x) ≥ 0 (2)

for each n ≥ 0 and each x in the domain of definition.

Definition 2. If the integral f(s) =
∫∞
0
e−sxdF (x) converges for a < s < b,

then f(s) is called analytic there.

Definition 3. A real function f(x, y) which is continuous in the square (a ≤
x ≤ b, a ≤ y ≤ b) is of positive type if for every real function g(x) continuous in
(a ≤ x ≤ b) ∫ b

a

∫ b

a

f(x, y)g(x)g(y)dxdy ≥ 0

Lemma 1. A function f on (0,∞) is the Laplace transform of a distribution
function F ;

f(s) =

∫ ∞

0

e−sxdF (x) (3)

if and only if it is completely monotonic in (0,∞) and f(0+) = 1.

Proof. The ”only if” part is immediate, since

f (n)(s) =

∫ ∞

0

(−x)ne−sxdF (x)

Turning to the ”if” part , first we prove that f has a convergent Taylor series. Let
0 < s0 < s < u, then by Taylor’s theorem, with the remainder term in the integral
form, we have

f(s) =

k−1∑
j=0

f (j)(u)(s− u)j/j! +
(s− u)k

(k − 1)!

∫ 1

0

(1− t)k−1f (k)(u+ (s− u)t)dt (4)

Because of (2), the last term in (4) is positive and does not exceed

(s− u)k

(k − 1)!

∫ 1

0

(1− t)k−1f (k)(u+ (s0 − u)t)dt

If k is even , then f (k) ↓ and (s − u)k ≥ 0 , while if k is odd then f (k) ↑ and
(s− u)k ≤ 0 . Now by (4) with s replaced by s0 the last expression is equal to

(
s− u
s0 − u )k[f(s0)−

k−1∑
j=0

f (j)(u)(s0 − u)j/j!] ≤ (
s− u
s0 − u )kf(s0)

where the inequality is trivial, since each term in the sum on the left is positive by
(2). Therefore as k → ∞, the remainder term in (4) tends to zero and the Taylor
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series for f(s) converges.
Now for each n ≥ 1 define the discrete subdistribution function Fn by

Fn(x) =

[nx]∑
j=1

nj

j!
(−1)jf (j)(n)

This is a subdistribution function, since for each ε > 0

1 = f(0) ≥ f(ε) ≥
k−1∑
j=1

f (j)(n)(ε− n)j/j!

Letting ε→ 0 and k →∞ , we see that Fn(∞) ≤ ∞. The Laplace transform of Fn

for s > 0 is:∫∞
0
e−sxdFn(x) =

∑∞
j=0
e−s(j/n) (−n)j

j!
f (j)(n)

∞∑
j=0

1

j!
(n(1− e−s/n)− n)jf (j)(n) = f(n(1− e−s/n))

the last equation form the Taylor series. Letting n→∞, we obtain for the limit of
the last term f(s) , since f is continuous at each s. It follows, that {Fn} converge,
say to F , and that the Laplace transform of F is f . hence F (∞) = f(0) = 1, and
F is a distribution function.

Lemma 2. (Widder (1988)) A necessary and sufficient condition that the func-
tion f(s) can be bilateral Laplace transform of a distribution function F ,

f(s) = BF (s) =

∫ ∞

−∞
e−sxdF (x)

where the integral converges for a < s < b, is that (i) f(s) should be analytic there,

the kernel f(s+s
′
) should be of positive type in the square (a < 2s < b, a < 2s

′
< b),

and (ii) f(0) = 1.

Theorem 3. Let F,G be two distribution functions having bilateral Laplace
transforms BF ,BG, respectively. If BH(s) = BF (s)

BG(s)
satisfies the sufficient conditions

of Lemma 2, then there exists a distribution function H satisfying (1) and it is
determined uniquely (a.e) by

H(x) = B(−1)[
BF (s)

BG(s)
;x] (5)

Here by B and B(−1) we denote

BF (s) =

∫ ∞

−∞
e−sxdF (x) ⇐⇒ B(−1)[BF (s);x] = F (x)

Proof. The integral transform of H in (1) is of the convolution type, and if
bilateral Laplace transform of the F and G exist, we have the well-known result
that the bilateral Laplace transform of a convolution H ∗ G is the product of the
transform that is ;∫ ∞

−∞
e−sxdF (x) =

∫ ∞

−∞
e−sudH(u)

∫ ∞

−∞
e−sθdG(θ)
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hence

H(x) = B(−1)[
BF (s)

BG(s)
;x]

This problem is similar to the problem of finding unbiased estimator of a lo-
cation parameter, which has been discussed in Zacks(1970). Here we need to find
an unbiased estimator for a distribution function, and this is done be the above
assumptions.

3 Total Positivity of Location Models

Suppose (1) holds, and define the probability density functions of F,H and G by
f, h and g, respectively , hence

f(x) =

∫
h(x− θ)g(θ)dσ(θ) (6)

Definition 4. Let X1, X2 have joint probability density function f(x1, x2),
then f(x1, x2) is totally positive of order 2, TP2 or alternatively TP2(X1, X2), if

det

∣∣∣∣ f(x1, x2) f(x1, x
′
2)

f(x
′
1, x2) f(x

′
1, x

′
2)

∣∣∣∣ ≥ 0 (7)

for all x1 < x
′
1, x2 < x

′
2 in domain of X1, X2.

Total positivity of order r (TPr) is defined similarly in terms of determinants
of order 1, 2, . . . , r . A function is totally positive of order infinity (TP∞) if it is
totally positive of all finite orders.

If h and g are Borel-measurable and totally positive of order r ,then for all
σ-finite measure σ ,

f(x, z) =

∫
h(x, y)g(y, z)dσ(y) (8)

is totally positive of order r (see Karlin(1968)) .

The following Lemma gives the necessary and sufficient condition for ki(i =
1, . . . , n) to be TP2 .

Lemma 4. A necessary and sufficient condition for h(x− θ) in (6) to be TP2

is that −logh in convex.

Proof. For h(x− θ), TP2 is equivalent to

h(x− θ′)
h(x− θ) ≤

h(x
′ − θ′)

h(x′ − θ) (9)

or
logh(x

′ − θ) + logh(x− θ′) ≤ logh(x− θ) + logh(x
′ − θ′)

where x ≤ x′
and θ ≤ θ′ . Since x − θ = t(x − θ′) + (1 − t)(x′ − θ) and x

′ − θ′ =

(1− t)(x−θ′)+ t(x
′−θ) , where t = (x

′−x)/(x′−x+θ
′−θ) , a sufficient condition

for this to hold is that function −logh is convex.
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To see that this condition is also necessary let a < b be any real numbers , and let

x−θ′ = a, x
′−θ = b and x

′−θ′ = x−θ . Then x−θ = 1
2
(x

′−θ+x−θ′) = 1
2
(a+b),

and TP2 implies
1

2
[logh(a) + logh(b)] ≤ logh[ 1

2
(a+ b)] (10)

and this implies that −logh is convex.

A density h for which −logh is convex is called strongly unimodal.

Theorem 5. Suppose (6) holds and h are strongly unimodal functions, then
f is (TP2) in each pair of arguments, with the other arguments fixed.

Proof. This is an immediate consequence of Lemma (4).
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Probabilistic Analysis of Some Sorting Algo-
rithms

Smythe, R. T.
P27001

Oregon State University, USA.

Abstract. One of the most common manipulations of a set of numbers is to sort
them in increasing (or decreasing) order of magnitude. Many algorithms have been
proposed for this purpose. For most of these, analysis has centered on calculation
of average-case and worst-case performance.

If we assume the initial data array is uniformly distributed over all possible per-
mutations, a probabilistic analysis of some of these algorithms is revealing. Often
the number of comparisons made by the algorithm, when centered and scaled appro-
priately, converges to a limiting distribution as the size of the array grows without
bound. However, the limiting distribution may be non-Gaussian and asymmetric,
and in some cases quite complicated.

We examine the asymptotic behavior of three algorithms (Insertion Sort, Shell
Sort, and Quick Sort), which exhibit three differnt types of limiting distributions.

Keywords. Random Permutation, Central Limit Theorem, Asymptotic Distribu-
tion, Insertion Sort, Shell Sort, Quick Sort.

0. Introduction. There are many reasons why one may wish to sort a given
list of numbers in increasing order of magnitude. In statistics, for example, many
nonparametric procedures are based on the order statistics, determination of which
requires the sorting of part or all of a list of numbers. Many algorithms have been
developed for this purpose. The average-case analysis (and sometimes, much more!)
for a number of these may be found in the legendary book of Knuth (1973). Here
we assume a random permutation model for the data and analyze probabilistically
the number of comparisons performed by the algorithms. The reader is referred
to the book of Mahmoud (2000) for details on the model and many results on
the probabilistic analysis of algorithms. We will concentrate on three algorithms:
the basic Insertion Sort, a modification of Insertion Sort known as Shell Sort, and
Quicksort, an efficient divide-and-conquer algorithm. Our goal will be to present
the asymptotic distribution of the number of comparisons as the size of the data
array approaches infinity. We will see that although the asymptotics for Insertion
Sort are quite standard, those for Shell Sort and Quick Sort take us into the class of
more complicated distributions for which much remains unknown. Our treatment
of Quick Sort is fairly brief, as good accounts of this exist elsewhere.

We will assume that our data are n real numbers from a continuous probability
distribution. Since we are interested only in order properties of the data, and order
is preserved by the probability integral transform, we can and will assume that
the probability distribution of the data is uniform on (0, 1). The random permuta-
tion model assumes that the ranks of the data are equally likely to be any of the
permutations of {1, 2, . . . , n}, each occurring with probability 1/n!.

1. Insertion Sort. Insertion Sort is a simple algorithm with low efficiency, but its
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simplicity and ease of coding makes it useful for small and medium-sized files. In
addition, it is a basic building block for the more efficient Shell Sort.

Insertion Sort adds data in stages to a sorted file. At the ith stage, it inserts
the ith key k into a sorted data file of i− 1 elements. There are several methods of
searching the sorted file, including linear, binary, and Fibonacci search. The search
procedure finds the correct location, inserts the new key, and adjusts the positions
of the other keys. For example, we examine how backward linear insertion sort
works to sort the list {5, 2, 3, 1, 6, 4}.

The key to this analysis is the concept of an inversion in a permutation. In the
original list {x1, . . . , xn}, if the sequential rank of xi is j, xi causes i− j inversions,
that is, i − j larger keys precede xi in the input list. (Thus, in our example, the
key 1 causes 3 inversions.) When xi is inserted, i− j comparisons, plus one for the
”stopper”, are required. In our example, the number of comparisons required would
be

(0 + 1) + (1 + 1) + (1 + 1) + (3 + 1) + (0 + 1) + (2 + 1) = 13.

In general, if Cn denotes the number of comparisons made for a list of size n,

Cn =

n∑
i=1

(1 + Vi) := n+ Yn,

where Vi is the number of inversions caused by xi and Yn is the total number of
inversions. It is not difficult to write down P (Cn = k), but for our purposes it
suffices to note that

E(Cn) = n + E(n) ≈ n2/4,

V ar(Cn) := s2n = V ar(Yn) ≈ n3/36.

The Vi are independent under the random permutation model, and using the Lin-
deberg central limit theorem, one can show (Lent and Mahmoud, 1996) that for
linear search strategies,

Cn − E(Cn)

(s2n)1/2
−→

D

lim N (0, 1),

where N (0, 1) denotes the standard normal distribution. Thus for backward linear
search, it follows that

Cn − n2/4

n3/2
−→

D

lim N (0, 1/36).

The Berry-Esseen theorem may be invoked to show that the rate of convergence to

normality is 1/
√

(n).

Linear insertion sort thus has a fairly simple asymptotic analysis, but the run-
ning time of O(n2) renders it unsuitable for large data files.

2. Shell Sort. Shell Sort generalizes the method of sorting by insertion, and consists
essentially of several stages of Insertion Sort. The algorithm was proposed by Shell
(1959) and is developed in Knuth’s (1973) book. Although not as efficient as Quick
Sort, Shell Sort is easy to implement and provides a practical, low-overhead method
for medium-sized files.
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Shell Sort performs k stages of Insertion Sort, where k ≥ 2. For large values of
k, the average running time for n keys can be made as small as O(nlog2n), and
even for k = 2, an optimized choice can give a O(n5/3) average running time.

In k-stage Shell Sort, an integer sequence of length k, decreasing to 1, is cho-
sen to give a faster running time than Insertion Sort. Let the chosen sequence be
tk, tk−1, . . . , t1 = 1. The first stage in sorting n keys sorts keys that are tk posi-
tions apart in the list. This gives tk subarrays, each of length at most �n/tk�. We
sort these by ordinary Insertion Sort. At the next stage, the algorithm sorts tk−1

subarrays of keys that are tk−1 positions apart, using Insertion Sort on each of the
�n/tk−1� arrays. Continuing in this fashion, the last stage (where the increment is
1) executes ordinary Insertion Sort. There has been a good deal of research directed
to ”best” choices of the sequence {tj}; Sedgewick (1996) reviews much of this work.

An example may help to see how Shell Sort works. The simplest version, (2, 1)-
Shell Sort, sorts the array

3 2 6 5 9 8 1 4 7

in two stages. In the first stage, using increments of 2, both the subarray of odd
indexes and the subarray of even indices are sorted by ordinary Insertion Sort. This
gives an interleaved array

sorted odd positions: 1 3 6 7 9

sorted even positions: 2 4 5 8

which is 2-sorted; that is, starting at any point, taking every second key gives an
increasing sequence. The final step uses Insertion Sort to sort this 2-sorted array.

The stage of Shell Sort that uses the increment tj will be referred to as the
tj-stage of the algorithm. We use the notation Z(j) to denote the jth order statistic
among Z1, . . . , Zr, where the value of r will be evident in context.

To see the advantages of Shell Sort over Insertion Sort, consider (h, 1)-Shell Sort,
which sorts h subarrays of size at most �n/h� by Insertion Sort, then combines the
h lists in another pass of Insertion Sort. The stages of sorting the h lists have a
total number of comparisons of order h(n/h)2 ≈ n2/h. Sorting of an h-sorted
list requires an average of n3/2h1/2 comparisons (Knuth, 1973); choosing h(n) to
minimize n2/h+n3/2h1/2 gives h(n) ≈ n1/3 and an average number of comparisons
of O(n5/3), an improvement over the O(n2) of ordinary Insertion Sort.

The difficulty in the stochastic analysis of Shell Sort is that after the first stage
the data are no longer random. In (2, 1)-Shell Sort, for example, the second stage
involves sorting a 2-sorted list; many of the original inversions have been removed
at this stage (but some new ones may be added).

2.1 Analysis of (2, 1)-Shell Sort.

The mean and variance of (2, 1)-Shell Sort were given by Knuth (1973). The
asymptotic distribution of (2, 1)-Shell Sort was first determined by Louchard (1986).
A different analysis that permits generalization to (h, 1)-Shell Sort was given by
Smythe and Wellner (2001). We will give a brief sketch of this analysis.
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Assume for simplicity that n is even and call the elements in odd positions X’s
and those in even positions Y ’s. Thus our initial raw array is

X1, Y1, X2, Y2, . . . Xn/2, Yn/2.

The 2-stage of the algorithm orders the X’s among themselves and the Y ’s among
themselves. Let Sn be the number of comparisons that (2, 1)-Shell Sort makes to
sort n random keys, and let Cn be the number of comparisons made by Insertion
Sort to sort n keys. The 2-stage of (2, 1)-Shell Sort performs two insertion sorts on
the subarrays X1, . . . , xn/2 and Y1, . . . , Yn/2. This requires

Cn/2 + C̃n/2

comparisons, where C̃j = limD Cj , and for all feasible i and j, Ci is independent of
C̃j .

The 1-stage now requires additional comparisons to sort the 2-sorted list. When
we are about to insert Y(j), we place it among

{X(1), . . . , X(j)} ∪ {Y(1), . . . , Y(j−1)}.
The Y ’s were ordered in the 2-stage, so Y(j) has no inversions with {Y1, . . . , Y(j−1)}.
The so-called sentinel version of Insertion Sort makes

C(Πn) = n + I(Πn)

comparisons to sort a permutation with I(Πn)) inversions. Let Vj be the number
of inversions Y(j) makes with all the elements that precede it, that is

Vj = 1{X(1)>Y(j)} + · · · 1{X(j)>Y(j)},

for j = 1, . . . , n/2. In a similar manner, define Wj to be the number of inversions
that X(j) makes with all the elements that precede it. The number of inversions
after the 2-stage is thus

In =

n/2∑
j=1

Vj +

n/2∑
j=1

Wj ,

and the 1-stage then requires n + In comparisons.

The overall number of comparisons Sn of (2, 1)-Shell Sort is therefore given by
the convolution

Sn = Cn/2 ⊕ C̃n/2 ⊕ n ⊕ In. (1)

We have already noted that Cn/2, and thus C̃n/2 as well, have asymptotic
Gaussian distributions. So we focus on the distribution of In. The next result is key
to the analysis (see Smythe and Wellner (2001) for the proof):

LEMMA 1. The total number of inversions after the 2-stage, In, has the rep-
resentation

In =

n/2∑
j=1

T (j)
n ,
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where

T (j)
n =

∣∣∣ n/2∑
i=1

[1{Yi<Xj} − 1{Xi<Xj}
∣∣∣.

The usefulness of Lemma 1 is that it allows us to work directly with the X’s and
Y ’s, instead of with the order statistics. We can express the form in Lemma 1 in
terms of empirical distribution functions. Let Fn(t) denote the empirical distribu-
tion function of n i.i.d. random variables Zi, that is,

Fn(t) =
1

n

n∑
i=1

1{Zi≤t}.

Then

T (j)
n =

n

2

∣∣∣F̂n/2(Xj)−
(
F̃n/2(Xj)− 2/n

)∣∣∣
where F̂n/2 and F̃n/2 are the empirical distribution functions of the Y ’s and X’s,
respectively. Thus we may express In as

In =
n

2

n/2∑
j=1

|F̂n/2(Xj)− F̃n/2(Xj)|+ op(n)

(where op(n) denotes a term smaller than order n in probability, resulting from the

”extra” 2/n in the expression for T
(j)
n ), so that

In

(n/2)3/2
=

∫ 1

0

√
n/2|F̂n/2(x)− F̃n/2(x)|dF̃n/2(x) + op(1). (2)

The empirical process converges in the Skorohod topology on D[0, 1], the space of
right-continuous functions with left limits on [0, 1], giving

√
n(Fn(t) − t) −→

D

lim B(t),

where B(t) is the (standard) Brownian bridge. Thus√
n/2 |F̂n/2(x)− F̃n/2(x)| −→

D

lim |B1(x)−B2(x)|, (3)

where B1(t) and B2(t) are independent Brownian bridges. The Brownian bridge is
a Gaussian process, and B1−B2 has the distribution of

√
2∗ (a Brownian bridge),

so

B1(t)−B2(t) =
D

lim N (0, 2t(1− t)).
Also, the empirical measure dF̃n/2(x) converges a.s. to uniform measure on [0, 1],
by the Glivenko-Cantelli theorem. Using a special construction to put versions of
F̂m/2, F̃n/2, B1 and B2 on a common probability space, passing to the limit in (2)
gives the result of Louchard (1986):

THEOREM 1. Let Wn be the number of comparisons made in the 1-stage of
(2, 1)-Shell Sort to sort n random keys, so that Wn = n+ In. Then

Wn

(n/2)3/2
−→

D

lim
√

2

∫ 1

0

|B(t)|dt,
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where B(t) is a standard Brownian bridge.

An infinite series for the c.d.f of the limiting distribution of Theorem 1, in-
volving Airy functions, is given by Johnson and Killeen (1983). From (2) it can be
shown that the convergence in distribution in Theorem 1 entails the convergence of

moments of Wn/(n/2)3/2 to those of
√

2]
∫ 1

0
|B(t)|dt. These moments were derived

by Shepp (1982).

COROLLARY 1 .
(a) The average number of comparison made by the 1-stage of (2, 1)-Shell Sort is
asymptotically equivalent to (

√
π/8

√
2)n3/2.

(b)The variance of the number of comparisons is asymptotically equivalent to (7/240−
π/128)n3.

2.2 Analysis of (h, 1)-Shell Sort

The analysis of (h, 1)-Shell Sort proceeds along similar lines to those of the
previous section. The only significant difference is that now we have h data ”types”
X1, . . . , Xh instead of just X and Y . Thus the number of inversions caused by Xk

(i),
where 1 ≤ k ≤ h and 1 ≤ i ≤ �n/h�, has to take account of the inversions caused
with all the other Xj , where j �= k. Let Ih

n denote the total number of inversions
and let (B1, . . . , Bh) be a vector of independent Brownian bridges. Proceeding as
before, and assuming for simplicity that h divides n, we arrive at

THEOREM 2. Let Wh
n be the number of comparisons made in the 1-stage of

(h, 1)-Shell Sort to sort n random keys, so that Wh
n = n+ Ih

n . Then

Wh
n

(n/h)3/2
−→

D

lim Wh :=
∑
r<s

∫ 1

0

|Br(t)−Bs(t)|dt,

where the sum extends over all pairs (r, s) with 1 ≤ r < s ≤ h.

As far as I know, the form of the distribution of Wh for h > 2 is not known.
Of course the summands that comprise Wh have known distributions, but the
(i, j) and (r, s) summands will be correlated if the pairs (i, j) and (r, s) share an
integer. The first moment, which was found by Knuth (1973), follows easily from
the representation. We do not have a closed form for the second moment, but it
can be evaluated numerically.

COROLLARY 2.
(a) The average number of comparisons made by the 1-stage of (h, 1)-Shell Sort is
asymptotically equivalent to (

n

h

)3/2
(
h

2

)√
π

4
.
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(b) The variance of the number of compariosns is asymptotically equivalent to(
n

h

)3

{(
h

2

)(
7

30
− π

16

)
+ h(h− 1)(h− 2)

(
C − π

16

)}
,

where

C := E
{∫ 1

0

|B1(t)−B2(t)|dt
∫ 1

0

|B1(t)−B3(t)|dt
}

and B1(t), B2(t), B3(t) are independent (standard) Brownian bridges. The value of
C is numerically determined to equal 0.2051.

For s < t, Cov(B(s), B(t)) = s(1−t), so C can be evaluated as a double integral
once it is known how to calculate E(|X||Y |), where (X,Y ) is bivariate normal with
mean (0, 0), unit variance, and covariances ρ. (See Wellner and Smythe (2001) for
several ways of doing this.)

2.3. (3, 2, 1)-Shell Sort.

If k is a divisor of h, (h, k, 1)- Shell Sort can be analyzed by the results of the
previous section, but this case is not of practical interest as it has poor worst-case
behavior. The simplest case when h and k are relatively prime is (3, 2, 1)-Shell Sort,
and we now give a brief analysis of this. Recent work of Janson and Knuth (1997)
gives detailed results on the mean number of comparisons for (h, k, 1)-Shell Sort;
for the (3, 2, 1) case, we are able to find the variance and the limiting distribution
of the final stage. It turns out that the last stage, which amounts to sorting a
list that is both 3-sorted and 2-sorted, makes an asymptotically normal number of
comparisons. As an example, we apply (3, 2, 1)-Shell Sort to sort the array

3 12 6 10 5 9 8 1 11 4 7 2.

The first stage creates 3 sorted lists of length 4:

3 4 8 10

1 5 7 12

2 6 9 11.

The second stage takes the resulting 3-sorted list,

3 1 2 4 5 6 8 7 9 10 12 11,

and creates two sorted lists of length 6:

2 3 5 8 9 12

1 4 6 7 10 11.

We now have a list that is both 3-sorted and 2-sorted:

2 1 3 4 5 6 8 7 9 10 12 11,

and the final stage sorts this list.
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For the general case, assume for convenience that n is a multiple of 6. Prior to
any sorting, we will denote our raw data as

X1, Y1, Z1, X2, Y2, Z2, . . . , Xn/3, Yn/3, Zn/3,

where the X’s, Y ’s, and Z’s may be taken to be mutually independent. As before,
we let Cn denote the number of comparisons made by (linear) insertion sort to sort
n random keys. The initial stage of (3, 2, 1)-Shell Sort makes three runs of insertion
sort on the X, Y , and Z subarrays, requiring

C1
n/3 + C2

n/3 + C3
n/3

comparisons, where Ck
j , k = 1, 2, 3 are identically distributed for each j and C1, C2, C3

are independent. We then have the 3-sorted list

X(1), Y(1), Z(1), . . . , X(n), Y(n), Z(n).

The next stage of the algorithm 2-sorts this list: we make two lists,

X(1), Z(1), Y(2), X(3), Z(3), Y(4), . . . , (4)

and
Y(1), X(2), Z(2), Y(3), X(4), Z(4), . . . , (5)

and we sort each of these lists. Each of these lists is 3-sorted; let Ĉn denote the
number of comparisons made by insertion sort to sort a 3-sorted array of length n.
The 2-stage of the algorithm thus requires

Ĉ1
n/2 + Ĉ2

n/2

comparisons, where Ĉ1
j = limD Ĉ2

j and Ĉ1, Ĉ2 are independent. (The asymptotic

behavior of Ĉi
j was found in Section 2.2, taking h = 3.) The final stage of the

algorithm sorts the 2-sorted and 3-sorted list. Denote the keys in list (4) by U1, U2, ...
and those in (5) by V1, V2, .... When we are about to insert V(j), we place it among

{U(1), . . . , U(j)} ∪ {V(1), . . . , V(j−1)}.
Then the overall number of comparisons (using the sentinel version of Insertion
Sort) is given by the sum

Sn = C1
n/3 + C2

n/3 + C3
n/3 + Ĉ1

n/2 + Ĉ2
n/2 + n+ In,

where all terms are independent, and In represents the number of inversions in
the list that is both 2-sorted and 3-sorted. From our previous discussion, only the
limiting distribution of In is as yet unknown.

Regard theX’s, Y ’s, and Z’s as three independent sets of n/3 i.i.d. observations,
uniformly distributed on (0, 1), giving rise to a set of n points in (0, 1). Associate
to each of these points a triple giving the parity of the numbers of X’s, Y ’s, and
Z’s, respectively, that precede the point; for example, the triple OEO means that
the number of X-predecessors is odd, the number of Y -predecessors is even, and
the number of Z-predecessors is odd. Let

N4 := number of points of types OEO,EOE.

The next lemma is key to the analysis.
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LEMMA 2. An inversion in the 2-sorted and 3-sorted list occurs when, and
only when, the key causing the inversion is of type OEO or EOE. Hence In is equal
to N4, the number of keys of type {OEO,EOE}.

The proof of this is given in Smythe and Wellner (2002).

We have now reduced the search for In to a simple urn model. The eight parity
triples may be thought of as the states of a stochastic process. Initially the urn
contains n/3 balls of each type (X,Y, Z). At each stage a ball is drawn at random
from the urn and its type recorded, and the process continues until all the balls are
drawn. At stage k, the process is in state, say, OEO, if the first k balls drawn include
an odd number of X’s, an even number of Y ’s, and an odd number of Z’s. Thus N4,
which simply counts the number of times the process is in state OEO or EOE, has
a direct combinatorial interpretation, and one might hope for a simple proof of its
asymptotic normality. The difficulty with this urn model is that the probabilities of
drawing the different types of ball at a given stage depend not just on the previous
state encountered, but on the actual numbers of each type previously drawn, so the
evolution of the process is complicated (and non-Markovian).

Smythe and Wellner (2002) circumvent this difficulty by a kind of Poissoniza-
tion argument to define a Markov chain on a state space formed by refining the
original state space to keep track of the type of ball drawn at each stage. Identifying
conditional distributions resulting from this process with the distribution of N4, the
problem reduces to proving that the conditional distribution of the limit equals the
limit of the conditional distribution. This seemingly obvious ”fact” is not always
true for non-independent summands, and the proof requires a local limit theorem
for Markov chains due to Kolmogorov (1962). We finally arrive at the limiting
distribution of the 1-stage of (3, 2, 1)-Shell Sort:

THEOREM 3. (In − n/4)/
√
n −→ limD N (0, 3/32).

It would appear that the general argument outlined here would apply also to
the final stage of (h, 2, 1)-Shell Sort for any odd h, and we would expect to get a
normal limit. However, even for h = 5, the combinatorial difficulties are formidable,
and computing the limiting variance is itself a challenge.

3. Quick Sort

Quick Sort (Hoare, 1961) is a very efficient divide-and-conquer algorithm for
large data sets. Roughly, it works in the following way:

Given a list of n keys, an element is selected (by one of several means) to be
called the pivot. Its position is located in the sorted list by comparisons with every
other element in the list. As these comparisons are made, the remaining n − 1
elements are separated into two groups. Those greater than the pivot are moved
to the right of the pivot’s final position, and those less are moved to the left. The
pivot is moved to its correct position between the two groups. The algorithm is
then applied recursively to the two groups to the left and right of the pivot until
groups of size 1 are obtained.
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Quick Sort makes, on average, 2nln n comparisons to sort n keys, but its worst
case behavior is O(n2). This suggests that the distribution of the number of com-
parisons will have a long right tail. It turns out that the limiting distribution does
indeed have a long right tail, and is far from normal. There are two distinct ap-
proaches to finding a limiting distribution for Quick Sort, one using martingale
theory (Regnier 1989) and one using a fixed-point argument (Rösler, 1991). The
martingale method is elegant but gives little useful information about the limit dis-
tribution. The fixed-point method has proven to be useful in problems of finding a
(or several) particular order statistics (Mahmoud et al (1995), Grübel and Rösler,
(1996)).

The data movement to accomplish sorting, involving comparison of the pivot
to the other keys, can be done in several ways; Mahmoud (2000) presents an im-
plementation taking n − 1 comparisons. Let Cn again denote the total number of
comparisons used by Quick Sort to sort a data array of size n. The partitioning
to either side of the pivot moves the pivot to a random position Pn, uniformly
distributed on the integers 1, 2, . . . , n. The key recurrence reflecting the divide-and-
conquer strategy of Quick Sort is

Cn =
D

lim CPn−1 + Ĉn−Pn + n − 1, (6)

where C0 = C1 = 0, Ĉj = limD Cj , and the collections {Cj} and {Ĉj} are inde-
pendent. Here the first (second) summand indicates that Quick Sort will be applied
recursively to the elements to the left (right) of the pivot, and n − 1 accounts for
the partitioning stage. This relation quickly yields the expected value of Cn (Hoare,
1962):

E(Cn) = 2(n+ 1)Hn − 4n,

where Hn :=
∑n

j=1
(1/j). This gives the asymptotic relation E(Cn) ≈ 2nln n. The

recurrence may also be exploited to yield the variance of Cn (Knuth (1973)):

V ar(Cn) ≈ (7− 2π2/3)n2.

These results suggest that the appropriate normalization for a limit theorem would
be

C∗
n =

Cn − 2nln n

n
.

Regnier’s (1989) result proves more than convergence in distribution:

THEOREM 4 C∗
n −→ lima.s. C, where C is a square-integrable random

variable.

Regnier shows that [Cn − E(Cn)]/(n+ 1) is an L2-bounded martingale, which
therefore converges a.s. to a square-integrable random variable; Hoare’s represen-
tation of E(Cn) then completes the proof.

Unfortunately, this result is not easily exploited to gain information about the
limiting random variable. Rösler’s (1991) approach is better suited to this task.
He proved that the limiting random variable C is the fixed point of a contraction
mapping, using the Banach fixed-point theorem. We present a brief description of
his approach.
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The basic recurrence relation (6) may be manipulated to give

C∗
n =

D

lim
Pn − 1

n
C∗

Pn−1 +
n− Pn

n
C̃∗

n−Pn
+ Gn(Pn),

where

Gn(x) =
1

n

[
2(x− 1)ln(x− 1) + 2(n− x)ln(n− x)− 2nlnn

]
+
n− 1

n
,

and for each j, C̃∗
j = limD C∗

j , and the collections {C∗
j } and {C̃∗

j } are independent.

Using the fact that (Pn−1)/n −→ limD U , where U is Uniform(0, 1), and overlook-
ing some technical issues involving non-independence of the summands,, one might
expect that if C∗

n converges to C, this limit should satisfy

C =
D

lim UC + (1− U)C̃ + G(U),

where U is independent of C, C̃ is an independent copy of C, and

G(u) := 2ulnu + 2(1− u)ln(1− u) + 1. (7)

Rösler proves this convergence by a contraction argument on the space of distribu-
tions, using the Wasserstein distance of order 2 (cf., for example, Barbour, Holst
and Janson (1992), who note that convergence in this metric implies the usual weak
convergence of probability distributions, plus convergence of the first two moments.)

THEOREM 5. C∗
n converges a.s. to a random variable C satisfying the dis-

tributional functional equation

C =
D

lim UC + (1− U)C̃ + G(U),

where U is Uniform(0, 1), U,C, and C̃ are independent, C̃ = limD C, and G satisfies
the equation (7).

A substantial amount of work has been devoted to discerning properties of the
limiting distribution C. Although no explicit form is known for it, a number of its
properties have been established. In the paper establishing his proof, Rösler (1991)
showed that the moment generating function existed, and Hennequin (1991) found
all the cumulants of the distribution. McDiarmid and Hayward (1996) provided
exponential tail bounds, confirming the right skewness; Cramer (1996) showed that
the log normal provides a reasonable approximation of the distribution. Tan and
Hajicostas (1995) proved that C has a density with respect to Lebesgue measure
on the entire real line.

If one’s interest is in finding a particular, or several, order statistics, a variant
of Quick Sort, known as Find, was also developed by Hoare(1961). Probabilistic
analyses of this algorithm for finding a given percentile or a random order statistic
were given by Grübel and Rösler (1996) and Mahmoud, Modarres and Smythe
(1995). Both of these use the recursive nature of the procedure to set up functional
equations satisfied by the limit distribution, but the former problem is considerably
more technical. Both papers derive some properties of the limiting distributions.
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Abstract. This expository paper presents the information theoretic framework for
reliability analysis in which measuring information, inference, and information di-
agnostics are done in a unified manner. The whole range of available information
theoretic reliability analysis methods are presented. An overview of the basic infor-
mation functions, their properties, and many examples are discussed. It is our hope
that this paper sets a tone for the direction of future work in the development of
models for reliability using information theoretic approach.

1 Introduction

The concept of information provides a unifying theme for seemingly diverse prob-
lems and the information theory provides a unifying framework for principal activi-
ties in modeling and data analysis (Soofi 1994, 2000). In Ebrahimi and Soofi (1998),
we summarized three information theoretic lines of research that have been evolved
in reliability analysis. The first line of research is developing information functions
that are specifically suitable for reliability analysis. The second area of research is
developing various entropy-based diagnostics and tests of distributional hypothe-
sis which are useful for reliability model building. The third information theoretic
line of research, which has wide applications in reliability, is developing measures
that quantify the amount of information about the immediate future contained in
the past. In this paper, we update these developments in the context of reliability
analysis and elaborate on these and other information theoretic developments.

More specifically, in this paper we follow a general theme that comparison of
probability distributions is pivotal to statistical methodologies. In many cases the
comparison is explicit. For example, hypothesis testing states the problem in terms
of a comparison between the null and alternative models. However, in some cases
like the maximum likelihood estimation the comparison between distributions is
shown to be not so explicit (Akaike 1973, Soofi 1992). The foundation of information
theoretic approaches is based on the discrimination information between probability
distributions. In reliability analysis, the comparison often requires identifying the
subset of the space that provides most suitable discrimination information functions
for the problem at hand. We discuss various information functions in terms of
discrimination information, outline their properties, and present many examples
that have applications in reliability analysis.

The organization of this paper is as follows. Section 2, pertains to the Kullback-
Leibler information function. Section 3 focuses on the entropy. Section 4 discusses
mutual information. Section 5 focuses on the residual life distribution. Finally,
Section 6 outlines some statistical applications.

� Under review for publication in Mathematical Reliability: An Expository Perspec-
tive, T. A. Mazzuchi, N. D. Singpurwalla, and R. Soyer (eds.), Kluwer.
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2 Discrimination Information Function

Consider the problem of discriminating between two probability models F and G
for a random prospect X that ranges over the space S. Given an observation X = x,
Bayes’ theorem relates the likelihood ratio to the prior and posterior odds in favor
of F as follows:

log
f(x)

g(x)
= log

P (F |x)
P (G|x) − log

P (F )

P (G)
, (1)

where f and g are probability density (mass) functions, and P (·) and P (·|x) denote
the prior and posterior probabilities of the model. As the difference between the
posterior and prior log-odds, the logarithm of the likelihood ratio log[f(x)/g(x)]
quantifies the information in X = x in favor of F against G (Kullback 1959).

Suppose that x is not given, but it is known that the observation is in a set
x ∈ E ⊆ S where E is not a set of measure zero. Then by taking expectation
in (1),we obtain the mean information per observation x ∈ E from F for the
discrimination in favor of F against G

K(f : g;E) ≡ 1

Pf (E)

∫
E

(
log
f(x)

g(x)

)
dF (x), (2)

where Pf (E) =

∫
E

dF (x) > 0. When there is no specific information on the where-

abouts of x, other than x ∈ S, the mean observation per x from F for the discrim-
ination information between F and G is

K(f : g) ≡
∫ (

log
f(x)

g(x)

)
dF (x), (3)

given that F is absolutely continuous with respect to G.

The discrimination information function (3) introduced by Kullback and Leibler
(1951) is the fundamental information measure for comparing two distributions. It
is also referred to as cross-entropy and relative entropy and generalizes two infor-
mation functions, entropy and mutual information, developed by Shannon (1948).
It is also interpreted as the information in F with respect to G (Savage 1954).

Suppose that E ⊆ S is a set of interest in a problem and the distributions
of interest are the conditional (truncated) distributions f(x|E) = f(x)/Pf (E) and
g(x|E) = g(x)/Pg(E). Then the mean information per observation x from F for the
discrimination between the two conditional distributions of X, given x ∈ E ⊆ S, is

K[f(x|E) : g(x|E)] =
1

Pf (E)

∫
E

(
log
f(x|E)

g(x|E)

)
dF (x) (4)

= K(f : g;E)− log
Pf (E)

Pg(E)
, (5)

where K(f : g;E) is defined in (2). That is, the discrimination information between
the two conditional distributions is equal to the mean information for discrimination
in favor of F against G, given E, minus the logarithm of the likelihood ratio of E
under the two distributions F and G. The discrimination information function (4)
is particularly useful for reliability analysis (see Section 5).
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2.1 Properties of the Discrimination Information

The properties of K(f : g) for discrete and continuous distributions are the same.
Some properties of K(f : g) are as follows (Kullback 1959):

(a) K(f : g) ≥ 0. Equality holds if and only if f(x) = g(x) almost everywhere.
Therefore, K(f : g) is a measure of discrepancy between the two distributions.
K(f : g) is not symmetric and thus is not a distance function (see Kullback
1987). It is a measure of directed divergence between f and g, where g is referred
to as the reference distribution. The symmetric version of (3), J(f : g) = K(f :
g) +K(g : f), was used by Jeffreys (1946) as a measure of divergence between
two distributions, but not as an information function.

(b) For mutually independent random variables X1, · · · , Xn,

K[f(x1, · · · , xn) : g(x1, · · · , xn)] =

n∑
i=1

K[f(xi) : g(xi)]. (6)

(c) For any two random variables X and Y ,

K[f(x, y) : g(x, y)] = K[f(x) : g(x)] + Ex {K[f(y|x) : g(y|x)]} (7)

= K[f(y) : g(y)] + Ey {K[f(x|y) : g(x|y)]} .
Thus, for example, K[f(x, y) : g(x, y)] ≥ K[f(x) : g(x)]; the equality holds
if and only if the expected discrimination information between the respective
conditional distributions is zero.

(d) Let E ⊆ S with Pg(E) > 0. Then,∫
E

(
log
f(x)

g(x)

)
dF (x) ≥ Pf (E) log

Pf (E)

Pg(E)
, (8)

with equality if and only if
f(x)

g(x)
=
Pf (E)

Pg(E)
for all x ∈ E. The left-hand-side of

(8) is the mean information in the elements of E for discrimination between F
and G. The right-hand-side is the discrimination information in the set E.

(e) Let {Ej , j = 1, · · · , J}, be a partition of S with πj = Pf (Ej) and pj = Pg(Ej) >
0. Let π = (π1, · · · , πJ)′ and p = (p1, · · · , pJ)′. Then

K(f : g) ≥ K(π : p) =

J∑
j=1

πj log
πj

pj
. (9)

The inequalities (8) and (9) imply that grouping of observations generally lead
to loss of discrimination information.

(f) Let Y = T (X) be a transformation and let fY (y) and gY (y) denote the distri-
butions induced by T on fX(x) and gX(x). Then K(fY : gY ) ≤ K(fX : gX)
with equality if and only if

fY (T (x))

gY (T (x))
=
fX(x)

gX(x)
, (10)

for almost all x. If condition (10) holds, T is a sufficient statistic for discrimi-
nation. When the distributions are indexed by a parameter θ , K(fY : gY ) ≤
K(fX : gX) with equality if and only if Y = T (X) is a sufficient statistic for θ.
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(g) Given g, K(f : g) is convex in f and given f , K(f : g) is convex in g. Therefore,
for a class of distributions K(f : g) may be minimized with respect to either f
or g, given the other.

(h) Let f = fθ and g = fθ+Δθ belong to the same parametric family where θ and
θ +Δθ are two neighboring points in the parameter space Θ, then

K(fθ : fθ+Δθ) ≈ 2(Δθ)2F(θ),

where

F(θ) ≡
∫ [

∂ log f(x|θ)
∂θ

]2
dF (x|θ). (11)

F(θ) is Fisher information. Fisher used F(θ) for the purpose of quantifying
information in f(x|θ) about the parameter,a measure of information in the sense
that it quantifies “the ease with which a parameter can be estimated” by x
(Lehmann 1983, p. 120). Thus F(θ) can be interpreted in terms of the expected
information in x for discrimination between the neighboring points in Θ.

(i) An approximation given in Theil (1971) provides a Chi-square calibration. If π
and p are two probability vectors with πj ≈ pj for all j = 1, · · · , J , then

K(π : p) ≈ 1

2

J∑
j=1

(πj − pj)
2

πj
.

(j) The following lower bound for the discrimination information is given by Ho-
effding and Wolfowitz (1958):

K(f : g) ≥ − log[1− 1

4
V 2(f : g)], (12)

where V (f : g) =
∫ |f(x) − g(x)|dF (x) is the variation distance between two

distributions. Other bounds in terms of V (f : g) are given in Kullback (1967).

Often a normalized discrimination information index is needed. For the contin-
uous case the index is computed by the following transformation of K(f : g):

I(f : g) = 1− e−K(f :g); (13)

see, e.g, Soofi, Ebrahimi, and Habibullah (1995). A value I(f : g) ≈ 0 indicates
that the two distributions are very close and I(f : g) ≈ 1 indicates that the two

distributions are far apart. By (12),
√
I(f : g) ≥ V (f : g), which may be used

for calibration of the discrimination information (Carota, Parmigiani, and Polson
1996).

2.2 Minimum Discrimination Information

The most important application of the convexity property of K(f : g) is Kullback’s
Minimum Discrimination Information (MDI) principle for probability modeling and
statistical inference. The MDI principle of modeling considers the moment class of
distributions:

Ωθ = {f(x|θ) : Ef [Tj(X)|θ] = θj , j = 0, 1, · · · , J} , (14)
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where Tj(X) are integrable functions with respect to the density, T0(x) = θ0 = 1,
and θ = (θ1, · · · , θJ) is a vector of moment parameters. Then, by the MDI Theorem
(Kullback 1959, p.38), the discrimination information between any f ∈ Ωθ and a
distribution g is

K(f : g|θ) ≥ log η0 + η′θ = K(f∗ : g|θ), (15)

with the equality in (15) if and only if

f(x|θ) = f∗(x|θ) = η0g(x)e
η′T (x), (16)

where η = (η1, · · · , ηJ), ηj = ηj(θ) is the vector of Lagrange multipliers, T (x) =
[T1(x), · · · , TJ(x)]′, and η0 = η0(η) is the normalizing constant. For recent develop-
ments in MDI approaches see Soofi and Retzer (2002).

2.3 Examples

Next we demonstrate some important properties of (3) through several examples.

Example 2.1: Bernoulli families

The discrimination information between two Bernoulli distributions, π(x|πj) =
πx

1π
1−x
2 , x = 0, 1, π1 + π2 = 1 and p(x|pj) = px

1p
1−x
2 , x = 0, 1, p1 + p2 = 1,

is

K(π : p) = π1 log
π1

p1
+ π2 log

π2

p2
. (17)

McCulloch (1989) proposed the discrimination information between the flips
of a fair coin and a biased coin, K(.5 : p) as a calibration of K(f : g). Such a
calibration may be interpreted in light of (9).

(a) Binomial distributions
The discrimination between two binomial distributions f(x|n, π) and f(x|n, p)
is

K(f1 : f2|n, π, p) = nπ1 log
π1

p1
+ nπ2 log

π2

p2

= nK(π : p),

where K(π : p) is the discrimination information between two Bernoulli distri-
butions (17). The second equality demonstrates (6) and shows that the discrimi-
nation information between two joint distributions of the sample of independent
and identical Bernoulli variables X1, · · · , Xn. We note that the discrimination
information for the sample of n trials is the number of trials times the discrim-
ination information per trial. Here, the joint discrimination is the same as that
for the n-fold Bernoulli convolution.
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(b) Negative binomial distributions
The discrimination between two negative binomial distributions f1(x|r, π) and
f2(x|r, p) is

K(f1 : f2|r, π, p) = r log
π1

p1
+
rπ2

π1
log
π2

p2

= rK(G1 : G2|π, p)
=
r

π
K(π : p),

where K(G1 : G2|π, p) is discrimination information between two geometric dis-
tributions and K(π : p) is the discrimination information between two Bernoulli
distributions shown in (17). . The second equality shows that the discrimination
information for the negative binomial sample is the number of successes times
the discrimination information for the number of trials needed for each success.
The last equality shows that the discrimination information for the negative
binomial sample is the expected number of trials under f1, times the discrim-
ination information per trial. Thus the discrimination information for the two
types of sampling are the same if and only if r/π1 = n.

(c) Binomial with random number of trials
Consider independent and identical Bernoulli variables X1, · · · , XN when N is
a Poisson random variable with distributions hj(n|λj), j = 1, 2 corresponding
to π(x) and p(x). Then, by (7), the joint discrimination information for the N
trials is

K[f1(x, n) : f2(x, n)] = K(h1 : h2|λj) + E(N |λ1)K(π : p)

= λ1(φ− log φ− 1) + λ1K(π : p), (18)

where φ = λ2/λ1.

Example 2.2: Gamma family

Consider the gamma family with density

f(x|α, λ) =
λα

Γ (α)
xα−1e−λx, x > 0, λ > 0, α > 0.

The discrimination information between any two gamma distributions, fj(x|αj , λj), j =
1, 2, is given by

K(f1 : f2|αj , φ) =

[
log
Γ (α2)

Γ (α1)
+ (α1 − α2)ψ(α1)

]
+ α1(φ− log φ− 1)

= K(f1 : f2|αj) + α1K(f1 : f2|φ),
where φ = λ2/λ1 and ψ(·) is the digamma function. We note that the first term
is the discrimination information between the shapes of the two distributions and
the second term is the discrimination information between the scales of the two
distributions.

Next we compute the discrimination information for some special cases of in-
terest.
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(a) Common shape Gamma
The discrimination information between two gamma distributions that have a
common shape, fj(x|α, λj), j = 1, 2 is

K(f1 : f2|α, φ) = α(φ− log φ− 1) (19)

= αK(E1 : E2|φ), (20)

where K(E1 : E2|φ) is the discrimination information between two exponential
distributions, fj(x|λj), j = 1, 2. For the ease of interpretation let α = n, an
integer.

(i) Then, fj(x|n, λj), j = 1, 2 is the density of the distribution of the waiting
time to the nth event is a Poisson process with rate λj . Let’s compareK(f1 :
f2|n, φ) with the first term in (18), which is the discrimination information
between the respective Possion distributions. The first expression (19) for
K(f1 : f2|n, φ) is the Poisson discrimination information (18) in which the
expected number of events λ1 is replaced with the actual number of events
n.

(ii) This case may also be interpreted analogously to the binomial sampling dis-
cussed above. When α = n is an integer, the second expression (20) is the
discrimination information between the two joint distributions of the sam-
ple of independent and identical exponential variables X1, · · · , Xn. Thus,
by (6), the discrimination information for the sample of n observations is
the number of observations times the discrimination information per obser-
vation.

(b) Common scale Gamma
The discrimination information between the shapes of two gamma distributions
that have a common scale, fj(x|αj , λ), j = 1, 2, is

K(f1 : f2|αj) = log
Γ (α2)

Γ (α1)
+ (α1 − α2)ψ(α1).

Some specific cases of interest for the shape discrimination are as follows.

(i) The discrimination information between the gamma and exponential shapes
is

K(f1 : f2|α) = − logΓ (α) + (α− 1)ψ(α).

(ii) Let α1 = α2 + 1. Then,

K(f1 : f2|α2) = ψ(α2)− logα2 +
1

α2
.

Noting that ψ(z)− log z → 0 as z →∞, for large values of α2 there is little
discrimination information, as expected. For example, the discrimination
information between two chi-square distributions is

K(χ2
n+2 : χ2

n) = ψ
(
n

2

)
− log

(
n

2

)
+

2

n
,

which vanishes as n→∞.
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Example 2.3: Weibull family

Consider the Weibull family with density

f(x|α, λ) = λα(λx)α−1e−(λx)α

, x > 0, λ > 0, α > 0.

The discrimination information between any two Weibull distributions, fj(x|αj , λj), j =
1, 2, let φ = λ2/λ1, is given by:

K(f1 : f2|αj , φ) = log
α1

α2
+ φα2Γ

(
1 +

α2

α1

)
− α2 log φ+

(
1− α2

α1

)
ψ(1)− 1

A special case of interest is the discrimination information between the general
Weibull and exponential shapes, given by

K(f1 : f2|α) = logα+ Γ
(
1 +

1

α

)
+
(
1− 1

α

)
ψ(1)− 1.

Note that the functional relationship between the exponential and Weibull variables
constrains the relationship between the scale parameters such that φ = 1 when
λ1 = λ2 = 1.

Example 2.4: Systems of components

Consider a system that consists of n componentsX1, X2, . . . , Xn. HereX1, X2, . . . , Xn

are assumed to be independent with common density f , survival function F̄ and the
cumulative distribution function F . Consider another system with n components
Y1, . . . , Yn. Here Y1, . . . , Yn are assumed to be independent with common density
g, survival function Ḡ and the cumulative distribution G.

(a) Series components
It is clear that the lifetime of the first system is Z1 = min(X1, X2, · · · , Xn)
with the density function

fZ1(z) = n f(z) (F̄ (z))n−1.

Also, the lifetime of the second system is Z2 = min(Y1, · · · , Yn) with the density
function

fZ2(z) = n g(z) (Ḡ(z))n−1.

Now,

K(fZ1 : fZ2) = EfZ1

(
log
f(Z)

g(Z)

)
+ (n− 1)EfZ1

(
log
F̄ (Z)

Ḡ(Z)

)
. (21)

(b) Parallel components
In this case, Z1 = max(X1, · · · , Xn), Z2 = max(Y1, · · · , Yn), fZ1(z) = nf(z) Fn−1(z)
and fZ2(z) = ng(z) Gn−1(z), and

K(fZ1 : fZ2) = EfZ1

(
log
f(Z)

g(Z)

)
+ (n− 1)EfZ1

(
log
F (Z)

G(Z)

)
.

Note that in this case it is clear from equation (21) that if components lifetimes
are closed (not distinguishable), then the systems lifetimes will be also closed.
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3 Entropy

Shannon’s entropy (Shannon 1948) defined by

H(f) ≡ H[f(x)] = −
∫

log f(x)dF (x) (1)

is the entropy of f .

Entropy may be computed using the hazard (failure) rate function. For a non-
negative random variable X

H(f) = 1−
∫

(log λF (x))dF (x), (2)

where λF (x) =
f(x)

F̄ (x)
is the hazard rate, F̄ (x) = 1 − F (x) denotes the survival

(reliability) function (Teitler, Rajagopal, and Ngai 1986).

The entropy is a discrimination information function in the following sense:

K(f : U) = H(U)−H(f), (3)

where U denotes the uniform distribution. (For simplicity, a finite support is as-
sumed in (3). The infinite support case may be written in terms of limits.)

By the entropy-information relation (3), the negative entropy −H(f) measures
lack of uniformity (concentration of probabilities) under f . With a less concentrated
distribution, it is more difficult to predict an outcome. Thus, −H(f) is a measure
of informativeness of f about the prediction of its outcomes (Zellner 1971). This is
in accordance with the fact that −H(f) = Ef [log f(X)] is the average log-height of
the density. Accordingly, a distribution f1 is more informative than f2 if and only
if

ΔH(f2, f1) ≡ H(f2)−H(f1) = K(f1 : U)−K(f2 : U) ≥ 0.

For a set of interest E ⊆ S, we may define the entropy of the set H(f : E) and
the entropy of the conditional (truncated) distribution H[f(x|E)] similarly to (2)
and (4).

For two random variables X1 and X2, with the joint density f(x1, x2) the joint
entropy, H(X1, X2), and the partial entropy of X2 given a particular value X1 = x1

denoted by H(X2|x1), are obtained by replacing f(x) in (1) by f(x1, x2) and the
conditional density f(x2|x1), respectively. The expected entropy of the conditional
density

H(X2|X1) =

∫
H(X2|x1)dF1(x1) (4)

is generally referred to as the conditional entropy of X2 given X1.
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3.1 Properties of Entropy

(a) In the discrete case with a finite support, entropy is non-negative, but the en-
tropy of a continuous random variable X takes values in [−∞,+∞].

(b) In the discrete case, entropy is invariant under one-to-one transformations of
X, but the entropy of a continuous random variable X is not invariant under
one-to-one transformations of X. If Y = T (X) is a transformation function,
then

H(Y ) = H(X)− E
[
log
∣∣∣ d
dX
T−1(Y )

∣∣∣ ] . (5)

(c) For mutually independent random variables X1, · · · , Xn,

H(X1, · · · , Xn) =

n∑
i=1

H(Xi). (6)

(d) The entropy of an n-dimensional random vector (X1, · · · , Xn)′ is decomposable
as

H(X1, · · · , Xn) =

n∑
i=1

H(Xi|X1, · · · , Xi−1), (7)

where H(Xi|X1, · · · , Xi−1) is the conditional entropy of Xi given the other
variables. Hence, in general decomposition of a joint entropy is order-dependent.

(e) The entropy H(f) is concave in f .

3.2 Maximum Entropy

One of the principal activities in science is assessing distribution functions and ran-
dom prospects based on partial information. The Maximum Entropy (ME) principle
of scientific inference (Jaynes 1957) serves this purpose.

The ME distribution is the one that maximizes (1) with respect to f subject
to the set of constraints in (14), which reflect the partial knowledge about f . The
ME model in (14) is given by (15) with g(x) = 1,

f∗(x|θ) = η0e
η′T (x), (8)

Therefore, for any f ∈ Ωθ ,

H[f(x|θ)] ≤ − log η0 − η′θ = H[f∗(x|θ)], (9)

where the equality is attained by the ME distribution (8). The MDI inequality (15)
generalizes the entropy inequality (9) by a sign reversal. Note that when g is uniform
in K(f : g), by the entropy-information relation (3), the MDI and ME procedures
are equivalent. The MDI is referred to as the Minimum Cross-Entropy principle.
For the rationale and axiomatic justifications of the ME and MDI principles see
Jaynes (1968), Shore and Johnson (1980) and Csiszar (1991).

An interesting and very important ME result is obtained when F is a distribu-
tion with support of the entire real line and Ωθ =

{
f(x|θ) : E|X|k ≤ θ

}
. Then for

θ <∞, k > 0, we have the following entropy-moment inequality:

H(X) ≤ 1

k
log

2keΓ k(1/k)θk

kk−1
. (10)
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The equality in (10) is attained by the density

f∗(x) = η0e
−η|x|k , η > 0. (11)

Note that k = 1 gives double-exponential (Laplace) distribution and k = 2 give
normal (Gaussian) distribution.

Table 1. Examples of Entropy and Variance Orderings of Distributions.

Family & Density Variance Entropy Ordering

Exponential

f(x) =
e−λx

λ

1

λ2
− log λ + 1 ↓ λ

Gamma

f(x) =
xα−1e−x

Γ (α)
α log Γ (α) + (1 − α)ψ(α) + α ↑ α

Inverse Gamma For α > 2,

f(x) =
e−x−1

x−α−1

Γ (α)

1

(α − 1)2(α − 2)
log Γ (α) − (1 + α)ψ(α) + α ↓ α > 2

Generalized-normal

f(x) =
xα−1e−x2

2Γ (α/2)

α − 2Γ2(α/2 + 1/2)

2Γ2(α/2)
log

Γ (α/2)

2
+

α + (1 − α)ψ(α/2)

2
↑ α

Pareto For α > 2,

f(x) = αx−α−1, x > 1
1

α(α − 1)2(α − 2)
− log α +

1

α
+ 1 ↓ α > 2

Weibull

f(x) = αxα−1e−xα
Γ (1 + 2/α) − Γ2(1 + 1/α) − log α +

(α − 1)γ

α
+ 1 ↓ α > γ

γ = 0.5772 · · ·

Beta log[B(α, β)] ↑ α, (α, β) ∈ Rα

f(x) =
xα−1(1 − x)β−1

B(α, β)

αβ

(α + β + 1)(α + β)2
−(α − 1)[ψ(α) − ψ(α + β)] ↓ α, (α, β) ∈ Sα

−(β − 1)[ψ(β) − ψ(α + β)] ↑ β, (α, β) ∈ Rβ
↓ β, (α, β) ∈ Sβ

Definitions of the regions Rα, Sα, Rβ , and Sβ :

Rα =

{
(α, β) : α <

√
(β + 1)(9β + 1) − (β + 1)

4

}
Sα =

{
(α, β) : α > 1 −

(β − 1)ψα(α + β)

ψα(α) − ψα(α + β)

}

Rβ =

{
(α, β) : β <

√
(α + 1)(9α + 1) − (α + 1)

4

}
Sβ =

{
(α, β) : β > 1 −

(α − 1)ψβ(α + β)

ψβ(β) − ψβ(α + β)

}

3.3 Entropy and Variance Orderings

Ebrahimi, Maasoumi and Soofi (1999a,b) have discussed ordering of distributions
on the basis of variance and entropy and given conditions where these two order-
ing are equivalent. Unlike variance which measures concentration only around the
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mean, entropy measures diffuseness of the density irrespective of the location(s) of
concentration. Table 1 gives examples of variance and entropy orderings of some
well known distributions extracted from Ebrahimi, Maasoumi and Soofi (1999a).
The arrows in Table 1 indicate the entropy and variance in the family decrease (↓)
or increase (↑) with the parameter. As shown in Table 1, for most distributions
variance and entropy order the distributions over the parameter space similarly.
However, we note that this is not always true. For example, variance and entropy
order the Weibell family differently when α < γ, where γ is the Euler number.
For gamma, inverse-gamma, Pareto, and Weibull, the scale parameter λ = 1. By
(5), H(λX) = H(X) − log λ, hence both entropy and variance are decreasing in
λ. The case of beta family is more complicated. The two measures order the beta
family similarly only over certain regions in the parameter space, Rα, Rβ , Sα, and
Sβ defined in the table.

Furthermore, for a distribution the variance may not be defined when the en-
tropy is finite, e.g., inverse gamma and Pareto distributions shown in the table.
However, as may be seen from the entropy-moment inequality (10), with k = 2 a
finite entropy is implied by a finite variance.

4 Mutual Information

The information provided by a particular value X = x about Y is given by the
amount of uncertainty difference

ΔH[f(y), f(y|x)] = H(Y )−H(Y |x).

The uncertainty difference is positive (negative) when conditional density f(y|x) is
farther (closer) to uniformity than the marginal density f2(y).

The mutual information (Shannon 1948) is defined by the expected entropy
difference,

M(X,Y ) ≡ Ex[H(Y )−H(Y |x)] (1)

= H(Y )−H(Y |X) (2)

= H(Y ) +H(X)−H(X,Y ) (3)

= K[f(x, y) : f1(x)f2(y)], (4)

where H(Y |X) is the conditional entropy defined in (4).

The mutual information is Shannon’s measure of the expected information
about the input signal Y transmitted through a noisy channel which transmits the
output signal X. As is apparent in (4), M(X,Y ) =M(Y,X) ≥ 0 and M(X,Y ) = 0
if and only if two variables are independent. Thus, M(X,Y ) measures the extent
of functional dependency between X and Y

Normalized mutual information indices between two variables are obtained as
follows. For the continuous case, (13) is used,

I(X,Y ) ≡ I[f(x, y) : f1(x)f2(y)] = 1− e−2M(X,Y ). (5)
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For the discrete case,

I(X,Y ) ≡ I[f(x, y) : f1(x)f2(y)] =
M(X,Y )

HM
, (6)

where HM denotes a base uncertainty, e.g., HM = max{H(X), H(Y ), or HM =
H(Y ) if Y is the variable about which the uncertainty reduction is of interest. Note
that I(X,Y ) = 0 if and only if the two variables are independent, and I(X,Y ) = 1
if and only if the two variables are functionally dependent (Joe 1989).

Mutual information between a random variable Y and an n-dimensional random
vector X is

M(Y,X) = H(Y )−H[Y |(X1, · · · , Xn)]

=

n∑
i=1

M(Y,Xi|X1, · · · , Xi−1),

where M(Y,Xi|X1, · · · , Xi−1) is the partial mutual information. The latter is in-
terpreted as a measure of the remaining dependency between Y and Xi after con-
trolling for the dependency between Y and (X1, · · · , Xi−1).

4.1 Expected Information About Parameter

When X is data and Y is a random parameter θ with a prior distribution over Θ,
then the mutual information referred to as Lindley’s measure of information in the
data about about the parameter (Lindley 1956), given by

M(Θ,X) = H(Θ)−H(Θ|X) (7)

= Ex{K[f(θ|x) : f(θ)]}. (8)

Lindley’s measure has been successfully applied in developing information loss
(gain) diagnostics for experimental design, censoring, and many other statistical
problems, see Ebrahimi and Soofi (1998) and references therein.

Bernardo (1979) provided an expected utility interpretation of M(Θ,X) based
on (8), which is now prevalent in Bayesian literature. The reference priors are
obtained by maximizingM(Θ,X) with respect to f(θ). In general, maximization of
M(Θ,X) does not give an explicit solution. Lindley (1961) showed that ignorance
between two neighboring values θ and Δθ in the parameter space implies that
M(Θ,X) ≈ 2(Δθ)2F(θ), where F(θ) is Fisher information.

In (7) the expectation is taken with respect to the marginal distribution f(x).
Zellner (1971) defined an information function as the difference between the prior
entropy and the entropy of the sampling distribution (likelihood), averaged with
respect to the prior distribution EθH[f(x|θ)]. Zellner’s measure of information in
the data about the parameter is

Z(Θ) ≡ H(Θ)−H(X|Θ) (9)

= Eθ{K[f(x|θ) : f(θ)]}.
This function is not a mutual information. The second expression gives an inter-
pretation of Z(Θ) in terms of the discrimination information function between the
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likelihood and the prior. Zellner (1997) gave a new interpretation of Z(Θ) in terms
of “the total information provided by an experiment over and above the prior” de-
fined as I(Exp) ≡ H(Θ)−H(Θ,X) = −Eθ[H(X|θ)], where H(Θ,X) is the entropy
of the joint distribution. The Maximal Data Information Prior (MDIP) maximizes
Z(Θ). The MDIPs are in the form of p(θ) ∝ exp{−H[f(y|θ)]}.

Example 4.1: Pedagogical Example

Consider three bivariate distributions shown in Table 2. For each case, the condi-
tional distributions f(y|x), x = 0, 1, 2 and their entropies are also shown in the
right panel of the Table. The information measures for the three distributions are
shown in the lower panel of the table. In all three cases, H(Y ) = .67.

Table 2. Information measures for three bivariate distributions.

Joint and marginal distributions Entropies of conditional distributions
a) f(x, y) general bivariate distribution

x x
y 0 1 2 f2(y) y 0 1 2
0 0 .25 .15 .40 0 0 .50 .60
1 .25 .25 .10 .60 1 1 .50 .40

f1(x) .25 .50 .25 H(Y |x) 0 .69 .67

b) f(x, y) when X and Y are independent
x x

y 0 1 2 f2(y) y 0 1 2
0 .10 .20 .10 .40 0 .40 .40 .40
1 .15 .30 .15 .60 1 .60 .60 .60

f1(x) .25 .50 .25 H(Y |x) .67 .67 .67

c) f(x, y) when X and Y are related functionally
x x

y 0 1 2 f2(y) y 0 1 2
0 .20 0 .20 .40 0 1 0 1
1 0 .60 0 .60 1 0 1 0

f1(x) .20 .60 .20 H(Y |x) 0 0 0

(a) (b) (c) Related
Information measure General Independent Functionally
Marginal Entropy H(Y ) .67 .67 .67
Conditional Entropy H(Y |X) .52 .67 0
Mutual Information M(X,Y ) .15 0 .67
Information Index I(X,Y ) 23% 0% 100%

In the general case (a), we note thatH(Y ) > H(Y |x = 0), H(Y ) < H(Y |x = 1),
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and H(Y ) = H(Y |x = 2). That is, x = 0 reduces uncertainty (is informative) about
outcome of Y , x = 1 increases uncertainty about outcome of Y , and x = 2 leaves
the uncertainty unchanged. However,H(Y ) > H(Y |X), indicating that, on average,
knowledge of X reduces uncertainty about outcomes of Y . The mutual information
M(X,Y ) = .15 quantifies this average uncertainty reduction. The fraction of un-
certainty reduction, computed using the normalized index (6) with HM = H(Y ),
is I(X,Y ) = 23%.

In case (b), the bivariate distribution has the independent structure. The en-
tropies of the conditional distributions (shown in the right panel of the Table)
are all equal to the marginal entropy H(Y ) = .67. Thus, the amount of average
uncertainty is H(Y |X) = .67, there is no uncertainty reduction, and I(X,Y ) = 0%.

In case (c), the variables are related functionally, P (Y = 2X − X2) = 1. The
entropies of the conditional distributions (shown in the right panel of the Table)
are all zero, hence no uncertainty about the outcomes remains when an X = x is
available for the prediction of Y . Therefore, the mutual information is equal to the
marginal entropy M(X,Y ) = H(Y ) = .67 and the normalized is I(X,Y ) = 100%.
However, we note that the correlation coefficient ρ(X,Y ) = 0 due to the fact that
the functional relationship between Y and X is nonlinear.

Example 4.2: To survive or to fail?

Abel and Singpurwalla (1994) considered the lifetime of an item X with the ex-
ponential distribution with mean E(X|θ) = θ and failure rate λ and posed the
following questions: Which of the two outcomes, survival or failure, in a small in-
terval (t0, t0 +Δt0) is more informative about θ and λ? They provided an answer
using a gamma prior for λ with density p(λ|α, β) ∝ λα−1 exp(−βλ). The implied
prior for the mean θ = 1/λ is inverse gamma. The posterior distributions for λ ∈ Λ
and θ ∈ Θ are gamma and inverted gamma with a shape parameter α(α + 1) and
a scale parameter (t0 + β).

The information provided by the data (survival or failure) about λ and θ are
quantified by the differences between entropies of respective prior and posterior
distributions:

Iλ(survival) = H(Λ)−H(Λ|survival) = log
t0 + β

β
(10)

Iλ(failure) = H(Λ)−H(Λ|failure) = log
t0 + β

β
+ (Hα −Hα+1) (11)

Iθ(survival) = H(Θ)−H(Θ|survival) = log
β

t0 + β
(12)

Iθ(failure) = H(Θ)−H(Θ|failure) = log
β

t0 + β
+
(
Hα −Hα+1 +

2

α

)
,(13)

where Hα is the entropy of the gamma distribution with shape parameter α and
scale equal one, shown in Table 1.

As shown in Table 1,Hα is increasing in α, soHα−Hα+1 < 0, which implies that
Iλ(survival) > Iλ(failure). Abel (1991) has shown that for α ≥ 1, the quantity
Hα − Hα+1 + 2/α > 0, which implies that Iθ(failure) > Iθ(survival). Thus, a
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survival is more informative about the failure rate λ and a failure is more informative
about the mean θ.

Also note that Iλ(survival) = −Iθ(survival) < 0. Furthermore, Iλ(survival) is
increasing in t0 and Iθ(survival) is decreasing in t0. For any t0 > 0, Iλ(survival) >
0 and Iθ(survival) < 0. That is, a survival is always informative about the failure
rate, but always increases uncertainty about the mean. The case is not so clear for
Iλ(failure) and Iθ(failure).

The expected information about the parameters are given by the mutual infor-
mation:

M(Λ, Y ) = Iλ(survival)P (survival) + Iλ(failure)P (failure) > 0

M(Θ, Y ) = Iθ(survival)P (survival) + Iθ(failure)P (failure) > 0,

where Y is a binary random variable that indicates survival and failure in interval
(t0, t0 +Δt0).

Finally, let λ̂ and θ̂ be the Maximum Likelihood Estimate (MLE) of λ and
θ. Then, Fisher information (11) gives the following results: Fλ̂(survival) = t20 >
0 and is increasing in t0; Fθ̂(survival) = t−2

0 > 0 and is decreasing in t0; but
Fλ̂(failure) = Fθ̂(failure) = 0. Thus, Fisher information (11) does not provide a
meaningful answer to the question of interest in this problem when a failure occurs
in (t0, t0 +Δt0).

Example 4.3: Multivariate normal

Consider (Y,X1, · · · , Xp) with (p+ 1)-variate normal distribution.

(a) Let X = (X1, · · · , Xp)′. Then X has p-variate normal distribution with covari-
ance ΣX = [σij ].

(i) The entropy of conditional distribution f(xi|xj) is

H(Xi|Xj = xj) =
1

2
log(2πe) +

1

2
log[(1− ρ2ij)σii],

where ρij is the correlation coefficient. Thus, H(Xi|Xj = xj) is a function
of the correlation and variance and is independent of the value xj .

(ii) The mutual information between any pair (Xi, Xj), i �= j is just the entropy
difference,

M(Xi, Xj) = H(Xi)−H(Xi|Xj = xj)

= −1

2
log(1− ρ2ij) ≥ 0.

The mutual information index is I(Xi, Xj) = ρ2ij . This reflects the fact
that for the multivariate normal variables, stochastic dependency and linear
dependency among X1, · · · , Xp are equivalent.
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(iii) The mutual information between the vector X and its components is given
by:

M [X , (X1, · · · , Xp)] =
1

2

p∑
j=1

log σjj − 1

2
log |ΣX |

=
1

2

p∑
j=1

log σjj − 1

2

p∑
�=1

log λ�,

where |ΣX | denotes the determinant, and λ� is the �th eigenvalue of ΣX .
The normalized index of dependency (5) is

I[X , (X1, · · · , Xp)] = 1− λ1 · · ·λp

σ11 · · ·σpp
.

Linear dependency is indicated by some λ� = 0, which leads to I[X , (X1, · · · , Xp)] =
1. On the other extreme, λj = σjj , j = 1, · · · , p if and only if X1, · · · , Xp

are mutually uncorrelated (independent) for which I[X , (X1, · · · , Xp)] = 0.

(b) It can be shown that for any set of given x1, · · · , xp, the entropy of conditional
distribution H[Y |(x1, · · · , xp)] is a function of the variances and covariances,
and is functionally independent of (x1, · · · , xp), and

Δ{H(Y ), H[Y |(x1, · · · , xp)]} = −1

2
log[1− ρ2(Y ;X1 · · ·Xp)] ≥ 0, (14)

where ρ2(Y ;X1 · · ·Xp) is the square of the multiple correlation between Y and
X1, · · · , Xp. Therefore by (14), any set of multivariate normal data (x1, · · · , xp)
is informative about Y .

(c) In this case, the mutual information is given by the entropy difference:

M(Y,X1, · · · , Xp) = EX [Δ{H(Y ), H[Y |(x1, · · · , xp)]}]
= −1

2
log
[
1− ρ2(Y ;X1 · · ·Xp)

]
= −1

2

p∑
i=1

log
[
1− ρ2(Y ;X1 · · ·Xi)

]
,

where ρ2(Y ;X1 · · ·Xp) is the square of the multiple correlation between Y and
X1, · · · , Xp and ρ2(Y ;X1 · · ·Xi) is the square of the partial correlation between
Y and Xi, given X1, · · · , Xi−1. The normalized index of dependency (5) is given
by the square of the multiple correlation I[Y, (X1, · · · , Xp)] = ρ2(Y ;X1 · · ·Xp).

5 Information in Residual Lifetime

Frequently, in reliability one has information about the current age of the system
under consideration. In such cases, the age must be taken into account when mea-
suring information. Ebrahimi and Kirmani (1996b,c) considered the situations when
age t must be taken into account.

If we think of a random variable X as the lifetime of a system then X is a
non-negative random variable. In this case, the set of interest is the residual life,
Et = {x : x > t}
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5.1 Residual Discrimination Information

Ebrahimi and Kirmani (1996b,c) proposed using the discrimination information
function between two residual life distributions for the system Ft(x) = P (X − t ≤
x|X > t) and Gt(x) = P (X − t ≤ x|X > t) implied by two lifetime distribu-
tions F (x) and G(x). The discrimination information between the two residual life
distributions is given by:

K(f : g; t) ≡ K(ft : gt) =

∫ ∞

t

ft(x) log
ft(x)

gt(x)
dx (1)

= K(f : g;Et)− log
F̄ (t)

Ḡ(t)
, (2)

where ft(x) = f(x)/Ḡ(t) and gt(x)/F̄ (t) denote the conditional densities, F̄ (t) =
Pf (Et) = 1 − F (t) and Ḡ(t) = Pg(Et) = 1 − G(t) are the survival functions, and
K(f : g;Et) is defined in (2). It is clear that for t0 = inf{x : F (x) = 1}, K(f :
g; t0) = K(f, g).

By (2), the discrimination information between two residual distributions is
equal to the mean information for discrimination in favor of F against G, given Et,
minus the logarithm of the likelihood ratio of of the survival of the system beyond
t under the two lifetime distributions F and G. By (4), for each t, t ≥ 0, K(f :
g; t) possesses all the properties of the discrimination information function (3). If
we consider t as an index ranging over Et, then K(f : g; t) provides a dynamic
discrimination information function indexed by t for measuring the discrepancy
between the residual life distributions Ft(x) and Gt(x). It can be shown that K(f :
g; t) is free of t if and only if the hazard functions are proportional, i.e., Ḡ(t) =
F̄ β(t), β > 0. For more details see Ebrahimi and Kirmani (1996b,c).

The following example demonstrates computation and usefulness of K(f, g; t).

Example 5.1: Systems of components

Consider again the systems of n components discussed in Example 2.4.

(a) Series components
For Z1 = min(X1, X2, · · · , Xn) and Z2 = min(Y1, · · · , Yn), the dynamic dis-
crimination information is given by

K(fZ1 : fZ2 ; t) = EfZ1|Z1>t

(
log
f(Z)

g(Z)

)
+(n−1)EfZ1|Z1>t

(
log
F̄ (Z)

Ḡ(Z)

)
+n log

Ḡ(t)

F̄ (t)
.

(b) Parallel components
For Z1 = max(X1, X2, · · · , Xn) and Z2 = max(Y1, · · · , Yn), the dynamic dis-
crimination information is given by

K(fZ1 : fZ2 ; t) = EfZ1|Z1>t

(
log
f(Z)

g(Z)

)
+(n−1)EfZ1|Z1>t

(
log
F (Z)

G(Z)

)
+log

1− [G(t)]n

1− [F (t)]n
.

Note that in both cases K(fZ1 : fZ2 ; 0) = K(fZ1 : fZ2) computed in Example
2.4.
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5.2 Residual Entropy

The entropy of residual life distribution is defined similarly as

H(X; t) ≡ H(f ; t) = −
∫ ∞

t

f(x)

F̄ (t)
log
f(x)

F̄ (t)
dx. (3)

As in (2), H(f ; t) may be computed using the hazard (failure) rate function,

H(f ; t) = 1− 1

F̄ (t)

∫ ∞

t

f(x) log λF (x)dx.

It is clear that for t0 = inf{x : F (x) = 1}, H(f ; t0) = H(f).

Like the entropy (1), the residual entropy (3) is a discrimination information
function as in (3). As before, let U(x) denote the uniform distribution with support
S = {x : a < x < b}. Then conditional distribution of X, given x > t is also
uniform, i.e., Ut(x) is uniform over (t, b) and

K(f : U ; t) = H(U ; t)−H(f ; t). (4)

Therefore H(f ; t) measures the uncertainty (or lack of predictability) of the
remaining life-time of a system of age t. It can be shown that the dynamic en-
tropy H(f ; t), like the failure rate and mean residual life, uniquely determines the
distribution function F . On the basis of the measure H(f ; t), we can define some
non-parametric classes of life distributions that are closely related to other classes
of life distributions, such as increasing failure rate (IFR) and decreasing failure rate
(DFR).

A survival function F̄ (F̄ (0) = 1) is said to have decreasing (increasing) un-
certainty or residual life (DURL (IURL)) if H(f ; t) is decreasing (increasing) in t.
One can easily show that for the exponential distribution H(f ; t) remains constant.
That is, uncertainty about lifetime does not change as the system ages. In fact,
the exponential distribution is both DURL and IURL. For further properties and
implications of H(f ; t), DURL and IURL classes see Ebrahimi (1996) and Ebrahimi
and Kirmani (1996a).

In reliability, there are many situations in which the hazard rate function λF (t)
must satisfy certain constraints. In fact, we argue that state of no knowledge about
physical characteristic of a system at all is hardly, if ever realistic and we would typ-
ically at least have some idea concerning physical behavior of a system. Ebrahimi,
Hamadani, and Soofi (1996) studied developing lifetime distribution through maxi-
mizing the entropy H(f) subject to monotonocity constraints on failure rate λF (t).
However, to produce a model for the data generating distribution function f un-
der these constraints the direct use of H(f, t) is more appropriate. Because, given
X > t we are interested in modeling distribution of Xt, the remaining lifetime of
a system of age t ≥ 0. When partial information is available about λF (t) we can
develop a model for Xt by maximizing H(f ; t) instead of H(f) in the ME problem;
see Ebrahimi (2000).
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5.3 Residual Mutual Information

We may define a dynamic version of mutual information by

M(Y,X; t1, t2) = K[f(x, y) : f1(x)f2(y); t1, t2] (5)

= K[f(x, y) : f1(x)f2(y);Et1,t2 ]− log
F̄ (t1, t2)

F̄1(t1)F̄2(t2)
(6)

where Et1,t2 = {(x, y) : x > t1, y > t2} the set of interest in this problem and

K[f(x, y) : f1(x)f2(y);Et1,t2 ] =
1

F̄ (t1, t2)

∫ ∞

t1

∫ ∞

t2

log

[
f(x, y)

f1(x)f2(y)

]
f(x, y) dxdy.

It is clear that for tj0 = inf{x : Fj(x) = 1}, j = 1, 2, M(Y,X; t10, t20) =M(Y,X).
The dynamic mutual information measures the extent of functional dependence of
remaining lifetimes of two systems that are already survived t1 and t2 respectively.
It is clear that if M(Y,X; t1, t2) = 0, then the residual lifetimes are independent.

Note that the dynamic mutual information M(Y,X; t1, t2) is defined in terms
of (4). In terms of the marginal and joint entropies M(Y,X; t1, t2) is given by

M(Y,X; t1, t2) =
F̄1(t1)F̄2(t2)

F̄ (t1, t2)
[H(Y ; t1) +H(X; t2)]−H(X,Y ; t1, t2). (7)

This is analogous to (3). It is possible to express M(Y,X; t1, t2) in terms of the
entropy difference and conditional entropy analogously to (1) and (2).

The following example demonstrates computation and usefulness ofM(X,Y ; t1, t2).

Example 5.2:

Consider a system that consists of two components. Suppose that the first compo-
nent has lifetime X, the second component has lifetime Y , and X and Y has the
Basu and Block’s joint density, see Block and Basu (1974),

f(x, y) =

⎧⎪⎪⎨⎪⎪⎩
λ1λ(λ2 + λ12)

λ1 + λ2
exp(−λ1x− (λ2 + λ12)y), x < y

λ2λ(λ1 + λ12)

λ1 + λ2
exp(−(λ1 + λ12)x− λ2y), x > y

where λ = λ1 + λ2 + λ12. The variables are independent when λ12 = 0.

The joint survival function is

F̄ (t1, t2) =
λ

λ1 + λ2
exp{−λ1t1−λ2t2−λ12 max(t1, t2)}− λ12

λ1 + λ2
exp{−λmax(t1, t2)},

(8)
The marginal densities and survival functions are, for k = 1, 2,

fk(x) =
λ(λk + λ12)

λ1 + λ2
exp{−(λk + λ12)x} − λ12λ

λ1 + λ2
exp{−λx},

F̄k(x) =
λ

λ1 + λ2
exp{−(λk + λ12)x} − λ12

λ1 + λ2
exp{−λx}.
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For t1 = t2 = t the bivariate survival function (8) simplifies to F̄ (t, t) = exp{−λt}.
In order to simplify the computation, we let t1 = t2 = t. From equation (2.7),

M(X,Y ; t, t) = log
F̄1(t)F̄2(t)

F̄ (t, t)
+

1

F̄ (t, t)

∫ ∞

t

∫ ∞

t

f(x, y) log f(x, y)dx dy

− 1

F̄ (t, t)

2∑
k=1

F̄3−k(t)

∫ ∞

t

fk(x) log fk(x)dx.

One can show that:

log
F̄1(t)F̄2(t)

F̄ (t, t)
= −2 log(λ1 + λ2) + log[λ2 exp{−λ12t} − λλ12 exp{−(λ1 + λ12)t}

−λλ12 exp{−(λ2 + λ12)t}+ λ2
12 exp{−λt}].

∫ ∞

t

∫ ∞

t

(log f(x, y))f(x, y) dx dy =
(
λ1 log a1 + λ2 log a2

λ1 + λ2
− λt− 2

)
e−λt,

where ak =
λkλ(λ3−k + λ12)

λ1 + λ2
, k = 1, 2.

∫ ∞

t

fk(x) log fk(x)dx = F̄k(t) log
λ(λk + λ12)

λ1 + λ2
−
[

(λk + λ12)λt+ λ

λ1 + λ2

]
e−(λk+λ12)t

+
λ12(λk + λ12)(λt+ 1)

λ(λ1 + λ2)
e−λt

−
∞∑

k=1

(
λ12

λk + λ12

)k λ(λk + λ12)

k(λ1 + λ2)(λk + kλ3−k + λ12)
e−(λk+kλ3−k+λ12)t

+

∞∑
k=1

(
λ12

λk + λ12

)k λλ12

k(λ1 + λ2)(kλ3−k + λ)
e−((kλ3−k+λ))t.

Here if we put t = 0, then the result coincides with the one given by Ahsanullah
and Habibullah (1996).

Suppose that λ1 = λ2 = λ12 = 1, then

M(X,Y ; t, t) = −2 log 2 + log
[
9e−t − 6e−2t + e−3t

]
+(log 3− 2− 3t)e−t

[
{3t− 6(e−t − 1)(log 3− 1)}e−2t −

(
1

2
log 3− 1

3
− t
)
e−3t

−3

∞∑
k=1

1

2kk(k + 2)
e−(k+2)t + 3

∞∑
k=1

1

2k+1k(k + 3)
e−(k+3)t

]
.
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We note that as t→∞, M(X,Y ; t, t)→ 0, indicating that as the components age
the dependency between their remaining lives are weakened.

6 Information Statistics

In this section, we outline some statistical applications of the information functions
discussed above. This line of research still provides numerous rich theoretical and
applied problems for the future.

6.1 Covariate Information Index

Covariate information indices are measures that quantify the impact of a set of
variables X = (X1, · · · , Xp) on the distribution of another variable Y . The most
well-known measure of covariate information is the R2 of regression. The R2 is
meaningfully interpretable for the Gaussian case. This is shown to be the case
in various information theoretic formulations. We have seen in Example 4.3 that
when the variables are jointly normal, the conditional entropy H(Y |x1, · · · , xp)
is functionally independent of x1, · · · , xp. In this case, the mutual information is
just the entropy difference, M(Y,X) = H(Y ) − H(Y |x1, · · · , xp), and the sample
counterpart of the normalized mutual information I(Y,X) is the R2 of regression.

A formulation that is particularly useful for reliability analysis is the gener-
alization of R2 in the context of the exponential family regression. Consider the
regression problem E(Y |X ,β) = Xβ, where Y = (Y1, · · · , Yn) is the random vec-
tor of responses, X = [xij ] is an n× p matrix of given covariate values xij , and β
is the p×1 vector of regression parameters. Suppose that the distribution of Y has
a density in the exponential family

fη(y) = h(y) exp{η′y − Ψ(η)},
where η ∈ H is the vector of natural or canonical parameters, Ψ(η) is the normal-
izing function, and h(y) is a parameter-free function.

When the covariance matrix is positive definite, the relation between η ∈ H
and E(Y ) = μ ∈ M is one-to-one. For any member of the exponential family, the
discrimination information has the sequential additive properties for nested linear
subspaces of the natural parameter space H and the expectation parameter space
M (Kullback 1971, Simon 1973). The covariate information index for exponential
family regression is derived based on the additivity of information in the natural
parameter space.

Let ηr = Xrβr, where Xr is an n× r full-rank matrix and ηs = Xsβs, where
Xs is an n× s full-rank submatrix of Xs, r ≤ s ≤ n. Then

K(fη∗ : fη∗
s
) = K(fη∗ : fη∗

r
) +K(fη∗

r
: fη∗

s
), (1)

where η∗ , η∗
r , and η∗

s are the MDI estimates (Simon (1973) used the MLE). Hastie
(1997) formulated the exponential family regression estimation in terms of (1) with

η∗ |y = η∗(y), η∗
r |y = η∗

r (ȳ), and (η∗
r |y = μ̂) = η∗

r (Xβ̂).
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Covariate information for exponential family regression is

Iȳ(X) =
K(fμ̂ : fȳ)

K(fy : fȳ)
= 1− K(fy : fμ̂)

K(fy : fȳ)

For the normal regression problem, Iȳ(X) = R2. More relevant distributions for re-
liability applications are exponential and gamma. Cameron and Windmeijer (1997)
tabulated the covariate index Iȳ(X) for several distributions in the exponential
family. For example, the index for the Gamma family is

Iȳ(X) = 1−
∑

log(yi/μ̂) + (yi/μ̂)− 1∑
log(yi/ȳ)

.

6.2 Distributional Fit Diagnostics

The discrimination information function and entropy have been instrumental in
the development of indices of fit of parametric models to the data. Given data
x1, · · · , xn from a distribution F , it is important to assess whether the unknown
F (x) can be satisfactorily approximated by a parametric model F ∗(x|θ). The loss of
approximating F (x) by a parametric model F ∗(x|θ) is measured by K(f : f∗|θ). In
order to assess the loss of approximation the unknown data-generating distribution
F (x) by a model F ∗(x|θ), the discrimination information K(f : f∗|θ) must be
estimated. In general, estimation of (3) directly is formidable.

Akaike considered approximating the unknown data-generating distribution
f(x) by a family of models f∗(x|θJ ) and estimating the model parameter θJ ,
including its dimension J, J = 1, · · · , L. Akaike (1973) showed that “choice of the
information theoretic loss function is a very natural and reasonable one to develop
a unified asymptotic theory of estimation.” The approximation loss is measured
by the information discrepancy K[f(x) : f∗(x|θ̃)]. The MDI or minimum relative
entropy loss estimate of θ is defined by

θ̃MDI = arg max
θ
K[f(x) : f∗(x|θ)]. (2)

The entropy loss has been used with frequentist and Bayesian risk functions in
various parametric estimation problems and for model selection; see Soofi (1997)
and references therein.

Akaike (1974) observed that decomposing the log-ratio in (3) gives

K(f : f∗|θ) = −Ef [log f∗(X|θ)]−H[f(x)], (3)

where H[f(x)] is the entropy of f . Since the entropy of the data-generating distri-
bution is free of the parameters, the second term in (3) is ignored in the derivation
of the AIC for model selection. The minimization of the information discrepancy
between the unknown data-generating distribution and the model is operationalized
by maximizing the average log-likelihood function in (3).

Since the AIC type measures are derived by minimizing the first term in (3)
and the second term is ignored, the AIC type measures provide criteria for model
comparison purposes only, and do not provide information diagnostic about the
model fit. An alternative approach for estimatingK(f : f∗|θ) when f is an unknown
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distribution is proposed by Soofi et al. (1995). They considered the moment class
(14) and showed that if f ∈ Ωθ and f∗ is the ME model in Ωθ , then the first term
in (3) becomes the entropy of f∗ and

K(f : f∗|θ) = H[f∗(x|θ)]−H[f(x|θ)]. (4)

This equality defines the information distinguishability (ID) between distributions
in Ωθ . The first term is the entropy of the parametric model ME (8) and the second
term is the entropy of a distribution which is unknown other than the density is
a member of a general moment class (14). Like the Akaike’s decomposition (3),
this decomposition proves to be quite useful for developing model selection criteria.
Ebrahimi (2001a) has given other conditions where equivalence of two entropies
implies that two distributions are equal.

ID statistics are obtained by estimating (3) via (4). The normalized ID index
for the continuous case is computed as:

ID(fn : f∗|θn) = 1− exp[−K(fn : f∗|θn)] (5)

= 1− exp{H[fn(x|θn)]−H[f∗(x|θn)]},
where fn is a nonparametric estimate with entropy H[fn(x|θn)] and moments θn =
(θ1,n, · · · , θA,n)′, and f∗ is the ME model in Ωθn

. An ID(fn : f∗|θn) = 0 indicates

the perfect fit; i.e., f∗ is a perfect parameterization of fn. A lower bound for (5) in
terms of variation distance is given by (12), ID(fn : f∗|θn) ≥ 1

4
V 2(fn : f∗|θn).

Implementation of ID indices of fit includes two steps. First, a parametric model
f∗(x|θ) is selected based on the maximum entropy characterization of the densities
of the parametric families. Many commonly known parametric families are shown
to admit ME characterization. On the other hand, for a parametric model, one may
easily identify the moment class Ωθ by writing the density in the exponential form
(8). The entropy expression (9) for the well known parametric families are tabulated,
see, e.g., Soofi et al. (1995). The second step for implementation of ID indices
is the nonparametric estimation of H[fn(x|θn)]. Various nonparametric entropy
estimates for continuous distributions are developed in the literature which can
be used as H(fn) in (5). However, maintaining the non-negativity of the estimate
of (5) is an important issue. For this purpose, the parameters of the maximum
entropy H[f∗(x|θn)] in (5) must be estimated by the moments of the density fn

whose entropy is H[fn(x|θn)]; for references and more details, see Soofi and Retzer
(2002).

For example, many current results in life testing are based on the assumption
that the life of a system is described by an exponential distribution. Of course, in
many situations this assumption is usually suspect. When F is a distribution with
support on the positive real line, then the exponentional distribution is the ME
model f∗(x|θ) in the moment class,

Ωθ = {f(x|θ) : E(X) ≤ θ} .
We can estimate θ using the mean θn of a nonparametric density estimate fn with
entropy H(fn) and compute the ID statistic ID(fn : f∗|θn). Then for large (small)
values of ID(fn : f∗|θn) we reject (accept) the exponential model for the data.

Developing ME fit indices is a very promising line of research. Recent develop-
ments includes Ebrahimi (1998, 2001b) who uses dynamic discrimination informa-
tion function for developing tests of exponentiality and uniformity of the residual
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lifetime, and Mazzuchi et al. (2000, 2002) who develop Bayesian estimation and
inference about entropy and the model fit.

6.3 Statistical Process Control

Alwan, Ebrahimi and Soofi (1998) using information functions (3) and (1) proposed
information theoretic process control (ITPC) as a framework which formalizes some
current SPC practices and broadens the scope of the SPC so that various types of
process parameters can be monitored in a unified manner. In the ITPC frame-
work, they developed signal charting procedures for monitoring of various types of
moments without a need for making distributional assumptions. The most impor-
tant feature of ITPC is that various monitoring problems are handled in a unified
manner based upon a criterion function (3).

The ITPC procedure for monitoring of moments consists of a three-step algo-
rithm. In the first step, the in-control moment values θ0 = (θ10, · · · , θJ0) are the
only available information. The n-control moment values are used as inputs to the
ME procedure which produces a model f∗0 (x|θ0) for the unknown distribution the
process variable X.

The second step is for estimating the distribution of the process variable X at
the monitoring state. At each stage t = 1, 2, · · · the information at hand are the ME
model for the in-control distribution and the data moments mt = (m1t, · · · ,mJt).
The MDI algorithm uses moments mjt (new information) and the initial ME model
f∗0 (x|θ0) as the inputs, minimizes K(ft, f

∗
0 ) with respect to ft and produces a new

model f∗t (x|mt) for the distribution of X at the monitoring state.

The third step is for detecting a change in the distribution of the process variable
between monitoring state and the in-control state. The process is monitored based
on the MDI function K(f∗t , f

∗
0 ). The final step is the most important feature of the

ITPC algorithm for monitoring moments because it solves the traditional problem of
constructing charts based on problem specific statistical criterion functions deemed
suitable for the problem at hand.

Alwan et al (1998) derived various MDI functions for ITPC charts, developed
examples of MDI control charts for the multivariate case and process attribute, and
discuss possibility of developing control charts for detecting distributional change
by application of (5).

As an example, Alwan et al (1998) examined the performance of the Information
Chart for monitoring mean and variance of the process variable. For monitoring of
mean and variance, the conventional SPC assumption of normality in not needed.
Whence the in-control parameters θ = (μ0, σ

2
0) are given, the model f∗(x|μ0, σ

2
0) =

N(μ0, σ
2
0) is found as the ME solution. At the monitoring stage, using the sample

mean and variance mt = (x̄t, s
2
t ) the MDI control function for the detecting mean

and/or variance shifts is

IMVt = 2nKt(f
∗
t : f∗0 |μ0, σ

2, x̄t, s
2
t ) =

n(x̄t − μ0)
2

σ2
0

+ n

[
s2t
σ2

0

− log
s2t
σ2

0

− 1

]
= IMt + IVt.
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The first term in IMt measures the information discrepancy due to the process
mean and the second term IVt measures the information discrepancy due to the
process variation.

The IM -chart constructed by plotting IMt is equivalent to the Shewhart mean
chart. Using μ0 for the mean in the monitoring state instead of x̄t gives IMt = 0
and we obtain the MDI control function for the process variance, IVt, shown in IVt.
Note that the term s2t/σ

2
0 of IVt is the chi-square statistic associated with the s2

control chart that detects shifts in process dispersion. Thus, IMVt embraces two
control charting procedures traditionally used for mean and variance as its special
cases.

6.4 Prediction Problems

The entropy-moment equality (10) is shown to play a key role in the prediction
problem (Shepp, Slepian, and Wyner 1980). Let Ŷ denote a predictor of Y . Then
(10) provides a sharp lower bound for the prediction error variance in terms of the
entropy of X = Y − Ŷ :

E(Y − Ŷ )2 ≥ e
2H(Y −Ŷ )

2πe
, (6)

with equality holding when Y − Ŷ is Gaussian. Using (6), Pourahmadi and Soofi
(2000) developed a sharp lower bound for the prediction error variance of non-
Gaussian ARMA processes. Their lower bound is for the variance of any unbiased
predictor.

As an example, consider the ARMA(1, 1) model

Yt − φYt−1 = Zt + θZt−1, φ+ θ �= 0, |φ| < 1, |θ| < 1,

where {Zt} is a sequence of i.i.d. random variables with mean zero and variance
σ2, called the innovation process. The model is stationary. For prediction of Y0 on
the past Yt, t = −1,−2, · · ·, a result of Pourahmadi and Soofi (2000) gives

E|Y0 − Ŷ0|2 ≥ e
2H(Z0)

2πe

log |θ|
log |φ| , (7)

with equality holding for Gaussian processes. Conceptually, the role of entropy in
(7) is the role of the inverse of Fisher information which provides a lower bound for
the variance of an unbiased estimator via the Cramer-Rao inequality.

When the distribution of the innovation in the ARMA process is known, H(Z0)
can be estimated parametrically. However, the more realistic and interesting case
is when the innovation distribution is unknown. Then a nonparametric estimate of
the entropy can be used as a yardstick against which to gauge the fits of various
competing parametric models assessed through their one step ahead prediction
error variances. For Gaussian data details of this idea has been worked out in
Mohanty and Pourahmadi (1996) and references therein. For the non-Gaussian
case, a nonparametric estimate of the innovation process entropy is needed.
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Abstract. Order statistics are used in analysis of various problems in many fields.
However, thus far not much has been explored about the information properties of
the order statistics and spacings between order statistics. We explore information
properties of order statistics based on the entropy, Kullback-Leibler information,
and mutual information. The probability integral transformation plays a pivotal
role in developing our results. We provide bounds for the entropy of order statistics
and some results that relate entropy ordering among order statistics to other well
known orderings of random variables. We show that the discrimination informa-
tion between order statistics and data distribution, the discrimination information
among the order statistics, and the mutual information between order statistics are
all distribution free and are computable using the distributions of the order statis-
tics of the samples from the uniform distribution. In the final section, we discuss
information properties of spacings for uniform and exponential samples and pro-
vide a large sample distribution free result on the entropy of spacings. The results
show interesting symmetries of information orderings among order statistics which
confirm intuition and provide useful insights about the information properties of
order statistics.

1 Introduction

Suppose that X1, · · · , Xn are independent and identically distributed observations
from an absolutely continuous distribution FX with density fX . The order statistics
of the sample is defined by the arrangement of X1, · · · , Xn from the smallest to
the largest, denoted as Y1 < · · · < Yn. It is well known that the distribution
Fi(y) = P (Yi ≤ y) has the following density:

fi(y) =
Γ (n+ 1)

Γ (n− i+ 1)Γ (i)
[FX(y)]i−1[1− FX(y)]n−ifX(y), i = 1, · · ·n, (1.1)

where for a positive integer z, Γ (z) = (z − 1)! is the gamma function.

Order statistics have been used in a wide range of problems, including in robust
statistical estimation and detection of outliers, characterization of probability distri-
butions and goodness-of-fit tests, entropy estimation, analysis of censored samples,
reliability analysis, quality control, strength of materials, waiting time until a big
event, selecting the best, records and allocation of prize in tournaments, inequality
measurement, speech processing, image and picture processing, echo removal, image
coding, filtering, spectrum estimation, acoustics, and edge enhancing; see Arnold,
Balakrishnan, and Nagaraja (1992), Wong and Chen (1990), Ebrahimi, Pflughoeft,
and Soofi (1994), and references therein. In spite of such a wide scope of applica-
tions, not much attention has been given to the study of information properties of
order statistics. We have been able to find only three papers on this topic. Wong
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and Chen (1990) showed that the difference between the average entropy of or-
der statistics and the entropy of data distribution is a constant. They also showed
that for symmetric distributions, the entropy of order statistics is symmetric about
the median. Park (1995) showed some recurrence relations for the entropy of order
statistics and Park (1996) provided similar results in terms of the Fisher informa-
tion.

In this paper, we develop several results on the properties of the entropy of
order statistics and on the Kullback-Leibler discrimination information functions
that involve order statistics. The probability integral transformation of the random
variable, U = FX(X), plays a pivotal role in developing our results. It is well known
that the distribution of U is uniform over the unit interval. The order statistics of
a sample from uniform distribution U1, · · · , Un are denoted by W1 < · · · < Wn and
Wi has beta distribution with density

gi(w) =
1

B(i, n− i+ 1)
wi−1(1− w)n−i, 0 ≤ w ≤ 1, i = 1, · · ·n, (1.2)

where B(z1, z2) = Γ (z1)Γ (z2)/Γ (z1 + z2).

This paper is organized as follows. Section 2 presents some results on the entropy
of order statistics. Section 3, gives some results on the discrimination information
function related to order statistics. Section 4 presents an asymptotic result on the
entropy of the spacings.

2 Entropy of order statistics and its Properties

The probability integral transformation provides the following useful representation
of entropy of the random variable X,

H(X) = −
∫ ∞

−∞
fX(x) log fX(x)dx

= −
∫ 1

0

log fX

(
F−1

X (u)
)
du.

Hereafter, the range of integrations will not be shown and should be clear from the
context.

The entropies of order statistics Y1, · · · , Yn are found by noting that Wi =
FX(Yi), i = 1, · · ·n. The transformation formula for the entropy applied to Yi =
F−1

X (Wi) gives the following representations of the entropy of order statistics:

H(Yi) = Hn(Wi)− Egi

[
log fX

(
F−1

X (Wi)
)]

(2.1)

= Hn(Wi)−
∫
fi(y) log fX(y)dy, (2.2)

where Hn(Wi) denotes the entropy of the beta distribution shown in (1.2). The
expression for beta entropy is

Hn(Wi) = logB(i, n−i+1)−(i−1)[ψ(i)−ψ(n+1)]−(n−i)[ψ(n−i+1)−ψ(n+1)],
(2.3)
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where ψ(z) =
d logΓ (z)

dz
is the digamma function. Noting thatHn(W1) = Hn(Wn) =

1 − log n − 1

n
, representation (2.2) generalizes proposition 6.1 of Park (1995) for

H(Y1) and H(Yn).

The following property of the beta entropy is used in the sequel.

Δn(i) = Hn(Wi)−Hn(Wi+1)

= [log(n− i)− ψ(n− i)]− [log i− ψ(i)] < 0 for i <
n

2
> 0 for i >

n

2
,

(2.4)

and for an even n, Δn(n/2) = 0. The inequalities in (2.4) are obtained by noting

that φ(z) = log z − ψ(z) is a decreasing function; φ′(z) =
1

z
− ψ′(z) < 0, where

ψ′(z) is the trigamma function (Mitrinovic, 1970, p. 228).

When FX has a closed form, the entropy of order statistics can be computed
using the entropy expression for the beta distribution (2.3) and evaluating the
expectation term in (2.1). As an application of the representation (2.1) consider
the following example.

Example 2.1 Let X be a random variable having the exponential distribution
FX(x) = 1− e−λx. For computing H(Yn), we find F−1

X (w) = −λ−1 log(1− w) and
the expectation term in (2.1),

Egi

[
log fX

(
F−1

X (Wi)
)]

= Egi [log λ+ log(1−Wi)]

= log λ+ ψ(n− i+ 1)− ψ(n+ 1). (2.5)

For the sample minimum i = 1, (2.3) gives Hn(W1) = 1 − log n − 1

n
. Evaluating

(2.5) and noting that ψ(n + 1) = ψ(n) +
1

n
, (2.1) gives H(Y1) = 1 − lognλ. Thus

in this case, (2.1) gives the result in accord with the known fact that the sample
minimum has an exponential distribution with parameter nλ. However, the case
of the sample maximum is more complicated. The distribution function of Yn is

Fn(y) =
(
1− e−λx

)n
and the density is fn(y) = nλ

(
1− e−λx

)n−1
e−λx. Noting

that Hn(Wn) = 1− logn− 1

n
, the formula (2.1) simply gives H(Yn) = 1− log n−

log λ + ψ(n) + γ, where γ = −ψ(1) = .5772 · · · is the Euler constant. Note that
H(Yn) − H(Y1) = ψ(n) + γ ≥ 0. The equality holds only when n = 1. That is
uncertainty about the maximum is always more than the minimum in exponential
samples. The asymptotic difference is H(Yn)−H(Y1) ≈ log(n) + γ. Finally, it can
be shown that for all i = 1, · · · , n− 1,

H(Yi+1)−H(Yi) =
1

n− i −Δn(i) ≥ 0.

The inequality can be seen from (3.3) in Section 3. That is the entropy of the ith
order statistic of sample from the exponential distribution is increasing in i.

The representation (2.1) also facilitates development of results about the en-
tropy of order statistics. The following theorem provides bounds for the entropy of
order statistics H(Yi) in terms of the entropy of data distribution H(X).
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Theorem 2.1. For any random variable X with entropy H(X) <∞ the entropy
of order statistics Yi, i = 1, · · · , n is bounded as follows:

(a) Let Bi denote the ith term of the binomial probability Bin(n−1, pi) , pi =
i− 1

n− 1
.

Then

Hn(Wi) + nBi[H(X) + I(A)] ≤ H(Yi) ≤ Hn(Wi) + nBi[H(X) + I(Ā)],

where

I(A) =

∫
A

f(x) log f(x)dx,

A = {x : f(x) ≤ 1}, and Ā = {x : f(x) > 1.
(b) Let M = fX(m) < ∞, where m = sup{x : fX(x) ≤ M} is the mode of the

distribution. Then

Hn(Wi)− logM ≤ H(Yi) ≤ Hn(Wi)− logM + nBi[H(X) + logM ].

Proof.

(a) The mode of the beta distribution gi(w) is pi. Thus,

gi(w) ≤ gi(pi) =
Γ (n+ 1)

Γ (i)Γ (n− i+ 1)
pi−1

i (1− pi)
n−i = nBi. (2.6)

Now,

−Egi

[
log fX

(
F−1

X (Wi)
)]

= −
∫
gi(w) log fX

(
F−1

X (w)
)
dw

= −
∫

A1

gi(w) log fX

(
F−1

X (w)
)
dw (2.7)

−
∫

Ā1

gi(w) log fX

(
F−1

X (w)
)
dw (2.8)

≤ −
∫

A1

gi(w) log fX

(
F−1

X (w)
)
dw

≤ nBi

[
−
∫

A1

log fX

(
F−1

X (w)
)
dw

]
= nBi

[
−
∫

A

fX(x) log fX(x)dx

]
= nBi

[
H(X) +

∫
Ā

fX(x) log fX(x)dx

]
,

where A1 =
{
w : fX

(
F−1

X (w)
)
≤ 1
}
, and Ā1 =

{
w : fX

(
F−1

X (w)
)
> 1}

}
. The

first inequality is obtained by noting that the integral in (2.8) is nonnegative.
The second inequality is obtained using (2.6). The lower bound of H(Yi) is
obtained similarly by noting that the integral in (2.7) is nonpositive.
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(b) Let Z =MX and Vi =MYi, i = 1, · · · , n denote the order statistics of Z. Then

fZ(z) =
1

M
fX

(
z

M

)
≤ 1 for all z. Noting that I(A) = −H(Z) and I(Ā) = 0,

from Part (a) we have

Hn(Wi) ≤ H(Vi) ≤ Hn(Wi) + nBiH(Z).

Using H(Z) = H(X) + logM and H(Vi) = H(Yi) + logM gives the result.

The bounds given in Theorem 2.1 are useful when the probability distribution
function FX does not have a closed form, and thus the density of ordered statistics
(1.1) and the beta expectation in (2.1) can not be easily evaluated. The entropy
expression for many well known distributions is available, and thus the bounds in
Theorem 2.1 are easily computable. When the bounds in both parts of Theorem
2.1 can be computed, one may use the maximum of the two lower bounds and the
mimimum of the two upper bounds.

Example 2.2 We compute the bounds for the entropies of the sample minimum
and maximum for some well known distributions. Noting Hn(W1) = Hn(Wn) =

1 − log n − 1

n
and B1 = Bn = 1, Part (b) of Theorem 2.1 gives the following

bounds:

1− log n− 1

n
− logM ≤ H(Yi) ≤ 1− log n− 1

n
− logM+n[H(X)+logM ], i = 1, n.

(2.9)

(a) For the uniform distribution over the interval [a, b],M = (b−a)−1 and H(X) =
log(b− a). Thus, the equalities in (2.9) hold.

(b) For the exponential distribution with parameter λ,M = λ andH(X) = 1−log λ.
Thus,

1− logn− 1

n
− log λ ≤ H(Yi) ≤ 1− logn− 1

n
− log λ+ n, i = 1, n.

As noted before, H(Y1) = 1 − log nλ. Thus, the difference between H(Y1) and
the lower bound is n−1, which vanishes as n→∞.

(c) The density function of Pareto distribution with parameters α and β is

fX(x) =
αβα

xα+1
for x ≥ β > 0, α > 0,

= 0 otherwise.

Here, M =
α

β
and H(X) = log

β

α
+

1

α
+ 1. Thus,

1− logn− 1

n
+ log

β

α
≤ H(Yi) ≤ 1− logn− 1

n
+ log

β

α
+
n

α
+ n, i = 1, n.

The distribution of Y1 is also Pareto with parameters nα and β. Consequently,
the difference between H(Y1) and the lower bound is n−1, which vanishes as
n→∞.
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(d) For any normal distribution with variance σ2 we have M = (2πσ2)−1/2 and

H(X) =
1

2
+

1

2
log 2πσ2. Thus,

1− logn− 1

n
+

1

2
log 2πσ2 ≤ H(Y1) = H(Yn) ≤ 1− logn− 1

n
+

1

2
log 2πσ2 +

n

2
.

The equality H(Y1) = H(Yn) follows from the result of Wong and Chen (1990) on
the symmetry of the entropy of order statistics of symmetric distributions.

Next we provide some results on the entropy of order statistics in terms of
ordering properties of distributions. We need the following definitions in which X
and Z denote random variables with distribution functions FX and FZ , density
functions fX and fZ , and survival functions F̄X(x) = 1 − FX(x) and F̄Z(z) =
1− FZ(z).

Definition 2.1. A nonnegative random variable X is said to have a decreasing (an
increasing) failure rate, (DFR (IFR)) if the failure rate (hazard function) λX(t) =
fX(t)/F̄X(t) is decreasing (increasing) in t ≥ 0. Equivalently, if F̄X(x+ t)/F̄X(t) is
increasing (decreasing) in t for all x ≥ 0.

Definition 2.2. The random variable X is said to be stochastically less than Z,
denoted by X ≤ limst Z, if F̄X(v) ≤ F̄Z(v) for all v.

Definition 2.3. The random variable X is said to be less than Z in dispersion
ordering, denoted byX ≤ limd Z, if and only if F−1

X (u)−F−1
X (v) ≤ F−1

Z (u)−F−1
Z (v)

for all 0 ≤ v < u ≤ 1.

Definition 2.4. The random variable X is said to be less than Z in likelihood

ratio ordering, denoted by X ≤ lim�r Z, if
fX(x)

fZ(x)
is decreasing in x.

Definition 2.5. The random variable X is said be less than Z in entropy ordering,
denoted by X ≤ lime Z, if H(X) ≤ H(Z).

It is well known that X ≤ limd Z implies X ≤ limst Z (Bickel and Lehmann
1976) and X ≤ lim�r Z implies X ≤ limst Z. It is also known that X ≤ limd Z
implies X ≤ lime Z (Oja 1981).

Theorem 2.2. Let X and Z be two nonnegative random variables. If Z ≤ limst X
and X is DFR, then Z ≤ lime X.

Proof. Let X be DFR with Z ≤ limst X. Then:

−H(Z) =

∫
fZ(z) log fZ(z)dz
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≥
∫
fZ(z) log fX(z)dz

=

∫
fZ(z) log λX(z)dz +

∫
fZ(z) log F̄X(z)dz

≥
∫
fX(z) log λX(z)dz +

∫
fX(z) log F̄X(z)dz

=

∫
fX(z) log fX(z)dz = −H(X).

The first inequality is implied by the nonnegativeness of Kullback-Leibler infor-
mation between fZ and fX . The second inequality is obtained using the following
result: Z ≤ limst X if and only if for any non-increasing function φ, EfZ [φ(Z)] >
EfX [φ(X)].

Corollary 2.2. Let X be a nonnegative random variable having a DFR. If
Yi ≤ limst X, then Yi ≤ lime X.

Example 2.3 It is well known that the sample minimum Y1 is stochastically
dominated by X. Thus for a DFR distribution, Y1 ≤ lime X. Important examples
of DFR distributions are gamma and Weibull distributions with shape parameters
less than one, Pareto distribution, and the mixtures of exponential distributions.
Theorem 2.2 and Corollary 2.2 apply to these and other DFR distributions. For
example, for the Pareto distribution discussed in Example 2.2, H(X) − H(Y1) =

log n+
1

α

(
1− 1

n

)
≥ 0, for all n ≥ 1.

Theorem 2.3. Let X be a random variable and let Yi, i = 1, · · · , n denote its
order statistics.

(a) If fX

(
F−1

X (x)
)

is non-decreasing in x, then H(Yi) is decreasing in i for i < n/2.

(b) If fX

(
F−1

X (x)
)

is non-increasing in x, then H(Yi) is increasing in i for i > n/2.

Proof.

(a) Using (2.1), we have

H(Yi+1)−H(Yi) = −Δn(i)+Egi

[
log
(
fX(F−1

X (Wi)
)]
−Egi+1

[
log
(
F−1

X (Wi+1)
)]
,

where Δn(i) is defined in (2.4).
Since order statistics are stochastically ordered, we have Wi ≤ limst Wi+1. Also
Wi ≤ limst Wi+1 implies that for any non-decreasing function φ, Egi [φ(Wi)] <
Egi+1 [φ(Wi+1)]. Thus H(Yi+1)−H(Yi) ≤ 0 and the result follows.

(b) The proof is similar to (a) and is omitted.

As an application of Theorem 2.3 consider the following example.
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Example 2.4 Let X be a random variable with the uniform distribution over
the unit interval. Noting that FX(x) = x, F−1

X (x) = x, and f
(
F−1

X (x)
)

= 1, both
conditions of Theorem 2.3 are satisfied. Thus, the entropy of the ith order statistic
is decreasing in i for i < n/2 and is increasing in i for i > n/2. This confirms (2.4).

Theorem 2.4. Let X and Z be two random variables and denote their order
statistics by Yi and Vi, i = 1, · · · , n, respectively. If X ≤ limd Z, then Yi ≤ lime Vi.

Proof. X ≤ limd Z, then Yi ≤ limd Vi, see Shaked and Shanthikumar (1994), and
hence Yi ≤ lime Vi.

3 Discrimination Information Function

This section discusses discrimination information between the distributions of order
statistics and the data distribution, the discrimination information between the dis-
tributions of the order statistics, and the mutual information between consecutive
order statistics.

3.1 Discrimination between order statistics and the data
distribution

The Kullback-Leibler discrimination information between the distribution of the
order statistics fi and the data distribution fX , is given by

Kn(fi : fX) = K(gi : U) =

∫
gi(w) log gi(w)dw

= −Hn(Wi),

where gi is the beta distribution (1.2) and U is the uniform distribution. The first
equality follows from U = FX(X) being a one-to-one transformation and Wi =
FX(Yi).

Therefore, the discrimination information between the distribution of order
statistics and the data distribution is distribution free and is only a function of
the sample size and the index i. As a function of i, Kn(fi : fX) is decreasing in i
for i < n/2 and is increasing in i for i > n/2. This is seen by noting that

Kn(fi+1 : fX)−Kn(fi : fX) = Δn(i),

where Δn(i) is defined in (2.4). That is, the information discrepancy between the
distribution of order statistics and data distribution decreases up to the median
and then increases. Thus, amongst the order statistics, the median has the closest
distribution to the data distribution.

We also note that Kn(fi : fX) = H(U) −Hn(Wi). That is, the discrimination
information between the distribution of order statistics and the data distribution is
the difference between the maximum entropy and the entropy of beta distribution
over the unit interval.
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The bounds in Theorem 2.1 provide the following bounds for the sum of the
entropy of order statistics H(Yi) and the relative entropy of order statistics Kn(fi :
fX) in terms of the entropy of data distribution:

nBi[H(X) + I(A)] ≤ H(Yi) +Kn(fi : fX) ≤ nBi[H(X) + I(Ā)]

and

− logM ≤ H(Yi) +Kn(fi : fX) ≤ nBiH(X) + (nBi − 1) logM.

Next result relates the average information discrepancy between the distribution
of the order statistics and the data distribution and the difference between the
average entropy of order statistics and the entropy of the data distribution.

Theorem 3.1. Let

K̄(fi : fX) =
1

n

n∑
i=1

Kn(fi : fX), and H̄(Y ) =
1

n

n∑
i=1

H(Yi)

Then,

K̄(fi : fX) = H(X)− H̄(Y ) = Cn, (3.1)

where

Cn = − 1

n

n∑
i=1

logB(i, n− i+ 1)− n− 1

2

is a constant.

Proof. The first equality in (3.1) is obtained by noting that

n∑
i=1

Kn(fi : fX) =

n∑
i=1

∫
fi(y) log

(
fi(y)

fX(y)

)
dy

=

n∑
i=1

∫
fi(y) log fi(y)dy −

n∑
i=1

∫
fi(y) log fX(y)dy

= −
n∑

i=1

H(Yi)−
n∑

i=1

∫
gi(Fx(y))fX(y) log fX(y)dy

= −
n∑

i=1

H(Yi)−
∫ n∑

i=1

nqi−1fX(y) log fX(y)dy

= −
n∑

i=1

H(Yi) + nH(X),

where qi−1, i = 1, · · · , n are binomial probabilities, Bin(n− 1, p), p = FX(x). The

last equality is noted by

n∑
i=1

qi−1 = 1.
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The second equality in (3.1) is obtained as follows:

n∑
i=1

Kn(fi : fX) =

n∑
i=1

∫
fi(y) log

(
fi(y)

fX(y)

)
dy

= −
n∑

i=1

logB(i, n− i+ 1)

+

n∑
i=1

∫
ifi(y) log[FX(y)]dy +

n∑
i=1

∫
(n− i)fi(y) log[1− FX(y)]dy.(3.2)

Now, letting j = i− 1 and U = FX(X), we obtain

n∑
i=1

∫
ifi(y) log[FX(y)]dy = n

∫ n−1∑
j=0

(n− 1)qjfX(y)FX(y) log[FX(y)]dy

= n(n− 1)EU (U logU)

= −n(n− 1)

4
.

The last equality is obtained by noting that U is uniform over the unit interval and
EU (U logU) = [ψ(2) − ψ(3)]/2 = −1/4. The second sum and integral in (3.2) can
be evaluated similarly. Noting that 1 − U is also uniform, we obtain −n(n − 1)/4
for the second sum and integral in (3.2), which completes the proof.

Wong and Chen (1990) proved the second equality in (3.1) through a tedious
induction. The probability integral transformation greatly simplifies the proof. By
Theorem 2 of Wong and Chen we also conclude that the average information dis-
crepancy between the distribution of the order statistics and the data distribution
is increasing in the sample size n.

Remark. The discrimination information between the data distribution and the
distributions of order statistics is

Kn(fX : fi) = logB(i, n− i+ 1) + n− 1.

In this case,

Kn(fX : fi+1)−Kn(fX : fi) = log
(

i

n− i
)
< 0 for i <

n

2
> 0 for i >

n

2
.

The average symmetric divergence between the distribution of the order statis-
tics and the data distribution is simply

J̄(fi, fX) = K̄(fi : fX) + K̄(fX : fi) =
n− 1

2
.
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3.2 Discrimination between order statistics

The discrimination information between distributions of ith and jth order statistics
is given by

Kn(fi : fj) = log
Γ (j)Γ (n− j + 1)

Γ (i)Γ (n− i+ 1)
− (i− j)[ψ(i)− ψ(n− i)]− i− j

n− i .

Consequently, we have

Kn(fi+1 : fi) =
1

i
+Δn(i),

and

Kn(fi : fi+1) =
1

n− i −Δn(i). (3.3)

The symmetric divergence is simply

Jn(fi+1, fi) = Kn(fi+1 : fi) +Kn(fi : fi+1) =
n

i(n− i) .

It can be shown that all three measures are decreasing for i ≤ (n + 1)/2 and
increasing for i ≥ (n + 1)/2. Moreover, the symmetric divergence is symmetric in
i and n − i. Therefore, the distribution of the consecutive order statistics become
closer to each other as they approach the median from either extremes.

Next we give a result on the discrimination information between the order
statistics in two samples.

Theorem 3.2. Let X and Z be two random variables and let fi and �i denote the
densities of their order statistics Yi and Vi, i = 1, · · · , n, respectively.

(a) If Z ≤ limst Yi and X ≤ lim�r Vi for an i < n/2, then Kn(fi+1 : �i+1) ≤ Kn(fi :
�i).

(b) If Z ≥ limst Yi+1 and X ≥ lim�r Vi+1 for an i > n/2, then Kn(fi+1 : �i+1) ≥
Kn(fi : �i), respectively.

Proof.

(a) Write

Kn(fi : �i) = Kn(fi : f) +

∫
fi(x) log

f(x)

�i(x)
dx

Therefore,

Kn(fi+1 : �i+1)−Kn(fi : �i) = Δn(i) +

∫
fi+1(x) log

f(x)

�i+1(x)
dx−

∫
fi(x) log

f(x)

�i(x)
dx

≤
∫
fi+1(x) log

f(x)

�i+1(x)
dx−

∫
fi(x) log

f(x)

�i(x)
dx

≤
∫
fi+1(x) log

f(x)

�i+1(x)
dx−

∫
fi+1(x) log

f(x)

�i(x)
dx

=

∫
fi+1(x) log

L̄(x)

L(x)
dx
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≤
∫
�(x) log

L̄(x)

L(x)
dx

= 0.

The first inequality comes from the fact that Δn(i) < 0. The second inequality
is due to the facts that Yi ≤ limst Yi+1 and X ≤ lim�r Vi. Finally, the last
inequality comes from the fact that Z ≤ limst Yi+1 and L̄(x)/L(x) is decreasing
in x. This completes the proof.

(b) The proof is similar to part (a) and is omitted.

As an application of Theorem 3.2 consider the following example.

Example 3.1 Let X and Z be two random variables having exponential distribu-
tions with parameters λ1 and λ2. Denote order statistics Yi and Vi, i = 1, · · · , n as
before. Take λ2 = n−1λ1, then it implies that X ≤ lim�r V1 and all the assumptions
in Theorem 3.2 hold.

3.3 Mutual information between consecutive order statistics

The sequence of order statistics Y1, · · · , Yn has a Markovian property. We can mea-
sure the degree of dependency among Y1, · · · , Yn by the mutual information between
consecutive order statistics

Mn(Yi, Yi+1) ≡ Kn(fi,i+1 : fifi+1)

=

∫ ∞

−∞

∫ yi+1

−∞
fi,i+1(yi, yi+1) log

(
fi,i+1(yi, yi+1)

fi(yi)fi+1(yi+1)

)
dyi dyi+1

where the joint density of (Yi, Yi+1), i = 1, · · ·n− 1 is

fi,i+1(yi, yi+1) =
Γ (n+ 1)

Γ (n− i)Γ (i)
[FX(yi)]

i−1[1− FX(yi+1)]
n−i−1fX(yi)fX(yi+1) for yi < yi+1,

= 0 otherwise.

The next Theorem gives the mutual informationMn(Yi, Yi+1) and its properties.

Theorem 3.3. Let X be a random variable with distribution fX(x) and let Yi, i =
1, · · · , n denote its order statistics.

(a) The mutual information between consecutive order statistics is distribution free
and is given by

Mn(Yi, Yi+1) = Mn(Wi,Wi+1)

= − log

(
n
i

)
− iψ(i)− (n− i)ψ(n− i) + nψ(n)− 1,

(3.4)

where Wi, i = 1, · · · , n are the order statistics of the sample from the uniform
distribution.
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(b) For a given sample size n, the mutual information between consecutive order
statistics is symmetric in i and n − i, increases in i for i < n/2, and decreases
in i for i > n/2.

(c) The mutual information Mn(Yi, Yi+1) is increasing in n.

Proof.

(a) The first equality in (3.4) follows from the fact that the mutual information
is invariant under one-to-one transformation, Wi = FX(Yi). Then the second
equality is obtained using the beta marginals (1.2) for i and i+ 1 and the joint
density

gi,i+1(wi, wi+1) =
Γ (n+ 1)

Γ (n− i)Γ (i)
wi−1

i (1− wi+1)
n−i−1 for 0 ≤ wi < wi+1 ≤ 1,

= 0 otherwise.

(b) The symmetry in i and n−i is clear in the expression (3.4). Taking the derivative
with respect to i and using the recurrence formula for the digamma function
give

M ′
n(Yi, Yi+1) = (n− i)ψ′(n− i+ 1)− iψ′(i+ 1).

To show that the derivative is positive for i < n/2 and negative for i > n/2,
it suffices to show that zψ′(z + 1) is increasing in z ≥ 1. Using the recurrence
formula for the trigamma function, we have

(z + 1)ψ′(z + 2) = (z + 1)

[
ψ′(z + 1)− 1

(z + 1)2

]
≥ zψ′(z + 1).

The inequality is obtained from ψ′(z + 1) ≥ 1

(z + 1)
.

(c) Similarly, the derivative with respect to n is M ′
n(Yi, Yi+1) = nψ′(n+ 1)− (n−

i)ψ′(n− i+ 1) > 0.

It is known that the order statistics are associated. That is for any two monotone
functions, T1(y1, y2, ..., yn) and T2(y1, y2, ..., yn), we have COV [T1(Y1, Y2, ..., Yn), T2(Y1, Y2, ..., Yn)] ≥
0, see Barlow and Prochan(1981). The mutual information Mn(Yi, Yi+1) captures
the extent of any form of functional dependency between the order statistics, in-
cluding the linear dependency. The invariance of Mn(Yi, Yi+1) under the integral
transformation of the random variable X is particularly important in this context.
Data from any arbitrary distribution FX can be obtained by transforming a sample
of uniform data u1, · · · , un by the inverse transformation xi = F−1

X (ui), i = 1, · · · , n.
The mutual information function Mn(Yi, Yi+1) preserves the dependency structure
of the order statistics of the uniform sample under the transformation.

By Part (b) of Theorem 3.2, the dependency between the consecutive order
statistics is symmetric about the median where the extent of the dependency is
the most. By Part (c), the extent of the dependency between consecutive order
statistics increases with the sample size.
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4 Spacings

The set of differences between consecutive order statistics, Si = Yi − Yi−1, i =
2, · · ·n, S1 = Y1, is referred to as sample spacings. Spacings from the uniform and
exponential distributions have elegant distributional structures and are usually used
as the benchmarks for studying spacings.

If X is a random variable with the uniform distribution over the unit interval
[0, 1], then Si, i = 1, · · ·n, are all identically distributed as a Beta(1, n) variable

W1 with density g1(w) shown in (1.2). Thus, Hn(Si) = Hn(W1) = 1 − log n − 1

n
,

Kn(fSi : fX) = −Hn(W1), and Kn(fSi : fSj ) = 0 for all i �= j.
For computing the mutual information between Si and Sj , we use the joint

entropy of the pairs of spacings (Si, Sj), i �= j, which are identically distributed
and have the following bivariate density,

fSi,Sj (s1, s2) = n(n− 1)(1− s1 − s2)n−2 for s1, s2 ≥ 0, s1 + s2 ≤ 1,
= 0 otherwise.

It can be shown that the joint entropy of this bivariate density is

Hn(Si, Sj) = − log[n(n− 1)] +
(
2− 1

n

)(
1− 1

n− 1

)
, for i �= j = 1, · · · , n.

Using Mn(Si, Sj) = Hn(Si) +Hn(Sj)−Hn(Si, Sj), we find that the mutual infor-
mation between any pair of spacings of the samples from the uniform distribution
is given by:

Mn(Si, Sj) = log
(
1− 1

n

)
+

1

n− 1
, for i �= j = 1, · · · , n

= log(1 + ρ)− ρ

1 + ρ
,

where ρ = ρij = −1/n is the correlation between the uniform spacings. Thus, as
n → ∞, the uniform spacings become less dependent as well as less correlated
random variables.

If the distribution of X is uniform over interval [a, b], then spacings may be
represented as Si = (b−a)Di, i = 1, · · ·n, where Di are spacings of the sample from
the uniform distribution over the unit interval [0, 1]. Thus, Hn(Si) = Hn(W1) +
log(b − a) and Hn(Si, Sj) = Hn(Di, Dj) + 2 log(b − a), but the discrimination
information functions and the mutual information remain unchanged.

If X has an exponential distribution with parameter λ, then its spacings may
be represented as

Si =
1

n− i+ 1
Xi, i = 1, · · · , n,

where Xi, i = 1, · · ·n are independent and identically distributed exponential ran-
dom variables with density fX(x) = λe−λx. Thus,

H(Si) = H(X)− log(n− i+ 1), i = 1, · · · , n.
That is, for the exponential samples, Si ≤ lime X for all i = 1, · · ·n and Si ≤ lime Sj

for i < j, j = 2, · · ·n. The discrimination information functions Kn(fSi : fX) and
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Kn(fSi : fSj ) are free of λ and are easily computable. Because of the independence,
Mn(Si, Sj) = 0 for all i �= j.

More generally, for any random variable X with failure rate λX(t), the spacings
admit the following representation:

Si =
1

(n− i+ 1)λX(ai)
Zi, (4.5)

where Z1, · · · , Zn are independent and identically distributed exponential random

variables FZ(z) = 1 − e−z and Ti−1 ≤ ai ≤ Ti with Ti =

i∑
j=1

1

n− i+ 1
Zi, i =

1, · · · , n; see Pyke (1965) for details.

The following theorem gives a large sample result for the entropy of spacings.

Theorem 4.1. Let X be DFR with spacings Si, i = 1, · · · , n. Then for large
n, H(Si) is increasing in i.

Proof. For large n, ai ≈ i

n
(Pyke, 1965). Using representation (4.5) with ai ≈ i

n
,

we have

H(Si) = H(Zi)− log(n− i+ 1)− log λX

(
i

n

)
The results is implied by the assumption that X is DFR.

This result is applicable to large samples from gamma and Weibull distribu-
tions with shape parameters less than one, Pareto distribution, and the mixtures
of exponential distributions.
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Estimation of the Multivariate Normal Mean
Under the Extended Reflected Normal Loss func-
tion

Towhidi, M. and Behboodian, J.
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Department of Statistics, Shiraz University,Iran.

Abstract. This paper considers simultaneous estimation of multivariate normal
mean vector using the extended reflected normal loss function (Spiring [9]). It is
shown that the sample mean X = (X̄1, . . . , X̄p)′ is admissible when p ≤ 2, but
for p ≥ 3, we obtain a class of estimators similar to James-Stein estimators which
dominate the sample mean in terms of risks.

Keywords. Admissibility, Inadmissibility, James-Stein Estimator, Reflected Nor-
mal Loss Function.

1 Introduction

Let X = (X1, . . . , Xp)′ be a normal vector with mean vector θ = (θ1, . . . , θp)′ and
covariance matrix σ2I, where σ2 is known. We use the notation
X ∼ Np(θ, σ

2I), in this article. We consider the simultaneous estimation of θ =
(θ1, . . . , θp)′ by using a random sample X1, . . . ,XN from Np(θ, σ2I) under the ex-
tended reflected normal loss function, given by

L(δ, θ) = K
[
1− exp{−(δ − θ)′Γ−1(δ − θ)}

]
(1.1)

where K > 0, Γ is a constant positive definite matrix. In practice the maximum
loss can be a function of many things (e.g., Production resources, cost of identifi-
cation, rework and liabilities) but generally it is finite. As a result the quadratic
loss function, with its infinite maximum loss, is often inadequate in describing the
loss function associated with a product and has been criticized by some researchers
(e.g., Tribus and Szonyi [13], Leon and Wu [8]). The bounded loss function (1.1) was
introduced by Spiring [9] for the first time. This loss is a bounded and increasing
function of the quadratic loss.

To estimate θ with N = 1 and σ = 1, Stein [10] showed that X is inadmissible
when p ≥ 3 under squared error loss. James and Stein [7] showed that the following
estimator, known as J-S estimator,

δ(X) =

(
1− p− 2∑p

i=1
X2

i

)
X

has uniformly smaller risk than X, for all θ. Strawderman [12], Efron and Morris
[6], and Casella and Hwang [4] studied the problem of estimating multivariate
normal mean vector under quadratic loss function. Brandwein and Strawderman [3]
provided minimax estimators for the mean of a spherically symmetric distribution
with concave loss. Chung and Kim [5] investigated the admissibility of the sample
mean X̄ under balanced loss function. (see Zellner [14])
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In section 2 of this paper, using the limiting Bayes method, we show that X̄ is
admissible when p ≤ 2 under the loss (1.1). In section 3, we obtain an estimator
similar to J-S estimator under the loss (1.1) when p ≥ 3, in the following form

δ∗(X̄) =

(
1− c∗

X̄′Γ−1X̄

)
X̄

and we show that δ∗ dominates the usual estimator X̄ = 1
N

∑N

i=1
Xi = (X̄1, . . . , X̄p)′,

where Xi = (Xi1, . . . , Xip)′ and X̄j = 1
N

∑N

i=1
Xij ; j = 1, . . . , p.

2 Admissibility of X̄ when p ≤ 2

In this section, we consider the admissibility of X̄ when p = 1 and 2. We show that
X̄ is admissibile, using the standard Blyth’s technique [2].

Let X1, . . . ,XN be a random sample from Np(θ, I) with the prior normal dis-
tribution πa(θ), where θ has the mean vector zero and covariance matrix 1

a
I. It is

easy to show that the Bayes estimator of θ w.r.t. πa(θ) under the extended reflected
normal loss function is

δa(X̄) =
NX̄

N + a

with the risk function,

R(θ, δa) = K

[
1− E

[
exp

{
−(

NX̄

N + a
− θ)′Γ−1(

NX̄

N + a
− θ)
}]]

= K[1− (
2π

N
)−

p
2

∫
exp{−(

Nx

N + a
− θ)′Γ−1(

Nx

N + a
− θ)

− N
2

(x− θ)′(x− θ)}dx]

Now using the fact that for any matrices C1 and C2 of appropriate dimensions,

(C1 + C2)
−1 = C−1

1 − C−1
1 (C−1

1 + C−1
2 )−1C−1

1 (2.1)

it follows that the risk function of the estimator δa is equal to

K[1− (
2π

N
)−

p
2 (
N + a

N
)p

∫
exp[−1

2
{(y − η)′(2Γ−1 +

(N + a)2

N
I)(y − η)

+(
a

N + a
)2θ′(

1

2
Γ +

N

(N + a)2
I)−1θ}]dy]

or

K

[
1− (N + a)p

Np/2
|2Γ−1 +

(N + a)2

N
I|− 1

2 exp

{
−1

2
(
a

N + a
)2θ′(

1

2
Γ +

N

(N + a)2
I)−1θ

}]
(2.2)

where η is a function of θ.
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Theorem 2.1: X̄ = (X̄1, . . . , X̄p)′ is admissible under the loss (1.1) when p = 1, 2,

where X̄j = 1
N

∑N

i=1
Xij , j = 1, . . . , p .

Proof: Suppose X̄ is dominated by some estimator δ(X̄) of θ. Using the continuity
of the risk function in θ for an estimator δ(X̄), it follows that there exists some
θ0, ε > 0 and ξ > 0 such that
R(θ, δ) < R(θ, X̄)− ε for all θ0 − ξ1 < θ < θ0 + ξ1
where 1 = (1, 1, . . . , 1)′.

Let ra, r
∗
a, r

∗∗
a be defined as follows:

ra = Bayes risk of the Bayes solution δa w.r.t. πa.
r∗a = Bayes risk of X̄ w.r.t. πa.
r∗∗a = Bayes risk of δ w.r.t. πa.
Then the difference of Bayes risks of X̄ and δ is

r∗a − r∗∗a ≥
∫ θ0+ξ1

θ0−ξ1

[
R(θ, X̄)−R(θ, δ)

]
πa(θ)dθ

≥
∫ θ0+ξ1

θ0−ξ1

ε(2π)−
p
2 |1
a
I|− 1

2 exp(−a
2
θ′θ)dθ

≥ ca p
2

the last inequality holds for all a < 1, where c is a positive constant not depending
on a.
Also, using (2.2), the difference of Bayes risks of X̄ and δa is

r∗a − ra = K{ (N + a)p

Np/2
[|2Γ−1 +

(N + a)2

N
I|| a

(N + a)2
(
1

2
Γ +

N

(N + a)2
I)−1 + I|]− 1

2

− N p
2 |NI + 2Γ−1|− 1

2 }

= K{ (N + a)p

Np/2
|( a
N

+ 1)(2Γ−1 +
(N + a)2

N
I)− a(N + a)2

N2
I|− 1

2

− N p
2 |NI + 2Γ−1|− 1

2 }
= K

{
(N + a)p/2|2Γ−1 + (N + a)I|− 1

2 −Np/2|NI + 2Γ−1|− 1
2

}
The second equality is carried out by using the relation (2.1). It can easily be veri-

fied that for p = 1, the ratio
r∗

a−r∗∗
a

r∗
a−ra

tends to infinity as a → 0 and for p = 2, this

ratio tends to a positive constant as a→ 0. Hence, there exists an a > 0 such that
r∗∗a < ra which contradicts the fact that δa is a Bayes solution with respect to πa.
Therefore X̄ is admissible for p = 1, 2.

3 Inadmissibility of X̄ for p ≥ 3

In this section, we consider estimation of θ = (θ1, . . . , θp)′ from the model of section
1 under the loss (1.1) and find a class of estimators which have uniformly smaller
risk than X̄ for p ≥ 3.
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Lemma 3.1: Let X = (X1, . . . , Xp)
′ be distributed as Np(θ, I). If h : �p → � is

an almost differentiable function with E‖∇h(X)‖ <∞, then

E[∇h(X)] = E[(X− θ)h(X)]

, where ∇h(x) =
(

∂h(x)
∂x1

, . . . , ∂h(x)
∂xp

)′
.

Proof: See Stein [11].

Theorem 3.1: Let the positive values λ1 ≤ λ2 ≤ . . . ≤ λp be the eigenvalues of
the matrix Γ . If the estimator δc is defined as

δc(X̄) =
(
1− c

X̄′Γ−1X̄

)
X̄

where 0 < c < c∗ ,c∗ = 2
[∑p

i=2
1

2+Nλi
− 1

2+Nλ1

]
,then δc(X̄) dominates X̄ in

terms of risks under the extended reflected normal loss function (1.1) for p ≥ 3,
when c∗ > 0.
Proof: For any estimator δ(X̄), we define a function g as

g(θ, δ) = E
[
exp
{
−(δ(X̄)− θ)′Γ−1(δ(X̄)− θ)

}]
and show that for all θ, g(θ, δc) ≥ g(θ, X̄). We observe that

g(θ, δc) = E

[
e−(X̄−θ)′Γ−1(X̄−θ)e

− c2

X̄′Γ−1X̄
+2c(X̄−θ)′ Γ−1X̄

X̄′Γ−1X̄

]
≥ E

[
e−(X̄−θ)′Γ−1(X̄−θ)

{
1− c2

X̄′Γ−1X̄
+ 2c(X̄− θ)′ Γ

−1X̄

X̄′Γ−1X̄

}]
(3.1)

This inequality follows using the fact that
e−x ≥ 1− x ∀x ∈ �
Now by definingΣ−1 = 2Γ−1+NI, A = [aij ]p×p = Σ1/2Γ−1Σ1/2,Y = (Y1, . . . , Yp)′ =

Σ− 1
2 X̄ and β = Σ− 1

2 θ, the inequality (3.1) reduces to

g(θ, δc) ≥ g(θ, X̄)−N p
2 |Σ| 12

{
E

[
c2

Y′AY

]
− 2cE

[
(Y − β)′ AY

Y′AY

]}
(3.2)

where Y is distributed as Np(β, I).
Note that by using lemma 3.1, it follows that

E
[
(Y − β)′ AY

Y′AY

]
= E

[
p∑

i=1

∂

∂Yi

∑p

j=1
aijYj∑

i

∑
j
aijYiYj

]

= E

[
(
∑

i
aii)(

∑
i

∑
j
aijYiYj)− 2

∑
i
(
∑

j
aijYj)

2

(
∑

i

∑
j
aijYiYj)2

]

= E

[
tr(A)

Y′AY
− 2Y′A2Y

(Y′AY)2

]
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and

−E
[

c2

Y′AY

]
+ 2cE

[
(Y − β)′ AY

Y′AY

]
= E

{
Y′[(−c2 + 2ctr(A))A− 4cA2]Y

(Y′AY)2

}
(3.3)

We know that A is a positive definite matrix and is diagonable as
U′AU = T =diag{t1, . . . , tp}, where the positive values t1, . . . , tp are the eigenval-
ues of A. Now, we have U′A2U = T2 =diag{t21, . . . , t2p} and therefore (3.3) reduces
to

−E
[

c2

Y′AY

]
+ 2cE

[
(Y − β)′ AY

Y′AY

]
= E

{
Y′U[(−c2 + 2ctr(A))T− 4cT2]U′Y

(Y′AY)2

}
According to (3.2), we complete the proof by showing that the matrix

(−c2+2ctr(A))T−4cT2 = diag{ct1(−c+2tr(A)−4t1), . . . , ctp(−c+2tr(A)−4tp)}
(3.4)

is positive definite when 0 < c < c∗.
It can be verified that ti = 1

Nλi+2
; i = 1, . . . , p, where the values λ1 ≤ λ2 ≤ . . . ≤ λp

are the eigenvalues of Γ . Hence, the diagonal elements of the diagonal matrix (3.4)
is positive when

0 < c < 2tr(A)− 4

Nλi + 2
i = 1, . . . , p

This condition is equivalent to 0 < c < c∗ with c∗ = 2
[∑p

i=2
1

2+Nλi
− 1

2+Nλ1

]
.

Corollary 3.1: Let the estimator δ∗(X̄) be given as

δ∗(X̄) =

(
1− p− 2

(N + 2)X̄′X̄

)
X̄

Now, δ∗(X̄) dominates X̄ under the loss function (1.1) with Γ = I, for p > 2. This
estimator is similar to J-S estimator.

4 Conclusions

1. Since X̄ is a minimax estimator for the mean vector θ, hence the estimators δc,
with 0 < c < c∗, provide a class of minimax estimators which are better than X̄.
2. This class of minimax estimators cannot be achieved by the general result of
Brandwein and Strawderman [3].
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