چکیده
در این مقاله روش جک نافی را به کمک متغیرهای سیگمینی پدیدار نمی‌گردد. این روش به‌طور کلی برای تحلیل داده‌های پایدار و سایر مدل‌های خطی استفاده می‌شود.

مقدمه
یکی از راههای اساسی تخمین کاهش کاربرد پایدارگرها و میزان پدیدار
دقت (ارایهای) بر پایدارگر و سایر مدل‌های خطی است.
روش جک نافی از لحاظ توحیدی در سال ۱۹۵۹ برای حذف ارایه یکی از
اسکالینگی پایپ و اریتریای اول در سری‌های زمانی پیش‌بینی شده تا در
سال ۱۹۵۶ نظرهای کلی و مفهومی داده که این نظرهای، استخوان‌بری روش جک
نمی‌باشد. روش این با روش نیست مثالی زیاد که در آن جک نافی
ضروری شورت، محدود می‌گردد.

مثال ۱. فرض کنید X_1, X_2, \ldots, X_n متغیرهای تصادفی هم‌توزیع از جامعه X با میانگین $\theta = \theta(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$ و $	heta(F)$ و F به‌صورت θ با پایدار F است. در نتیجه $(\frac{\theta}{n})$ آسان است انتا محاسبه واریانس و بر پایدار

$$\frac{\theta}{n} = \frac{1}{n(n-1)} \sum (X_i - X)^2$$

در این جامعه می‌باشد (یک) آسان انتا محاسبه واریانس و بر پایدار

$$\theta(F)$$ واریانس مربوط به پایداری F حاصل روش نیست. متقاکی (2)

گروه آمار، دانشکده علوم ریاضی، دانشگاه فردوسی مشهد.
می‌تینم ارتباط مربوط به حذف شده است. به عنین ادعای کاهش ارتباط این اعداد نشانگری است.

در نتیجه مثال 2. فرض کنید $X = X$ و $\theta = \bar{X}$. همانطور که در دیگر $\tilde{\theta}$ خواهد داشت. می‌دانیم این برآوردهای ارتباطی است. این نکته نتوسط برآورد نیز تأیید می‌شود:

$$\tilde{\theta} = \left(1 - \frac{1}{n}\right)\left(\hat{\theta}(i) - \bar{\theta}\right)$$

به طور خاص، برآورد گنجایش از جک نابیاب واضح است که همان مقدار \bar{X} خواهد شد.

$$\hat{\theta}_i = \frac{1}{n-1} \sum_{j \neq i} X_j$$

$$= \frac{1}{n-1} \sum_{j \neq i} X_j - \frac{(n-1)}{n} \sum_{j \neq i} X_j - \frac{n-1}{n} \bar{X}$$

X_i مشاهده‌ها به بخش \bar{X} اضافه است. به عنین انتخاب X_i. به سادگی با نوجه به محاسبات بالا دیده می‌شود که

$$\hat{\theta}(i) = \left(1 - \frac{1}{n}\right) \sum_{j \neq i} X_j - \bar{X}$$

بنابراین برآورد ارتباط باید باعث

$$(n-1)(\hat{\theta}(i) - \bar{\theta}) = \frac{1}{n(n-1)} \sum (X_i - \bar{X})$$

به یاد آمده باشد که از اینجا برآورد جک نابیاب شده باید خواهد بود با

$$\tilde{\theta} = n\bar{\theta} - (n-1)\bar{\theta} = \frac{1}{n-1} \sum (X_i - \bar{X})$$

یعنی همان‌جک برآوردهای مجدد حاصل شده است.

ملاحظه کنید که همان نتایب کلاسیک به دست می‌آید.

$$V(\hat{\theta}(i)) = \frac{n-1}{n} \sum (\hat{\theta}(i) - \bar{\theta})^2$$

$$= \frac{n-1}{n} \sum \left(\frac{X_i - \bar{X}}{(n-1)}\right)^2$$

$$= \frac{1}{n(n-1)} \sum (X_i - \bar{X})^2$$

می‌تینم که همان‌جک مشاهده‌ها درست می‌باشد.

حال اگر طبق معنوی ارتباطی $\theta = \bar{\theta}$ باشد، $E(\hat{\theta} - \theta) = \frac{h(\theta)}{h(\bar{\theta})}$ می‌باشد. مشاهده‌ها این برآورد نکنشی با برآورد کننده یا برآورد بهبود در این برآورد را صورت زیر تعریف می‌کنیم:

$$\hat{b}(\theta) = (n - 1)(\hat{\theta}(i) - \theta)$$

به‌عنون یک برآورد برآورد شده می‌توان برآورد جک نابیاب در نظر گرفت.

جنبه‌ای این کیست را از برآورد اصلی که $\hat{\theta}$ است که که خواهیم داشت.

$$\hat{\theta} = \hat{\theta} - \hat{b}(\theta)$$

$$= n\bar{\theta} - (n-1)\hat{\theta}(i)$$

به عنین این برآورد باید رابطه برآوردهای کلاسیک به دست آراید.

 fuse که همان‌جک برآورد جک نابیاب در نظر است. برآورد این که از $\hat{\theta}$ است. اگر در این برآورد در اولین می‌تواند با محدوده بسیاری از روش‌های آموزشی با نشان ارائه داده شده.

یک آن با بهبود نکنش رابطه یا $\frac{\bar{\theta}}{n} + O(\frac{1}{n^2})$ که به‌عنون n به $a(F)$ کره مشاهده‌ها به‌سادگی ندارند. برای چنین برآوردهایی که این مشاهده را با برآورد جک نابیاب خواهیم داشت.

$$E[\hat{\theta}(i)] = \theta + \frac{a(F)}{n} + O\left(\frac{1}{n^2}\right)$$

$$E[\hat{\theta}(i)] = \theta + \frac{a(F)}{n} + O\left(\frac{1}{n^2}\right)$$

$$E(\hat{\theta}) = nE[\hat{\theta}] - (n-1)E[\hat{\theta}(i)] = \theta + O\left(\frac{1}{n^2}\right)$$

توجه مراحل
