[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Search published articles ::
Showing 2 results for Penalized Regression

Ms Sara Jazan, Dr Seyyed Morteza Amini,
Volume 22, Issue 2 (3-2018)
Abstract

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity‎, ‎the large number of regressor variables with respect to sample size‎, ‎specially in high dimensional sparse models‎, ‎are problems which result in efficiency reduction of inferences in classical regression methods‎. ‎In this paper‎, ‎we first study the disadvantages of classical least squares regression method‎, ‎when facing with outliers‎, ‎multicollinearity and sparse models‎. ‎Then‎, ‎we introduce and study robust and penalized regression methods‎, ‎as a solution to overcome these problems‎. ‎Furthermore‎, ‎considering outliers and multicollinearity or sparse models‎, ‎simultaneously‎, ‎we study penalized-robust regression methods‎. ‎We examine the performance of different estimators introdused in this paper‎, ‎through three different simulation studies‎. ‎A real data set is also analyzed using the proposed methods‎.


Miss Zahra Eslami, Miss Mina Norouzirad, Mr Mohammad Arashi,
Volume 25, Issue 1 (1-2021)
Abstract

The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regression model. Among all penalty functions, LASSO provides the best fit.

Page 1 from 1     

مجله اندیشه آماری Andishe _ye Amari
Persian site map - English site map - Created in 0.05 seconds with 24 queries by YEKTAWEB 4714