|
|
|
 |
Search published articles |
 |
|
Showing 2 results for Javidi
Student Atefe Javidi, Student Somayeh Rahpeima, Dr Majid Jafari Khaledi, Volume 18, Issue 2 (3-2014)
Abstract
Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be relaxed and more flexible models could be used analysis of data. In the nonparametric Bayes approach, a prior distributions is defined over the whole space of probability distributions for random variable distribution. Due to the Dirichlet process (DP) has interesting properties, it is thus used extensively. In this paper, we introduce DP and its features.
Dr Ehsan Bahrami Samani, Ms Kiyana Javidi Anaraki, , Volume 28, Issue 1 (9-2023)
Abstract
Given the limited energy resources globally, energy optimization is crucial. A significant portion of this energy is consumed
by buildings. Therefore, the aim of this research is to explore the simultaneous factors affecting the heating and cooling of
buildings. In the current research, 768 different residential buildings simulated with Ecotect software have been investigated.
Joint regression model and exploratory data analysis methods were used to identify the influencing factors of the heating and
cooling of buildings. Based on variables such as relative compactness, overall height, surface area, and roof of the buildings,
a new variable called ”type” (building model) was introduced and shown to be one of the strongest factors affecting the
heating and cooling of buildings. This variable is related to the shape of the building. In the joint regression model, it is
assumed that the responses follow a multivariate normal distribution. Then this model is compared with separate regression
models (without assuming responses correlation) and using Akaike’s information criterion and deviance information criterion,
pointing to the superiority of the joint regression model. Additionally, the model parameters are estimated using the maximum
likelihood estimation method and the amount of Akaike model compared to the separate model is a decrease of 0.0072%,
which shows the superiority of the joint regression model. The deviance information criterion is equal to 0.001736%, and in
comparison with the chi distribution, the null hypothesis is rejected to test the superiority of the models, which is regressed
to the superiority of the joint model.
|
|
|
|
|
|