[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Search published articles ::
Showing 1 results for Rezanezhad

Mehrnaz Mohammadpour, Fereshte Rezanezhad ,
Volume 16, Issue 2 (3-2012)
Abstract

The sample autocorrelation function (acf) of a stationary process has played a central statistical role in traditional time series analysis, where the assumption is made that the marginal distribution has a second moment. Now, the classical methods based on acf are not applicable in heavy tailed modeling. Using the codifference function as dependence measure for such processes be shown it be as a new tool for order identification of stable moving average processes. Based on the empirical characteristic function, we propose a consistent estimator of the codifference function. In addition, we derive the limiting distribution. Finally, simulation study shows the method is good.

Page 1 from 1     

مجله اندیشه آماری Andishe _ye Amari
Persian site map - English site map - Created in 0.07 seconds with 25 queries by YEKTAWEB 4700