[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Search published articles ::
Showing 1 results for ‎crime Data.

Dr. Mousa Golalizadeh, Mr. Amir Razaghi,
Volume 24, Issue 1 (9-2019)
Abstract

‎The Principal Components Analysis is one of the popular exploratory approaches to reduce the dimension and to describe the main source of variation among data‎. ‎Despite many benefits‎, ‎it is encountered with some problems in multivariate analysis‎. ‎Having outliers among data significantly influences the results of this method and it sounds a robust version of PCA is beneficial  in this case‎. ‎In addition‎, ‎having moderate loadings in the final results makes the interpretation of principal components rather difficult‎. ‎One can consider a version of sparse components in this case‎. ‎We study a hybrid approach consisting of joint robust and sparse components and conduct some simulations to evaluate and compare it with other traditional methods‎. ‎The proposed technique is implemented in a real-life example dealing with the crime rate in the USA‎.

Page 1 from 1     

مجله اندیشه آماری Andishe _ye Amari
Persian site map - English site map - Created in 0.05 seconds with 23 queries by YEKTAWEB 4700