|
|
|
 |
جستجو در مقالات منتشر شده |
 |
|
2 نتیجه برای تابع هسته
خانم لیلی فرجی گاوگانی، دکتر پروین سربخش، دکتر محمد اصغری جعفرآبادی، دکتر مرتضی شمشیرگران، جلد 24، شماره 2 - ( 12-1398 )
چکیده
سطح زیر منحنی راک یک معیار مرسوم برای ارزیابی عملکرد طبقهبندی بیومارکرها است. در عمل یک بیومارکر قدرت طبقهبندی محدودی دارد لذا برای بهبود عملکرد طبقهبندی، علاقهمند به ترکیب مقادیر مربوط به بیومارکرها به صورت خطی و غیرخطی هستیم در این مطالعه ضمن معرفی انواع توابع زیان، به معرفی روش Ramp AUC و برخی ویژگیهای آن به عنوان یک مدل آماری مبتنی بر سطح زیر منحنی راک پرداخته میشود. این مدل جهت ترکیب بیومارکرها به شکل خطی یا غیرخطی باهدف بهبود عملکرد طبقهبندی و مینیمم کردن تابع زیان تجربی بر اساس تابع زیان Ramp AUC ارائهشده است. بهعنوانمثال کاربردی، در این مطالعه از دادههای 378 بیمار دیابتی مراجعهکننده به مراکز دیابتی اردبیل و تبریز در سال 1394-1393 استفادهشده است. جهت طبقهبندی بیماران دیابتی از لحاظ وضعیت محدودیت عملکردی بر مبنای بیومارکرهای جمعیت شناختی و بالینی از روش RAUC استفاده گردید. اعتبارسنجی مدل به روش آموزش و آزمایش انجام شد. بر اساس نتایج گروه آزمایش، مقادیر سطح زیر منحنی بهدستآمده برای مدل RAUC با ترکیبات خطی از بیومارکرها در قالب هسته خطی برابر 0.81 و با هسته تابع پایه شعاعی برابر 1.00 میباشد. نتایج بیانگر وجود یک الگوی غیرخطی قوی در دادهها میباشد به طوری که ترکیبات غیرخطی از بیومارکرها عملکرد طبقهبندی بالاتری نسبت به ترکیبات خطی را دارا میباشند.
رضا چراغی، دکتر سیدرضا هاشمی، جلد 25، شماره 1 - ( 11-1399 )
چکیده
هنگامی که داده ها از یک الگوی خطی ثابت تبعیت نکنند و به شکل پویایی بر حسب زمان یا مکان الگوهای متنوعی داشته باشند، مدل های با ضرایب متغیر به عنوان مهم ترین ابزار برای کشف الگوهای پویا در آنها مطرح می شوند. این مدل ها تعمیم طبیعی مدل های کلاسیک پارامتری هستند که با تفسیر پذیری خوب، محبوبیت زیادی در تجزیه و تحلیل داده ها به دست آورده اند. انعطاف پذیری و تفسیر پذیری بالای این مدل ها سبب کاربرد زیاد آنها در داده های واقعی شده است.
در این مقاله ضمن مرور مختصری بر مدل های با ضرایب متغیر به روش برآورد پارامتر با استفاده از تابع هسته و اسپلاین مکعبی پرداخته و فاصله اطمینان و آزمون فرض برای توابع پارامترها به دست می آوریم. در نهایت با استفاده از داده های واقعی نرخ تورم ایران در سالهای 1368 تا 1396، کاربرد و قابلیت های مدل با ضرایب متغیر را در تفسیر نتایج نشان می دهیم چالش اصلی عدم برازش مناسب مدل داده های پانلی و نیز مدل های با واریانس غیر ثابت سربهای زمانی مثل مدل های آرچ و گارچ و مشتقات آنها به این داده هاست که استفاده از مدل های با ضرایب متغیر را توجیه می نماید.
|
|
|
|
|
|