|
|
|
 |
Search published articles |
 |
|
Showing 2 results for Time Series
, , , Volume 24, Issue 2 (3-2020)
Abstract
A sequence of functions (curves) collected over time is called a functional time series. Functional time series analysis is one of the popular research areas in which statistics from such data are frequently observed. The main purpose of the functional time series is to predict and describe random mechanisms that resulted in generating the data. To do so, it is needed to decompose functional time series into trend, periodic, and error components. However, we need to identify and recognize these components beforehand. Hence, in this study, a non-parametric method is presented for detecting and testing the existence of a process in a functional time series using record functions. Then, we implement and use this method for investigating the application of this method in a real functional time series. The effectiveness of this method for determining the trend in a set of real data on fertility rates in Australia has been investigated.
Dr Mahdieh Bayati, Volume 28, Issue 2 (3-2024)
Abstract
We live in the information age, constantly surrounded by vast amounts of data from the world around us. To utilize this information effectively, it must be mathematically expressed and analyzed using statistics.
Statistics play a crucial role in various fields, including text mining, which has recently garnered significant attention. Text mining is a research method used to identify patterns in texts, which can be in written, spoken, or visual forms.
The applications of text mining are diverse, including text classification, clustering, web mining, sentiment analysis, and more. Text mining techniques are utilized to assign numerical values to textual data, enabling statistical analysis.
Since working with data requires a solid foundation in statistics, statistical tools are employed in text analysis to make predictions, such as forecasting changes in stock prices or currency exchange rates based on current textual data.
By leveraging statistical methods, text mining can uncover, confirm, or refute the truths hidden within textual content. Today, this topic is widely used in machine learning. This paper aims to provide a basic understanding of statistical tools in text mining and demonstrates how these powerful tools can be used to analyze and interpret events.
|
|
|
|
|
|