همگی واریانس در آزمون میانگین‌های دو نمونه‌ای

باری ک. موری، گری. ر استونز

ترجمه: معصومه ذکاوت

چکیده
در آزمون میانگین‌های دو نمونه‌ای، باید به‌کار آزمون واریانس مقدماتی و تأکید خاص بر فرض برای واریانس را مورد سوال قرار نگیریم. نتایج به‌دست آمده، می‌باید به آسانی در تحلیل آزمون میانگین‌های دو نمونه‌ای و در کلاس مورد استفاده قرار گیرد.

1 مقدمه
مسأله آزمون برای میانگین‌های دو جامعه مستقل، با توزیع نرمال در هر دو جامعه مقدماتی آزمون است. تحت فرض نسایی واریانس‌های دو جامعه Σ 0 و Σ 1 اگر Σ 1 kleiner، آزمون را توصیه کردیم. اگر واریانس‌های برابر باشند، غالباً روش دیگر همون‌روش بیشترین شده توسط اسمیت (۱۹۳۶) و چندین‌قلی (۱۹۳۷) استفاده می‌شود. برای بکاربردن این روش نسبت واریانس‌ها، Σ 1 / Σ 0 باید کمتر از ۱ باشد.

برخی از مطالعات دیگر، در این مورد، برای بررسی مجدد آزمون مقدماتی برای فرض Σ 1 kleiner = Σ 0 بکار می‌برند. در این مورد، برای بررسی اینکه آیا آزمون‌های دو آزمایشی استفاده می‌شوند، معنی که آزمون‌های آزمایشی آماری استفده می‌شوند، منالی که

معصومه ذکاوت، دانشکده علوم ریاضی، دانشگاه شهید بهشتی

Smith
Welsh
Satterthwaite
2 مسأله

را به عنوان دو نمونه نامیده‌ایم از Y_1, \ldots, Y_n و X_1, \ldots, X_n نمونه‌ها با توزیع نرمال در نظر گرفته باید برای $i, j = 1, 2, \ldots, n$ و $i \neq j$

$y_i \sim N(\mu, \sigma_y^2)$

$X_i \sim N(\mu, \sigma_x^2)$

در مقابل H_0^*: $\sigma_x^2 = \sigma_y^2$ آماره

$H_1^*: \sigma_x^2 \neq \sigma_y^2$

$F' = s_y^2/s_x^2$

(1)

با انتخاب شده فرض

H_0: $F' \leq F_{n-1, n-1, \alpha}$

H_1: $F' > F_{n-1, n-1, \alpha}$

در حالت یک نمونه در نظر گرفته شده باشد، دو نمونه

$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

$\bar{s}_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$

$\bar{s}_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$

H_0^* است. می‌توانí با توجه به معیار معیار مقصد P است و نتیجه‌ی H_0^* را در نظر گرفته باشیم.

$H_0^*: \mu_1 = \mu_2$

$H_1^*: \mu_1 \neq \mu_2$

برای نمونه \bar{y} در نظر گرفته شده باشد، دو نمونه

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})$

$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})$
همگنی و ریاضیات در آزمون مانگنهزی دو نمونه‌ای

از پیش تعیین شده برای آزمون مانگنهزی دو نمونه‌ای است و

\[
\nu = \frac{(\nu_1 + \nu_2)}{(\nu_1 \nu_2)}
\]

اگر شد، آمار معنی‌دار آزمون ۱ هر آزمون ۱ در مقابل آزمون ۱

\[
\nu = \frac{(\bar{x} - \bar{y})}{\sqrt{\frac{\sigma_1^2}{\nu_1} + \frac{\sigma_2^2}{\nu_2}}}
\]

اگر \(t \) به آزمون ۱ به‌وجود می‌آید

\[
(1 - \alpha)
\]

با طراحی \(H_0 \) است

\[
H_0 : \mu_1 = \mu_2
\]

این آزمون برای \(\alpha = 1 \) منجر به آزمون همبستگی (ASWS) SWS

\[
\text{سه‌اندازه و توان آزمون}
\]

\[
\lambda = \frac{\nu^2 (\sigma_1^2 + \sigma_2^2)}{(\nu_1 \nu_2)}
\]
بحث و پیشنهاد

اکنون ما سوالی را مطرح می‌کنیم: آیا تعیین رابط آنومون مقدامات واریانس مناسب است؟ جواب خیر است. ما پاسخ را در بند دوم بعد نویجه می‌کنیم.

هم وقت انتخاب نمونه‌ها نابرابر و نسبت واریانس نزدیک یک باشد، آنومون ۴ در حین حفظ انتخاب نزدیک سطح نسبی از نظریه توان را کمتر در آورد. بنابراین گر حجم نمونه‌ها نابرابر و نسبت واریانس معلوم باشد که نزدیک یک باشد، آنومون ۴ مناسب می‌باشد.

(۱) هرگز باید این سعلان مناسب نیست.

با خروج آنومون مقدامات واریانس دلیلی دارد؟ یکباره پاسخ خیر می‌باشد. نسبت واریانس فقط وقتی معلوم باشد، روي انتخاب مناسب روش آنومون تأثیر می‌گذارد. به هر حال، در عمل نسبت واریانس به دنیا معلوم است. از این نظر در می‌باشد که آنومون ۴ در واریانس گام‌ها واریانس غیر ضروری است، بنابراین به راحتی یک گام آماری زائده را ایجاد می‌کند. بنابراین در مورد حجم نمونه‌های برابر، هر یک از آنومون ۴ یا SWS مناسب است.

تنها نواحی با فاصله زمانی مناسب، آنومون مقدامات واریانس نامعلوم باشد و با معلوم باشد که به نسبت واریانس نامعلوم باشد و با معلوم باشد که به SWS نسبت. هر وقت حجم نمونه‌ها نامساوی است، آنومون ۴ در حین نگهدارشین انتخاب نزدیک ۵، توان خویی را فراهم

جدول ۱: خروجی SAS Proc TTEST

<table>
<thead>
<tr>
<th>بحاري</th>
<th>N</th>
<th>مبتنانگ</th>
<th>میانگین</th>
<th>خطای استاندارد</th>
<th>احراز استاندارد</th>
<th>مصارف</th>
<th>مانیم</th>
<th>T</th>
<th>DF</th>
<th>prob > [T]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>12</td>
<td>۳/۱۸۲</td>
<td>۱۴۱</td>
<td>۰/۸۴۱</td>
<td>۰/۷۱۴</td>
<td>۰/۷۱۴</td>
<td>۱/۲۴</td>
<td>۱/۲۴</td>
<td>۱/۲۴</td>
<td>۰/۷۱۵</td>
</tr>
<tr>
<td>A</td>
<td>15</td>
<td>۳/۱۸۲</td>
<td>۲۳۳</td>
<td>۰/۷۱۴</td>
<td>۰/۷۱۴</td>
<td>۰/۷۱۴</td>
<td>۱/۲۴</td>
<td>۱/۲۴</td>
<td>۱/۲۴</td>
<td>۰/۷۱۵</td>
</tr>
</tbody>
</table>

