|
|
 |
Search published articles |
 |
|
Showing 1 results for Roohi
Mr Arta Roohi, Ms Fatemeh Jahadi, Dr Mahdi Roozbeh, Volume 27, Issue 1 (3-2023)
Abstract
The most popular technique for functional data analysis is the functional principal component approach, which is also an important tool for dimension reduction. Support vector regression is branch of machine learning and strong tool for data analysis. In this paper by using the method of functional principal component regression based on the second derivative penalty, ridge and lasso and support vector regression with four kernels (linear, polynomial, sigmoid and radial) in spectroscopic data, the dependent variable on the predictor variables was modeled. According to the obtained results, based on the proposed criteria for evaluating the goodness of fit, support vector regression with linear kernel and error equal to $0.2$ has had the most appropriate fit to the data set.
|
|