[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Search published articles ::
Showing 1 results for Spatial Count Models

Omid Karimi, Fatemeh Hosseini,
Volume 25, Issue 1 (1-2021)
Abstract

Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on Poisson (Poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models is complex as analytic and so computation. The Bayesian approach using Monte Carlo Markov chain algorithms can be a solution to fit these models, although there are usually problems with low sample acceptance rates and long runtime to implement the algorithms. An appropriate solution is to use the Hamilton (hybrid) Monte Carlo algorithm
in The Bayesian approach. In this paper, the new Hamilton (hybrid) Monte Carlo method for Bayesian analysis of spatial count models on air pollution data in Tehran is studied. Also, the two common Monte Carlo algorithms such as the Markov chain (Gibbs and Metropolis-Hastings) and Langevin-Hastings are used to apply the complete Bayesian approach to the data modeling. Finally, an appropriate approach to data analysis and forecasting in all points of the city is introduced with the diagnostic criteria.



Page 1 from 1     

مجله اندیشه آماری Andishe _ye Amari
Persian site map - English site map - Created in 0.05 seconds with 23 queries by YEKTAWEB 4710