کاربردی از مدل‌های رگرسیون لجستیک ترتیبی دو سطحی در تعیین عوامل مؤثر بر بار اقتصادی دیابت نوع دو در ایران

مريم هادي پور ۱، راضيه جعفرآقايي، قاسم يادکارفر، آوات فيضي، فريد ابولحسنی

چکیده:
در سال‌های اخیر، مدل‌های رگرسیون چند سطحی به طور چشمگیری در علوم مختلف از جمله بیشکی، روانشناسی، اقتصاد و سایر علوم توسعه یافته‌اند. این مدل‌ها برای داده‌های با ساختار سلسله مراتبی که هر سطح یا اپی‌دی نسبت به بالاترین سطح این داده‌ها باید مورد استفاده قرار گیرد، بهره‌مند هستند. با استفاده از مدل‌های رگرسیون لجستیک ترتیبی دو سطحی (Mann & Ju چند جهتی شمارشی ترتیبی و...) از مدل‌های رگرسیون تعمیم‌پذیر بیشتری استفاده می‌شود. در این مقاله ابتدا مدل رگرسیون لجستیک ترتیبی دو سطحی معرفي شده و روش‌های مختلف برای پرداختن در این مدل بیان شده است. سپس کاربرد این مدل برای مطالعه برآورد نرخ دیابت در ایران به مسیر شناسایی عوامل مؤثر بر این بیماری و پیش‌بینی رضایت جمعی بر اساس محاسبات اقتصادی دیابت نوع دو در سال ۱۳۸۵ گردآوری شده‌اند. در مطالعه گزارش‌های اختصاصی، معرفی و میانجی‌گری بر اساس شناسایی عوامل مؤثر بر این بیماری مورد بررسی قرار گرفته است.

واژه‌ها کلیدی: بار اقتصادی بیماری دیابت نوع دو، رگرسیون لجستیک ترتیبی دو سطحی، روش‌های نظری و عملی حياتی و پیشگیری‌های، روش مربی‌گری گوسی، روش مربی‌گری گوسی سازوار.

maryam_hadipoor@yahoo.com
1 مقدمه
مدل‌های رگرسیون چند سطحی نقش مهمی را در پژوهش‌های مربوط به علوم پزشکی، روانشناسی، اقتصاد و سایر علوم انسانی دارند. در این مدل‌ها، اثرات متغیرهای پیشین سطح یک، در سطوح بالاتری تصادفی در نظر گرفته می‌شوند. به عنوان مثال برای بررسی اثر هوش بر موفقیت تحصیلی دانشآموزان در یک مدرسه، به دلیل قرار گرفتن دانشآموزان در کلاس‌های مختلف با داده‌های سلسله مراتب رو به هم می‌رسد. در این حالت دانشآموزان واحدهای سطح یک و کلاس‌ها واحدهای سطح دو را تشکیل می‌دهند. همگامی که هدف تحقیق بررسی اثر متغیر پیشین در سطح فردی، بر روی متغیر پاسخ همان سطح (مانند بررسی اثر هوش دانشآموز بر موفقیت تحصیلی) باشد، تحلیل داده‌ها در سطح فردی کارا به تحلیل در سطح خوشه‌ای است (هدرک و گیسنگ، 1994). اما هنگامی که بررسی اثرات متغیرهای سطح فردی (مانند جنس و هوش) در حضور متغیرهای سطح بالاتر (مانند اندازه کلاس) و همچنین اثر متقابل آنها بر متغیر وابسته مد نظر باشد، توزیم استفاده از مدل‌های چند سطحی آشکار می‌شود (هدرک و گیسنگ، 1994). مدل‌های رگرسیون چند سطحی تعمیم‌افته ۱ رده‌ای از مدل‌های رگرسیون چند سطحی برای انواع مختلفی از متغیرهای وابسته شکل‌گیر کلی مدل‌های خطی تعمیم‌افته دو سطحی

2 مدل رگرسیون دو سطحی تعمیم‌افته
به طور کلی، مدل‌های رگرسیون خطی تعمیم‌افته شامل سه مدل‌های می‌باشد (ارگوستی، 2007): ۱) مدل‌های خطي با میانگین‌های متغیرهای پیشین در سطح یک (E(Y) با یک توزیع احتمالی است. ۲) مدل‌های خطي با میانگین‌های متغیرهای پیشین در سطح دو (E(Y) با یک توزیع احتمالی است. ۳) مدل‌های خطي با میانگین‌های متغیرهای پیشین در سطح سه (E(Y) با یک توزیع احتمالی است. ۴) مدل‌های خطي با میانگین‌های متغیرهای پیشین در سطح چهار (E(Y) با یک توزیع احتمالی است. ۵) مدل‌های خطي با میانگین‌های متغیرهای پیشین در سطح پنج (E(Y) با یک توزیع احتمالی است.}

\[\text{Generalized Multilevel Regression Models} \]
عبارتی احتمال تعلق فرد شماره \(i \) به رده‌های \(s \) و بالاتر متغیر پاسخ رانشان می‌دهد و با رابطه مدل رگرسیون ترتیبی با تابع پیوند لجیت برای استفاده به روشی

\[
logit(\gamma_i^{(s)}) = \ln \frac{\gamma_i^{(s)}}{1 - \gamma_i^{(s)}} = \beta_2 x_i - \alpha^{(s)}
\]

که در آن: \(\gamma_i^{(s)} \) به فردی سطح یک و \(S \) به فردی سطح دو دلالت دارد و مقدار ماتریس انتظار متغیر پاسخ از طریق تابع پیوند \(\eta_{ij} \) با متغیرهای پیش‌گیر و محصولات زیر مرتبط شده است.

\[
logit(\gamma_i^{(s)}) = \beta_2 x_i - \alpha^{(s)} + u_{ij}
\]

که در آن: \(u_{ij} \) اثر تصادفی خوشه زمینه می‌باشد که به جمله \(\nu_j \) اضافه می‌شود. این اثر تصادفی تأثیر خوشه \(X_{ij} \beta \) زامراوی واریانس مشاهدات درونیش که توسط متغیرهای پیش‌گیر توصیف داده‌شده‌اند، نشان می‌دهد.

3- روش‌های برآورد بارامترها در مدل‌های رگرسیون لجیتیک ترتیبی

تعیین یافته

چندین روش متفاوت برای مدل‌های پاسخ ترتیبی وجود دارد مانند (1) شناسی مناسب، (2) طبقه‌بندی هم‌جوار و (3) نسبت پیوستگی. در این مقاله از روش شناسی مناسب استفاده می‌کنیم. فرض \(S = (0, \sigma^2) \) که متغیر پاسخ یک متغیر ترتیبی با

\[
\gamma_i^{(s)} = P(y_i > s), \quad s = 1, \ldots, S - 1
\]

Camulative(proportional)odds (PO)

Adjacent Categories

Continuation Ratio
پارامترها با کار می‌رود، یک تابع خاصی به می‌باشد که نسبت به اثرات تصادفی انتگرال‌گیری شده است که در حالی که شکل بسته‌ای ندارد. (نعناعين (4) QGL) و (11) IGLS زمان به کار می‌روند عبارتند از تقریب لایپلیس، تکراری (1) RIGLS و (12) RIGLS پارامترهای مدل استفاده می‌شوند.

در نظر گرفتن تعداد جملات MQL و PQL مربوطه به بسته تیلور تحت خطی سازی است که به تعداد می‌باشد و هنگامی که توزیع پیشین تقریباً نرمال خواهد بود، می‌توان ثابت می‌شود. (1) AGOQ و (4) GQ می‌باشد و تابع می‌باشد. به عنوان مثال آگ سری تیلور در یک داده می‌شود. پارامتر پارامترهای مدل استفاده می‌شوند.

عمل می‌کند (رادیناش و همکاران، 2000). در بهبودی می‌باشد. (1) آگوکار (مک کول و سرل، 2000) استفاده می‌شود آمار و دارایی، 2005. در مدل‌هایی که حجم نمونه درون خوشه کوچک توزیع پیشین غیرپیوسته، روش‌های پارامتر مکاکریمیم باشد، به‌طور ضعیف عمل می‌کند (مک کول و همکاران 2001). روش‌های (مکاکریمیم 2001 و در ویکیوگوانی) MQL و PQL

* Marginal Quasi likelihood
* Predictive Quasi likelihood
* Guassian Quadrature
* Adaptive Guassian Quadrature
* Monte Carlo Markov Chain

11 Iterative Generalized Least Square
17 Restricted Iterative Generalized Least Square
5 Marginal Quasi likelihood
3 Predictive Quasi likelihood
4 Guassian Quadrature
1 Adaptive Guassian Quadrature
1 Monte Carlo Markov Chain
برای پاسخ‌های دو حالتی توسط لیستاف و اسپیزنز (2001) بررسی شده‌اند. رادباش و بریک (2004) با استفاده از مطالعات شبیه‌سازی نشان دادند که PQL بهتر از PQL تقید می‌زند. روش در مواردی بیشتر برای داده‌هایی با پاسخ برنولی که حجم نمونه‌های وارون خوشه کم و همیت‌گی درون خوشه‌ای زیاد است، به طور ضعیف عمل می‌کند (لیستاف و اسپیزنز 2001). برای غلبه بر مشکلات از روش AGQ که به تقاضای مبتنی کمتری نیاز دارد، استفاده می‌شود (رب هسکت و همکاران; 2004). بنابراین بر روی بیماران دیابتی تهیه شده است، 27 مطالعه برای اولین بار و با روش نمونه‌گیری تصادفی خوشه‌ای چند مرحله‌ای در ایران انجام شده است. این مطالعات از بین نمونه‌هایی مطابق عوامل مؤثر فردی و محتوایی بر ارتقای دیابت نوع دو بیماران دیابتی می‌باشد. متغیر پاسخ (بار ارتقای دیابت تعریف شده بر پایه) از تحقیق دو متغیری دو حالتی Kاهش و جذب در دو ماهانه بیمار (کمتر 30 درصد، 30 درصد و بالاتر) به دلیل مشکلات مربوط به داده‌های تعریف‌گرید. لازم به ذکر است که جذب در دو ماهانه بیمار به دلیل هزینه‌های صرف سهم مربوط به بیماری دیابت تعریف می‌شود که

روش GQ توسط چنین هدفی در سال 1997 برای مدل‌های خطي تعمیم‌پذیره به کار برده شد. این روش به تعداد زیادی ناپایداری برای تقید تابع درست‌نمایی تیاز دارد و با مشکلات همره است که

برای مدل رگرسیون لجستیک ترتیبی دو سطحی به داده‌های دیابتی STATA و GQ و AGQ در نرم‌افزار برای بررسی و روش‌های به تعداد زیادی ناپایداری برای تقید تابع درست‌نمایی تیاز دارد و با مشکلات همره است که
این متغیر به صورت درصد اندک‌های گیری شده است. یک حرکت اساسی، متغیر پاکس ترتبی (مهربان) بوده است. ۵ متغیر دیگر در بخش ۱-۳ مقداری درصدی از متغیرگرایی تعریف شده‌اند. با استفاده از مقدار متغیر ۳۰٪ به عنوان مقدار مطلق، در بخش ۲-۳ مقداری بالای ۳۰٪ به عنوان مقدار بار اقتصادی، در بخش ۴-۳ درصدی گروه‌های کمتر از ۳۰٪ است. در بخش ۵-۳ به عنوان مقدار مطلق، در بخش ۶-۳ به عنوان مقدار بار اقتصادی ترتیب گرفته شده است. در بخش ۷-۳ تنها حدود ۸۵٪ به تأیید رسیده است. متغیرهای این مورد مطالعه در سطح اول ممکن است فیبریت و وضعیت سلامتی، وضعیت اقتصادی، محل سکونت، جنسیت، وضعیت بیمه‌بودن یا نبودن بیمار، سن و تعداد سال‌های آگاهی از ابتلا به بیماری در نظر گرفته شده‌اند. متغیرهای تعداد پزشک‌های متخصص در استان (یا مرکز استان)، تعداد کل کشوری، نسبت شهروندی، نرخ پاکسازی و نرخ بیکاری به عنوان متغیرهای سطح دوم مورد مطالعه قرار گرفته‌اند. لازم به ذکر است که متغیر وضعیت سلامتی بیمار، از طریق شاخص HUI اندک‌های گیری می‌شود. این شاخص شاخص استاندارد. یک شاخص شاخص استاندارد واریانس (VPC) که نشان دهنده میزان وابستگی متغیرهای درون خوش‌سازی است استفاده گردیده‌اند.

Health System Performance Assessment, Christopher Murray , David Evans, WHO 2003

Variance Partition Coefficient

Health Utility Index
تنویع‌گرداز باشد. در مثال بایان شده، اگر چه هر دو مدل آماری اثرات معنی‌دار مشاهده را از متغیرهای پیش‌بین نشان داده، ولی این مدل‌ها منجر به نتایج متفاوتی در رابطه با اندماج اثرات و اندازه واریانس اثر تصادفی شدند. در حالی که رگرسیون لجستیک ترتیبی دو سطحی دیگری متغیرهای پیش‌بین سطح دو در مدل واریانس اثر تصادفی مشاهده شدند. در این‌جا، مقدار در حالی که رگرسیون لجستیک ترتیبی دو سطحی با اضافه شدن متغیرهای پیش‌بین سطح دو در مدل پیش‌بین شده که نشان داده‌ها اضافه گردیدن متغیرهای پیش‌بین در سطح دو واریانس بخشی از این واریانس ثابتی شده در سطح دو را پوشیذ می‌دهد که منجر به کاهش واریانس سطح دو مدل می‌شود. در جداول 4 و 5 برای مدل‌های برخی داده شده سطح مشاهده می‌شود که 0.128 می‌باشد و بدون مقادیر واریانس مشاهده‌های اتاق آماری مشاهده مشاهده به صورت آماری معنادار است. این مقادیر واریانس مشاهده‌های صید برای VPC (19) نشان می‌دهد که این مدل‌ها به‌طور کارکرده به چه این مقدار داشته باشند. شدت واریانس مشاهده‌های دوره خود نشان‌دهنده است و به عبارتی نرخ استفاده از مدل‌های رگرسیون چند سطحی را بیان می‌کند (گانگشتنی و همکاران، 2004).

\[VPC = \frac{\sigma^2_{ij}}{\sigma^2_{ij} + \pi^2} \]

با توجه به فرمول بالا، مقادیر ضریب تفکیک واریانس برای 0/8 برای نیم‌گامکه‌یی دیگر یک اثاث است. لازم به ذکر است که متغیرهای پیش‌بین ویژه‌ای سلامتی و تعداد سال‌های آگاهی از بیماری در سطح یک هم‌گامگی معنی‌دار داشته (\(P-value < 0/17 \)) و نیاز به برای پیش‌بینی وجود نیافته مشکل خصوصی متغیر پیش‌بینی تعداد سال‌های آگاهی از بیماری از مدل حذف شده است. همان‌گونه که از جدول 3 مشخص است در مدل‌بندی متغیر پاسخ دو معادله حاصل می‌شود. اولین معادله مربوط به رده اول متغیر پاسخ بین یکی با پردازش برخی از مدل‌ها در منطقه انتقا دودیس اقتصادی و دویی معادله مربوط به رده است. در تحلیل اثر (با شناسی) نکته متغیرهای پیش‌بینی بر متغیر پاسخ، در همه رده‌ها به‌کار می‌رفته شده است.

6 بحث و نتیجه‌گیری

در این مقاله نشان دادیم که انتخاب مدل‌های آماری می‌تواند بر نتایج بهبود دهنده آمده از یک مجموعه داده

\[^{19} \text{Variance Partition Coefficient} \]
(1) برای 176 و برای مدل (2) برای 196 به علت ساخت و تعمیرات بیماری دیابت نسبت به بار نرمال دارد (196/176 = نسبت شانس). همچنین هر چقدر وضعیت افراد بیمار بدر باشد، شانس بیشتری برای تعمیر بار کمرشکن اقتصادی بیماری دیابت را که توسط متغیرهای پیشین موجود در مدل VPC تضییح داده شده است، تعیین می‌کند. مقدار به 32 مدل از مدل (1) شناسی می‌دهد در حالتی بیمارهای پیشین به مدل اضافه شده است، خوشبینی شانس بیماران در استانها 19 درصد از تغییراتی که در جدول 6 نشان داده می‌دهد، با افزایش شانس سلامتی، شانس تعمیر بیماری به رده بار کمرشکن می‌شود (به عبارتی نسبت شانس 2.0 رده بار کمرشکن نسبت به بار نرمال و متوسط برای VPC 1/064 می‌باشد. شاخص یافته‌های گزارش شده از جدول 6 نشان می‌دهد با افزایش آلفا شانس مجموعه داده حاضر، مقدار نسبتاً بالا و منطقی با مقادیر مقبول‌گزارش شده از مقالات قبلی می‌باشد (زاکریز و همکاران. 1989). لازم به ذکر است که عوامل گوناگونی مانند حجم نمونه در خوشی‌های مختلف افزایش و یا کاهش متغیرهای پیشین و نوع متغیر پاسخ بستگی دارد (هانک و گیپتز. 1996). در مدل (2) با پیش‌بینی سطح دو (به علت استان‌های مختلف) در مدل تغییراتی که مدل رگرسیونی ملاحظه می‌شود که اثر متغیرهای پیشین سطح یک مانند بستگی محل سکونت، وضعیت سلامتی، وضعیت بیمار بودن و سن بر بار اقتصادی بیماری نشان می‌دهد با افزایش شانس دیابت نسبت به بار اقتصادی بیماری (P D < 0/05). همین‌گونه که از جدول 4 مشاهده می‌شود ضریب متغیرهای بستگی وضعیت دیابت به حساب می‌آید. برآورد شیب ضریب متغیر اقتصادی می‌شود که بنابراین می‌تواند نسبت
بیمار به رده بار کمرشکن بیماری افزایش می‌یابد. این مقدار حاکی از آن است که به دلیل کمبود تخصصی بودجه به هزینه‌های درمانی بیماران توسط سیستم ارائه خدمات بهداشتی کشور، مراجعه بیماران اضافه شده به مدل غیر صفر می‌باشد (<P-value</0/05). همچنین واریانس اثر تصادفی در سطح مدل جدول 4 مربوط است و بنا براین پارامترها بهترین و پارامترهای مدل است از مدل دست‌سنجی را نشان می‌دهد. نکته قبل ذکر اینکه هنگام برآورد پارامترها در مدل‌های محدودیت‌های تحقیقی؛ یکی از نقاط ضعف اثر تصادفی (بي‌پارامترهای مدل و پارامتر های تحت فرض

\[LRT = -2\log \frac{L(\hat{\theta}_0)}{L(\theta)} \]

\[^{16} \text{Elliptical Estimation Methods} \]

\[^{16} \text{Likelihood Ratio Test} \]
جدول 1: میانگین، انحراف معیار، دامنه تغییرات و میانه مشخصات افراد مورد مطالعه.

<table>
<thead>
<tr>
<th>متغيّرات سطوح پک</th>
<th>میانگین</th>
<th>انحراف استاندارد</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>سن (سال)</td>
<td>59/27</td>
<td>11/79</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>مدت آگاهی از ابتلا به دیابت (سال)</td>
<td>8/11</td>
<td>6/82</td>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>شاخص سلامتی (HUI)</td>
<td>0/62</td>
<td>0/39</td>
<td>0.495</td>
<td>0/72</td>
</tr>
</tbody>
</table>

جدول 2: توزیع فرواني بیماران بر حسب سطوح مختلف متغيّرات بیشترین سطح پک.

<table>
<thead>
<tr>
<th>متوسط خوب</th>
<th>بد</th>
<th>متوسط بیم</th>
<th>بله خیر</th>
<th>جنسیت: زن مرد</th>
<th>محل سکونت: روستای شهري</th>
<th>مرحله</th>
<th>محل سکونت: سطح پک</th>
<th>فراوانی</th>
<th>فراوانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>734</td>
<td>1870</td>
<td>630</td>
<td>440</td>
<td>2794</td>
<td>1249</td>
<td>1985</td>
<td>2508</td>
<td>726</td>
<td>726</td>
</tr>
</tbody>
</table>

جدول 3: میانگین، انحراف معیار، دامنه تغییرات و میانه متغيّرات پیشین در سطح استان.

<table>
<thead>
<tr>
<th>متغيّرات سطح دو</th>
<th>میانگین</th>
<th>انحراف استاندارد</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>نسبت شهرونشین(درصد)</td>
<td>67/61</td>
<td>14/92</td>
<td>93.91</td>
<td>61/17</td>
</tr>
<tr>
<td>نرخ بیماری(درصد)</td>
<td>84/86</td>
<td>3/79</td>
<td>91.27</td>
<td>85/01</td>
</tr>
<tr>
<td>نرخ بیماری(درصد)</td>
<td>9/94</td>
<td>2/73</td>
<td>18.90</td>
<td>9/5</td>
</tr>
<tr>
<td>تعداد پرشک متخصص</td>
<td>63/37</td>
<td>66/23</td>
<td>209 4</td>
<td>36</td>
</tr>
<tr>
<td>تعداد مرکز درمانی</td>
<td>43/85</td>
<td>43/57</td>
<td>145 6</td>
<td>23</td>
</tr>
</tbody>
</table>
جدول 4: نتایج برای مدل گرگسون لجستیک ترتیبی دو سطحی بدون وارد کردن متغیرهای سطح دو (مدل 1).

<table>
<thead>
<tr>
<th>متغیرهای پیش‌بین</th>
<th>فاصله اطمینان 95% برای OR</th>
<th>مقادیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>اثرات ثابت در سطح یک</td>
<td>(2/70, 3/90) 1/18</td>
<td><0/09></td>
</tr>
<tr>
<td>جنسیت (مرد یا زن)</td>
<td>(0/67, 0/99) −0/2</td>
<td><0/10></td>
</tr>
<tr>
<td>محل سکونت (شهر یا روستا)</td>
<td>(0/92, 1/07) −0/01</td>
<td><0/04></td>
</tr>
<tr>
<td>سن</td>
<td>* (0/04)</td>
<td></td>
</tr>
<tr>
<td>وضعیت سلامتی</td>
<td>(0/15, 0/23) −1/7</td>
<td><0/11></td>
</tr>
<tr>
<td>وضعیت اقتصادی (بد به خوب)</td>
<td>(1/74, 3/00) 0/83</td>
<td><0/14></td>
</tr>
<tr>
<td>وضعیت اقتصادی (متوسط به خوب)</td>
<td>(1/06, 1/70) 0/3</td>
<td><0/12></td>
</tr>
<tr>
<td>عرض از میدان</td>
<td>(0/08, 2/60) 0/36 logit(γ_{ij}^{(1)})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* (0/30)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4/30, 13/50) 0/36 logit(γ_{ij}^{(2)})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* (0/30)</td>
<td></td>
</tr>
<tr>
<td>مولفه واریانس</td>
<td>σ_{ij}^2</td>
<td></td>
</tr>
<tr>
<td>آماره لگاریتم درستنمای</td>
<td>-1991/5992</td>
<td></td>
</tr>
</tbody>
</table>

اعداد داخل پرانتز خطای استاندارد (SE) را نشان می‌دهند.

مقدار مربوط به نسبت شانس‌ها می‌باشد.

* در سطح 0/05 غیر معنی‌دار
جدول ۵: نتایج برآورد مدل رگرسیون لجستیک ترتیبی در سطح دو وارده کرد در متغیرهای سطح دو (مدل ۲).

<table>
<thead>
<tr>
<th>متغیرهای پیشین</th>
<th>$OR(\gamma_{ij})$</th>
<th>پیشین</th>
<th>فاصله اطمینان ۹۵%</th>
<th>$\text{logit}(\gamma_{ij})$</th>
<th>$\text{logit}(\gamma_{ij}^{(1)})$</th>
<th>$\text{logit}(\gamma_{ij}^{(2)})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>اثرات ثابت در سطح دو</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نسبت جنسیت (مرد به زن)</td>
<td>$1/16$</td>
<td>$0/09$</td>
<td>$0/2$</td>
<td>$0/97$</td>
<td>$0/04$</td>
<td>$0/005$</td>
</tr>
<tr>
<td>محل سکونت (شهر به روستا)</td>
<td>$1/65$</td>
<td>$0/11$</td>
<td>$0/9$</td>
<td>$0/09$</td>
<td>$0/009$</td>
<td>$0/001$</td>
</tr>
<tr>
<td>وضعیت سلامت</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>وضعیت اقتصادی (بد به خوب)</td>
<td>$0/3$</td>
<td>$0/11$</td>
<td>$0/36$</td>
<td>$0/38$</td>
<td>$0/37$</td>
<td>$0/37$</td>
</tr>
<tr>
<td>وضعیت اقتصادی (متوسط به خوب)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>عرض از میدان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>اعیاد داخل بروز اختلال استاندارد(SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0/78$</td>
<td>$0/12$</td>
<td>$1986/72$</td>
<td>$9/75$</td>
<td>$0/00$</td>
<td>$0/00$</td>
<td>$0/00$</td>
</tr>
</tbody>
</table>

* مقادیر مربوط به نسبت شاخص می‌باشد.

آماره لگاریتم درستنمایی

آزمون نسبت درستنمایی

1988 methodological issues in worksite research conference (pp. 77-88). Airlie,
VA: US. Department of Health and Human Services.

[10] Little, R.C., Milliken, G.A., Stroup, W.A., Wolfinger, R.D. and Schabenberger,

points in a logistic random effects model: an example. *Applied Statistics*, 50,
325-335.

Chapman and Hall.

Wiley, New York.

tilevel models with binary response: A case study. *Jornal of the Royal Statistical
Society*, 164, 339-355.

generalized linear mixed models using adaptive quadrature. *The Stata Jornal*, 2,
1-21.

Using Stata*. 2nd ed. College Station, Tx: Stata Press.

MLwiN Version 2.0. London: Institute of Education. Downloadable from
http://multilevel.ioc.ac.uk/download/manuals.html.

