[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Search published articles ::
Showing 1 results for ‎probability Model‎

, , ,
Volume 22, Issue 1 (12-2017)
Abstract

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express likelihood of cross-classification tables in term of conditional and marginal probabilities for each cell‎. ‎In this approach model parameters are estimated using EM algorithm‎. ‎To test latent class model chi-square statistic is used as a measure of goodness-of-fit‎. ‎In this paper we use LCA and data from a small-scale survey to estimate misclassification error (as a measurement error) of students who had at least a failing grade as well as misclassification error of students with average grades below 14‎.



Page 1 from 1     

مجله اندیشه آماری Andishe _ye Amari
Persian site map - English site map - Created in 0.05 seconds with 23 queries by YEKTAWEB 4700