[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Search published articles ::
Showing 1 results for Rezaee

Alireza Rezaee, Mojtaba Ganjali, Ehsan Bahrami,
Volume 25, Issue 1 (1-2021)
Abstract

Nonrespose is a source of error in the survey results and National statistical organizations are always looking for ways to
control and reduce it. Predicting nonrespons sampling units in the survey before conducting the survey is one of the solutions
that can help a lot in reducing and treating the survey nonresponse. Recent advances in technology and the facilitation of
complex calculations have made it possible to apply machine learning methods, such as regression and classification trees
or support vector machines, to many issues, including predicting the nonresponse of sampling units in statistics. . In this
article, while reviewing the above methods, we will predict the nonresponse sampling units in a establishment survey using
them and we will show that the combination of the above methods is more accurate in predicting the correct nonresponse
than any of the methods.


Page 1 from 1     

مجله اندیشه آماری Andishe _ye Amari
Persian site map - English site map - Created in 0.06 seconds with 25 queries by YEKTAWEB 4700