[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Search published articles ::
Showing 2 results for Ahmadzadeh

Mohammad Mollanoori, Habib Naderi, Hamed Ahmadzadeh, Salman Izadkhah,
Volume 25, Issue 1 (1-2021)
Abstract

Many populations encountered in survival analysis are often not homogeneous. Individuals are flexible in their susceptibility to causes of death, response to treatment, and influence of various risk factors. Ignoring this heterogeneity can result in misleading conclusions. To deal with these problems, the proportional hazard frailty model was introduced. In this paper, the frailty model is explained as the product of the frailty random variable and baseline hazard rate. We examine the fit of the frailty model to the right-censored data from in the presence of explanatory variables (observable variables) and use it as a practical example to fit the frailty model to the data by considering the Weibull basis distribution and exponential in the likelihood functions. It is used to estimate the model parameters and compare the fit of the models with different criteria.
Mahsa Markani, Manije Sanei Tabas, Habib Naderi, Hamed Ahmadzadeh, Javad Jamalzadeh,
Volume 26, Issue 2 (3-2022)
Abstract

‎When working on a set of regression data‎, ‎the situation arises that this data‎

‎It limits us‎, ‎in other words‎, ‎the data does not meet a set of requirements‎. ‎The generalized entropy method is able to estimate the model parameters‎ ‎Regression is without applying any conditions on the error probability distribution‎. ‎This method even in cases where the problem‎ ‎Too poorly designed (for example when sample size is too small‎, ‎or data that has alignment‎

‎They are high and‎ .‎..) is also capable. ‎Therefore‎, ‎the purpose of this study is to estimate the parameters of the logistic regression model using the generalized entropy of the maximum‎. ‎A random sample of bank customers was collected and in this study‎, ‎statistical work and were performed to estimate the model parameters from the binary logistic regression model using two methods maximum generalized entropy (GME) and maximum likelihood (ML)‎. ‎Finally‎, ‎two methods were performed‎. ‎We compare the mentioned‎. ‎Based on the accuracy of MSE criteria to predict customer demand for long-term account opening obtained from logistic regression using both GME and ML methods‎, ‎the GME method was finally more accurate than the ml method‎.



Page 1 from 1     

مجله اندیشه آماری Andishe _ye Amari
Persian site map - English site map - Created in 0.06 seconds with 26 queries by YEKTAWEB 4710